Properties

Label 2254.4.a.x.1.4
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 5 x^{10} - 165 x^{9} + 798 x^{8} + 8769 x^{7} - 38472 x^{6} - 184213 x^{5} + 644009 x^{4} + \cdots + 2848203 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(5.45902\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -4.45902 q^{3} +4.00000 q^{4} +11.8862 q^{5} -8.91803 q^{6} +8.00000 q^{8} -7.11717 q^{9} +23.7724 q^{10} -10.2805 q^{11} -17.8361 q^{12} -43.4321 q^{13} -53.0007 q^{15} +16.0000 q^{16} +54.9334 q^{17} -14.2343 q^{18} -47.0673 q^{19} +47.5447 q^{20} -20.5610 q^{22} -23.0000 q^{23} -35.6721 q^{24} +16.2813 q^{25} -86.8641 q^{26} +152.129 q^{27} +245.857 q^{29} -106.001 q^{30} -287.824 q^{31} +32.0000 q^{32} +45.8410 q^{33} +109.867 q^{34} -28.4687 q^{36} -254.867 q^{37} -94.1345 q^{38} +193.664 q^{39} +95.0895 q^{40} +35.0262 q^{41} +257.685 q^{43} -41.1220 q^{44} -84.5960 q^{45} -46.0000 q^{46} +618.984 q^{47} -71.3443 q^{48} +32.5626 q^{50} -244.949 q^{51} -173.728 q^{52} -349.480 q^{53} +304.258 q^{54} -122.196 q^{55} +209.874 q^{57} +491.715 q^{58} +626.493 q^{59} -212.003 q^{60} +626.512 q^{61} -575.648 q^{62} +64.0000 q^{64} -516.241 q^{65} +91.6819 q^{66} +435.715 q^{67} +219.734 q^{68} +102.557 q^{69} -727.972 q^{71} -56.9374 q^{72} +460.719 q^{73} -509.734 q^{74} -72.5987 q^{75} -188.269 q^{76} +387.329 q^{78} +322.728 q^{79} +190.179 q^{80} -486.182 q^{81} +70.0525 q^{82} +995.707 q^{83} +652.948 q^{85} +515.371 q^{86} -1096.28 q^{87} -82.2441 q^{88} +1167.23 q^{89} -169.192 q^{90} -92.0000 q^{92} +1283.41 q^{93} +1237.97 q^{94} -559.450 q^{95} -142.689 q^{96} +550.000 q^{97} +73.1681 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 6 q^{3} + 44 q^{4} + 27 q^{5} + 12 q^{6} + 88 q^{8} + 59 q^{9} + 54 q^{10} + 56 q^{11} + 24 q^{12} + 103 q^{13} + 62 q^{15} + 176 q^{16} + 157 q^{17} + 118 q^{18} + 266 q^{19} + 108 q^{20}+ \cdots + 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −4.45902 −0.858138 −0.429069 0.903272i \(-0.641158\pi\)
−0.429069 + 0.903272i \(0.641158\pi\)
\(4\) 4.00000 0.500000
\(5\) 11.8862 1.06313 0.531566 0.847017i \(-0.321604\pi\)
0.531566 + 0.847017i \(0.321604\pi\)
\(6\) −8.91803 −0.606795
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −7.11717 −0.263599
\(10\) 23.7724 0.751748
\(11\) −10.2805 −0.281790 −0.140895 0.990025i \(-0.544998\pi\)
−0.140895 + 0.990025i \(0.544998\pi\)
\(12\) −17.8361 −0.429069
\(13\) −43.4321 −0.926607 −0.463303 0.886200i \(-0.653336\pi\)
−0.463303 + 0.886200i \(0.653336\pi\)
\(14\) 0 0
\(15\) −53.0007 −0.912315
\(16\) 16.0000 0.250000
\(17\) 54.9334 0.783724 0.391862 0.920024i \(-0.371831\pi\)
0.391862 + 0.920024i \(0.371831\pi\)
\(18\) −14.2343 −0.186393
\(19\) −47.0673 −0.568314 −0.284157 0.958778i \(-0.591714\pi\)
−0.284157 + 0.958778i \(0.591714\pi\)
\(20\) 47.5447 0.531566
\(21\) 0 0
\(22\) −20.5610 −0.199256
\(23\) −23.0000 −0.208514
\(24\) −35.6721 −0.303398
\(25\) 16.2813 0.130251
\(26\) −86.8641 −0.655210
\(27\) 152.129 1.08434
\(28\) 0 0
\(29\) 245.857 1.57430 0.787148 0.616764i \(-0.211557\pi\)
0.787148 + 0.616764i \(0.211557\pi\)
\(30\) −106.001 −0.645104
\(31\) −287.824 −1.66757 −0.833786 0.552087i \(-0.813832\pi\)
−0.833786 + 0.552087i \(0.813832\pi\)
\(32\) 32.0000 0.176777
\(33\) 45.8410 0.241815
\(34\) 109.867 0.554176
\(35\) 0 0
\(36\) −28.4687 −0.131799
\(37\) −254.867 −1.13243 −0.566215 0.824258i \(-0.691593\pi\)
−0.566215 + 0.824258i \(0.691593\pi\)
\(38\) −94.1345 −0.401859
\(39\) 193.664 0.795157
\(40\) 95.0895 0.375874
\(41\) 35.0262 0.133419 0.0667095 0.997772i \(-0.478750\pi\)
0.0667095 + 0.997772i \(0.478750\pi\)
\(42\) 0 0
\(43\) 257.685 0.913875 0.456938 0.889499i \(-0.348946\pi\)
0.456938 + 0.889499i \(0.348946\pi\)
\(44\) −41.1220 −0.140895
\(45\) −84.5960 −0.280240
\(46\) −46.0000 −0.147442
\(47\) 618.984 1.92102 0.960511 0.278241i \(-0.0897513\pi\)
0.960511 + 0.278241i \(0.0897513\pi\)
\(48\) −71.3443 −0.214535
\(49\) 0 0
\(50\) 32.5626 0.0921011
\(51\) −244.949 −0.672543
\(52\) −173.728 −0.463303
\(53\) −349.480 −0.905751 −0.452875 0.891574i \(-0.649602\pi\)
−0.452875 + 0.891574i \(0.649602\pi\)
\(54\) 304.258 0.766746
\(55\) −122.196 −0.299580
\(56\) 0 0
\(57\) 209.874 0.487692
\(58\) 491.715 1.11320
\(59\) 626.493 1.38241 0.691207 0.722657i \(-0.257079\pi\)
0.691207 + 0.722657i \(0.257079\pi\)
\(60\) −212.003 −0.456157
\(61\) 626.512 1.31503 0.657513 0.753443i \(-0.271608\pi\)
0.657513 + 0.753443i \(0.271608\pi\)
\(62\) −575.648 −1.17915
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −516.241 −0.985106
\(66\) 91.6819 0.170989
\(67\) 435.715 0.794494 0.397247 0.917712i \(-0.369966\pi\)
0.397247 + 0.917712i \(0.369966\pi\)
\(68\) 219.734 0.391862
\(69\) 102.557 0.178934
\(70\) 0 0
\(71\) −727.972 −1.21682 −0.608411 0.793622i \(-0.708193\pi\)
−0.608411 + 0.793622i \(0.708193\pi\)
\(72\) −56.9374 −0.0931963
\(73\) 460.719 0.738672 0.369336 0.929296i \(-0.379585\pi\)
0.369336 + 0.929296i \(0.379585\pi\)
\(74\) −509.734 −0.800748
\(75\) −72.5987 −0.111773
\(76\) −188.269 −0.284157
\(77\) 0 0
\(78\) 387.329 0.562261
\(79\) 322.728 0.459617 0.229808 0.973236i \(-0.426190\pi\)
0.229808 + 0.973236i \(0.426190\pi\)
\(80\) 190.179 0.265783
\(81\) −486.182 −0.666917
\(82\) 70.0525 0.0943415
\(83\) 995.707 1.31678 0.658391 0.752676i \(-0.271237\pi\)
0.658391 + 0.752676i \(0.271237\pi\)
\(84\) 0 0
\(85\) 652.948 0.833202
\(86\) 515.371 0.646207
\(87\) −1096.28 −1.35096
\(88\) −82.2441 −0.0996278
\(89\) 1167.23 1.39018 0.695089 0.718923i \(-0.255365\pi\)
0.695089 + 0.718923i \(0.255365\pi\)
\(90\) −169.192 −0.198160
\(91\) 0 0
\(92\) −92.0000 −0.104257
\(93\) 1283.41 1.43101
\(94\) 1237.97 1.35837
\(95\) −559.450 −0.604193
\(96\) −142.689 −0.151699
\(97\) 550.000 0.575711 0.287856 0.957674i \(-0.407058\pi\)
0.287856 + 0.957674i \(0.407058\pi\)
\(98\) 0 0
\(99\) 73.1681 0.0742795
\(100\) 65.1253 0.0651253
\(101\) −1545.51 −1.52261 −0.761306 0.648393i \(-0.775441\pi\)
−0.761306 + 0.648393i \(0.775441\pi\)
\(102\) −489.898 −0.475560
\(103\) 1146.99 1.09724 0.548621 0.836071i \(-0.315153\pi\)
0.548621 + 0.836071i \(0.315153\pi\)
\(104\) −347.457 −0.327605
\(105\) 0 0
\(106\) −698.960 −0.640463
\(107\) −1024.30 −0.925447 −0.462724 0.886503i \(-0.653128\pi\)
−0.462724 + 0.886503i \(0.653128\pi\)
\(108\) 608.516 0.542171
\(109\) 114.016 0.100191 0.0500953 0.998744i \(-0.484048\pi\)
0.0500953 + 0.998744i \(0.484048\pi\)
\(110\) −244.392 −0.211835
\(111\) 1136.46 0.971781
\(112\) 0 0
\(113\) −416.934 −0.347096 −0.173548 0.984825i \(-0.555523\pi\)
−0.173548 + 0.984825i \(0.555523\pi\)
\(114\) 419.747 0.344850
\(115\) −273.382 −0.221678
\(116\) 983.430 0.787148
\(117\) 309.113 0.244252
\(118\) 1252.99 0.977515
\(119\) 0 0
\(120\) −424.005 −0.322552
\(121\) −1225.31 −0.920594
\(122\) 1253.02 0.929864
\(123\) −156.183 −0.114492
\(124\) −1151.30 −0.833786
\(125\) −1292.25 −0.924659
\(126\) 0 0
\(127\) 1801.69 1.25885 0.629425 0.777061i \(-0.283291\pi\)
0.629425 + 0.777061i \(0.283291\pi\)
\(128\) 128.000 0.0883883
\(129\) −1149.02 −0.784231
\(130\) −1032.48 −0.696575
\(131\) −1796.16 −1.19795 −0.598975 0.800767i \(-0.704425\pi\)
−0.598975 + 0.800767i \(0.704425\pi\)
\(132\) 183.364 0.120907
\(133\) 0 0
\(134\) 871.431 0.561792
\(135\) 1808.23 1.15280
\(136\) 439.467 0.277088
\(137\) −2014.64 −1.25637 −0.628183 0.778065i \(-0.716201\pi\)
−0.628183 + 0.778065i \(0.716201\pi\)
\(138\) 205.115 0.126526
\(139\) 2195.66 1.33981 0.669903 0.742448i \(-0.266336\pi\)
0.669903 + 0.742448i \(0.266336\pi\)
\(140\) 0 0
\(141\) −2760.06 −1.64850
\(142\) −1455.94 −0.860424
\(143\) 446.504 0.261108
\(144\) −113.875 −0.0658997
\(145\) 2922.31 1.67369
\(146\) 921.437 0.522320
\(147\) 0 0
\(148\) −1019.47 −0.566215
\(149\) 1126.72 0.619492 0.309746 0.950819i \(-0.399756\pi\)
0.309746 + 0.950819i \(0.399756\pi\)
\(150\) −145.197 −0.0790354
\(151\) −511.205 −0.275505 −0.137753 0.990467i \(-0.543988\pi\)
−0.137753 + 0.990467i \(0.543988\pi\)
\(152\) −376.538 −0.200929
\(153\) −390.970 −0.206589
\(154\) 0 0
\(155\) −3421.13 −1.77285
\(156\) 774.657 0.397578
\(157\) 1.99715 0.00101522 0.000507611 1.00000i \(-0.499838\pi\)
0.000507611 1.00000i \(0.499838\pi\)
\(158\) 645.456 0.324998
\(159\) 1558.34 0.777259
\(160\) 380.358 0.187937
\(161\) 0 0
\(162\) −972.365 −0.471581
\(163\) 1497.10 0.719398 0.359699 0.933068i \(-0.382879\pi\)
0.359699 + 0.933068i \(0.382879\pi\)
\(164\) 140.105 0.0667095
\(165\) 544.874 0.257081
\(166\) 1991.41 0.931106
\(167\) 2450.82 1.13563 0.567815 0.823156i \(-0.307789\pi\)
0.567815 + 0.823156i \(0.307789\pi\)
\(168\) 0 0
\(169\) −310.656 −0.141400
\(170\) 1305.90 0.589163
\(171\) 334.986 0.149807
\(172\) 1030.74 0.456938
\(173\) 553.775 0.243368 0.121684 0.992569i \(-0.461171\pi\)
0.121684 + 0.992569i \(0.461171\pi\)
\(174\) −2192.57 −0.955276
\(175\) 0 0
\(176\) −164.488 −0.0704475
\(177\) −2793.54 −1.18630
\(178\) 2334.46 0.983005
\(179\) −2992.35 −1.24949 −0.624746 0.780828i \(-0.714797\pi\)
−0.624746 + 0.780828i \(0.714797\pi\)
\(180\) −338.384 −0.140120
\(181\) −2213.30 −0.908912 −0.454456 0.890769i \(-0.650166\pi\)
−0.454456 + 0.890769i \(0.650166\pi\)
\(182\) 0 0
\(183\) −2793.63 −1.12847
\(184\) −184.000 −0.0737210
\(185\) −3029.40 −1.20392
\(186\) 2566.83 1.01188
\(187\) −564.743 −0.220846
\(188\) 2475.94 0.960511
\(189\) 0 0
\(190\) −1118.90 −0.427229
\(191\) 4390.68 1.66334 0.831672 0.555267i \(-0.187384\pi\)
0.831672 + 0.555267i \(0.187384\pi\)
\(192\) −285.377 −0.107267
\(193\) 1824.21 0.680358 0.340179 0.940361i \(-0.389512\pi\)
0.340179 + 0.940361i \(0.389512\pi\)
\(194\) 1100.00 0.407089
\(195\) 2301.93 0.845357
\(196\) 0 0
\(197\) −2099.84 −0.759429 −0.379715 0.925104i \(-0.623978\pi\)
−0.379715 + 0.925104i \(0.623978\pi\)
\(198\) 146.336 0.0525235
\(199\) 3572.24 1.27251 0.636254 0.771479i \(-0.280483\pi\)
0.636254 + 0.771479i \(0.280483\pi\)
\(200\) 130.251 0.0460505
\(201\) −1942.86 −0.681786
\(202\) −3091.02 −1.07665
\(203\) 0 0
\(204\) −979.796 −0.336272
\(205\) 416.328 0.141842
\(206\) 2293.97 0.775868
\(207\) 163.695 0.0549642
\(208\) −694.913 −0.231652
\(209\) 483.875 0.160145
\(210\) 0 0
\(211\) 3332.11 1.08716 0.543582 0.839356i \(-0.317068\pi\)
0.543582 + 0.839356i \(0.317068\pi\)
\(212\) −1397.92 −0.452875
\(213\) 3246.04 1.04420
\(214\) −2048.60 −0.654390
\(215\) 3062.89 0.971570
\(216\) 1217.03 0.383373
\(217\) 0 0
\(218\) 228.032 0.0708454
\(219\) −2054.35 −0.633882
\(220\) −488.784 −0.149790
\(221\) −2385.87 −0.726204
\(222\) 2272.91 0.687153
\(223\) −2977.46 −0.894105 −0.447052 0.894508i \(-0.647526\pi\)
−0.447052 + 0.894508i \(0.647526\pi\)
\(224\) 0 0
\(225\) −115.877 −0.0343339
\(226\) −833.869 −0.245434
\(227\) 5408.03 1.58125 0.790625 0.612301i \(-0.209756\pi\)
0.790625 + 0.612301i \(0.209756\pi\)
\(228\) 839.495 0.243846
\(229\) 894.318 0.258071 0.129035 0.991640i \(-0.458812\pi\)
0.129035 + 0.991640i \(0.458812\pi\)
\(230\) −546.764 −0.156750
\(231\) 0 0
\(232\) 1966.86 0.556598
\(233\) 5151.85 1.44854 0.724268 0.689518i \(-0.242178\pi\)
0.724268 + 0.689518i \(0.242178\pi\)
\(234\) 618.227 0.172713
\(235\) 7357.35 2.04230
\(236\) 2505.97 0.691207
\(237\) −1439.05 −0.394415
\(238\) 0 0
\(239\) 1365.86 0.369665 0.184833 0.982770i \(-0.440826\pi\)
0.184833 + 0.982770i \(0.440826\pi\)
\(240\) −848.011 −0.228079
\(241\) 4639.50 1.24007 0.620034 0.784575i \(-0.287119\pi\)
0.620034 + 0.784575i \(0.287119\pi\)
\(242\) −2450.62 −0.650959
\(243\) −1939.59 −0.512036
\(244\) 2506.05 0.657513
\(245\) 0 0
\(246\) −312.365 −0.0809580
\(247\) 2044.23 0.526604
\(248\) −2302.59 −0.589576
\(249\) −4439.87 −1.12998
\(250\) −2584.50 −0.653833
\(251\) −2698.14 −0.678507 −0.339253 0.940695i \(-0.610174\pi\)
−0.339253 + 0.940695i \(0.610174\pi\)
\(252\) 0 0
\(253\) 236.452 0.0587573
\(254\) 3603.37 0.890141
\(255\) −2911.51 −0.715003
\(256\) 256.000 0.0625000
\(257\) 237.755 0.0577072 0.0288536 0.999584i \(-0.490814\pi\)
0.0288536 + 0.999584i \(0.490814\pi\)
\(258\) −2298.05 −0.554535
\(259\) 0 0
\(260\) −2064.97 −0.492553
\(261\) −1749.81 −0.414983
\(262\) −3592.33 −0.847079
\(263\) −790.865 −0.185425 −0.0927126 0.995693i \(-0.529554\pi\)
−0.0927126 + 0.995693i \(0.529554\pi\)
\(264\) 366.728 0.0854944
\(265\) −4153.99 −0.962933
\(266\) 0 0
\(267\) −5204.69 −1.19297
\(268\) 1742.86 0.397247
\(269\) 5894.42 1.33602 0.668009 0.744153i \(-0.267147\pi\)
0.668009 + 0.744153i \(0.267147\pi\)
\(270\) 3616.47 0.815152
\(271\) 6474.66 1.45132 0.725660 0.688053i \(-0.241535\pi\)
0.725660 + 0.688053i \(0.241535\pi\)
\(272\) 878.934 0.195931
\(273\) 0 0
\(274\) −4029.28 −0.888386
\(275\) −167.380 −0.0367033
\(276\) 410.230 0.0894671
\(277\) 6638.11 1.43987 0.719937 0.694039i \(-0.244170\pi\)
0.719937 + 0.694039i \(0.244170\pi\)
\(278\) 4391.31 0.947386
\(279\) 2048.49 0.439570
\(280\) 0 0
\(281\) 5701.81 1.21047 0.605234 0.796048i \(-0.293080\pi\)
0.605234 + 0.796048i \(0.293080\pi\)
\(282\) −5520.12 −1.16567
\(283\) −6975.15 −1.46512 −0.732561 0.680701i \(-0.761675\pi\)
−0.732561 + 0.680701i \(0.761675\pi\)
\(284\) −2911.89 −0.608411
\(285\) 2494.60 0.518481
\(286\) 893.007 0.184632
\(287\) 0 0
\(288\) −227.749 −0.0465981
\(289\) −1895.32 −0.385777
\(290\) 5844.61 1.18347
\(291\) −2452.46 −0.494040
\(292\) 1842.87 0.369336
\(293\) 6802.09 1.35625 0.678127 0.734945i \(-0.262792\pi\)
0.678127 + 0.734945i \(0.262792\pi\)
\(294\) 0 0
\(295\) 7446.61 1.46969
\(296\) −2038.94 −0.400374
\(297\) −1563.96 −0.305557
\(298\) 2253.44 0.438047
\(299\) 998.937 0.193211
\(300\) −290.395 −0.0558865
\(301\) 0 0
\(302\) −1022.41 −0.194812
\(303\) 6891.44 1.30661
\(304\) −753.076 −0.142079
\(305\) 7446.83 1.39805
\(306\) −781.941 −0.146080
\(307\) −2688.94 −0.499889 −0.249945 0.968260i \(-0.580412\pi\)
−0.249945 + 0.968260i \(0.580412\pi\)
\(308\) 0 0
\(309\) −5114.43 −0.941586
\(310\) −6842.26 −1.25359
\(311\) −5172.53 −0.943111 −0.471555 0.881836i \(-0.656307\pi\)
−0.471555 + 0.881836i \(0.656307\pi\)
\(312\) 1549.31 0.281130
\(313\) 6588.73 1.18983 0.594915 0.803789i \(-0.297186\pi\)
0.594915 + 0.803789i \(0.297186\pi\)
\(314\) 3.99430 0.000717870 0
\(315\) 0 0
\(316\) 1290.91 0.229808
\(317\) 2858.53 0.506470 0.253235 0.967405i \(-0.418505\pi\)
0.253235 + 0.967405i \(0.418505\pi\)
\(318\) 3116.68 0.549605
\(319\) −2527.54 −0.443621
\(320\) 760.716 0.132892
\(321\) 4567.37 0.794161
\(322\) 0 0
\(323\) −2585.57 −0.445402
\(324\) −1944.73 −0.333458
\(325\) −707.131 −0.120691
\(326\) 2994.20 0.508691
\(327\) −508.400 −0.0859773
\(328\) 280.210 0.0471707
\(329\) 0 0
\(330\) 1089.75 0.181784
\(331\) 6503.65 1.07998 0.539989 0.841672i \(-0.318428\pi\)
0.539989 + 0.841672i \(0.318428\pi\)
\(332\) 3982.83 0.658391
\(333\) 1813.93 0.298507
\(334\) 4901.65 0.803012
\(335\) 5178.99 0.844653
\(336\) 0 0
\(337\) −952.242 −0.153923 −0.0769614 0.997034i \(-0.524522\pi\)
−0.0769614 + 0.997034i \(0.524522\pi\)
\(338\) −621.312 −0.0999849
\(339\) 1859.12 0.297857
\(340\) 2611.79 0.416601
\(341\) 2958.98 0.469905
\(342\) 669.971 0.105930
\(343\) 0 0
\(344\) 2061.48 0.323104
\(345\) 1219.02 0.190231
\(346\) 1107.55 0.172087
\(347\) −292.017 −0.0451766 −0.0225883 0.999745i \(-0.507191\pi\)
−0.0225883 + 0.999745i \(0.507191\pi\)
\(348\) −4385.13 −0.675482
\(349\) 4360.15 0.668750 0.334375 0.942440i \(-0.391475\pi\)
0.334375 + 0.942440i \(0.391475\pi\)
\(350\) 0 0
\(351\) −6607.28 −1.00476
\(352\) −328.976 −0.0498139
\(353\) −3666.20 −0.552783 −0.276391 0.961045i \(-0.589139\pi\)
−0.276391 + 0.961045i \(0.589139\pi\)
\(354\) −5587.09 −0.838843
\(355\) −8652.81 −1.29364
\(356\) 4668.91 0.695089
\(357\) 0 0
\(358\) −5984.71 −0.883524
\(359\) −8159.92 −1.19962 −0.599811 0.800142i \(-0.704757\pi\)
−0.599811 + 0.800142i \(0.704757\pi\)
\(360\) −676.768 −0.0990800
\(361\) −4643.67 −0.677019
\(362\) −4426.59 −0.642698
\(363\) 5463.68 0.789997
\(364\) 0 0
\(365\) 5476.18 0.785306
\(366\) −5587.25 −0.797952
\(367\) −1030.25 −0.146535 −0.0732677 0.997312i \(-0.523343\pi\)
−0.0732677 + 0.997312i \(0.523343\pi\)
\(368\) −368.000 −0.0521286
\(369\) −249.288 −0.0351691
\(370\) −6058.79 −0.851302
\(371\) 0 0
\(372\) 5133.65 0.715504
\(373\) 7572.88 1.05123 0.525615 0.850723i \(-0.323835\pi\)
0.525615 + 0.850723i \(0.323835\pi\)
\(374\) −1129.49 −0.156161
\(375\) 5762.16 0.793485
\(376\) 4951.87 0.679184
\(377\) −10678.1 −1.45875
\(378\) 0 0
\(379\) −3957.77 −0.536403 −0.268202 0.963363i \(-0.586429\pi\)
−0.268202 + 0.963363i \(0.586429\pi\)
\(380\) −2237.80 −0.302097
\(381\) −8033.75 −1.08027
\(382\) 8781.37 1.17616
\(383\) −6797.77 −0.906918 −0.453459 0.891277i \(-0.649810\pi\)
−0.453459 + 0.891277i \(0.649810\pi\)
\(384\) −570.754 −0.0758494
\(385\) 0 0
\(386\) 3648.41 0.481086
\(387\) −1833.99 −0.240896
\(388\) 2200.00 0.287856
\(389\) −5733.86 −0.747347 −0.373674 0.927560i \(-0.621902\pi\)
−0.373674 + 0.927560i \(0.621902\pi\)
\(390\) 4603.86 0.597757
\(391\) −1263.47 −0.163418
\(392\) 0 0
\(393\) 8009.12 1.02801
\(394\) −4199.69 −0.536998
\(395\) 3836.00 0.488633
\(396\) 292.672 0.0371398
\(397\) −2412.97 −0.305047 −0.152524 0.988300i \(-0.548740\pi\)
−0.152524 + 0.988300i \(0.548740\pi\)
\(398\) 7144.47 0.899799
\(399\) 0 0
\(400\) 260.501 0.0325626
\(401\) 3889.19 0.484331 0.242165 0.970235i \(-0.422142\pi\)
0.242165 + 0.970235i \(0.422142\pi\)
\(402\) −3885.72 −0.482095
\(403\) 12500.8 1.54518
\(404\) −6182.03 −0.761306
\(405\) −5778.85 −0.709021
\(406\) 0 0
\(407\) 2620.16 0.319107
\(408\) −1959.59 −0.237780
\(409\) 6627.60 0.801256 0.400628 0.916241i \(-0.368792\pi\)
0.400628 + 0.916241i \(0.368792\pi\)
\(410\) 832.657 0.100297
\(411\) 8983.31 1.07814
\(412\) 4587.95 0.548621
\(413\) 0 0
\(414\) 327.390 0.0388655
\(415\) 11835.1 1.39991
\(416\) −1389.83 −0.163802
\(417\) −9790.47 −1.14974
\(418\) 967.751 0.113240
\(419\) 6921.05 0.806958 0.403479 0.914989i \(-0.367801\pi\)
0.403479 + 0.914989i \(0.367801\pi\)
\(420\) 0 0
\(421\) −11130.6 −1.28853 −0.644264 0.764803i \(-0.722836\pi\)
−0.644264 + 0.764803i \(0.722836\pi\)
\(422\) 6664.21 0.768741
\(423\) −4405.41 −0.506379
\(424\) −2795.84 −0.320231
\(425\) 894.388 0.102080
\(426\) 6492.08 0.738362
\(427\) 0 0
\(428\) −4097.20 −0.462724
\(429\) −1990.97 −0.224067
\(430\) 6125.79 0.687004
\(431\) 371.467 0.0415150 0.0207575 0.999785i \(-0.493392\pi\)
0.0207575 + 0.999785i \(0.493392\pi\)
\(432\) 2434.06 0.271086
\(433\) −9497.51 −1.05409 −0.527045 0.849837i \(-0.676700\pi\)
−0.527045 + 0.849837i \(0.676700\pi\)
\(434\) 0 0
\(435\) −13030.6 −1.43625
\(436\) 456.065 0.0500953
\(437\) 1082.55 0.118502
\(438\) −4108.70 −0.448222
\(439\) 2286.99 0.248638 0.124319 0.992242i \(-0.460325\pi\)
0.124319 + 0.992242i \(0.460325\pi\)
\(440\) −977.568 −0.105918
\(441\) 0 0
\(442\) −4771.74 −0.513504
\(443\) 18453.0 1.97907 0.989537 0.144281i \(-0.0460869\pi\)
0.989537 + 0.144281i \(0.0460869\pi\)
\(444\) 4545.83 0.485890
\(445\) 13873.9 1.47794
\(446\) −5954.92 −0.632228
\(447\) −5024.05 −0.531610
\(448\) 0 0
\(449\) −8638.93 −0.908010 −0.454005 0.890999i \(-0.650005\pi\)
−0.454005 + 0.890999i \(0.650005\pi\)
\(450\) −231.754 −0.0242777
\(451\) −360.087 −0.0375961
\(452\) −1667.74 −0.173548
\(453\) 2279.47 0.236422
\(454\) 10816.1 1.11811
\(455\) 0 0
\(456\) 1678.99 0.172425
\(457\) −4287.79 −0.438893 −0.219447 0.975625i \(-0.570425\pi\)
−0.219447 + 0.975625i \(0.570425\pi\)
\(458\) 1788.64 0.182483
\(459\) 8356.96 0.849825
\(460\) −1093.53 −0.110839
\(461\) −1737.71 −0.175560 −0.0877800 0.996140i \(-0.527977\pi\)
−0.0877800 + 0.996140i \(0.527977\pi\)
\(462\) 0 0
\(463\) 5751.48 0.577309 0.288655 0.957433i \(-0.406792\pi\)
0.288655 + 0.957433i \(0.406792\pi\)
\(464\) 3933.72 0.393574
\(465\) 15254.9 1.52135
\(466\) 10303.7 1.02427
\(467\) −3939.03 −0.390313 −0.195157 0.980772i \(-0.562522\pi\)
−0.195157 + 0.980772i \(0.562522\pi\)
\(468\) 1236.45 0.122126
\(469\) 0 0
\(470\) 14714.7 1.44413
\(471\) −8.90532 −0.000871200 0
\(472\) 5011.94 0.488757
\(473\) −2649.14 −0.257521
\(474\) −2878.10 −0.278893
\(475\) −766.317 −0.0740233
\(476\) 0 0
\(477\) 2487.31 0.238755
\(478\) 2731.71 0.261393
\(479\) 5976.41 0.570081 0.285041 0.958515i \(-0.407993\pi\)
0.285041 + 0.958515i \(0.407993\pi\)
\(480\) −1696.02 −0.161276
\(481\) 11069.4 1.04932
\(482\) 9279.00 0.876861
\(483\) 0 0
\(484\) −4901.24 −0.460297
\(485\) 6537.40 0.612058
\(486\) −3879.18 −0.362064
\(487\) 17410.3 1.61999 0.809996 0.586436i \(-0.199469\pi\)
0.809996 + 0.586436i \(0.199469\pi\)
\(488\) 5012.10 0.464932
\(489\) −6675.59 −0.617343
\(490\) 0 0
\(491\) 7602.40 0.698761 0.349380 0.936981i \(-0.386392\pi\)
0.349380 + 0.936981i \(0.386392\pi\)
\(492\) −624.730 −0.0572460
\(493\) 13505.8 1.23381
\(494\) 4088.46 0.372365
\(495\) 869.689 0.0789690
\(496\) −4605.19 −0.416893
\(497\) 0 0
\(498\) −8879.74 −0.799018
\(499\) 16620.4 1.49104 0.745520 0.666483i \(-0.232201\pi\)
0.745520 + 0.666483i \(0.232201\pi\)
\(500\) −5169.00 −0.462329
\(501\) −10928.3 −0.974528
\(502\) −5396.28 −0.479777
\(503\) −2923.40 −0.259141 −0.129571 0.991570i \(-0.541360\pi\)
−0.129571 + 0.991570i \(0.541360\pi\)
\(504\) 0 0
\(505\) −18370.2 −1.61874
\(506\) 472.903 0.0415477
\(507\) 1385.22 0.121341
\(508\) 7206.75 0.629425
\(509\) 52.6787 0.00458731 0.00229365 0.999997i \(-0.499270\pi\)
0.00229365 + 0.999997i \(0.499270\pi\)
\(510\) −5823.02 −0.505583
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −7160.30 −0.616247
\(514\) 475.510 0.0408051
\(515\) 13633.3 1.16651
\(516\) −4596.09 −0.392116
\(517\) −6363.47 −0.541325
\(518\) 0 0
\(519\) −2469.29 −0.208844
\(520\) −4129.93 −0.348287
\(521\) −1466.38 −0.123308 −0.0616538 0.998098i \(-0.519637\pi\)
−0.0616538 + 0.998098i \(0.519637\pi\)
\(522\) −3499.62 −0.293437
\(523\) −4876.05 −0.407676 −0.203838 0.979005i \(-0.565342\pi\)
−0.203838 + 0.979005i \(0.565342\pi\)
\(524\) −7184.65 −0.598975
\(525\) 0 0
\(526\) −1581.73 −0.131115
\(527\) −15811.2 −1.30692
\(528\) 733.455 0.0604537
\(529\) 529.000 0.0434783
\(530\) −8307.97 −0.680897
\(531\) −4458.86 −0.364403
\(532\) 0 0
\(533\) −1521.26 −0.123627
\(534\) −10409.4 −0.843554
\(535\) −12175.0 −0.983873
\(536\) 3485.72 0.280896
\(537\) 13343.0 1.07224
\(538\) 11788.8 0.944708
\(539\) 0 0
\(540\) 7232.93 0.576400
\(541\) −5178.12 −0.411506 −0.205753 0.978604i \(-0.565964\pi\)
−0.205753 + 0.978604i \(0.565964\pi\)
\(542\) 12949.3 1.02624
\(543\) 9869.13 0.779972
\(544\) 1757.87 0.138544
\(545\) 1355.22 0.106516
\(546\) 0 0
\(547\) −6431.74 −0.502745 −0.251372 0.967890i \(-0.580882\pi\)
−0.251372 + 0.967890i \(0.580882\pi\)
\(548\) −8058.56 −0.628183
\(549\) −4458.99 −0.346640
\(550\) −334.760 −0.0259532
\(551\) −11571.8 −0.894695
\(552\) 820.459 0.0632628
\(553\) 0 0
\(554\) 13276.2 1.01815
\(555\) 13508.1 1.03313
\(556\) 8782.63 0.669903
\(557\) 10927.2 0.831237 0.415618 0.909539i \(-0.363565\pi\)
0.415618 + 0.909539i \(0.363565\pi\)
\(558\) 4096.99 0.310823
\(559\) −11191.8 −0.846803
\(560\) 0 0
\(561\) 2518.20 0.189516
\(562\) 11403.6 0.855930
\(563\) −16255.3 −1.21684 −0.608418 0.793617i \(-0.708195\pi\)
−0.608418 + 0.793617i \(0.708195\pi\)
\(564\) −11040.2 −0.824252
\(565\) −4955.76 −0.369009
\(566\) −13950.3 −1.03600
\(567\) 0 0
\(568\) −5823.78 −0.430212
\(569\) −6111.27 −0.450259 −0.225130 0.974329i \(-0.572281\pi\)
−0.225130 + 0.974329i \(0.572281\pi\)
\(570\) 4989.19 0.366622
\(571\) −4997.15 −0.366242 −0.183121 0.983090i \(-0.558620\pi\)
−0.183121 + 0.983090i \(0.558620\pi\)
\(572\) 1786.01 0.130554
\(573\) −19578.1 −1.42738
\(574\) 0 0
\(575\) −374.470 −0.0271591
\(576\) −455.499 −0.0329499
\(577\) −18172.2 −1.31112 −0.655561 0.755142i \(-0.727568\pi\)
−0.655561 + 0.755142i \(0.727568\pi\)
\(578\) −3790.64 −0.272785
\(579\) −8134.16 −0.583842
\(580\) 11689.2 0.836843
\(581\) 0 0
\(582\) −4904.92 −0.349339
\(583\) 3592.83 0.255231
\(584\) 3685.75 0.261160
\(585\) 3674.18 0.259673
\(586\) 13604.2 0.959016
\(587\) 25446.4 1.78924 0.894622 0.446823i \(-0.147445\pi\)
0.894622 + 0.446823i \(0.147445\pi\)
\(588\) 0 0
\(589\) 13547.1 0.947705
\(590\) 14893.2 1.03923
\(591\) 9363.23 0.651695
\(592\) −4077.87 −0.283107
\(593\) −1692.73 −0.117221 −0.0586106 0.998281i \(-0.518667\pi\)
−0.0586106 + 0.998281i \(0.518667\pi\)
\(594\) −3127.93 −0.216061
\(595\) 0 0
\(596\) 4506.87 0.309746
\(597\) −15928.7 −1.09199
\(598\) 1997.87 0.136621
\(599\) −10867.9 −0.741323 −0.370661 0.928768i \(-0.620869\pi\)
−0.370661 + 0.928768i \(0.620869\pi\)
\(600\) −580.789 −0.0395177
\(601\) 13484.0 0.915184 0.457592 0.889162i \(-0.348712\pi\)
0.457592 + 0.889162i \(0.348712\pi\)
\(602\) 0 0
\(603\) −3101.06 −0.209428
\(604\) −2044.82 −0.137753
\(605\) −14564.3 −0.978714
\(606\) 13782.9 0.923914
\(607\) 19759.4 1.32127 0.660634 0.750708i \(-0.270287\pi\)
0.660634 + 0.750708i \(0.270287\pi\)
\(608\) −1506.15 −0.100465
\(609\) 0 0
\(610\) 14893.7 0.988569
\(611\) −26883.7 −1.78003
\(612\) −1563.88 −0.103294
\(613\) −24881.3 −1.63939 −0.819696 0.572799i \(-0.805857\pi\)
−0.819696 + 0.572799i \(0.805857\pi\)
\(614\) −5377.88 −0.353475
\(615\) −1856.41 −0.121720
\(616\) 0 0
\(617\) −27257.9 −1.77854 −0.889272 0.457379i \(-0.848788\pi\)
−0.889272 + 0.457379i \(0.848788\pi\)
\(618\) −10228.9 −0.665802
\(619\) −1319.47 −0.0856766 −0.0428383 0.999082i \(-0.513640\pi\)
−0.0428383 + 0.999082i \(0.513640\pi\)
\(620\) −13684.5 −0.886425
\(621\) −3498.97 −0.226101
\(622\) −10345.1 −0.666880
\(623\) 0 0
\(624\) 3098.63 0.198789
\(625\) −17395.1 −1.11329
\(626\) 13177.5 0.841337
\(627\) −2157.61 −0.137427
\(628\) 7.98859 0.000507611 0
\(629\) −14000.7 −0.887512
\(630\) 0 0
\(631\) −13073.1 −0.824774 −0.412387 0.911009i \(-0.635305\pi\)
−0.412387 + 0.911009i \(0.635305\pi\)
\(632\) 2581.82 0.162499
\(633\) −14857.9 −0.932937
\(634\) 5717.06 0.358128
\(635\) 21415.2 1.33832
\(636\) 6233.35 0.388630
\(637\) 0 0
\(638\) −5055.08 −0.313687
\(639\) 5181.10 0.320753
\(640\) 1521.43 0.0939685
\(641\) −20467.5 −1.26118 −0.630591 0.776116i \(-0.717187\pi\)
−0.630591 + 0.776116i \(0.717187\pi\)
\(642\) 9134.74 0.561557
\(643\) −22069.8 −1.35357 −0.676787 0.736179i \(-0.736628\pi\)
−0.676787 + 0.736179i \(0.736628\pi\)
\(644\) 0 0
\(645\) −13657.5 −0.833742
\(646\) −5171.13 −0.314946
\(647\) −2121.94 −0.128937 −0.0644684 0.997920i \(-0.520535\pi\)
−0.0644684 + 0.997920i \(0.520535\pi\)
\(648\) −3889.46 −0.235791
\(649\) −6440.67 −0.389550
\(650\) −1414.26 −0.0853415
\(651\) 0 0
\(652\) 5988.39 0.359699
\(653\) 9739.64 0.583678 0.291839 0.956467i \(-0.405733\pi\)
0.291839 + 0.956467i \(0.405733\pi\)
\(654\) −1016.80 −0.0607952
\(655\) −21349.5 −1.27358
\(656\) 560.420 0.0333548
\(657\) −3279.01 −0.194713
\(658\) 0 0
\(659\) −14344.0 −0.847896 −0.423948 0.905687i \(-0.639356\pi\)
−0.423948 + 0.905687i \(0.639356\pi\)
\(660\) 2179.50 0.128541
\(661\) −3748.54 −0.220577 −0.110289 0.993900i \(-0.535178\pi\)
−0.110289 + 0.993900i \(0.535178\pi\)
\(662\) 13007.3 0.763660
\(663\) 10638.6 0.623183
\(664\) 7965.65 0.465553
\(665\) 0 0
\(666\) 3627.86 0.211076
\(667\) −5654.72 −0.328263
\(668\) 9803.29 0.567815
\(669\) 13276.5 0.767265
\(670\) 10358.0 0.597260
\(671\) −6440.86 −0.370561
\(672\) 0 0
\(673\) −31694.6 −1.81536 −0.907680 0.419663i \(-0.862148\pi\)
−0.907680 + 0.419663i \(0.862148\pi\)
\(674\) −1904.48 −0.108840
\(675\) 2476.86 0.141236
\(676\) −1242.62 −0.0707000
\(677\) 907.289 0.0515066 0.0257533 0.999668i \(-0.491802\pi\)
0.0257533 + 0.999668i \(0.491802\pi\)
\(678\) 3718.23 0.210616
\(679\) 0 0
\(680\) 5223.59 0.294582
\(681\) −24114.5 −1.35693
\(682\) 5917.96 0.332273
\(683\) −10055.9 −0.563367 −0.281683 0.959507i \(-0.590893\pi\)
−0.281683 + 0.959507i \(0.590893\pi\)
\(684\) 1339.94 0.0749035
\(685\) −23946.4 −1.33568
\(686\) 0 0
\(687\) −3987.78 −0.221460
\(688\) 4122.96 0.228469
\(689\) 15178.6 0.839275
\(690\) 2438.03 0.134513
\(691\) −6789.68 −0.373794 −0.186897 0.982380i \(-0.559843\pi\)
−0.186897 + 0.982380i \(0.559843\pi\)
\(692\) 2215.10 0.121684
\(693\) 0 0
\(694\) −584.033 −0.0319447
\(695\) 26098.0 1.42439
\(696\) −8770.26 −0.477638
\(697\) 1924.11 0.104564
\(698\) 8720.31 0.472878
\(699\) −22972.2 −1.24304
\(700\) 0 0
\(701\) −20750.0 −1.11800 −0.559000 0.829168i \(-0.688815\pi\)
−0.559000 + 0.829168i \(0.688815\pi\)
\(702\) −13214.6 −0.710472
\(703\) 11995.9 0.643576
\(704\) −657.952 −0.0352237
\(705\) −32806.6 −1.75258
\(706\) −7332.41 −0.390877
\(707\) 0 0
\(708\) −11174.2 −0.593151
\(709\) −25057.6 −1.32730 −0.663650 0.748043i \(-0.730994\pi\)
−0.663650 + 0.748043i \(0.730994\pi\)
\(710\) −17305.6 −0.914744
\(711\) −2296.91 −0.121154
\(712\) 9337.82 0.491502
\(713\) 6619.96 0.347713
\(714\) 0 0
\(715\) 5307.22 0.277593
\(716\) −11969.4 −0.624746
\(717\) −6090.38 −0.317224
\(718\) −16319.8 −0.848260
\(719\) −2692.89 −0.139677 −0.0698386 0.997558i \(-0.522248\pi\)
−0.0698386 + 0.997558i \(0.522248\pi\)
\(720\) −1353.54 −0.0700601
\(721\) 0 0
\(722\) −9287.34 −0.478725
\(723\) −20687.6 −1.06415
\(724\) −8853.19 −0.454456
\(725\) 4002.88 0.205053
\(726\) 10927.4 0.558612
\(727\) 31861.3 1.62541 0.812704 0.582676i \(-0.197994\pi\)
0.812704 + 0.582676i \(0.197994\pi\)
\(728\) 0 0
\(729\) 21775.6 1.10631
\(730\) 10952.4 0.555295
\(731\) 14155.5 0.716226
\(732\) −11174.5 −0.564237
\(733\) 6284.48 0.316675 0.158337 0.987385i \(-0.449387\pi\)
0.158337 + 0.987385i \(0.449387\pi\)
\(734\) −2060.49 −0.103616
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −4479.38 −0.223880
\(738\) −498.575 −0.0248683
\(739\) −13472.9 −0.670646 −0.335323 0.942103i \(-0.608845\pi\)
−0.335323 + 0.942103i \(0.608845\pi\)
\(740\) −12117.6 −0.601961
\(741\) −9115.25 −0.451899
\(742\) 0 0
\(743\) 28593.5 1.41184 0.705918 0.708293i \(-0.250535\pi\)
0.705918 + 0.708293i \(0.250535\pi\)
\(744\) 10267.3 0.505938
\(745\) 13392.4 0.658602
\(746\) 15145.8 0.743332
\(747\) −7086.61 −0.347102
\(748\) −2258.97 −0.110423
\(749\) 0 0
\(750\) 11524.3 0.561079
\(751\) 31544.4 1.53272 0.766360 0.642412i \(-0.222066\pi\)
0.766360 + 0.642412i \(0.222066\pi\)
\(752\) 9903.74 0.480256
\(753\) 12031.1 0.582253
\(754\) −21356.2 −1.03149
\(755\) −6076.28 −0.292899
\(756\) 0 0
\(757\) 21644.2 1.03919 0.519597 0.854411i \(-0.326082\pi\)
0.519597 + 0.854411i \(0.326082\pi\)
\(758\) −7915.53 −0.379294
\(759\) −1054.34 −0.0504219
\(760\) −4475.60 −0.213615
\(761\) 7309.90 0.348204 0.174102 0.984728i \(-0.444298\pi\)
0.174102 + 0.984728i \(0.444298\pi\)
\(762\) −16067.5 −0.763864
\(763\) 0 0
\(764\) 17562.7 0.831672
\(765\) −4647.14 −0.219631
\(766\) −13595.5 −0.641288
\(767\) −27209.9 −1.28095
\(768\) −1141.51 −0.0536336
\(769\) −13959.6 −0.654611 −0.327306 0.944919i \(-0.606141\pi\)
−0.327306 + 0.944919i \(0.606141\pi\)
\(770\) 0 0
\(771\) −1060.15 −0.0495207
\(772\) 7296.82 0.340179
\(773\) −32291.7 −1.50253 −0.751263 0.660004i \(-0.770555\pi\)
−0.751263 + 0.660004i \(0.770555\pi\)
\(774\) −3667.98 −0.170340
\(775\) −4686.16 −0.217202
\(776\) 4400.00 0.203545
\(777\) 0 0
\(778\) −11467.7 −0.528454
\(779\) −1648.59 −0.0758239
\(780\) 9207.72 0.422678
\(781\) 7483.92 0.342888
\(782\) −2526.94 −0.115554
\(783\) 37402.1 1.70708
\(784\) 0 0
\(785\) 23.7385 0.00107931
\(786\) 16018.2 0.726911
\(787\) −27872.1 −1.26243 −0.631216 0.775607i \(-0.717444\pi\)
−0.631216 + 0.775607i \(0.717444\pi\)
\(788\) −8399.37 −0.379715
\(789\) 3526.48 0.159120
\(790\) 7672.00 0.345516
\(791\) 0 0
\(792\) 585.345 0.0262618
\(793\) −27210.7 −1.21851
\(794\) −4825.95 −0.215701
\(795\) 18522.7 0.826330
\(796\) 14288.9 0.636254
\(797\) −3535.94 −0.157151 −0.0785756 0.996908i \(-0.525037\pi\)
−0.0785756 + 0.996908i \(0.525037\pi\)
\(798\) 0 0
\(799\) 34002.9 1.50555
\(800\) 521.002 0.0230253
\(801\) −8307.36 −0.366449
\(802\) 7778.37 0.342474
\(803\) −4736.42 −0.208150
\(804\) −7771.45 −0.340893
\(805\) 0 0
\(806\) 25001.6 1.09261
\(807\) −26283.3 −1.14649
\(808\) −12364.1 −0.538324
\(809\) −40884.9 −1.77681 −0.888404 0.459063i \(-0.848185\pi\)
−0.888404 + 0.459063i \(0.848185\pi\)
\(810\) −11557.7 −0.501353
\(811\) −29290.2 −1.26821 −0.634106 0.773246i \(-0.718632\pi\)
−0.634106 + 0.773246i \(0.718632\pi\)
\(812\) 0 0
\(813\) −28870.6 −1.24543
\(814\) 5240.32 0.225643
\(815\) 17794.8 0.764815
\(816\) −3919.18 −0.168136
\(817\) −12128.5 −0.519368
\(818\) 13255.2 0.566573
\(819\) 0 0
\(820\) 1665.31 0.0709210
\(821\) 42923.8 1.82467 0.912334 0.409448i \(-0.134279\pi\)
0.912334 + 0.409448i \(0.134279\pi\)
\(822\) 17966.6 0.762358
\(823\) −4030.32 −0.170703 −0.0853513 0.996351i \(-0.527201\pi\)
−0.0853513 + 0.996351i \(0.527201\pi\)
\(824\) 9175.90 0.387934
\(825\) 746.351 0.0314965
\(826\) 0 0
\(827\) 6589.68 0.277081 0.138540 0.990357i \(-0.455759\pi\)
0.138540 + 0.990357i \(0.455759\pi\)
\(828\) 654.780 0.0274821
\(829\) 1413.71 0.0592280 0.0296140 0.999561i \(-0.490572\pi\)
0.0296140 + 0.999561i \(0.490572\pi\)
\(830\) 23670.3 0.989889
\(831\) −29599.4 −1.23561
\(832\) −2779.65 −0.115826
\(833\) 0 0
\(834\) −19580.9 −0.812989
\(835\) 29130.9 1.20733
\(836\) 1935.50 0.0800726
\(837\) −43786.4 −1.80822
\(838\) 13842.1 0.570606
\(839\) 2035.63 0.0837636 0.0418818 0.999123i \(-0.486665\pi\)
0.0418818 + 0.999123i \(0.486665\pi\)
\(840\) 0 0
\(841\) 36056.9 1.47841
\(842\) −22261.1 −0.911127
\(843\) −25424.5 −1.03875
\(844\) 13328.4 0.543582
\(845\) −3692.51 −0.150327
\(846\) −8810.82 −0.358064
\(847\) 0 0
\(848\) −5591.68 −0.226438
\(849\) 31102.3 1.25728
\(850\) 1788.78 0.0721818
\(851\) 5861.94 0.236128
\(852\) 12984.2 0.522101
\(853\) 33999.8 1.36475 0.682374 0.731003i \(-0.260947\pi\)
0.682374 + 0.731003i \(0.260947\pi\)
\(854\) 0 0
\(855\) 3981.70 0.159265
\(856\) −8194.40 −0.327195
\(857\) 7043.33 0.280742 0.140371 0.990099i \(-0.455171\pi\)
0.140371 + 0.990099i \(0.455171\pi\)
\(858\) −3981.93 −0.158439
\(859\) 4240.00 0.168413 0.0842065 0.996448i \(-0.473164\pi\)
0.0842065 + 0.996448i \(0.473164\pi\)
\(860\) 12251.6 0.485785
\(861\) 0 0
\(862\) 742.934 0.0293555
\(863\) −22072.8 −0.870647 −0.435324 0.900274i \(-0.643366\pi\)
−0.435324 + 0.900274i \(0.643366\pi\)
\(864\) 4868.13 0.191686
\(865\) 6582.26 0.258733
\(866\) −18995.0 −0.745355
\(867\) 8451.27 0.331050
\(868\) 0 0
\(869\) −3317.81 −0.129515
\(870\) −26061.2 −1.01558
\(871\) −18924.0 −0.736184
\(872\) 912.130 0.0354227
\(873\) −3914.44 −0.151757
\(874\) 2165.09 0.0837934
\(875\) 0 0
\(876\) −8217.41 −0.316941
\(877\) 29563.1 1.13828 0.569142 0.822239i \(-0.307275\pi\)
0.569142 + 0.822239i \(0.307275\pi\)
\(878\) 4573.99 0.175814
\(879\) −30330.6 −1.16385
\(880\) −1955.14 −0.0748950
\(881\) 23588.9 0.902077 0.451039 0.892504i \(-0.351054\pi\)
0.451039 + 0.892504i \(0.351054\pi\)
\(882\) 0 0
\(883\) 27447.6 1.04608 0.523039 0.852309i \(-0.324798\pi\)
0.523039 + 0.852309i \(0.324798\pi\)
\(884\) −9543.48 −0.363102
\(885\) −33204.6 −1.26120
\(886\) 36906.0 1.39942
\(887\) −39987.4 −1.51369 −0.756847 0.653592i \(-0.773261\pi\)
−0.756847 + 0.653592i \(0.773261\pi\)
\(888\) 9091.65 0.343576
\(889\) 0 0
\(890\) 27747.8 1.04506
\(891\) 4998.20 0.187930
\(892\) −11909.8 −0.447052
\(893\) −29133.9 −1.09174
\(894\) −10048.1 −0.375905
\(895\) −35567.7 −1.32838
\(896\) 0 0
\(897\) −4454.28 −0.165802
\(898\) −17277.9 −0.642060
\(899\) −70763.7 −2.62525
\(900\) −463.508 −0.0171669
\(901\) −19198.1 −0.709859
\(902\) −720.175 −0.0265845
\(903\) 0 0
\(904\) −3335.47 −0.122717
\(905\) −26307.6 −0.966293
\(906\) 4558.95 0.167175
\(907\) 19489.0 0.713474 0.356737 0.934205i \(-0.383889\pi\)
0.356737 + 0.934205i \(0.383889\pi\)
\(908\) 21632.1 0.790625
\(909\) 10999.6 0.401359
\(910\) 0 0
\(911\) 20571.8 0.748161 0.374081 0.927396i \(-0.377958\pi\)
0.374081 + 0.927396i \(0.377958\pi\)
\(912\) 3357.98 0.121923
\(913\) −10236.4 −0.371056
\(914\) −8575.57 −0.310344
\(915\) −33205.6 −1.19972
\(916\) 3577.27 0.129035
\(917\) 0 0
\(918\) 16713.9 0.600917
\(919\) 45895.8 1.64740 0.823700 0.567025i \(-0.191906\pi\)
0.823700 + 0.567025i \(0.191906\pi\)
\(920\) −2187.06 −0.0783752
\(921\) 11990.0 0.428974
\(922\) −3475.42 −0.124140
\(923\) 31617.3 1.12752
\(924\) 0 0
\(925\) −4149.57 −0.147500
\(926\) 11503.0 0.408219
\(927\) −8163.30 −0.289232
\(928\) 7867.44 0.278299
\(929\) −34121.8 −1.20506 −0.602529 0.798097i \(-0.705840\pi\)
−0.602529 + 0.798097i \(0.705840\pi\)
\(930\) 30509.8 1.07576
\(931\) 0 0
\(932\) 20607.4 0.724268
\(933\) 23064.4 0.809319
\(934\) −7878.05 −0.275993
\(935\) −6712.64 −0.234788
\(936\) 2472.91 0.0863563
\(937\) 26695.0 0.930723 0.465362 0.885121i \(-0.345924\pi\)
0.465362 + 0.885121i \(0.345924\pi\)
\(938\) 0 0
\(939\) −29379.2 −1.02104
\(940\) 29429.4 1.02115
\(941\) −31859.6 −1.10371 −0.551857 0.833939i \(-0.686081\pi\)
−0.551857 + 0.833939i \(0.686081\pi\)
\(942\) −17.8106 −0.000616032 0
\(943\) −805.604 −0.0278198
\(944\) 10023.9 0.345604
\(945\) 0 0
\(946\) −5298.27 −0.182095
\(947\) 8444.38 0.289763 0.144882 0.989449i \(-0.453720\pi\)
0.144882 + 0.989449i \(0.453720\pi\)
\(948\) −5756.19 −0.197207
\(949\) −20010.0 −0.684458
\(950\) −1532.63 −0.0523423
\(951\) −12746.2 −0.434621
\(952\) 0 0
\(953\) −3711.39 −0.126153 −0.0630765 0.998009i \(-0.520091\pi\)
−0.0630765 + 0.998009i \(0.520091\pi\)
\(954\) 4974.62 0.168825
\(955\) 52188.5 1.76835
\(956\) 5463.43 0.184833
\(957\) 11270.3 0.380688
\(958\) 11952.8 0.403108
\(959\) 0 0
\(960\) −3392.04 −0.114039
\(961\) 53051.8 1.78080
\(962\) 22138.8 0.741979
\(963\) 7290.12 0.243947
\(964\) 18558.0 0.620034
\(965\) 21682.8 0.723311
\(966\) 0 0
\(967\) 13826.4 0.459801 0.229901 0.973214i \(-0.426160\pi\)
0.229901 + 0.973214i \(0.426160\pi\)
\(968\) −9802.49 −0.325479
\(969\) 11529.1 0.382216
\(970\) 13074.8 0.432790
\(971\) 32815.5 1.08455 0.542276 0.840201i \(-0.317563\pi\)
0.542276 + 0.840201i \(0.317563\pi\)
\(972\) −7758.35 −0.256018
\(973\) 0 0
\(974\) 34820.6 1.14551
\(975\) 3153.11 0.103570
\(976\) 10024.2 0.328757
\(977\) −23155.5 −0.758250 −0.379125 0.925345i \(-0.623775\pi\)
−0.379125 + 0.925345i \(0.623775\pi\)
\(978\) −13351.2 −0.436527
\(979\) −11999.7 −0.391738
\(980\) 0 0
\(981\) −811.472 −0.0264101
\(982\) 15204.8 0.494099
\(983\) 42979.1 1.39453 0.697263 0.716815i \(-0.254401\pi\)
0.697263 + 0.716815i \(0.254401\pi\)
\(984\) −1249.46 −0.0404790
\(985\) −24959.1 −0.807374
\(986\) 27011.6 0.872438
\(987\) 0 0
\(988\) 8176.91 0.263302
\(989\) −5926.76 −0.190556
\(990\) 1739.38 0.0558395
\(991\) 11590.5 0.371528 0.185764 0.982594i \(-0.440524\pi\)
0.185764 + 0.982594i \(0.440524\pi\)
\(992\) −9210.37 −0.294788
\(993\) −28999.9 −0.926771
\(994\) 0 0
\(995\) 42460.3 1.35285
\(996\) −17759.5 −0.564991
\(997\) −28069.5 −0.891644 −0.445822 0.895122i \(-0.647089\pi\)
−0.445822 + 0.895122i \(0.647089\pi\)
\(998\) 33240.7 1.05432
\(999\) −38772.7 −1.22794
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.x.1.4 11
7.3 odd 6 322.4.e.b.93.4 22
7.5 odd 6 322.4.e.b.277.4 yes 22
7.6 odd 2 2254.4.a.w.1.8 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.b.93.4 22 7.3 odd 6
322.4.e.b.277.4 yes 22 7.5 odd 6
2254.4.a.w.1.8 11 7.6 odd 2
2254.4.a.x.1.4 11 1.1 even 1 trivial