Properties

Label 2254.4.a.x.1.1
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 5 x^{10} - 165 x^{9} + 798 x^{8} + 8769 x^{7} - 38472 x^{6} - 184213 x^{5} + 644009 x^{4} + \cdots + 2848203 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(8.96837\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -7.96837 q^{3} +4.00000 q^{4} +0.313034 q^{5} -15.9367 q^{6} +8.00000 q^{8} +36.4949 q^{9} +0.626067 q^{10} -34.3808 q^{11} -31.8735 q^{12} +78.0974 q^{13} -2.49437 q^{15} +16.0000 q^{16} +19.1637 q^{17} +72.9898 q^{18} -8.01538 q^{19} +1.25213 q^{20} -68.7616 q^{22} -23.0000 q^{23} -63.7470 q^{24} -124.902 q^{25} +156.195 q^{26} -75.6590 q^{27} -18.7342 q^{29} -4.98873 q^{30} +337.914 q^{31} +32.0000 q^{32} +273.959 q^{33} +38.3274 q^{34} +145.980 q^{36} -65.1957 q^{37} -16.0308 q^{38} -622.309 q^{39} +2.50427 q^{40} -253.181 q^{41} +120.965 q^{43} -137.523 q^{44} +11.4241 q^{45} -46.0000 q^{46} +152.324 q^{47} -127.494 q^{48} -249.804 q^{50} -152.704 q^{51} +312.389 q^{52} -319.234 q^{53} -151.318 q^{54} -10.7623 q^{55} +63.8695 q^{57} -37.4684 q^{58} -557.902 q^{59} -9.97747 q^{60} +498.101 q^{61} +675.827 q^{62} +64.0000 q^{64} +24.4471 q^{65} +547.918 q^{66} -760.191 q^{67} +76.6548 q^{68} +183.272 q^{69} +924.726 q^{71} +291.959 q^{72} -739.009 q^{73} -130.391 q^{74} +995.265 q^{75} -32.0615 q^{76} -1244.62 q^{78} -2.73346 q^{79} +5.00854 q^{80} -382.484 q^{81} -506.362 q^{82} +1335.30 q^{83} +5.99888 q^{85} +241.930 q^{86} +149.281 q^{87} -275.046 q^{88} -1012.85 q^{89} +22.8483 q^{90} -92.0000 q^{92} -2692.62 q^{93} +304.648 q^{94} -2.50908 q^{95} -254.988 q^{96} -1239.00 q^{97} -1254.72 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 6 q^{3} + 44 q^{4} + 27 q^{5} + 12 q^{6} + 88 q^{8} + 59 q^{9} + 54 q^{10} + 56 q^{11} + 24 q^{12} + 103 q^{13} + 62 q^{15} + 176 q^{16} + 157 q^{17} + 118 q^{18} + 266 q^{19} + 108 q^{20}+ \cdots + 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −7.96837 −1.53351 −0.766757 0.641938i \(-0.778131\pi\)
−0.766757 + 0.641938i \(0.778131\pi\)
\(4\) 4.00000 0.500000
\(5\) 0.313034 0.0279986 0.0139993 0.999902i \(-0.495544\pi\)
0.0139993 + 0.999902i \(0.495544\pi\)
\(6\) −15.9367 −1.08436
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 36.4949 1.35166
\(10\) 0.626067 0.0197980
\(11\) −34.3808 −0.942382 −0.471191 0.882031i \(-0.656176\pi\)
−0.471191 + 0.882031i \(0.656176\pi\)
\(12\) −31.8735 −0.766757
\(13\) 78.0974 1.66618 0.833089 0.553139i \(-0.186570\pi\)
0.833089 + 0.553139i \(0.186570\pi\)
\(14\) 0 0
\(15\) −2.49437 −0.0429362
\(16\) 16.0000 0.250000
\(17\) 19.1637 0.273405 0.136702 0.990612i \(-0.456350\pi\)
0.136702 + 0.990612i \(0.456350\pi\)
\(18\) 72.9898 0.955770
\(19\) −8.01538 −0.0967819 −0.0483909 0.998828i \(-0.515409\pi\)
−0.0483909 + 0.998828i \(0.515409\pi\)
\(20\) 1.25213 0.0139993
\(21\) 0 0
\(22\) −68.7616 −0.666364
\(23\) −23.0000 −0.208514
\(24\) −63.7470 −0.542179
\(25\) −124.902 −0.999216
\(26\) 156.195 1.17817
\(27\) −75.6590 −0.539280
\(28\) 0 0
\(29\) −18.7342 −0.119960 −0.0599802 0.998200i \(-0.519104\pi\)
−0.0599802 + 0.998200i \(0.519104\pi\)
\(30\) −4.98873 −0.0303605
\(31\) 337.914 1.95778 0.978888 0.204397i \(-0.0655233\pi\)
0.978888 + 0.204397i \(0.0655233\pi\)
\(32\) 32.0000 0.176777
\(33\) 273.959 1.44515
\(34\) 38.3274 0.193326
\(35\) 0 0
\(36\) 145.980 0.675832
\(37\) −65.1957 −0.289678 −0.144839 0.989455i \(-0.546266\pi\)
−0.144839 + 0.989455i \(0.546266\pi\)
\(38\) −16.0308 −0.0684351
\(39\) −622.309 −2.55511
\(40\) 2.50427 0.00989899
\(41\) −253.181 −0.964396 −0.482198 0.876062i \(-0.660161\pi\)
−0.482198 + 0.876062i \(0.660161\pi\)
\(42\) 0 0
\(43\) 120.965 0.429000 0.214500 0.976724i \(-0.431188\pi\)
0.214500 + 0.976724i \(0.431188\pi\)
\(44\) −137.523 −0.471191
\(45\) 11.4241 0.0378446
\(46\) −46.0000 −0.147442
\(47\) 152.324 0.472740 0.236370 0.971663i \(-0.424042\pi\)
0.236370 + 0.971663i \(0.424042\pi\)
\(48\) −127.494 −0.383378
\(49\) 0 0
\(50\) −249.804 −0.706552
\(51\) −152.704 −0.419270
\(52\) 312.389 0.833089
\(53\) −319.234 −0.827361 −0.413681 0.910422i \(-0.635757\pi\)
−0.413681 + 0.910422i \(0.635757\pi\)
\(54\) −151.318 −0.381329
\(55\) −10.7623 −0.0263853
\(56\) 0 0
\(57\) 63.8695 0.148416
\(58\) −37.4684 −0.0848249
\(59\) −557.902 −1.23106 −0.615531 0.788112i \(-0.711059\pi\)
−0.615531 + 0.788112i \(0.711059\pi\)
\(60\) −9.97747 −0.0214681
\(61\) 498.101 1.04550 0.522748 0.852487i \(-0.324907\pi\)
0.522748 + 0.852487i \(0.324907\pi\)
\(62\) 675.827 1.38436
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 24.4471 0.0466506
\(66\) 547.918 1.02188
\(67\) −760.191 −1.38615 −0.693076 0.720865i \(-0.743745\pi\)
−0.693076 + 0.720865i \(0.743745\pi\)
\(68\) 76.6548 0.136702
\(69\) 183.272 0.319760
\(70\) 0 0
\(71\) 924.726 1.54570 0.772850 0.634588i \(-0.218830\pi\)
0.772850 + 0.634588i \(0.218830\pi\)
\(72\) 291.959 0.477885
\(73\) −739.009 −1.18486 −0.592428 0.805623i \(-0.701831\pi\)
−0.592428 + 0.805623i \(0.701831\pi\)
\(74\) −130.391 −0.204834
\(75\) 995.265 1.53231
\(76\) −32.0615 −0.0483909
\(77\) 0 0
\(78\) −1244.62 −1.80673
\(79\) −2.73346 −0.00389289 −0.00194644 0.999998i \(-0.500620\pi\)
−0.00194644 + 0.999998i \(0.500620\pi\)
\(80\) 5.00854 0.00699964
\(81\) −382.484 −0.524670
\(82\) −506.362 −0.681931
\(83\) 1335.30 1.76588 0.882941 0.469484i \(-0.155560\pi\)
0.882941 + 0.469484i \(0.155560\pi\)
\(84\) 0 0
\(85\) 5.99888 0.00765494
\(86\) 241.930 0.303349
\(87\) 149.281 0.183961
\(88\) −275.046 −0.333182
\(89\) −1012.85 −1.20631 −0.603157 0.797622i \(-0.706091\pi\)
−0.603157 + 0.797622i \(0.706091\pi\)
\(90\) 22.8483 0.0267602
\(91\) 0 0
\(92\) −92.0000 −0.104257
\(93\) −2692.62 −3.00228
\(94\) 304.648 0.334277
\(95\) −2.50908 −0.00270975
\(96\) −254.988 −0.271089
\(97\) −1239.00 −1.29692 −0.648462 0.761247i \(-0.724587\pi\)
−0.648462 + 0.761247i \(0.724587\pi\)
\(98\) 0 0
\(99\) −1254.72 −1.27378
\(100\) −499.608 −0.499608
\(101\) 558.524 0.550250 0.275125 0.961408i \(-0.411281\pi\)
0.275125 + 0.961408i \(0.411281\pi\)
\(102\) −305.407 −0.296469
\(103\) 610.024 0.583567 0.291784 0.956484i \(-0.405751\pi\)
0.291784 + 0.956484i \(0.405751\pi\)
\(104\) 624.779 0.589083
\(105\) 0 0
\(106\) −638.468 −0.585033
\(107\) 1481.38 1.33841 0.669206 0.743077i \(-0.266634\pi\)
0.669206 + 0.743077i \(0.266634\pi\)
\(108\) −302.636 −0.269640
\(109\) −1940.72 −1.70538 −0.852692 0.522414i \(-0.825032\pi\)
−0.852692 + 0.522414i \(0.825032\pi\)
\(110\) −21.5247 −0.0186573
\(111\) 519.503 0.444226
\(112\) 0 0
\(113\) 799.964 0.665967 0.332984 0.942933i \(-0.391945\pi\)
0.332984 + 0.942933i \(0.391945\pi\)
\(114\) 127.739 0.104946
\(115\) −7.19977 −0.00583811
\(116\) −74.9368 −0.0599802
\(117\) 2850.16 2.25211
\(118\) −1115.80 −0.870493
\(119\) 0 0
\(120\) −19.9549 −0.0151802
\(121\) −148.961 −0.111917
\(122\) 996.202 0.739278
\(123\) 2017.44 1.47891
\(124\) 1351.65 0.978888
\(125\) −78.2277 −0.0559752
\(126\) 0 0
\(127\) −573.172 −0.400478 −0.200239 0.979747i \(-0.564172\pi\)
−0.200239 + 0.979747i \(0.564172\pi\)
\(128\) 128.000 0.0883883
\(129\) −963.895 −0.657877
\(130\) 48.8942 0.0329870
\(131\) 1325.17 0.883821 0.441910 0.897059i \(-0.354301\pi\)
0.441910 + 0.897059i \(0.354301\pi\)
\(132\) 1095.84 0.722577
\(133\) 0 0
\(134\) −1520.38 −0.980157
\(135\) −23.6838 −0.0150991
\(136\) 153.310 0.0966632
\(137\) 2251.31 1.40396 0.701980 0.712196i \(-0.252299\pi\)
0.701980 + 0.712196i \(0.252299\pi\)
\(138\) 366.545 0.226104
\(139\) −511.025 −0.311831 −0.155916 0.987770i \(-0.549833\pi\)
−0.155916 + 0.987770i \(0.549833\pi\)
\(140\) 0 0
\(141\) −1213.78 −0.724953
\(142\) 1849.45 1.09298
\(143\) −2685.05 −1.57018
\(144\) 583.919 0.337916
\(145\) −5.86443 −0.00335872
\(146\) −1478.02 −0.837820
\(147\) 0 0
\(148\) −260.783 −0.144839
\(149\) −30.4343 −0.0167334 −0.00836668 0.999965i \(-0.502663\pi\)
−0.00836668 + 0.999965i \(0.502663\pi\)
\(150\) 1990.53 1.08351
\(151\) 1669.60 0.899802 0.449901 0.893078i \(-0.351459\pi\)
0.449901 + 0.893078i \(0.351459\pi\)
\(152\) −64.1231 −0.0342176
\(153\) 699.378 0.369551
\(154\) 0 0
\(155\) 105.778 0.0548149
\(156\) −2489.23 −1.27755
\(157\) 2362.20 1.20079 0.600396 0.799703i \(-0.295010\pi\)
0.600396 + 0.799703i \(0.295010\pi\)
\(158\) −5.46692 −0.00275269
\(159\) 2543.77 1.26877
\(160\) 10.0171 0.00494950
\(161\) 0 0
\(162\) −764.968 −0.370997
\(163\) 2766.83 1.32954 0.664770 0.747048i \(-0.268530\pi\)
0.664770 + 0.747048i \(0.268530\pi\)
\(164\) −1012.72 −0.482198
\(165\) 85.7583 0.0404623
\(166\) 2670.60 1.24867
\(167\) −66.2807 −0.0307123 −0.0153561 0.999882i \(-0.504888\pi\)
−0.0153561 + 0.999882i \(0.504888\pi\)
\(168\) 0 0
\(169\) 3902.20 1.77615
\(170\) 11.9978 0.00541286
\(171\) −292.521 −0.130816
\(172\) 483.860 0.214500
\(173\) 243.513 0.107017 0.0535086 0.998567i \(-0.482960\pi\)
0.0535086 + 0.998567i \(0.482960\pi\)
\(174\) 298.562 0.130080
\(175\) 0 0
\(176\) −550.093 −0.235595
\(177\) 4445.57 1.88785
\(178\) −2025.70 −0.852993
\(179\) −548.942 −0.229217 −0.114608 0.993411i \(-0.536561\pi\)
−0.114608 + 0.993411i \(0.536561\pi\)
\(180\) 45.6965 0.0189223
\(181\) −1486.29 −0.610359 −0.305180 0.952295i \(-0.598716\pi\)
−0.305180 + 0.952295i \(0.598716\pi\)
\(182\) 0 0
\(183\) −3969.05 −1.60328
\(184\) −184.000 −0.0737210
\(185\) −20.4084 −0.00811058
\(186\) −5385.24 −2.12293
\(187\) −658.863 −0.257652
\(188\) 609.297 0.236370
\(189\) 0 0
\(190\) −5.01817 −0.00191609
\(191\) 4483.82 1.69863 0.849314 0.527888i \(-0.177016\pi\)
0.849314 + 0.527888i \(0.177016\pi\)
\(192\) −509.976 −0.191689
\(193\) −3136.30 −1.16972 −0.584859 0.811135i \(-0.698850\pi\)
−0.584859 + 0.811135i \(0.698850\pi\)
\(194\) −2478.00 −0.917063
\(195\) −194.804 −0.0715393
\(196\) 0 0
\(197\) −1243.82 −0.449839 −0.224919 0.974377i \(-0.572212\pi\)
−0.224919 + 0.974377i \(0.572212\pi\)
\(198\) −2509.45 −0.900700
\(199\) 3416.94 1.21719 0.608594 0.793482i \(-0.291734\pi\)
0.608594 + 0.793482i \(0.291734\pi\)
\(200\) −999.216 −0.353276
\(201\) 6057.48 2.12568
\(202\) 1117.05 0.389086
\(203\) 0 0
\(204\) −610.814 −0.209635
\(205\) −79.2542 −0.0270017
\(206\) 1220.05 0.412644
\(207\) −839.383 −0.281841
\(208\) 1249.56 0.416544
\(209\) 275.575 0.0912054
\(210\) 0 0
\(211\) −1423.47 −0.464435 −0.232217 0.972664i \(-0.574598\pi\)
−0.232217 + 0.972664i \(0.574598\pi\)
\(212\) −1276.94 −0.413681
\(213\) −7368.56 −2.37035
\(214\) 2962.75 0.946400
\(215\) 37.8661 0.0120114
\(216\) −605.272 −0.190664
\(217\) 0 0
\(218\) −3881.43 −1.20589
\(219\) 5888.70 1.81699
\(220\) −43.0494 −0.0131927
\(221\) 1496.64 0.455541
\(222\) 1039.01 0.314115
\(223\) 3447.48 1.03525 0.517625 0.855608i \(-0.326816\pi\)
0.517625 + 0.855608i \(0.326816\pi\)
\(224\) 0 0
\(225\) −4558.29 −1.35060
\(226\) 1599.93 0.470910
\(227\) 3054.66 0.893148 0.446574 0.894747i \(-0.352644\pi\)
0.446574 + 0.894747i \(0.352644\pi\)
\(228\) 255.478 0.0742081
\(229\) −2613.27 −0.754103 −0.377052 0.926192i \(-0.623062\pi\)
−0.377052 + 0.926192i \(0.623062\pi\)
\(230\) −14.3995 −0.00412816
\(231\) 0 0
\(232\) −149.874 −0.0424124
\(233\) 2510.83 0.705964 0.352982 0.935630i \(-0.385168\pi\)
0.352982 + 0.935630i \(0.385168\pi\)
\(234\) 5700.31 1.59248
\(235\) 47.6826 0.0132360
\(236\) −2231.61 −0.615531
\(237\) 21.7812 0.00596979
\(238\) 0 0
\(239\) 2312.80 0.625953 0.312977 0.949761i \(-0.398674\pi\)
0.312977 + 0.949761i \(0.398674\pi\)
\(240\) −39.9099 −0.0107340
\(241\) 847.100 0.226417 0.113209 0.993571i \(-0.463887\pi\)
0.113209 + 0.993571i \(0.463887\pi\)
\(242\) −297.923 −0.0791372
\(243\) 5090.57 1.34387
\(244\) 1992.40 0.522748
\(245\) 0 0
\(246\) 4034.88 1.04575
\(247\) −625.980 −0.161256
\(248\) 2703.31 0.692178
\(249\) −10640.2 −2.70800
\(250\) −156.455 −0.0395804
\(251\) 6614.70 1.66341 0.831705 0.555217i \(-0.187365\pi\)
0.831705 + 0.555217i \(0.187365\pi\)
\(252\) 0 0
\(253\) 790.758 0.196500
\(254\) −1146.34 −0.283181
\(255\) −47.8013 −0.0117390
\(256\) 256.000 0.0625000
\(257\) 2128.48 0.516619 0.258310 0.966062i \(-0.416835\pi\)
0.258310 + 0.966062i \(0.416835\pi\)
\(258\) −1927.79 −0.465190
\(259\) 0 0
\(260\) 97.7884 0.0233253
\(261\) −683.703 −0.162146
\(262\) 2650.34 0.624956
\(263\) 2933.91 0.687881 0.343941 0.938991i \(-0.388238\pi\)
0.343941 + 0.938991i \(0.388238\pi\)
\(264\) 2191.67 0.510939
\(265\) −99.9309 −0.0231649
\(266\) 0 0
\(267\) 8070.77 1.84990
\(268\) −3040.77 −0.693076
\(269\) 4576.75 1.03736 0.518679 0.854969i \(-0.326424\pi\)
0.518679 + 0.854969i \(0.326424\pi\)
\(270\) −47.3676 −0.0106767
\(271\) −4699.17 −1.05334 −0.526668 0.850071i \(-0.676559\pi\)
−0.526668 + 0.850071i \(0.676559\pi\)
\(272\) 306.619 0.0683512
\(273\) 0 0
\(274\) 4502.62 0.992750
\(275\) 4294.23 0.941643
\(276\) 733.090 0.159880
\(277\) 7932.12 1.72056 0.860279 0.509823i \(-0.170289\pi\)
0.860279 + 0.509823i \(0.170289\pi\)
\(278\) −1022.05 −0.220498
\(279\) 12332.1 2.64625
\(280\) 0 0
\(281\) −2332.70 −0.495221 −0.247610 0.968860i \(-0.579645\pi\)
−0.247610 + 0.968860i \(0.579645\pi\)
\(282\) −2427.55 −0.512619
\(283\) 5844.61 1.22765 0.613827 0.789441i \(-0.289629\pi\)
0.613827 + 0.789441i \(0.289629\pi\)
\(284\) 3698.90 0.772850
\(285\) 19.9933 0.00415544
\(286\) −5370.10 −1.11028
\(287\) 0 0
\(288\) 1167.84 0.238943
\(289\) −4545.75 −0.925250
\(290\) −11.7289 −0.00237498
\(291\) 9872.83 1.98885
\(292\) −2956.04 −0.592428
\(293\) 5575.83 1.11175 0.555876 0.831265i \(-0.312383\pi\)
0.555876 + 0.831265i \(0.312383\pi\)
\(294\) 0 0
\(295\) −174.642 −0.0344680
\(296\) −521.565 −0.102417
\(297\) 2601.21 0.508208
\(298\) −60.8685 −0.0118323
\(299\) −1796.24 −0.347422
\(300\) 3981.06 0.766156
\(301\) 0 0
\(302\) 3339.20 0.636256
\(303\) −4450.53 −0.843816
\(304\) −128.246 −0.0241955
\(305\) 155.922 0.0292724
\(306\) 1398.76 0.261312
\(307\) −7939.06 −1.47592 −0.737958 0.674847i \(-0.764210\pi\)
−0.737958 + 0.674847i \(0.764210\pi\)
\(308\) 0 0
\(309\) −4860.89 −0.894908
\(310\) 211.557 0.0387600
\(311\) 133.670 0.0243721 0.0121861 0.999926i \(-0.496121\pi\)
0.0121861 + 0.999926i \(0.496121\pi\)
\(312\) −4978.47 −0.903366
\(313\) 8070.75 1.45746 0.728731 0.684800i \(-0.240111\pi\)
0.728731 + 0.684800i \(0.240111\pi\)
\(314\) 4724.40 0.849088
\(315\) 0 0
\(316\) −10.9338 −0.00194644
\(317\) 3029.19 0.536708 0.268354 0.963320i \(-0.413520\pi\)
0.268354 + 0.963320i \(0.413520\pi\)
\(318\) 5087.55 0.897155
\(319\) 644.097 0.113049
\(320\) 20.0341 0.00349982
\(321\) −11804.2 −2.05247
\(322\) 0 0
\(323\) −153.604 −0.0264606
\(324\) −1529.94 −0.262335
\(325\) −9754.52 −1.66487
\(326\) 5533.66 0.940127
\(327\) 15464.3 2.61523
\(328\) −2025.45 −0.340966
\(329\) 0 0
\(330\) 171.517 0.0286111
\(331\) −1718.59 −0.285385 −0.142693 0.989767i \(-0.545576\pi\)
−0.142693 + 0.989767i \(0.545576\pi\)
\(332\) 5341.20 0.882941
\(333\) −2379.31 −0.391548
\(334\) −132.561 −0.0217169
\(335\) −237.965 −0.0388103
\(336\) 0 0
\(337\) 2456.53 0.397079 0.198539 0.980093i \(-0.436380\pi\)
0.198539 + 0.980093i \(0.436380\pi\)
\(338\) 7804.40 1.25593
\(339\) −6374.41 −1.02127
\(340\) 23.9955 0.00382747
\(341\) −11617.7 −1.84497
\(342\) −585.041 −0.0925012
\(343\) 0 0
\(344\) 967.721 0.151674
\(345\) 57.3704 0.00895281
\(346\) 487.026 0.0756726
\(347\) −634.776 −0.0982034 −0.0491017 0.998794i \(-0.515636\pi\)
−0.0491017 + 0.998794i \(0.515636\pi\)
\(348\) 597.124 0.0919805
\(349\) −7354.37 −1.12800 −0.563998 0.825776i \(-0.690737\pi\)
−0.563998 + 0.825776i \(0.690737\pi\)
\(350\) 0 0
\(351\) −5908.77 −0.898537
\(352\) −1100.19 −0.166591
\(353\) −3217.22 −0.485086 −0.242543 0.970141i \(-0.577981\pi\)
−0.242543 + 0.970141i \(0.577981\pi\)
\(354\) 8891.14 1.33491
\(355\) 289.470 0.0432774
\(356\) −4051.40 −0.603157
\(357\) 0 0
\(358\) −1097.88 −0.162081
\(359\) 2938.32 0.431973 0.215987 0.976396i \(-0.430703\pi\)
0.215987 + 0.976396i \(0.430703\pi\)
\(360\) 91.3931 0.0133801
\(361\) −6794.75 −0.990633
\(362\) −2972.58 −0.431589
\(363\) 1186.98 0.171626
\(364\) 0 0
\(365\) −231.335 −0.0331743
\(366\) −7938.11 −1.13369
\(367\) −2943.33 −0.418639 −0.209320 0.977847i \(-0.567125\pi\)
−0.209320 + 0.977847i \(0.567125\pi\)
\(368\) −368.000 −0.0521286
\(369\) −9239.82 −1.30354
\(370\) −40.8169 −0.00573505
\(371\) 0 0
\(372\) −10770.5 −1.50114
\(373\) 47.6624 0.00661626 0.00330813 0.999995i \(-0.498947\pi\)
0.00330813 + 0.999995i \(0.498947\pi\)
\(374\) −1317.73 −0.182187
\(375\) 623.347 0.0858387
\(376\) 1218.59 0.167139
\(377\) −1463.09 −0.199875
\(378\) 0 0
\(379\) 523.434 0.0709419 0.0354710 0.999371i \(-0.488707\pi\)
0.0354710 + 0.999371i \(0.488707\pi\)
\(380\) −10.0363 −0.00135488
\(381\) 4567.24 0.614139
\(382\) 8967.65 1.20111
\(383\) −2203.59 −0.293990 −0.146995 0.989137i \(-0.546960\pi\)
−0.146995 + 0.989137i \(0.546960\pi\)
\(384\) −1019.95 −0.135545
\(385\) 0 0
\(386\) −6272.60 −0.827116
\(387\) 4414.61 0.579864
\(388\) −4956.01 −0.648462
\(389\) 9847.66 1.28354 0.641769 0.766898i \(-0.278201\pi\)
0.641769 + 0.766898i \(0.278201\pi\)
\(390\) −389.607 −0.0505859
\(391\) −440.765 −0.0570088
\(392\) 0 0
\(393\) −10559.4 −1.35535
\(394\) −2487.63 −0.318084
\(395\) −0.855664 −0.000108995 0
\(396\) −5018.90 −0.636891
\(397\) 8879.05 1.12249 0.561243 0.827651i \(-0.310323\pi\)
0.561243 + 0.827651i \(0.310323\pi\)
\(398\) 6833.88 0.860682
\(399\) 0 0
\(400\) −1998.43 −0.249804
\(401\) 14797.3 1.84275 0.921374 0.388678i \(-0.127068\pi\)
0.921374 + 0.388678i \(0.127068\pi\)
\(402\) 12115.0 1.50308
\(403\) 26390.2 3.26200
\(404\) 2234.10 0.275125
\(405\) −119.730 −0.0146900
\(406\) 0 0
\(407\) 2241.48 0.272988
\(408\) −1221.63 −0.148234
\(409\) −1741.95 −0.210597 −0.105298 0.994441i \(-0.533580\pi\)
−0.105298 + 0.994441i \(0.533580\pi\)
\(410\) −158.508 −0.0190931
\(411\) −17939.3 −2.15299
\(412\) 2440.10 0.291784
\(413\) 0 0
\(414\) −1678.77 −0.199292
\(415\) 417.994 0.0494422
\(416\) 2499.12 0.294541
\(417\) 4072.04 0.478198
\(418\) 551.150 0.0644920
\(419\) 12637.5 1.47347 0.736733 0.676183i \(-0.236367\pi\)
0.736733 + 0.676183i \(0.236367\pi\)
\(420\) 0 0
\(421\) 469.615 0.0543649 0.0271824 0.999630i \(-0.491346\pi\)
0.0271824 + 0.999630i \(0.491346\pi\)
\(422\) −2846.94 −0.328405
\(423\) 5559.06 0.638985
\(424\) −2553.87 −0.292516
\(425\) −2393.59 −0.273190
\(426\) −14737.1 −1.67609
\(427\) 0 0
\(428\) 5925.51 0.669206
\(429\) 21395.5 2.40789
\(430\) 75.7323 0.00849334
\(431\) 125.350 0.0140090 0.00700452 0.999975i \(-0.497770\pi\)
0.00700452 + 0.999975i \(0.497770\pi\)
\(432\) −1210.54 −0.134820
\(433\) 1147.01 0.127302 0.0636508 0.997972i \(-0.479726\pi\)
0.0636508 + 0.997972i \(0.479726\pi\)
\(434\) 0 0
\(435\) 46.7300 0.00515065
\(436\) −7762.86 −0.852692
\(437\) 184.354 0.0201804
\(438\) 11777.4 1.28481
\(439\) 348.110 0.0378460 0.0189230 0.999821i \(-0.493976\pi\)
0.0189230 + 0.999821i \(0.493976\pi\)
\(440\) −86.0987 −0.00932863
\(441\) 0 0
\(442\) 2993.27 0.322116
\(443\) −13219.2 −1.41775 −0.708875 0.705334i \(-0.750797\pi\)
−0.708875 + 0.705334i \(0.750797\pi\)
\(444\) 2078.01 0.222113
\(445\) −317.056 −0.0337751
\(446\) 6894.97 0.732032
\(447\) 242.511 0.0256608
\(448\) 0 0
\(449\) 11766.4 1.23672 0.618362 0.785893i \(-0.287797\pi\)
0.618362 + 0.785893i \(0.287797\pi\)
\(450\) −9116.58 −0.955021
\(451\) 8704.56 0.908829
\(452\) 3199.86 0.332984
\(453\) −13304.0 −1.37986
\(454\) 6109.31 0.631551
\(455\) 0 0
\(456\) 510.956 0.0524731
\(457\) 6992.19 0.715713 0.357856 0.933777i \(-0.383508\pi\)
0.357856 + 0.933777i \(0.383508\pi\)
\(458\) −5226.54 −0.533231
\(459\) −1449.91 −0.147442
\(460\) −28.7991 −0.00291905
\(461\) 17986.6 1.81718 0.908591 0.417686i \(-0.137159\pi\)
0.908591 + 0.417686i \(0.137159\pi\)
\(462\) 0 0
\(463\) −13843.8 −1.38958 −0.694790 0.719212i \(-0.744503\pi\)
−0.694790 + 0.719212i \(0.744503\pi\)
\(464\) −299.747 −0.0299901
\(465\) −842.880 −0.0840594
\(466\) 5021.65 0.499192
\(467\) 10777.1 1.06789 0.533945 0.845519i \(-0.320709\pi\)
0.533945 + 0.845519i \(0.320709\pi\)
\(468\) 11400.6 1.12606
\(469\) 0 0
\(470\) 95.3652 0.00935929
\(471\) −18822.9 −1.84143
\(472\) −4463.22 −0.435246
\(473\) −4158.88 −0.404282
\(474\) 43.5624 0.00422128
\(475\) 1001.14 0.0967060
\(476\) 0 0
\(477\) −11650.4 −1.11831
\(478\) 4625.61 0.442616
\(479\) 8288.07 0.790588 0.395294 0.918555i \(-0.370643\pi\)
0.395294 + 0.918555i \(0.370643\pi\)
\(480\) −79.8197 −0.00759012
\(481\) −5091.61 −0.482656
\(482\) 1694.20 0.160101
\(483\) 0 0
\(484\) −595.845 −0.0559584
\(485\) −387.849 −0.0363120
\(486\) 10181.1 0.950258
\(487\) −15294.3 −1.42311 −0.711553 0.702632i \(-0.752008\pi\)
−0.711553 + 0.702632i \(0.752008\pi\)
\(488\) 3984.81 0.369639
\(489\) −22047.1 −2.03887
\(490\) 0 0
\(491\) 3480.01 0.319859 0.159930 0.987128i \(-0.448873\pi\)
0.159930 + 0.987128i \(0.448873\pi\)
\(492\) 8069.76 0.739457
\(493\) −359.017 −0.0327978
\(494\) −1251.96 −0.114025
\(495\) −392.771 −0.0356641
\(496\) 5406.62 0.489444
\(497\) 0 0
\(498\) −21280.3 −1.91485
\(499\) 2018.14 0.181051 0.0905256 0.995894i \(-0.471145\pi\)
0.0905256 + 0.995894i \(0.471145\pi\)
\(500\) −312.911 −0.0279876
\(501\) 528.149 0.0470977
\(502\) 13229.4 1.17621
\(503\) 4293.58 0.380599 0.190300 0.981726i \(-0.439054\pi\)
0.190300 + 0.981726i \(0.439054\pi\)
\(504\) 0 0
\(505\) 174.837 0.0154062
\(506\) 1581.52 0.138947
\(507\) −31094.2 −2.72375
\(508\) −2292.69 −0.200239
\(509\) 7654.07 0.666524 0.333262 0.942834i \(-0.391851\pi\)
0.333262 + 0.942834i \(0.391851\pi\)
\(510\) −95.6026 −0.00830070
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 606.436 0.0521926
\(514\) 4256.97 0.365305
\(515\) 190.958 0.0163391
\(516\) −3855.58 −0.328939
\(517\) −5237.03 −0.445501
\(518\) 0 0
\(519\) −1940.40 −0.164112
\(520\) 195.577 0.0164935
\(521\) 10284.9 0.864856 0.432428 0.901669i \(-0.357657\pi\)
0.432428 + 0.901669i \(0.357657\pi\)
\(522\) −1367.41 −0.114655
\(523\) 9011.36 0.753421 0.376710 0.926331i \(-0.377055\pi\)
0.376710 + 0.926331i \(0.377055\pi\)
\(524\) 5300.67 0.441910
\(525\) 0 0
\(526\) 5867.82 0.486406
\(527\) 6475.68 0.535265
\(528\) 4383.34 0.361289
\(529\) 529.000 0.0434783
\(530\) −199.862 −0.0163801
\(531\) −20360.6 −1.66398
\(532\) 0 0
\(533\) −19772.8 −1.60686
\(534\) 16141.5 1.30808
\(535\) 463.721 0.0374736
\(536\) −6081.53 −0.490079
\(537\) 4374.17 0.351507
\(538\) 9153.50 0.733523
\(539\) 0 0
\(540\) −94.7352 −0.00754954
\(541\) −19266.8 −1.53113 −0.765567 0.643356i \(-0.777541\pi\)
−0.765567 + 0.643356i \(0.777541\pi\)
\(542\) −9398.33 −0.744821
\(543\) 11843.3 0.935994
\(544\) 613.239 0.0483316
\(545\) −607.509 −0.0477483
\(546\) 0 0
\(547\) 13655.7 1.06742 0.533709 0.845668i \(-0.320798\pi\)
0.533709 + 0.845668i \(0.320798\pi\)
\(548\) 9005.25 0.701980
\(549\) 18178.2 1.41316
\(550\) 8588.46 0.665842
\(551\) 150.162 0.0116100
\(552\) 1466.18 0.113052
\(553\) 0 0
\(554\) 15864.2 1.21662
\(555\) 162.622 0.0124377
\(556\) −2044.10 −0.155916
\(557\) −2831.01 −0.215357 −0.107678 0.994186i \(-0.534342\pi\)
−0.107678 + 0.994186i \(0.534342\pi\)
\(558\) 24664.2 1.87118
\(559\) 9447.06 0.714791
\(560\) 0 0
\(561\) 5250.07 0.395112
\(562\) −4665.39 −0.350174
\(563\) −25606.4 −1.91684 −0.958420 0.285360i \(-0.907887\pi\)
−0.958420 + 0.285360i \(0.907887\pi\)
\(564\) −4855.10 −0.362476
\(565\) 250.416 0.0186461
\(566\) 11689.2 0.868082
\(567\) 0 0
\(568\) 7397.81 0.546488
\(569\) −22672.4 −1.67043 −0.835217 0.549920i \(-0.814658\pi\)
−0.835217 + 0.549920i \(0.814658\pi\)
\(570\) 39.9866 0.00293834
\(571\) −4307.71 −0.315713 −0.157856 0.987462i \(-0.550458\pi\)
−0.157856 + 0.987462i \(0.550458\pi\)
\(572\) −10740.2 −0.785088
\(573\) −35728.8 −2.60487
\(574\) 0 0
\(575\) 2872.75 0.208351
\(576\) 2335.67 0.168958
\(577\) −5659.36 −0.408323 −0.204161 0.978937i \(-0.565447\pi\)
−0.204161 + 0.978937i \(0.565447\pi\)
\(578\) −9091.50 −0.654250
\(579\) 24991.2 1.79378
\(580\) −23.4577 −0.00167936
\(581\) 0 0
\(582\) 19745.7 1.40633
\(583\) 10975.5 0.779690
\(584\) −5912.07 −0.418910
\(585\) 892.195 0.0630559
\(586\) 11151.7 0.786128
\(587\) −15466.8 −1.08753 −0.543766 0.839237i \(-0.683002\pi\)
−0.543766 + 0.839237i \(0.683002\pi\)
\(588\) 0 0
\(589\) −2708.51 −0.189477
\(590\) −349.284 −0.0243726
\(591\) 9911.19 0.689834
\(592\) −1043.13 −0.0724196
\(593\) 26319.1 1.82259 0.911296 0.411751i \(-0.135083\pi\)
0.911296 + 0.411751i \(0.135083\pi\)
\(594\) 5202.43 0.359357
\(595\) 0 0
\(596\) −121.737 −0.00836668
\(597\) −27227.4 −1.86657
\(598\) −3592.48 −0.245665
\(599\) 14268.0 0.973247 0.486624 0.873612i \(-0.338228\pi\)
0.486624 + 0.873612i \(0.338228\pi\)
\(600\) 7962.12 0.541754
\(601\) −12068.3 −0.819092 −0.409546 0.912289i \(-0.634313\pi\)
−0.409546 + 0.912289i \(0.634313\pi\)
\(602\) 0 0
\(603\) −27743.1 −1.87361
\(604\) 6678.40 0.449901
\(605\) −46.6299 −0.00313351
\(606\) −8901.06 −0.596668
\(607\) −23440.5 −1.56741 −0.783707 0.621130i \(-0.786674\pi\)
−0.783707 + 0.621130i \(0.786674\pi\)
\(608\) −256.492 −0.0171088
\(609\) 0 0
\(610\) 311.845 0.0206987
\(611\) 11896.1 0.787668
\(612\) 2797.51 0.184776
\(613\) 9242.96 0.609004 0.304502 0.952512i \(-0.401510\pi\)
0.304502 + 0.952512i \(0.401510\pi\)
\(614\) −15878.1 −1.04363
\(615\) 631.527 0.0414075
\(616\) 0 0
\(617\) 13063.7 0.852391 0.426195 0.904631i \(-0.359854\pi\)
0.426195 + 0.904631i \(0.359854\pi\)
\(618\) −9721.79 −0.632796
\(619\) 17653.8 1.14631 0.573154 0.819448i \(-0.305720\pi\)
0.573154 + 0.819448i \(0.305720\pi\)
\(620\) 423.113 0.0274075
\(621\) 1740.16 0.112448
\(622\) 267.340 0.0172337
\(623\) 0 0
\(624\) −9956.94 −0.638777
\(625\) 15588.3 0.997649
\(626\) 16141.5 1.03058
\(627\) −2195.89 −0.139865
\(628\) 9448.81 0.600396
\(629\) −1249.39 −0.0791995
\(630\) 0 0
\(631\) −27750.7 −1.75078 −0.875388 0.483421i \(-0.839394\pi\)
−0.875388 + 0.483421i \(0.839394\pi\)
\(632\) −21.8677 −0.00137634
\(633\) 11342.7 0.712217
\(634\) 6058.39 0.379510
\(635\) −179.422 −0.0112128
\(636\) 10175.1 0.634385
\(637\) 0 0
\(638\) 1288.19 0.0799374
\(639\) 33747.8 2.08927
\(640\) 40.0683 0.00247475
\(641\) −22967.6 −1.41524 −0.707618 0.706595i \(-0.750230\pi\)
−0.707618 + 0.706595i \(0.750230\pi\)
\(642\) −23608.3 −1.45132
\(643\) 16102.0 0.987557 0.493778 0.869588i \(-0.335615\pi\)
0.493778 + 0.869588i \(0.335615\pi\)
\(644\) 0 0
\(645\) −301.731 −0.0184196
\(646\) −307.209 −0.0187105
\(647\) −29250.8 −1.77738 −0.888692 0.458505i \(-0.848385\pi\)
−0.888692 + 0.458505i \(0.848385\pi\)
\(648\) −3059.87 −0.185499
\(649\) 19181.1 1.16013
\(650\) −19509.0 −1.17724
\(651\) 0 0
\(652\) 11067.3 0.664770
\(653\) −17144.4 −1.02743 −0.513716 0.857960i \(-0.671731\pi\)
−0.513716 + 0.857960i \(0.671731\pi\)
\(654\) 30928.7 1.84925
\(655\) 414.822 0.0247457
\(656\) −4050.90 −0.241099
\(657\) −26970.1 −1.60153
\(658\) 0 0
\(659\) −28408.3 −1.67925 −0.839627 0.543163i \(-0.817227\pi\)
−0.839627 + 0.543163i \(0.817227\pi\)
\(660\) 343.033 0.0202311
\(661\) 18051.8 1.06223 0.531115 0.847300i \(-0.321773\pi\)
0.531115 + 0.847300i \(0.321773\pi\)
\(662\) −3437.19 −0.201798
\(663\) −11925.7 −0.698578
\(664\) 10682.4 0.624334
\(665\) 0 0
\(666\) −4758.62 −0.276866
\(667\) 430.887 0.0250135
\(668\) −265.123 −0.0153561
\(669\) −27470.8 −1.58757
\(670\) −475.931 −0.0274430
\(671\) −17125.1 −0.985257
\(672\) 0 0
\(673\) 7811.47 0.447414 0.223707 0.974656i \(-0.428184\pi\)
0.223707 + 0.974656i \(0.428184\pi\)
\(674\) 4913.05 0.280777
\(675\) 9449.96 0.538858
\(676\) 15608.8 0.888074
\(677\) −4649.11 −0.263929 −0.131964 0.991254i \(-0.542128\pi\)
−0.131964 + 0.991254i \(0.542128\pi\)
\(678\) −12748.8 −0.722147
\(679\) 0 0
\(680\) 47.9911 0.00270643
\(681\) −24340.6 −1.36965
\(682\) −23235.5 −1.30459
\(683\) 572.789 0.0320896 0.0160448 0.999871i \(-0.494893\pi\)
0.0160448 + 0.999871i \(0.494893\pi\)
\(684\) −1170.08 −0.0654082
\(685\) 704.736 0.0393089
\(686\) 0 0
\(687\) 20823.5 1.15643
\(688\) 1935.44 0.107250
\(689\) −24931.3 −1.37853
\(690\) 114.741 0.00633060
\(691\) −33351.4 −1.83610 −0.918051 0.396463i \(-0.870237\pi\)
−0.918051 + 0.396463i \(0.870237\pi\)
\(692\) 974.053 0.0535086
\(693\) 0 0
\(694\) −1269.55 −0.0694403
\(695\) −159.968 −0.00873084
\(696\) 1194.25 0.0650400
\(697\) −4851.89 −0.263671
\(698\) −14708.7 −0.797613
\(699\) −20007.2 −1.08261
\(700\) 0 0
\(701\) −2875.54 −0.154932 −0.0774662 0.996995i \(-0.524683\pi\)
−0.0774662 + 0.996995i \(0.524683\pi\)
\(702\) −11817.5 −0.635362
\(703\) 522.568 0.0280356
\(704\) −2200.37 −0.117798
\(705\) −379.952 −0.0202976
\(706\) −6434.44 −0.343007
\(707\) 0 0
\(708\) 17782.3 0.943925
\(709\) −2491.57 −0.131979 −0.0659894 0.997820i \(-0.521020\pi\)
−0.0659894 + 0.997820i \(0.521020\pi\)
\(710\) 578.940 0.0306018
\(711\) −99.7573 −0.00526187
\(712\) −8102.81 −0.426497
\(713\) −7772.01 −0.408225
\(714\) 0 0
\(715\) −840.511 −0.0439627
\(716\) −2195.77 −0.114608
\(717\) −18429.3 −0.959908
\(718\) 5876.63 0.305451
\(719\) −26670.1 −1.38335 −0.691673 0.722211i \(-0.743126\pi\)
−0.691673 + 0.722211i \(0.743126\pi\)
\(720\) 182.786 0.00946116
\(721\) 0 0
\(722\) −13589.5 −0.700484
\(723\) −6750.01 −0.347214
\(724\) −5945.16 −0.305180
\(725\) 2339.94 0.119866
\(726\) 2373.96 0.121358
\(727\) −30347.5 −1.54818 −0.774090 0.633076i \(-0.781792\pi\)
−0.774090 + 0.633076i \(0.781792\pi\)
\(728\) 0 0
\(729\) −30236.4 −1.53617
\(730\) −462.669 −0.0234578
\(731\) 2318.14 0.117291
\(732\) −15876.2 −0.801642
\(733\) 35966.0 1.81233 0.906163 0.422929i \(-0.138998\pi\)
0.906163 + 0.422929i \(0.138998\pi\)
\(734\) −5886.66 −0.296023
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 26136.0 1.30628
\(738\) −18479.6 −0.921741
\(739\) 2709.69 0.134882 0.0674409 0.997723i \(-0.478517\pi\)
0.0674409 + 0.997723i \(0.478517\pi\)
\(740\) −81.6337 −0.00405529
\(741\) 4988.04 0.247288
\(742\) 0 0
\(743\) −882.352 −0.0435671 −0.0217836 0.999763i \(-0.506934\pi\)
−0.0217836 + 0.999763i \(0.506934\pi\)
\(744\) −21541.0 −1.06146
\(745\) −9.52694 −0.000468510 0
\(746\) 95.3248 0.00467840
\(747\) 48731.7 2.38688
\(748\) −2635.45 −0.128826
\(749\) 0 0
\(750\) 1246.69 0.0606971
\(751\) −4318.15 −0.209816 −0.104908 0.994482i \(-0.533455\pi\)
−0.104908 + 0.994482i \(0.533455\pi\)
\(752\) 2437.19 0.118185
\(753\) −52708.4 −2.55086
\(754\) −2926.18 −0.141333
\(755\) 522.641 0.0251932
\(756\) 0 0
\(757\) −17626.7 −0.846303 −0.423152 0.906059i \(-0.639076\pi\)
−0.423152 + 0.906059i \(0.639076\pi\)
\(758\) 1046.87 0.0501635
\(759\) −6301.05 −0.301336
\(760\) −20.0727 −0.000958043 0
\(761\) 35179.4 1.67576 0.837880 0.545854i \(-0.183795\pi\)
0.837880 + 0.545854i \(0.183795\pi\)
\(762\) 9134.49 0.434262
\(763\) 0 0
\(764\) 17935.3 0.849314
\(765\) 218.929 0.0103469
\(766\) −4407.18 −0.207882
\(767\) −43570.7 −2.05117
\(768\) −2039.90 −0.0958446
\(769\) 36542.9 1.71362 0.856808 0.515635i \(-0.172444\pi\)
0.856808 + 0.515635i \(0.172444\pi\)
\(770\) 0 0
\(771\) −16960.5 −0.792242
\(772\) −12545.2 −0.584859
\(773\) 9958.57 0.463370 0.231685 0.972791i \(-0.425576\pi\)
0.231685 + 0.972791i \(0.425576\pi\)
\(774\) 8829.22 0.410026
\(775\) −42206.1 −1.95624
\(776\) −9912.02 −0.458532
\(777\) 0 0
\(778\) 19695.3 0.907598
\(779\) 2029.34 0.0933360
\(780\) −779.214 −0.0357697
\(781\) −31792.8 −1.45664
\(782\) −881.531 −0.0403113
\(783\) 1417.41 0.0646923
\(784\) 0 0
\(785\) 739.449 0.0336204
\(786\) −21118.9 −0.958378
\(787\) 5915.84 0.267950 0.133975 0.990985i \(-0.457226\pi\)
0.133975 + 0.990985i \(0.457226\pi\)
\(788\) −4975.27 −0.224919
\(789\) −23378.5 −1.05488
\(790\) −1.71133 −7.70713e−5 0
\(791\) 0 0
\(792\) −10037.8 −0.450350
\(793\) 38900.4 1.74198
\(794\) 17758.1 0.793718
\(795\) 796.286 0.0355237
\(796\) 13667.8 0.608594
\(797\) −4183.71 −0.185940 −0.0929702 0.995669i \(-0.529636\pi\)
−0.0929702 + 0.995669i \(0.529636\pi\)
\(798\) 0 0
\(799\) 2919.10 0.129249
\(800\) −3996.86 −0.176638
\(801\) −36963.9 −1.63053
\(802\) 29594.6 1.30302
\(803\) 25407.7 1.11659
\(804\) 24229.9 1.06284
\(805\) 0 0
\(806\) 52780.3 2.30658
\(807\) −36469.2 −1.59080
\(808\) 4468.20 0.194543
\(809\) 6345.65 0.275774 0.137887 0.990448i \(-0.455969\pi\)
0.137887 + 0.990448i \(0.455969\pi\)
\(810\) −239.461 −0.0103874
\(811\) −26595.7 −1.15154 −0.575771 0.817611i \(-0.695298\pi\)
−0.575771 + 0.817611i \(0.695298\pi\)
\(812\) 0 0
\(813\) 37444.7 1.61530
\(814\) 4482.96 0.193031
\(815\) 866.111 0.0372252
\(816\) −2443.26 −0.104817
\(817\) −969.582 −0.0415194
\(818\) −3483.91 −0.148914
\(819\) 0 0
\(820\) −317.017 −0.0135009
\(821\) −5939.20 −0.252472 −0.126236 0.992000i \(-0.540290\pi\)
−0.126236 + 0.992000i \(0.540290\pi\)
\(822\) −35878.6 −1.52240
\(823\) −746.431 −0.0316148 −0.0158074 0.999875i \(-0.505032\pi\)
−0.0158074 + 0.999875i \(0.505032\pi\)
\(824\) 4880.19 0.206322
\(825\) −34218.0 −1.44402
\(826\) 0 0
\(827\) −20368.5 −0.856449 −0.428225 0.903672i \(-0.640861\pi\)
−0.428225 + 0.903672i \(0.640861\pi\)
\(828\) −3357.53 −0.140921
\(829\) 6739.18 0.282342 0.141171 0.989985i \(-0.454913\pi\)
0.141171 + 0.989985i \(0.454913\pi\)
\(830\) 835.988 0.0349609
\(831\) −63206.0 −2.63850
\(832\) 4998.23 0.208272
\(833\) 0 0
\(834\) 8144.07 0.338137
\(835\) −20.7481 −0.000859900 0
\(836\) 1102.30 0.0456027
\(837\) −25566.2 −1.05579
\(838\) 25275.0 1.04190
\(839\) 40067.4 1.64872 0.824362 0.566064i \(-0.191534\pi\)
0.824362 + 0.566064i \(0.191534\pi\)
\(840\) 0 0
\(841\) −24038.0 −0.985609
\(842\) 939.229 0.0384418
\(843\) 18587.8 0.759428
\(844\) −5693.88 −0.232217
\(845\) 1221.52 0.0497296
\(846\) 11118.1 0.451831
\(847\) 0 0
\(848\) −5107.74 −0.206840
\(849\) −46572.0 −1.88262
\(850\) −4787.17 −0.193175
\(851\) 1499.50 0.0604021
\(852\) −29474.2 −1.18518
\(853\) 1865.79 0.0748925 0.0374462 0.999299i \(-0.488078\pi\)
0.0374462 + 0.999299i \(0.488078\pi\)
\(854\) 0 0
\(855\) −91.5688 −0.00366268
\(856\) 11851.0 0.473200
\(857\) −44608.4 −1.77805 −0.889027 0.457855i \(-0.848618\pi\)
−0.889027 + 0.457855i \(0.848618\pi\)
\(858\) 42790.9 1.70263
\(859\) −42366.2 −1.68279 −0.841395 0.540421i \(-0.818265\pi\)
−0.841395 + 0.540421i \(0.818265\pi\)
\(860\) 151.465 0.00600570
\(861\) 0 0
\(862\) 250.700 0.00990589
\(863\) 9724.26 0.383566 0.191783 0.981437i \(-0.438573\pi\)
0.191783 + 0.981437i \(0.438573\pi\)
\(864\) −2421.09 −0.0953322
\(865\) 76.2278 0.00299633
\(866\) 2294.01 0.0900159
\(867\) 36222.2 1.41888
\(868\) 0 0
\(869\) 93.9785 0.00366859
\(870\) 93.4599 0.00364206
\(871\) −59368.9 −2.30957
\(872\) −15525.7 −0.602944
\(873\) −45217.3 −1.75300
\(874\) 368.708 0.0142697
\(875\) 0 0
\(876\) 23554.8 0.908496
\(877\) 10094.3 0.388667 0.194333 0.980936i \(-0.437746\pi\)
0.194333 + 0.980936i \(0.437746\pi\)
\(878\) 696.220 0.0267611
\(879\) −44430.3 −1.70489
\(880\) −172.197 −0.00659634
\(881\) 305.924 0.0116990 0.00584952 0.999983i \(-0.498138\pi\)
0.00584952 + 0.999983i \(0.498138\pi\)
\(882\) 0 0
\(883\) 21381.8 0.814899 0.407449 0.913228i \(-0.366418\pi\)
0.407449 + 0.913228i \(0.366418\pi\)
\(884\) 5986.54 0.227771
\(885\) 1391.61 0.0528571
\(886\) −26438.4 −1.00250
\(887\) −28514.5 −1.07940 −0.539698 0.841859i \(-0.681461\pi\)
−0.539698 + 0.841859i \(0.681461\pi\)
\(888\) 4156.02 0.157058
\(889\) 0 0
\(890\) −634.113 −0.0238826
\(891\) 13150.1 0.494439
\(892\) 13789.9 0.517625
\(893\) −1220.94 −0.0457526
\(894\) 485.023 0.0181450
\(895\) −171.837 −0.00641774
\(896\) 0 0
\(897\) 14313.1 0.532776
\(898\) 23532.7 0.874496
\(899\) −6330.54 −0.234856
\(900\) −18233.2 −0.675302
\(901\) −6117.70 −0.226204
\(902\) 17409.1 0.642639
\(903\) 0 0
\(904\) 6399.71 0.235455
\(905\) −465.258 −0.0170892
\(906\) −26608.0 −0.975707
\(907\) 39454.6 1.44440 0.722198 0.691686i \(-0.243132\pi\)
0.722198 + 0.691686i \(0.243132\pi\)
\(908\) 12218.6 0.446574
\(909\) 20383.3 0.743753
\(910\) 0 0
\(911\) 36089.0 1.31250 0.656248 0.754546i \(-0.272143\pi\)
0.656248 + 0.754546i \(0.272143\pi\)
\(912\) 1021.91 0.0371041
\(913\) −45908.7 −1.66414
\(914\) 13984.4 0.506085
\(915\) −1242.45 −0.0448896
\(916\) −10453.1 −0.377052
\(917\) 0 0
\(918\) −2899.81 −0.104257
\(919\) −14857.2 −0.533289 −0.266644 0.963795i \(-0.585915\pi\)
−0.266644 + 0.963795i \(0.585915\pi\)
\(920\) −57.5982 −0.00206408
\(921\) 63261.3 2.26334
\(922\) 35973.3 1.28494
\(923\) 72218.6 2.57541
\(924\) 0 0
\(925\) 8143.07 0.289451
\(926\) −27687.6 −0.982582
\(927\) 22262.8 0.788787
\(928\) −599.494 −0.0212062
\(929\) −10769.2 −0.380330 −0.190165 0.981752i \(-0.560902\pi\)
−0.190165 + 0.981752i \(0.560902\pi\)
\(930\) −1685.76 −0.0594390
\(931\) 0 0
\(932\) 10043.3 0.352982
\(933\) −1065.13 −0.0373750
\(934\) 21554.2 0.755112
\(935\) −206.246 −0.00721388
\(936\) 22801.3 0.796242
\(937\) 37240.3 1.29839 0.649194 0.760623i \(-0.275106\pi\)
0.649194 + 0.760623i \(0.275106\pi\)
\(938\) 0 0
\(939\) −64310.7 −2.23504
\(940\) 190.730 0.00661802
\(941\) 5280.84 0.182944 0.0914721 0.995808i \(-0.470843\pi\)
0.0914721 + 0.995808i \(0.470843\pi\)
\(942\) −37645.8 −1.30209
\(943\) 5823.16 0.201090
\(944\) −8926.44 −0.307766
\(945\) 0 0
\(946\) −8317.75 −0.285870
\(947\) −1242.51 −0.0426360 −0.0213180 0.999773i \(-0.506786\pi\)
−0.0213180 + 0.999773i \(0.506786\pi\)
\(948\) 87.1248 0.00298490
\(949\) −57714.7 −1.97418
\(950\) 2002.28 0.0683815
\(951\) −24137.7 −0.823049
\(952\) 0 0
\(953\) 13076.5 0.444481 0.222240 0.974992i \(-0.428663\pi\)
0.222240 + 0.974992i \(0.428663\pi\)
\(954\) −23300.8 −0.790767
\(955\) 1403.59 0.0475592
\(956\) 9251.21 0.312977
\(957\) −5132.40 −0.173361
\(958\) 16576.1 0.559030
\(959\) 0 0
\(960\) −159.639 −0.00536702
\(961\) 84394.6 2.83289
\(962\) −10183.2 −0.341289
\(963\) 54062.7 1.80908
\(964\) 3388.40 0.113209
\(965\) −981.767 −0.0327505
\(966\) 0 0
\(967\) 32434.3 1.07861 0.539305 0.842110i \(-0.318687\pi\)
0.539305 + 0.842110i \(0.318687\pi\)
\(968\) −1191.69 −0.0395686
\(969\) 1223.98 0.0405777
\(970\) −775.698 −0.0256765
\(971\) −18890.5 −0.624331 −0.312165 0.950028i \(-0.601054\pi\)
−0.312165 + 0.950028i \(0.601054\pi\)
\(972\) 20362.3 0.671934
\(973\) 0 0
\(974\) −30588.7 −1.00629
\(975\) 77727.6 2.55310
\(976\) 7969.62 0.261374
\(977\) −47115.0 −1.54283 −0.771413 0.636334i \(-0.780450\pi\)
−0.771413 + 0.636334i \(0.780450\pi\)
\(978\) −44094.3 −1.44170
\(979\) 34822.6 1.13681
\(980\) 0 0
\(981\) −70826.3 −2.30511
\(982\) 6960.03 0.226174
\(983\) 34041.4 1.10453 0.552264 0.833669i \(-0.313764\pi\)
0.552264 + 0.833669i \(0.313764\pi\)
\(984\) 16139.5 0.522875
\(985\) −389.356 −0.0125948
\(986\) −718.033 −0.0231915
\(987\) 0 0
\(988\) −2503.92 −0.0806279
\(989\) −2782.20 −0.0894527
\(990\) −785.541 −0.0252183
\(991\) 45731.9 1.46591 0.732957 0.680275i \(-0.238140\pi\)
0.732957 + 0.680275i \(0.238140\pi\)
\(992\) 10813.2 0.346089
\(993\) 13694.4 0.437642
\(994\) 0 0
\(995\) 1069.62 0.0340795
\(996\) −42560.7 −1.35400
\(997\) −50455.4 −1.60275 −0.801374 0.598164i \(-0.795897\pi\)
−0.801374 + 0.598164i \(0.795897\pi\)
\(998\) 4036.29 0.128022
\(999\) 4932.64 0.156218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.x.1.1 11
7.3 odd 6 322.4.e.b.93.1 22
7.5 odd 6 322.4.e.b.277.1 yes 22
7.6 odd 2 2254.4.a.w.1.11 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.b.93.1 22 7.3 odd 6
322.4.e.b.277.1 yes 22 7.5 odd 6
2254.4.a.w.1.11 11 7.6 odd 2
2254.4.a.x.1.1 11 1.1 even 1 trivial