Properties

Label 2254.4.a.x.1.3
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 5 x^{10} - 165 x^{9} + 798 x^{8} + 8769 x^{7} - 38472 x^{6} - 184213 x^{5} + 644009 x^{4} + \cdots + 2848203 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.84446\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -4.84446 q^{3} +4.00000 q^{4} -6.31640 q^{5} -9.68892 q^{6} +8.00000 q^{8} -3.53122 q^{9} -12.6328 q^{10} -56.5325 q^{11} -19.3778 q^{12} -23.2303 q^{13} +30.5995 q^{15} +16.0000 q^{16} -44.2506 q^{17} -7.06245 q^{18} +82.8762 q^{19} -25.2656 q^{20} -113.065 q^{22} -23.0000 q^{23} -38.7557 q^{24} -85.1031 q^{25} -46.4606 q^{26} +147.907 q^{27} -283.571 q^{29} +61.1991 q^{30} -138.459 q^{31} +32.0000 q^{32} +273.869 q^{33} -88.5012 q^{34} -14.1249 q^{36} -221.502 q^{37} +165.752 q^{38} +112.538 q^{39} -50.5312 q^{40} +295.330 q^{41} -260.857 q^{43} -226.130 q^{44} +22.3046 q^{45} -46.0000 q^{46} -227.467 q^{47} -77.5113 q^{48} -170.206 q^{50} +214.370 q^{51} -92.9213 q^{52} +350.955 q^{53} +295.814 q^{54} +357.082 q^{55} -401.490 q^{57} -567.141 q^{58} -555.330 q^{59} +122.398 q^{60} +443.347 q^{61} -276.919 q^{62} +64.0000 q^{64} +146.732 q^{65} +547.739 q^{66} -65.4770 q^{67} -177.002 q^{68} +111.423 q^{69} +728.329 q^{71} -28.2498 q^{72} -170.417 q^{73} -443.005 q^{74} +412.278 q^{75} +331.505 q^{76} +225.077 q^{78} -1079.60 q^{79} -101.062 q^{80} -621.187 q^{81} +590.660 q^{82} -949.211 q^{83} +279.505 q^{85} -521.714 q^{86} +1373.75 q^{87} -452.260 q^{88} +790.169 q^{89} +44.6093 q^{90} -92.0000 q^{92} +670.761 q^{93} -454.933 q^{94} -523.479 q^{95} -155.023 q^{96} +1086.53 q^{97} +199.629 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 6 q^{3} + 44 q^{4} + 27 q^{5} + 12 q^{6} + 88 q^{8} + 59 q^{9} + 54 q^{10} + 56 q^{11} + 24 q^{12} + 103 q^{13} + 62 q^{15} + 176 q^{16} + 157 q^{17} + 118 q^{18} + 266 q^{19} + 108 q^{20}+ \cdots + 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −4.84446 −0.932316 −0.466158 0.884701i \(-0.654362\pi\)
−0.466158 + 0.884701i \(0.654362\pi\)
\(4\) 4.00000 0.500000
\(5\) −6.31640 −0.564956 −0.282478 0.959274i \(-0.591156\pi\)
−0.282478 + 0.959274i \(0.591156\pi\)
\(6\) −9.68892 −0.659247
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −3.53122 −0.130786
\(10\) −12.6328 −0.399484
\(11\) −56.5325 −1.54956 −0.774781 0.632230i \(-0.782140\pi\)
−0.774781 + 0.632230i \(0.782140\pi\)
\(12\) −19.3778 −0.466158
\(13\) −23.2303 −0.495610 −0.247805 0.968810i \(-0.579709\pi\)
−0.247805 + 0.968810i \(0.579709\pi\)
\(14\) 0 0
\(15\) 30.5995 0.526718
\(16\) 16.0000 0.250000
\(17\) −44.2506 −0.631314 −0.315657 0.948873i \(-0.602225\pi\)
−0.315657 + 0.948873i \(0.602225\pi\)
\(18\) −7.06245 −0.0924797
\(19\) 82.8762 1.00069 0.500345 0.865826i \(-0.333207\pi\)
0.500345 + 0.865826i \(0.333207\pi\)
\(20\) −25.2656 −0.282478
\(21\) 0 0
\(22\) −113.065 −1.09571
\(23\) −23.0000 −0.208514
\(24\) −38.7557 −0.329624
\(25\) −85.1031 −0.680825
\(26\) −46.4606 −0.350449
\(27\) 147.907 1.05425
\(28\) 0 0
\(29\) −283.571 −1.81578 −0.907892 0.419204i \(-0.862309\pi\)
−0.907892 + 0.419204i \(0.862309\pi\)
\(30\) 61.1991 0.372446
\(31\) −138.459 −0.802195 −0.401097 0.916035i \(-0.631371\pi\)
−0.401097 + 0.916035i \(0.631371\pi\)
\(32\) 32.0000 0.176777
\(33\) 273.869 1.44468
\(34\) −88.5012 −0.446407
\(35\) 0 0
\(36\) −14.1249 −0.0653930
\(37\) −221.502 −0.984183 −0.492091 0.870544i \(-0.663767\pi\)
−0.492091 + 0.870544i \(0.663767\pi\)
\(38\) 165.752 0.707594
\(39\) 112.538 0.462065
\(40\) −50.5312 −0.199742
\(41\) 295.330 1.12495 0.562473 0.826816i \(-0.309850\pi\)
0.562473 + 0.826816i \(0.309850\pi\)
\(42\) 0 0
\(43\) −260.857 −0.925124 −0.462562 0.886587i \(-0.653070\pi\)
−0.462562 + 0.886587i \(0.653070\pi\)
\(44\) −226.130 −0.774781
\(45\) 22.3046 0.0738884
\(46\) −46.0000 −0.147442
\(47\) −227.467 −0.705945 −0.352973 0.935634i \(-0.614829\pi\)
−0.352973 + 0.935634i \(0.614829\pi\)
\(48\) −77.5113 −0.233079
\(49\) 0 0
\(50\) −170.206 −0.481416
\(51\) 214.370 0.588585
\(52\) −92.9213 −0.247805
\(53\) 350.955 0.909573 0.454787 0.890600i \(-0.349716\pi\)
0.454787 + 0.890600i \(0.349716\pi\)
\(54\) 295.814 0.745468
\(55\) 357.082 0.875435
\(56\) 0 0
\(57\) −401.490 −0.932959
\(58\) −567.141 −1.28395
\(59\) −555.330 −1.22539 −0.612693 0.790321i \(-0.709914\pi\)
−0.612693 + 0.790321i \(0.709914\pi\)
\(60\) 122.398 0.263359
\(61\) 443.347 0.930569 0.465284 0.885161i \(-0.345952\pi\)
0.465284 + 0.885161i \(0.345952\pi\)
\(62\) −276.919 −0.567237
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 146.732 0.279998
\(66\) 547.739 1.02154
\(67\) −65.4770 −0.119392 −0.0596961 0.998217i \(-0.519013\pi\)
−0.0596961 + 0.998217i \(0.519013\pi\)
\(68\) −177.002 −0.315657
\(69\) 111.423 0.194401
\(70\) 0 0
\(71\) 728.329 1.21742 0.608710 0.793393i \(-0.291687\pi\)
0.608710 + 0.793393i \(0.291687\pi\)
\(72\) −28.2498 −0.0462399
\(73\) −170.417 −0.273230 −0.136615 0.990624i \(-0.543622\pi\)
−0.136615 + 0.990624i \(0.543622\pi\)
\(74\) −443.005 −0.695922
\(75\) 412.278 0.634744
\(76\) 331.505 0.500345
\(77\) 0 0
\(78\) 225.077 0.326730
\(79\) −1079.60 −1.53753 −0.768763 0.639533i \(-0.779128\pi\)
−0.768763 + 0.639533i \(0.779128\pi\)
\(80\) −101.062 −0.141239
\(81\) −621.187 −0.852109
\(82\) 590.660 0.795457
\(83\) −949.211 −1.25529 −0.627647 0.778498i \(-0.715982\pi\)
−0.627647 + 0.778498i \(0.715982\pi\)
\(84\) 0 0
\(85\) 279.505 0.356665
\(86\) −521.714 −0.654162
\(87\) 1373.75 1.69289
\(88\) −452.260 −0.547853
\(89\) 790.169 0.941098 0.470549 0.882374i \(-0.344056\pi\)
0.470549 + 0.882374i \(0.344056\pi\)
\(90\) 44.6093 0.0522470
\(91\) 0 0
\(92\) −92.0000 −0.104257
\(93\) 670.761 0.747900
\(94\) −454.933 −0.499179
\(95\) −523.479 −0.565346
\(96\) −155.023 −0.164812
\(97\) 1086.53 1.13733 0.568663 0.822571i \(-0.307461\pi\)
0.568663 + 0.822571i \(0.307461\pi\)
\(98\) 0 0
\(99\) 199.629 0.202661
\(100\) −340.412 −0.340412
\(101\) 351.378 0.346172 0.173086 0.984907i \(-0.444626\pi\)
0.173086 + 0.984907i \(0.444626\pi\)
\(102\) 428.740 0.416192
\(103\) −382.567 −0.365975 −0.182988 0.983115i \(-0.558577\pi\)
−0.182988 + 0.983115i \(0.558577\pi\)
\(104\) −185.843 −0.175225
\(105\) 0 0
\(106\) 701.910 0.643165
\(107\) 705.845 0.637725 0.318863 0.947801i \(-0.396699\pi\)
0.318863 + 0.947801i \(0.396699\pi\)
\(108\) 591.629 0.527125
\(109\) 1073.97 0.943737 0.471869 0.881669i \(-0.343580\pi\)
0.471869 + 0.881669i \(0.343580\pi\)
\(110\) 714.164 0.619026
\(111\) 1073.06 0.917570
\(112\) 0 0
\(113\) −2317.97 −1.92970 −0.964850 0.262801i \(-0.915354\pi\)
−0.964850 + 0.262801i \(0.915354\pi\)
\(114\) −802.980 −0.659702
\(115\) 145.277 0.117802
\(116\) −1134.28 −0.907892
\(117\) 82.0314 0.0648189
\(118\) −1110.66 −0.866479
\(119\) 0 0
\(120\) 244.796 0.186223
\(121\) 1864.92 1.40114
\(122\) 886.693 0.658012
\(123\) −1430.71 −1.04881
\(124\) −553.838 −0.401097
\(125\) 1327.10 0.949592
\(126\) 0 0
\(127\) −693.827 −0.484781 −0.242390 0.970179i \(-0.577931\pi\)
−0.242390 + 0.970179i \(0.577931\pi\)
\(128\) 128.000 0.0883883
\(129\) 1263.71 0.862508
\(130\) 293.464 0.197988
\(131\) 2353.85 1.56990 0.784948 0.619561i \(-0.212689\pi\)
0.784948 + 0.619561i \(0.212689\pi\)
\(132\) 1095.48 0.722341
\(133\) 0 0
\(134\) −130.954 −0.0844231
\(135\) −934.242 −0.595605
\(136\) −354.005 −0.223203
\(137\) −147.598 −0.0920448 −0.0460224 0.998940i \(-0.514655\pi\)
−0.0460224 + 0.998940i \(0.514655\pi\)
\(138\) 222.845 0.137463
\(139\) 699.330 0.426736 0.213368 0.976972i \(-0.431557\pi\)
0.213368 + 0.976972i \(0.431557\pi\)
\(140\) 0 0
\(141\) 1101.95 0.658164
\(142\) 1456.66 0.860846
\(143\) 1313.27 0.767979
\(144\) −56.4996 −0.0326965
\(145\) 1791.15 1.02584
\(146\) −340.834 −0.193203
\(147\) 0 0
\(148\) −886.009 −0.492091
\(149\) 2041.51 1.12247 0.561233 0.827658i \(-0.310327\pi\)
0.561233 + 0.827658i \(0.310327\pi\)
\(150\) 824.557 0.448832
\(151\) −1075.38 −0.579556 −0.289778 0.957094i \(-0.593581\pi\)
−0.289778 + 0.957094i \(0.593581\pi\)
\(152\) 663.009 0.353797
\(153\) 156.259 0.0825671
\(154\) 0 0
\(155\) 874.565 0.453205
\(156\) 450.153 0.231033
\(157\) −3773.23 −1.91807 −0.959034 0.283292i \(-0.908573\pi\)
−0.959034 + 0.283292i \(0.908573\pi\)
\(158\) −2159.20 −1.08720
\(159\) −1700.19 −0.848010
\(160\) −202.125 −0.0998711
\(161\) 0 0
\(162\) −1242.37 −0.602532
\(163\) 1490.24 0.716103 0.358051 0.933702i \(-0.383441\pi\)
0.358051 + 0.933702i \(0.383441\pi\)
\(164\) 1181.32 0.562473
\(165\) −1729.87 −0.816182
\(166\) −1898.42 −0.887627
\(167\) −1691.40 −0.783741 −0.391871 0.920020i \(-0.628172\pi\)
−0.391871 + 0.920020i \(0.628172\pi\)
\(168\) 0 0
\(169\) −1657.35 −0.754371
\(170\) 559.009 0.252200
\(171\) −292.654 −0.130876
\(172\) −1043.43 −0.462562
\(173\) 601.968 0.264548 0.132274 0.991213i \(-0.457772\pi\)
0.132274 + 0.991213i \(0.457772\pi\)
\(174\) 2747.49 1.19705
\(175\) 0 0
\(176\) −904.520 −0.387391
\(177\) 2690.27 1.14245
\(178\) 1580.34 0.665457
\(179\) −2474.99 −1.03346 −0.516731 0.856148i \(-0.672851\pi\)
−0.516731 + 0.856148i \(0.672851\pi\)
\(180\) 89.2185 0.0369442
\(181\) −2966.31 −1.21815 −0.609073 0.793114i \(-0.708458\pi\)
−0.609073 + 0.793114i \(0.708458\pi\)
\(182\) 0 0
\(183\) −2147.77 −0.867585
\(184\) −184.000 −0.0737210
\(185\) 1399.10 0.556020
\(186\) 1341.52 0.528845
\(187\) 2501.60 0.978261
\(188\) −909.867 −0.352973
\(189\) 0 0
\(190\) −1046.96 −0.399760
\(191\) 1128.82 0.427636 0.213818 0.976874i \(-0.431410\pi\)
0.213818 + 0.976874i \(0.431410\pi\)
\(192\) −310.045 −0.116540
\(193\) 4338.48 1.61809 0.809043 0.587750i \(-0.199986\pi\)
0.809043 + 0.587750i \(0.199986\pi\)
\(194\) 2173.06 0.804211
\(195\) −710.837 −0.261047
\(196\) 0 0
\(197\) 2826.56 1.02225 0.511127 0.859505i \(-0.329228\pi\)
0.511127 + 0.859505i \(0.329228\pi\)
\(198\) 399.258 0.143303
\(199\) 1480.92 0.527534 0.263767 0.964586i \(-0.415035\pi\)
0.263767 + 0.964586i \(0.415035\pi\)
\(200\) −680.825 −0.240708
\(201\) 317.200 0.111311
\(202\) 702.756 0.244781
\(203\) 0 0
\(204\) 857.481 0.294292
\(205\) −1865.42 −0.635545
\(206\) −765.134 −0.258784
\(207\) 81.2182 0.0272708
\(208\) −371.685 −0.123902
\(209\) −4685.20 −1.55063
\(210\) 0 0
\(211\) −2283.99 −0.745197 −0.372599 0.927993i \(-0.621533\pi\)
−0.372599 + 0.927993i \(0.621533\pi\)
\(212\) 1403.82 0.454787
\(213\) −3528.36 −1.13502
\(214\) 1411.69 0.450940
\(215\) 1647.68 0.522655
\(216\) 1183.26 0.372734
\(217\) 0 0
\(218\) 2147.93 0.667323
\(219\) 825.577 0.254737
\(220\) 1428.33 0.437717
\(221\) 1027.96 0.312886
\(222\) 2146.12 0.648820
\(223\) −2292.56 −0.688436 −0.344218 0.938890i \(-0.611856\pi\)
−0.344218 + 0.938890i \(0.611856\pi\)
\(224\) 0 0
\(225\) 300.518 0.0890424
\(226\) −4635.94 −1.36450
\(227\) 1308.74 0.382661 0.191330 0.981526i \(-0.438720\pi\)
0.191330 + 0.981526i \(0.438720\pi\)
\(228\) −1605.96 −0.466480
\(229\) 3626.20 1.04640 0.523200 0.852210i \(-0.324738\pi\)
0.523200 + 0.852210i \(0.324738\pi\)
\(230\) 290.554 0.0832982
\(231\) 0 0
\(232\) −2268.56 −0.641977
\(233\) 5312.41 1.49368 0.746840 0.665003i \(-0.231570\pi\)
0.746840 + 0.665003i \(0.231570\pi\)
\(234\) 164.063 0.0458339
\(235\) 1436.77 0.398828
\(236\) −2221.32 −0.612693
\(237\) 5230.08 1.43346
\(238\) 0 0
\(239\) 6150.60 1.66464 0.832321 0.554294i \(-0.187011\pi\)
0.832321 + 0.554294i \(0.187011\pi\)
\(240\) 489.593 0.131679
\(241\) −7422.12 −1.98382 −0.991911 0.126938i \(-0.959485\pi\)
−0.991911 + 0.126938i \(0.959485\pi\)
\(242\) 3729.84 0.990758
\(243\) −984.179 −0.259815
\(244\) 1773.39 0.465284
\(245\) 0 0
\(246\) −2861.43 −0.741617
\(247\) −1925.24 −0.495952
\(248\) −1107.68 −0.283619
\(249\) 4598.41 1.17033
\(250\) 2654.19 0.671463
\(251\) 6503.81 1.63553 0.817763 0.575556i \(-0.195214\pi\)
0.817763 + 0.575556i \(0.195214\pi\)
\(252\) 0 0
\(253\) 1300.25 0.323106
\(254\) −1387.65 −0.342792
\(255\) −1354.05 −0.332525
\(256\) 256.000 0.0625000
\(257\) 6174.34 1.49862 0.749309 0.662220i \(-0.230386\pi\)
0.749309 + 0.662220i \(0.230386\pi\)
\(258\) 2527.42 0.609886
\(259\) 0 0
\(260\) 586.928 0.139999
\(261\) 1001.35 0.237479
\(262\) 4707.69 1.11008
\(263\) 994.102 0.233076 0.116538 0.993186i \(-0.462820\pi\)
0.116538 + 0.993186i \(0.462820\pi\)
\(264\) 2190.95 0.510772
\(265\) −2216.77 −0.513869
\(266\) 0 0
\(267\) −3827.94 −0.877401
\(268\) −261.908 −0.0596961
\(269\) 1416.70 0.321106 0.160553 0.987027i \(-0.448672\pi\)
0.160553 + 0.987027i \(0.448672\pi\)
\(270\) −1868.48 −0.421157
\(271\) 3881.51 0.870054 0.435027 0.900417i \(-0.356739\pi\)
0.435027 + 0.900417i \(0.356739\pi\)
\(272\) −708.009 −0.157829
\(273\) 0 0
\(274\) −295.196 −0.0650855
\(275\) 4811.09 1.05498
\(276\) 445.690 0.0972007
\(277\) −718.681 −0.155889 −0.0779446 0.996958i \(-0.524836\pi\)
−0.0779446 + 0.996958i \(0.524836\pi\)
\(278\) 1398.66 0.301748
\(279\) 488.931 0.104916
\(280\) 0 0
\(281\) −2879.77 −0.611361 −0.305681 0.952134i \(-0.598884\pi\)
−0.305681 + 0.952134i \(0.598884\pi\)
\(282\) 2203.91 0.465393
\(283\) 7291.08 1.53148 0.765742 0.643148i \(-0.222372\pi\)
0.765742 + 0.643148i \(0.222372\pi\)
\(284\) 2913.32 0.608710
\(285\) 2535.97 0.527081
\(286\) 2626.53 0.543043
\(287\) 0 0
\(288\) −112.999 −0.0231199
\(289\) −2954.89 −0.601442
\(290\) 3582.29 0.725377
\(291\) −5263.66 −1.06035
\(292\) −681.667 −0.136615
\(293\) 5269.85 1.05074 0.525372 0.850873i \(-0.323926\pi\)
0.525372 + 0.850873i \(0.323926\pi\)
\(294\) 0 0
\(295\) 3507.69 0.692290
\(296\) −1772.02 −0.347961
\(297\) −8361.56 −1.63363
\(298\) 4083.03 0.793703
\(299\) 534.297 0.103342
\(300\) 1649.11 0.317372
\(301\) 0 0
\(302\) −2150.75 −0.409808
\(303\) −1702.24 −0.322742
\(304\) 1326.02 0.250172
\(305\) −2800.35 −0.525731
\(306\) 312.518 0.0583838
\(307\) 10384.3 1.93050 0.965250 0.261329i \(-0.0841609\pi\)
0.965250 + 0.261329i \(0.0841609\pi\)
\(308\) 0 0
\(309\) 1853.33 0.341205
\(310\) 1749.13 0.320464
\(311\) 4311.74 0.786162 0.393081 0.919504i \(-0.371409\pi\)
0.393081 + 0.919504i \(0.371409\pi\)
\(312\) 900.306 0.163365
\(313\) −3490.76 −0.630382 −0.315191 0.949028i \(-0.602069\pi\)
−0.315191 + 0.949028i \(0.602069\pi\)
\(314\) −7546.46 −1.35628
\(315\) 0 0
\(316\) −4318.40 −0.768763
\(317\) 2113.37 0.374444 0.187222 0.982318i \(-0.440052\pi\)
0.187222 + 0.982318i \(0.440052\pi\)
\(318\) −3400.37 −0.599634
\(319\) 16031.0 2.81367
\(320\) −404.250 −0.0706195
\(321\) −3419.44 −0.594562
\(322\) 0 0
\(323\) −3667.32 −0.631750
\(324\) −2484.75 −0.426054
\(325\) 1976.97 0.337423
\(326\) 2980.48 0.506361
\(327\) −5202.79 −0.879862
\(328\) 2362.64 0.397728
\(329\) 0 0
\(330\) −3459.74 −0.577128
\(331\) −3761.19 −0.624573 −0.312287 0.949988i \(-0.601095\pi\)
−0.312287 + 0.949988i \(0.601095\pi\)
\(332\) −3796.84 −0.627647
\(333\) 782.174 0.128717
\(334\) −3382.81 −0.554189
\(335\) 413.579 0.0674514
\(336\) 0 0
\(337\) −4773.47 −0.771595 −0.385797 0.922584i \(-0.626074\pi\)
−0.385797 + 0.922584i \(0.626074\pi\)
\(338\) −3314.71 −0.533421
\(339\) 11229.3 1.79909
\(340\) 1118.02 0.178332
\(341\) 7827.45 1.24305
\(342\) −585.309 −0.0925435
\(343\) 0 0
\(344\) −2086.86 −0.327081
\(345\) −703.790 −0.109828
\(346\) 1203.94 0.187063
\(347\) 6185.18 0.956882 0.478441 0.878120i \(-0.341202\pi\)
0.478441 + 0.878120i \(0.341202\pi\)
\(348\) 5494.98 0.846443
\(349\) −2878.98 −0.441571 −0.220786 0.975322i \(-0.570862\pi\)
−0.220786 + 0.975322i \(0.570862\pi\)
\(350\) 0 0
\(351\) −3435.93 −0.522497
\(352\) −1809.04 −0.273927
\(353\) −1241.11 −0.187133 −0.0935664 0.995613i \(-0.529827\pi\)
−0.0935664 + 0.995613i \(0.529827\pi\)
\(354\) 5380.55 0.807833
\(355\) −4600.42 −0.687789
\(356\) 3160.68 0.470549
\(357\) 0 0
\(358\) −4949.99 −0.730768
\(359\) 6971.50 1.02491 0.512453 0.858715i \(-0.328737\pi\)
0.512453 + 0.858715i \(0.328737\pi\)
\(360\) 178.437 0.0261235
\(361\) 9.46054 0.00137929
\(362\) −5932.63 −0.861359
\(363\) −9034.54 −1.30631
\(364\) 0 0
\(365\) 1076.42 0.154363
\(366\) −4295.55 −0.613475
\(367\) 650.459 0.0925169 0.0462585 0.998930i \(-0.485270\pi\)
0.0462585 + 0.998930i \(0.485270\pi\)
\(368\) −368.000 −0.0521286
\(369\) −1042.88 −0.147127
\(370\) 2798.20 0.393166
\(371\) 0 0
\(372\) 2683.04 0.373950
\(373\) 12553.3 1.74259 0.871295 0.490760i \(-0.163281\pi\)
0.871295 + 0.490760i \(0.163281\pi\)
\(374\) 5003.19 0.691735
\(375\) −6429.06 −0.885320
\(376\) −1819.73 −0.249589
\(377\) 6587.43 0.899921
\(378\) 0 0
\(379\) −6923.71 −0.938383 −0.469191 0.883097i \(-0.655455\pi\)
−0.469191 + 0.883097i \(0.655455\pi\)
\(380\) −2093.92 −0.282673
\(381\) 3361.21 0.451969
\(382\) 2257.64 0.302384
\(383\) 3031.64 0.404464 0.202232 0.979338i \(-0.435180\pi\)
0.202232 + 0.979338i \(0.435180\pi\)
\(384\) −620.091 −0.0824059
\(385\) 0 0
\(386\) 8676.96 1.14416
\(387\) 921.145 0.120993
\(388\) 4346.13 0.568663
\(389\) −9306.37 −1.21299 −0.606493 0.795089i \(-0.707424\pi\)
−0.606493 + 0.795089i \(0.707424\pi\)
\(390\) −1421.67 −0.184588
\(391\) 1017.76 0.131638
\(392\) 0 0
\(393\) −11403.1 −1.46364
\(394\) 5653.12 0.722843
\(395\) 6819.19 0.868635
\(396\) 798.515 0.101331
\(397\) −11227.5 −1.41937 −0.709687 0.704517i \(-0.751164\pi\)
−0.709687 + 0.704517i \(0.751164\pi\)
\(398\) 2961.83 0.373023
\(399\) 0 0
\(400\) −1361.65 −0.170206
\(401\) −15951.2 −1.98645 −0.993225 0.116209i \(-0.962926\pi\)
−0.993225 + 0.116209i \(0.962926\pi\)
\(402\) 634.401 0.0787090
\(403\) 3216.46 0.397576
\(404\) 1405.51 0.173086
\(405\) 3923.67 0.481404
\(406\) 0 0
\(407\) 12522.1 1.52505
\(408\) 1714.96 0.208096
\(409\) −5785.98 −0.699507 −0.349754 0.936842i \(-0.613735\pi\)
−0.349754 + 0.936842i \(0.613735\pi\)
\(410\) −3730.84 −0.449398
\(411\) 715.032 0.0858149
\(412\) −1530.27 −0.182988
\(413\) 0 0
\(414\) 162.436 0.0192834
\(415\) 5995.60 0.709186
\(416\) −743.370 −0.0876123
\(417\) −3387.87 −0.397853
\(418\) −9370.39 −1.09646
\(419\) −261.906 −0.0305368 −0.0152684 0.999883i \(-0.504860\pi\)
−0.0152684 + 0.999883i \(0.504860\pi\)
\(420\) 0 0
\(421\) 7111.00 0.823204 0.411602 0.911364i \(-0.364969\pi\)
0.411602 + 0.911364i \(0.364969\pi\)
\(422\) −4567.99 −0.526934
\(423\) 803.236 0.0923278
\(424\) 2807.64 0.321583
\(425\) 3765.86 0.429814
\(426\) −7056.72 −0.802581
\(427\) 0 0
\(428\) 2823.38 0.318863
\(429\) −6362.07 −0.715999
\(430\) 3295.36 0.369573
\(431\) −2615.18 −0.292271 −0.146136 0.989265i \(-0.546684\pi\)
−0.146136 + 0.989265i \(0.546684\pi\)
\(432\) 2366.52 0.263563
\(433\) −4709.78 −0.522719 −0.261360 0.965242i \(-0.584171\pi\)
−0.261360 + 0.965242i \(0.584171\pi\)
\(434\) 0 0
\(435\) −8677.13 −0.956406
\(436\) 4295.87 0.471869
\(437\) −1906.15 −0.208658
\(438\) 1651.15 0.180126
\(439\) −1969.59 −0.214131 −0.107065 0.994252i \(-0.534145\pi\)
−0.107065 + 0.994252i \(0.534145\pi\)
\(440\) 2856.66 0.309513
\(441\) 0 0
\(442\) 2055.91 0.221244
\(443\) 5419.90 0.581281 0.290640 0.956832i \(-0.406132\pi\)
0.290640 + 0.956832i \(0.406132\pi\)
\(444\) 4292.24 0.458785
\(445\) −4991.03 −0.531679
\(446\) −4585.12 −0.486798
\(447\) −9890.03 −1.04649
\(448\) 0 0
\(449\) −7456.34 −0.783712 −0.391856 0.920027i \(-0.628167\pi\)
−0.391856 + 0.920027i \(0.628167\pi\)
\(450\) 601.036 0.0629625
\(451\) −16695.7 −1.74317
\(452\) −9271.87 −0.964850
\(453\) 5209.62 0.540330
\(454\) 2617.47 0.270582
\(455\) 0 0
\(456\) −3211.92 −0.329851
\(457\) −12489.8 −1.27844 −0.639222 0.769022i \(-0.720743\pi\)
−0.639222 + 0.769022i \(0.720743\pi\)
\(458\) 7252.39 0.739917
\(459\) −6544.98 −0.665563
\(460\) 581.109 0.0589008
\(461\) −12091.4 −1.22159 −0.610796 0.791788i \(-0.709151\pi\)
−0.610796 + 0.791788i \(0.709151\pi\)
\(462\) 0 0
\(463\) 4380.17 0.439662 0.219831 0.975538i \(-0.429449\pi\)
0.219831 + 0.975538i \(0.429449\pi\)
\(464\) −4537.13 −0.453946
\(465\) −4236.79 −0.422530
\(466\) 10624.8 1.05619
\(467\) 6496.45 0.643726 0.321863 0.946786i \(-0.395691\pi\)
0.321863 + 0.946786i \(0.395691\pi\)
\(468\) 328.126 0.0324094
\(469\) 0 0
\(470\) 2873.54 0.282014
\(471\) 18279.3 1.78825
\(472\) −4442.64 −0.433240
\(473\) 14746.9 1.43354
\(474\) 10460.2 1.01361
\(475\) −7053.02 −0.681294
\(476\) 0 0
\(477\) −1239.30 −0.118959
\(478\) 12301.2 1.17708
\(479\) −1408.88 −0.134391 −0.0671956 0.997740i \(-0.521405\pi\)
−0.0671956 + 0.997740i \(0.521405\pi\)
\(480\) 979.185 0.0931115
\(481\) 5145.57 0.487771
\(482\) −14844.2 −1.40277
\(483\) 0 0
\(484\) 7459.69 0.700572
\(485\) −6862.97 −0.642539
\(486\) −1968.36 −0.183717
\(487\) 6880.05 0.640174 0.320087 0.947388i \(-0.396288\pi\)
0.320087 + 0.947388i \(0.396288\pi\)
\(488\) 3546.77 0.329006
\(489\) −7219.41 −0.667634
\(490\) 0 0
\(491\) −9109.25 −0.837260 −0.418630 0.908157i \(-0.637490\pi\)
−0.418630 + 0.908157i \(0.637490\pi\)
\(492\) −5722.85 −0.524403
\(493\) 12548.2 1.14633
\(494\) −3850.48 −0.350691
\(495\) −1260.94 −0.114495
\(496\) −2215.35 −0.200549
\(497\) 0 0
\(498\) 9196.83 0.827549
\(499\) −5933.57 −0.532311 −0.266155 0.963930i \(-0.585753\pi\)
−0.266155 + 0.963930i \(0.585753\pi\)
\(500\) 5308.38 0.474796
\(501\) 8193.94 0.730695
\(502\) 13007.6 1.15649
\(503\) −4624.92 −0.409970 −0.204985 0.978765i \(-0.565715\pi\)
−0.204985 + 0.978765i \(0.565715\pi\)
\(504\) 0 0
\(505\) −2219.44 −0.195572
\(506\) 2600.49 0.228470
\(507\) 8028.98 0.703312
\(508\) −2775.31 −0.242390
\(509\) −17185.7 −1.49654 −0.748272 0.663392i \(-0.769116\pi\)
−0.748272 + 0.663392i \(0.769116\pi\)
\(510\) −2708.10 −0.235130
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 12258.0 1.05498
\(514\) 12348.7 1.05968
\(515\) 2416.45 0.206760
\(516\) 5054.85 0.431254
\(517\) 12859.3 1.09391
\(518\) 0 0
\(519\) −2916.21 −0.246642
\(520\) 1173.86 0.0989942
\(521\) 10642.4 0.894921 0.447461 0.894304i \(-0.352328\pi\)
0.447461 + 0.894304i \(0.352328\pi\)
\(522\) 2002.70 0.167923
\(523\) 8829.91 0.738251 0.369125 0.929380i \(-0.379657\pi\)
0.369125 + 0.929380i \(0.379657\pi\)
\(524\) 9415.38 0.784948
\(525\) 0 0
\(526\) 1988.20 0.164810
\(527\) 6126.91 0.506437
\(528\) 4381.91 0.361171
\(529\) 529.000 0.0434783
\(530\) −4433.55 −0.363360
\(531\) 1960.99 0.160264
\(532\) 0 0
\(533\) −6860.60 −0.557534
\(534\) −7655.88 −0.620417
\(535\) −4458.40 −0.360287
\(536\) −523.816 −0.0422115
\(537\) 11990.0 0.963513
\(538\) 2833.39 0.227056
\(539\) 0 0
\(540\) −3736.97 −0.297803
\(541\) 21851.0 1.73650 0.868250 0.496128i \(-0.165245\pi\)
0.868250 + 0.496128i \(0.165245\pi\)
\(542\) 7763.01 0.615221
\(543\) 14370.2 1.13570
\(544\) −1416.02 −0.111602
\(545\) −6783.60 −0.533170
\(546\) 0 0
\(547\) −20378.5 −1.59291 −0.796455 0.604698i \(-0.793294\pi\)
−0.796455 + 0.604698i \(0.793294\pi\)
\(548\) −590.392 −0.0460224
\(549\) −1565.56 −0.121705
\(550\) 9622.18 0.745984
\(551\) −23501.2 −1.81704
\(552\) 891.380 0.0687313
\(553\) 0 0
\(554\) −1437.36 −0.110230
\(555\) −6777.87 −0.518387
\(556\) 2797.32 0.213368
\(557\) −19264.1 −1.46543 −0.732717 0.680534i \(-0.761748\pi\)
−0.732717 + 0.680534i \(0.761748\pi\)
\(558\) 977.862 0.0741868
\(559\) 6059.79 0.458501
\(560\) 0 0
\(561\) −12118.9 −0.912049
\(562\) −5759.53 −0.432298
\(563\) 14546.1 1.08889 0.544444 0.838797i \(-0.316741\pi\)
0.544444 + 0.838797i \(0.316741\pi\)
\(564\) 4407.81 0.329082
\(565\) 14641.2 1.09020
\(566\) 14582.2 1.08292
\(567\) 0 0
\(568\) 5826.64 0.430423
\(569\) 3350.10 0.246825 0.123413 0.992355i \(-0.460616\pi\)
0.123413 + 0.992355i \(0.460616\pi\)
\(570\) 5071.95 0.372703
\(571\) 1863.65 0.136588 0.0682938 0.997665i \(-0.478244\pi\)
0.0682938 + 0.997665i \(0.478244\pi\)
\(572\) 5253.07 0.383989
\(573\) −5468.52 −0.398692
\(574\) 0 0
\(575\) 1957.37 0.141962
\(576\) −225.998 −0.0163483
\(577\) −22307.6 −1.60949 −0.804746 0.593619i \(-0.797699\pi\)
−0.804746 + 0.593619i \(0.797699\pi\)
\(578\) −5909.77 −0.425284
\(579\) −21017.6 −1.50857
\(580\) 7164.58 0.512919
\(581\) 0 0
\(582\) −10527.3 −0.749779
\(583\) −19840.4 −1.40944
\(584\) −1363.33 −0.0966014
\(585\) −518.144 −0.0366198
\(586\) 10539.7 0.742988
\(587\) −1239.13 −0.0871287 −0.0435643 0.999051i \(-0.513871\pi\)
−0.0435643 + 0.999051i \(0.513871\pi\)
\(588\) 0 0
\(589\) −11475.0 −0.802748
\(590\) 7015.38 0.489523
\(591\) −13693.1 −0.953064
\(592\) −3544.04 −0.246046
\(593\) 13012.3 0.901101 0.450550 0.892751i \(-0.351228\pi\)
0.450550 + 0.892751i \(0.351228\pi\)
\(594\) −16723.1 −1.15515
\(595\) 0 0
\(596\) 8166.05 0.561233
\(597\) −7174.23 −0.491829
\(598\) 1068.59 0.0730737
\(599\) −5387.70 −0.367505 −0.183752 0.982973i \(-0.558824\pi\)
−0.183752 + 0.982973i \(0.558824\pi\)
\(600\) 3298.23 0.224416
\(601\) −19623.8 −1.33190 −0.665949 0.745998i \(-0.731973\pi\)
−0.665949 + 0.745998i \(0.731973\pi\)
\(602\) 0 0
\(603\) 231.214 0.0156148
\(604\) −4301.51 −0.289778
\(605\) −11779.6 −0.791585
\(606\) −3404.47 −0.228213
\(607\) −7417.23 −0.495974 −0.247987 0.968763i \(-0.579769\pi\)
−0.247987 + 0.968763i \(0.579769\pi\)
\(608\) 2652.04 0.176899
\(609\) 0 0
\(610\) −5600.71 −0.371748
\(611\) 5284.12 0.349874
\(612\) 625.035 0.0412836
\(613\) −292.381 −0.0192645 −0.00963225 0.999954i \(-0.503066\pi\)
−0.00963225 + 0.999954i \(0.503066\pi\)
\(614\) 20768.6 1.36507
\(615\) 9036.96 0.592529
\(616\) 0 0
\(617\) −4411.01 −0.287813 −0.143906 0.989591i \(-0.545966\pi\)
−0.143906 + 0.989591i \(0.545966\pi\)
\(618\) 3706.66 0.241268
\(619\) −15225.2 −0.988613 −0.494307 0.869288i \(-0.664578\pi\)
−0.494307 + 0.869288i \(0.664578\pi\)
\(620\) 3498.26 0.226602
\(621\) −3401.87 −0.219826
\(622\) 8623.48 0.555900
\(623\) 0 0
\(624\) 1800.61 0.115516
\(625\) 2255.42 0.144347
\(626\) −6981.53 −0.445747
\(627\) 22697.2 1.44568
\(628\) −15092.9 −0.959034
\(629\) 9801.61 0.621329
\(630\) 0 0
\(631\) 17188.8 1.08443 0.542216 0.840239i \(-0.317586\pi\)
0.542216 + 0.840239i \(0.317586\pi\)
\(632\) −8636.81 −0.543598
\(633\) 11064.7 0.694759
\(634\) 4226.74 0.264772
\(635\) 4382.49 0.273880
\(636\) −6800.75 −0.424005
\(637\) 0 0
\(638\) 32061.9 1.98957
\(639\) −2571.89 −0.159222
\(640\) −808.499 −0.0499355
\(641\) 24494.6 1.50933 0.754663 0.656113i \(-0.227800\pi\)
0.754663 + 0.656113i \(0.227800\pi\)
\(642\) −6838.87 −0.420419
\(643\) 16904.2 1.03676 0.518381 0.855150i \(-0.326535\pi\)
0.518381 + 0.855150i \(0.326535\pi\)
\(644\) 0 0
\(645\) −7982.11 −0.487279
\(646\) −7334.64 −0.446714
\(647\) 11895.5 0.722813 0.361406 0.932408i \(-0.382297\pi\)
0.361406 + 0.932408i \(0.382297\pi\)
\(648\) −4969.50 −0.301266
\(649\) 31394.2 1.89881
\(650\) 3953.94 0.238594
\(651\) 0 0
\(652\) 5960.97 0.358051
\(653\) −19053.6 −1.14184 −0.570922 0.821004i \(-0.693414\pi\)
−0.570922 + 0.821004i \(0.693414\pi\)
\(654\) −10405.6 −0.622156
\(655\) −14867.8 −0.886923
\(656\) 4725.28 0.281236
\(657\) 601.780 0.0357347
\(658\) 0 0
\(659\) 23676.8 1.39957 0.699786 0.714352i \(-0.253279\pi\)
0.699786 + 0.714352i \(0.253279\pi\)
\(660\) −6919.47 −0.408091
\(661\) 7506.93 0.441733 0.220867 0.975304i \(-0.429111\pi\)
0.220867 + 0.975304i \(0.429111\pi\)
\(662\) −7522.38 −0.441640
\(663\) −4979.89 −0.291708
\(664\) −7593.69 −0.443814
\(665\) 0 0
\(666\) 1564.35 0.0910169
\(667\) 6522.12 0.378617
\(668\) −6765.62 −0.391871
\(669\) 11106.2 0.641840
\(670\) 827.158 0.0476953
\(671\) −25063.5 −1.44197
\(672\) 0 0
\(673\) −17638.7 −1.01028 −0.505142 0.863036i \(-0.668560\pi\)
−0.505142 + 0.863036i \(0.668560\pi\)
\(674\) −9546.94 −0.545600
\(675\) −12587.4 −0.717760
\(676\) −6629.41 −0.377185
\(677\) −5989.95 −0.340048 −0.170024 0.985440i \(-0.554384\pi\)
−0.170024 + 0.985440i \(0.554384\pi\)
\(678\) 22458.6 1.27215
\(679\) 0 0
\(680\) 2236.04 0.126100
\(681\) −6340.12 −0.356761
\(682\) 15654.9 0.878970
\(683\) −25823.5 −1.44672 −0.723360 0.690471i \(-0.757403\pi\)
−0.723360 + 0.690471i \(0.757403\pi\)
\(684\) −1170.62 −0.0654381
\(685\) 932.288 0.0520013
\(686\) 0 0
\(687\) −17567.0 −0.975577
\(688\) −4173.71 −0.231281
\(689\) −8152.79 −0.450793
\(690\) −1407.58 −0.0776603
\(691\) −23226.7 −1.27871 −0.639353 0.768913i \(-0.720798\pi\)
−0.639353 + 0.768913i \(0.720798\pi\)
\(692\) 2407.87 0.132274
\(693\) 0 0
\(694\) 12370.4 0.676617
\(695\) −4417.25 −0.241087
\(696\) 10990.0 0.598525
\(697\) −13068.5 −0.710194
\(698\) −5757.97 −0.312238
\(699\) −25735.8 −1.39258
\(700\) 0 0
\(701\) 5370.34 0.289351 0.144675 0.989479i \(-0.453786\pi\)
0.144675 + 0.989479i \(0.453786\pi\)
\(702\) −6871.86 −0.369461
\(703\) −18357.3 −0.984861
\(704\) −3618.08 −0.193695
\(705\) −6960.38 −0.371834
\(706\) −2482.23 −0.132323
\(707\) 0 0
\(708\) 10761.1 0.571224
\(709\) 18320.9 0.970460 0.485230 0.874387i \(-0.338736\pi\)
0.485230 + 0.874387i \(0.338736\pi\)
\(710\) −9200.84 −0.486340
\(711\) 3812.31 0.201087
\(712\) 6321.35 0.332729
\(713\) 3184.57 0.167269
\(714\) 0 0
\(715\) −8295.12 −0.433874
\(716\) −9899.97 −0.516731
\(717\) −29796.3 −1.55197
\(718\) 13943.0 0.724719
\(719\) 20962.5 1.08730 0.543649 0.839313i \(-0.317042\pi\)
0.543649 + 0.839313i \(0.317042\pi\)
\(720\) 356.874 0.0184721
\(721\) 0 0
\(722\) 18.9211 0.000975304 0
\(723\) 35956.2 1.84955
\(724\) −11865.3 −0.609073
\(725\) 24132.7 1.23623
\(726\) −18069.1 −0.923700
\(727\) −7257.65 −0.370250 −0.185125 0.982715i \(-0.559269\pi\)
−0.185125 + 0.982715i \(0.559269\pi\)
\(728\) 0 0
\(729\) 21539.9 1.09434
\(730\) 2152.84 0.109151
\(731\) 11543.1 0.584044
\(732\) −8591.10 −0.433792
\(733\) −1856.09 −0.0935285 −0.0467642 0.998906i \(-0.514891\pi\)
−0.0467642 + 0.998906i \(0.514891\pi\)
\(734\) 1300.92 0.0654193
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 3701.57 0.185006
\(738\) −2085.75 −0.104035
\(739\) −29285.2 −1.45774 −0.728871 0.684651i \(-0.759955\pi\)
−0.728871 + 0.684651i \(0.759955\pi\)
\(740\) 5596.39 0.278010
\(741\) 9326.74 0.462384
\(742\) 0 0
\(743\) −27200.5 −1.34305 −0.671527 0.740980i \(-0.734361\pi\)
−0.671527 + 0.740980i \(0.734361\pi\)
\(744\) 5366.09 0.264422
\(745\) −12895.0 −0.634144
\(746\) 25106.6 1.23220
\(747\) 3351.88 0.164175
\(748\) 10006.4 0.489131
\(749\) 0 0
\(750\) −12858.1 −0.626016
\(751\) −22318.3 −1.08443 −0.542215 0.840239i \(-0.682414\pi\)
−0.542215 + 0.840239i \(0.682414\pi\)
\(752\) −3639.47 −0.176486
\(753\) −31507.4 −1.52483
\(754\) 13174.9 0.636340
\(755\) 6792.52 0.327424
\(756\) 0 0
\(757\) −13446.1 −0.645585 −0.322792 0.946470i \(-0.604622\pi\)
−0.322792 + 0.946470i \(0.604622\pi\)
\(758\) −13847.4 −0.663537
\(759\) −6298.99 −0.301237
\(760\) −4187.83 −0.199880
\(761\) −35160.1 −1.67484 −0.837419 0.546561i \(-0.815937\pi\)
−0.837419 + 0.546561i \(0.815937\pi\)
\(762\) 6722.43 0.319590
\(763\) 0 0
\(764\) 4515.28 0.213818
\(765\) −986.993 −0.0466468
\(766\) 6063.29 0.285999
\(767\) 12900.5 0.607314
\(768\) −1240.18 −0.0582698
\(769\) −3592.07 −0.168444 −0.0842219 0.996447i \(-0.526840\pi\)
−0.0842219 + 0.996447i \(0.526840\pi\)
\(770\) 0 0
\(771\) −29911.4 −1.39719
\(772\) 17353.9 0.809043
\(773\) −37891.1 −1.76306 −0.881532 0.472125i \(-0.843487\pi\)
−0.881532 + 0.472125i \(0.843487\pi\)
\(774\) 1842.29 0.0855552
\(775\) 11783.3 0.546154
\(776\) 8692.25 0.402105
\(777\) 0 0
\(778\) −18612.7 −0.857711
\(779\) 24475.8 1.12572
\(780\) −2843.35 −0.130523
\(781\) −41174.3 −1.88647
\(782\) 2035.53 0.0930822
\(783\) −41942.1 −1.91429
\(784\) 0 0
\(785\) 23833.2 1.08362
\(786\) −22806.2 −1.03495
\(787\) 6333.43 0.286865 0.143432 0.989660i \(-0.454186\pi\)
0.143432 + 0.989660i \(0.454186\pi\)
\(788\) 11306.2 0.511127
\(789\) −4815.89 −0.217301
\(790\) 13638.4 0.614218
\(791\) 0 0
\(792\) 1597.03 0.0716515
\(793\) −10299.1 −0.461199
\(794\) −22455.0 −1.00365
\(795\) 10739.1 0.479088
\(796\) 5923.66 0.263767
\(797\) −27020.4 −1.20089 −0.600447 0.799665i \(-0.705010\pi\)
−0.600447 + 0.799665i \(0.705010\pi\)
\(798\) 0 0
\(799\) 10065.5 0.445673
\(800\) −2723.30 −0.120354
\(801\) −2790.26 −0.123083
\(802\) −31902.5 −1.40463
\(803\) 9634.09 0.423387
\(804\) 1268.80 0.0556557
\(805\) 0 0
\(806\) 6432.91 0.281129
\(807\) −6863.12 −0.299372
\(808\) 2811.02 0.122390
\(809\) 14330.7 0.622795 0.311397 0.950280i \(-0.399203\pi\)
0.311397 + 0.950280i \(0.399203\pi\)
\(810\) 7847.34 0.340404
\(811\) −18949.5 −0.820478 −0.410239 0.911978i \(-0.634555\pi\)
−0.410239 + 0.911978i \(0.634555\pi\)
\(812\) 0 0
\(813\) −18803.8 −0.811166
\(814\) 25044.2 1.07837
\(815\) −9412.97 −0.404567
\(816\) 3429.92 0.147146
\(817\) −21618.8 −0.925762
\(818\) −11572.0 −0.494626
\(819\) 0 0
\(820\) −7461.69 −0.317772
\(821\) 1447.98 0.0615529 0.0307765 0.999526i \(-0.490202\pi\)
0.0307765 + 0.999526i \(0.490202\pi\)
\(822\) 1430.06 0.0606803
\(823\) −21854.2 −0.925623 −0.462812 0.886457i \(-0.653159\pi\)
−0.462812 + 0.886457i \(0.653159\pi\)
\(824\) −3060.54 −0.129392
\(825\) −23307.1 −0.983575
\(826\) 0 0
\(827\) −19235.3 −0.808801 −0.404400 0.914582i \(-0.632520\pi\)
−0.404400 + 0.914582i \(0.632520\pi\)
\(828\) 324.873 0.0136354
\(829\) −27546.8 −1.15409 −0.577044 0.816713i \(-0.695794\pi\)
−0.577044 + 0.816713i \(0.695794\pi\)
\(830\) 11991.2 0.501470
\(831\) 3481.62 0.145338
\(832\) −1486.74 −0.0619512
\(833\) 0 0
\(834\) −6775.75 −0.281325
\(835\) 10683.6 0.442780
\(836\) −18740.8 −0.775315
\(837\) −20479.1 −0.845714
\(838\) −523.812 −0.0215928
\(839\) 32163.6 1.32349 0.661747 0.749727i \(-0.269815\pi\)
0.661747 + 0.749727i \(0.269815\pi\)
\(840\) 0 0
\(841\) 56023.3 2.29707
\(842\) 14222.0 0.582093
\(843\) 13950.9 0.569982
\(844\) −9135.97 −0.372599
\(845\) 10468.5 0.426186
\(846\) 1606.47 0.0652856
\(847\) 0 0
\(848\) 5615.28 0.227393
\(849\) −35321.4 −1.42783
\(850\) 7531.72 0.303925
\(851\) 5094.55 0.205216
\(852\) −14113.4 −0.567510
\(853\) 28761.0 1.15446 0.577231 0.816581i \(-0.304133\pi\)
0.577231 + 0.816581i \(0.304133\pi\)
\(854\) 0 0
\(855\) 1848.52 0.0739393
\(856\) 5646.76 0.225470
\(857\) −7937.48 −0.316382 −0.158191 0.987409i \(-0.550566\pi\)
−0.158191 + 0.987409i \(0.550566\pi\)
\(858\) −12724.1 −0.506288
\(859\) 26715.0 1.06112 0.530560 0.847647i \(-0.321982\pi\)
0.530560 + 0.847647i \(0.321982\pi\)
\(860\) 6590.71 0.261327
\(861\) 0 0
\(862\) −5230.37 −0.206667
\(863\) 13718.7 0.541124 0.270562 0.962703i \(-0.412791\pi\)
0.270562 + 0.962703i \(0.412791\pi\)
\(864\) 4733.03 0.186367
\(865\) −3802.27 −0.149458
\(866\) −9419.55 −0.369618
\(867\) 14314.8 0.560734
\(868\) 0 0
\(869\) 61032.5 2.38249
\(870\) −17354.3 −0.676281
\(871\) 1521.05 0.0591720
\(872\) 8591.73 0.333661
\(873\) −3836.79 −0.148746
\(874\) −3812.30 −0.147544
\(875\) 0 0
\(876\) 3302.31 0.127368
\(877\) 102.571 0.00394935 0.00197468 0.999998i \(-0.499371\pi\)
0.00197468 + 0.999998i \(0.499371\pi\)
\(878\) −3939.18 −0.151413
\(879\) −25529.6 −0.979625
\(880\) 5713.31 0.218859
\(881\) 18369.0 0.702460 0.351230 0.936289i \(-0.385764\pi\)
0.351230 + 0.936289i \(0.385764\pi\)
\(882\) 0 0
\(883\) −7764.26 −0.295909 −0.147955 0.988994i \(-0.547269\pi\)
−0.147955 + 0.988994i \(0.547269\pi\)
\(884\) 4111.82 0.156443
\(885\) −16992.8 −0.645433
\(886\) 10839.8 0.411028
\(887\) −48834.1 −1.84858 −0.924290 0.381692i \(-0.875341\pi\)
−0.924290 + 0.381692i \(0.875341\pi\)
\(888\) 8584.47 0.324410
\(889\) 0 0
\(890\) −9982.05 −0.375954
\(891\) 35117.3 1.32040
\(892\) −9170.24 −0.344218
\(893\) −18851.6 −0.706432
\(894\) −19780.1 −0.739982
\(895\) 15633.1 0.583861
\(896\) 0 0
\(897\) −2588.38 −0.0963473
\(898\) −14912.7 −0.554168
\(899\) 39263.0 1.45661
\(900\) 1202.07 0.0445212
\(901\) −15530.0 −0.574227
\(902\) −33391.5 −1.23261
\(903\) 0 0
\(904\) −18543.7 −0.682252
\(905\) 18736.4 0.688199
\(906\) 10419.2 0.382071
\(907\) −19713.5 −0.721693 −0.360846 0.932625i \(-0.617512\pi\)
−0.360846 + 0.932625i \(0.617512\pi\)
\(908\) 5234.95 0.191330
\(909\) −1240.79 −0.0452745
\(910\) 0 0
\(911\) 10896.3 0.396279 0.198139 0.980174i \(-0.436510\pi\)
0.198139 + 0.980174i \(0.436510\pi\)
\(912\) −6423.84 −0.233240
\(913\) 53661.3 1.94516
\(914\) −24979.6 −0.903996
\(915\) 13566.2 0.490147
\(916\) 14504.8 0.523200
\(917\) 0 0
\(918\) −13090.0 −0.470624
\(919\) −32343.4 −1.16095 −0.580474 0.814279i \(-0.697133\pi\)
−0.580474 + 0.814279i \(0.697133\pi\)
\(920\) 1162.22 0.0416491
\(921\) −50306.3 −1.79984
\(922\) −24182.9 −0.863797
\(923\) −16919.3 −0.603365
\(924\) 0 0
\(925\) 18850.5 0.670056
\(926\) 8760.33 0.310888
\(927\) 1350.93 0.0478645
\(928\) −9074.26 −0.320988
\(929\) 12322.3 0.435178 0.217589 0.976041i \(-0.430181\pi\)
0.217589 + 0.976041i \(0.430181\pi\)
\(930\) −8473.59 −0.298774
\(931\) 0 0
\(932\) 21249.6 0.746840
\(933\) −20888.0 −0.732952
\(934\) 12992.9 0.455183
\(935\) −15801.1 −0.552675
\(936\) 656.252 0.0229169
\(937\) 15953.1 0.556206 0.278103 0.960551i \(-0.410294\pi\)
0.278103 + 0.960551i \(0.410294\pi\)
\(938\) 0 0
\(939\) 16910.9 0.587716
\(940\) 5747.09 0.199414
\(941\) 19049.1 0.659919 0.329960 0.943995i \(-0.392965\pi\)
0.329960 + 0.943995i \(0.392965\pi\)
\(942\) 36558.5 1.26448
\(943\) −6792.59 −0.234567
\(944\) −8885.28 −0.306347
\(945\) 0 0
\(946\) 29493.8 1.01366
\(947\) −12341.6 −0.423495 −0.211747 0.977324i \(-0.567915\pi\)
−0.211747 + 0.977324i \(0.567915\pi\)
\(948\) 20920.3 0.716731
\(949\) 3958.84 0.135415
\(950\) −14106.0 −0.481748
\(951\) −10238.1 −0.349100
\(952\) 0 0
\(953\) 15410.7 0.523821 0.261911 0.965092i \(-0.415647\pi\)
0.261911 + 0.965092i \(0.415647\pi\)
\(954\) −2478.60 −0.0841171
\(955\) −7130.07 −0.241596
\(956\) 24602.4 0.832321
\(957\) −77661.3 −2.62323
\(958\) −2817.76 −0.0950289
\(959\) 0 0
\(960\) 1958.37 0.0658397
\(961\) −10620.0 −0.356483
\(962\) 10291.1 0.344906
\(963\) −2492.50 −0.0834056
\(964\) −29688.5 −0.991911
\(965\) −27403.6 −0.914147
\(966\) 0 0
\(967\) 47289.3 1.57262 0.786309 0.617834i \(-0.211989\pi\)
0.786309 + 0.617834i \(0.211989\pi\)
\(968\) 14919.4 0.495379
\(969\) 17766.2 0.588991
\(970\) −13725.9 −0.454344
\(971\) −11989.4 −0.396249 −0.198124 0.980177i \(-0.563485\pi\)
−0.198124 + 0.980177i \(0.563485\pi\)
\(972\) −3936.72 −0.129908
\(973\) 0 0
\(974\) 13760.1 0.452671
\(975\) −9577.35 −0.314585
\(976\) 7093.54 0.232642
\(977\) −45588.0 −1.49282 −0.746411 0.665485i \(-0.768225\pi\)
−0.746411 + 0.665485i \(0.768225\pi\)
\(978\) −14438.8 −0.472089
\(979\) −44670.2 −1.45829
\(980\) 0 0
\(981\) −3792.42 −0.123428
\(982\) −18218.5 −0.592032
\(983\) −31079.1 −1.00841 −0.504206 0.863584i \(-0.668215\pi\)
−0.504206 + 0.863584i \(0.668215\pi\)
\(984\) −11445.7 −0.370809
\(985\) −17853.7 −0.577529
\(986\) 25096.3 0.810578
\(987\) 0 0
\(988\) −7700.96 −0.247976
\(989\) 5999.71 0.192902
\(990\) −2521.87 −0.0809600
\(991\) 56741.2 1.81881 0.909407 0.415908i \(-0.136536\pi\)
0.909407 + 0.415908i \(0.136536\pi\)
\(992\) −4430.70 −0.141809
\(993\) 18220.9 0.582300
\(994\) 0 0
\(995\) −9354.06 −0.298034
\(996\) 18393.7 0.585166
\(997\) 48676.0 1.54622 0.773112 0.634269i \(-0.218699\pi\)
0.773112 + 0.634269i \(0.218699\pi\)
\(998\) −11867.1 −0.376401
\(999\) −32761.8 −1.03758
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.x.1.3 11
7.3 odd 6 322.4.e.b.93.3 22
7.5 odd 6 322.4.e.b.277.3 yes 22
7.6 odd 2 2254.4.a.w.1.9 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.b.93.3 22 7.3 odd 6
322.4.e.b.277.3 yes 22 7.5 odd 6
2254.4.a.w.1.9 11 7.6 odd 2
2254.4.a.x.1.3 11 1.1 even 1 trivial