Properties

Label 2254.4.a.u.1.7
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 234 x^{9} - 105 x^{8} + 18997 x^{7} + 16513 x^{6} - 621598 x^{5} - 743169 x^{4} + \cdots - 12103441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.27413\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +2.27413 q^{3} +4.00000 q^{4} +14.8127 q^{5} -4.54825 q^{6} -8.00000 q^{8} -21.8284 q^{9} -29.6254 q^{10} -59.6112 q^{11} +9.09650 q^{12} -46.9140 q^{13} +33.6859 q^{15} +16.0000 q^{16} -54.1041 q^{17} +43.6567 q^{18} +120.503 q^{19} +59.2507 q^{20} +119.222 q^{22} +23.0000 q^{23} -18.1930 q^{24} +94.4156 q^{25} +93.8279 q^{26} -111.042 q^{27} -126.575 q^{29} -67.3718 q^{30} -107.903 q^{31} -32.0000 q^{32} -135.563 q^{33} +108.208 q^{34} -87.3134 q^{36} -70.4483 q^{37} -241.006 q^{38} -106.688 q^{39} -118.501 q^{40} -168.095 q^{41} +307.768 q^{43} -238.445 q^{44} -323.337 q^{45} -46.0000 q^{46} +436.953 q^{47} +36.3860 q^{48} -188.831 q^{50} -123.039 q^{51} -187.656 q^{52} +407.469 q^{53} +222.084 q^{54} -883.001 q^{55} +274.039 q^{57} +253.151 q^{58} -61.6093 q^{59} +134.744 q^{60} -877.506 q^{61} +215.806 q^{62} +64.0000 q^{64} -694.922 q^{65} +271.126 q^{66} +280.980 q^{67} -216.416 q^{68} +52.3049 q^{69} +1040.12 q^{71} +174.627 q^{72} +950.870 q^{73} +140.897 q^{74} +214.713 q^{75} +482.012 q^{76} +213.376 q^{78} +736.448 q^{79} +237.003 q^{80} +336.843 q^{81} +336.190 q^{82} +1194.91 q^{83} -801.426 q^{85} -615.536 q^{86} -287.848 q^{87} +476.889 q^{88} +633.067 q^{89} +646.673 q^{90} +92.0000 q^{92} -245.385 q^{93} -873.907 q^{94} +1784.97 q^{95} -72.7720 q^{96} +721.448 q^{97} +1301.21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 22 q^{2} + 44 q^{4} + 23 q^{5} - 88 q^{8} + 171 q^{9} - 46 q^{10} - 48 q^{11} + 77 q^{13} + 104 q^{15} + 176 q^{16} + 97 q^{17} - 342 q^{18} + 138 q^{19} + 92 q^{20} + 96 q^{22} + 253 q^{23} + 30 q^{25}+ \cdots - 2545 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 2.27413 0.437656 0.218828 0.975763i \(-0.429777\pi\)
0.218828 + 0.975763i \(0.429777\pi\)
\(4\) 4.00000 0.500000
\(5\) 14.8127 1.32489 0.662443 0.749112i \(-0.269520\pi\)
0.662443 + 0.749112i \(0.269520\pi\)
\(6\) −4.54825 −0.309469
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) −21.8284 −0.808458
\(10\) −29.6254 −0.936836
\(11\) −59.6112 −1.63395 −0.816974 0.576674i \(-0.804350\pi\)
−0.816974 + 0.576674i \(0.804350\pi\)
\(12\) 9.09650 0.218828
\(13\) −46.9140 −1.00089 −0.500446 0.865768i \(-0.666831\pi\)
−0.500446 + 0.865768i \(0.666831\pi\)
\(14\) 0 0
\(15\) 33.6859 0.579844
\(16\) 16.0000 0.250000
\(17\) −54.1041 −0.771892 −0.385946 0.922521i \(-0.626125\pi\)
−0.385946 + 0.922521i \(0.626125\pi\)
\(18\) 43.6567 0.571666
\(19\) 120.503 1.45502 0.727508 0.686099i \(-0.240678\pi\)
0.727508 + 0.686099i \(0.240678\pi\)
\(20\) 59.2507 0.662443
\(21\) 0 0
\(22\) 119.222 1.15538
\(23\) 23.0000 0.208514
\(24\) −18.1930 −0.154735
\(25\) 94.4156 0.755325
\(26\) 93.8279 0.707737
\(27\) −111.042 −0.791482
\(28\) 0 0
\(29\) −126.575 −0.810499 −0.405249 0.914206i \(-0.632815\pi\)
−0.405249 + 0.914206i \(0.632815\pi\)
\(30\) −67.3718 −0.410012
\(31\) −107.903 −0.625160 −0.312580 0.949891i \(-0.601193\pi\)
−0.312580 + 0.949891i \(0.601193\pi\)
\(32\) −32.0000 −0.176777
\(33\) −135.563 −0.715107
\(34\) 108.208 0.545810
\(35\) 0 0
\(36\) −87.3134 −0.404229
\(37\) −70.4483 −0.313017 −0.156508 0.987677i \(-0.550024\pi\)
−0.156508 + 0.987677i \(0.550024\pi\)
\(38\) −241.006 −1.02885
\(39\) −106.688 −0.438046
\(40\) −118.501 −0.468418
\(41\) −168.095 −0.640294 −0.320147 0.947368i \(-0.603732\pi\)
−0.320147 + 0.947368i \(0.603732\pi\)
\(42\) 0 0
\(43\) 307.768 1.09149 0.545746 0.837951i \(-0.316246\pi\)
0.545746 + 0.837951i \(0.316246\pi\)
\(44\) −238.445 −0.816974
\(45\) −323.337 −1.07111
\(46\) −46.0000 −0.147442
\(47\) 436.953 1.35609 0.678045 0.735021i \(-0.262828\pi\)
0.678045 + 0.735021i \(0.262828\pi\)
\(48\) 36.3860 0.109414
\(49\) 0 0
\(50\) −188.831 −0.534095
\(51\) −123.039 −0.337823
\(52\) −187.656 −0.500446
\(53\) 407.469 1.05604 0.528020 0.849232i \(-0.322934\pi\)
0.528020 + 0.849232i \(0.322934\pi\)
\(54\) 222.084 0.559662
\(55\) −883.001 −2.16480
\(56\) 0 0
\(57\) 274.039 0.636796
\(58\) 253.151 0.573109
\(59\) −61.6093 −0.135947 −0.0679733 0.997687i \(-0.521653\pi\)
−0.0679733 + 0.997687i \(0.521653\pi\)
\(60\) 134.744 0.289922
\(61\) −877.506 −1.84185 −0.920927 0.389735i \(-0.872566\pi\)
−0.920927 + 0.389735i \(0.872566\pi\)
\(62\) 215.806 0.442055
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −694.922 −1.32607
\(66\) 271.126 0.505657
\(67\) 280.980 0.512346 0.256173 0.966631i \(-0.417538\pi\)
0.256173 + 0.966631i \(0.417538\pi\)
\(68\) −216.416 −0.385946
\(69\) 52.3049 0.0912575
\(70\) 0 0
\(71\) 1040.12 1.73858 0.869288 0.494305i \(-0.164578\pi\)
0.869288 + 0.494305i \(0.164578\pi\)
\(72\) 174.627 0.285833
\(73\) 950.870 1.52453 0.762267 0.647263i \(-0.224086\pi\)
0.762267 + 0.647263i \(0.224086\pi\)
\(74\) 140.897 0.221336
\(75\) 214.713 0.330572
\(76\) 482.012 0.727508
\(77\) 0 0
\(78\) 213.376 0.309745
\(79\) 736.448 1.04882 0.524410 0.851466i \(-0.324286\pi\)
0.524410 + 0.851466i \(0.324286\pi\)
\(80\) 237.003 0.331222
\(81\) 336.843 0.462061
\(82\) 336.190 0.452756
\(83\) 1194.91 1.58022 0.790108 0.612968i \(-0.210024\pi\)
0.790108 + 0.612968i \(0.210024\pi\)
\(84\) 0 0
\(85\) −801.426 −1.02267
\(86\) −615.536 −0.771802
\(87\) −287.848 −0.354719
\(88\) 476.889 0.577688
\(89\) 633.067 0.753988 0.376994 0.926216i \(-0.376958\pi\)
0.376994 + 0.926216i \(0.376958\pi\)
\(90\) 646.673 0.757393
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −245.385 −0.273605
\(94\) −873.907 −0.958900
\(95\) 1784.97 1.92773
\(96\) −72.7720 −0.0773673
\(97\) 721.448 0.755175 0.377587 0.925974i \(-0.376754\pi\)
0.377587 + 0.925974i \(0.376754\pi\)
\(98\) 0 0
\(99\) 1301.21 1.32098
\(100\) 377.662 0.377662
\(101\) 1230.70 1.21247 0.606234 0.795287i \(-0.292680\pi\)
0.606234 + 0.795287i \(0.292680\pi\)
\(102\) 246.079 0.238877
\(103\) −614.543 −0.587890 −0.293945 0.955822i \(-0.594968\pi\)
−0.293945 + 0.955822i \(0.594968\pi\)
\(104\) 375.312 0.353869
\(105\) 0 0
\(106\) −814.938 −0.746734
\(107\) 1588.79 1.43546 0.717732 0.696320i \(-0.245180\pi\)
0.717732 + 0.696320i \(0.245180\pi\)
\(108\) −444.167 −0.395741
\(109\) 850.708 0.747551 0.373775 0.927519i \(-0.378063\pi\)
0.373775 + 0.927519i \(0.378063\pi\)
\(110\) 1766.00 1.53074
\(111\) −160.208 −0.136994
\(112\) 0 0
\(113\) 994.396 0.827831 0.413915 0.910315i \(-0.364161\pi\)
0.413915 + 0.910315i \(0.364161\pi\)
\(114\) −548.078 −0.450283
\(115\) 340.692 0.276258
\(116\) −506.302 −0.405249
\(117\) 1024.05 0.809179
\(118\) 123.219 0.0961288
\(119\) 0 0
\(120\) −269.487 −0.205006
\(121\) 2222.49 1.66979
\(122\) 1755.01 1.30239
\(123\) −382.269 −0.280228
\(124\) −431.612 −0.312580
\(125\) −453.037 −0.324167
\(126\) 0 0
\(127\) −2081.05 −1.45404 −0.727020 0.686617i \(-0.759095\pi\)
−0.727020 + 0.686617i \(0.759095\pi\)
\(128\) −128.000 −0.0883883
\(129\) 699.903 0.477698
\(130\) 1389.84 0.937672
\(131\) −1051.07 −0.701008 −0.350504 0.936561i \(-0.613990\pi\)
−0.350504 + 0.936561i \(0.613990\pi\)
\(132\) −542.253 −0.357553
\(133\) 0 0
\(134\) −561.960 −0.362283
\(135\) −1644.83 −1.04862
\(136\) 432.832 0.272905
\(137\) −1686.67 −1.05184 −0.525920 0.850534i \(-0.676279\pi\)
−0.525920 + 0.850534i \(0.676279\pi\)
\(138\) −104.610 −0.0645288
\(139\) −2497.61 −1.52406 −0.762032 0.647539i \(-0.775798\pi\)
−0.762032 + 0.647539i \(0.775798\pi\)
\(140\) 0 0
\(141\) 993.686 0.593500
\(142\) −2080.23 −1.22936
\(143\) 2796.60 1.63541
\(144\) −349.254 −0.202114
\(145\) −1874.92 −1.07382
\(146\) −1901.74 −1.07801
\(147\) 0 0
\(148\) −281.793 −0.156508
\(149\) −973.894 −0.535467 −0.267733 0.963493i \(-0.586275\pi\)
−0.267733 + 0.963493i \(0.586275\pi\)
\(150\) −429.426 −0.233750
\(151\) −1152.88 −0.621327 −0.310664 0.950520i \(-0.600551\pi\)
−0.310664 + 0.950520i \(0.600551\pi\)
\(152\) −964.025 −0.514426
\(153\) 1181.00 0.624042
\(154\) 0 0
\(155\) −1598.33 −0.828266
\(156\) −426.753 −0.219023
\(157\) 328.038 0.166753 0.0833767 0.996518i \(-0.473430\pi\)
0.0833767 + 0.996518i \(0.473430\pi\)
\(158\) −1472.90 −0.741628
\(159\) 926.635 0.462182
\(160\) −474.006 −0.234209
\(161\) 0 0
\(162\) −673.685 −0.326727
\(163\) 3364.13 1.61656 0.808279 0.588800i \(-0.200400\pi\)
0.808279 + 0.588800i \(0.200400\pi\)
\(164\) −672.380 −0.320147
\(165\) −2008.05 −0.947436
\(166\) −2389.81 −1.11738
\(167\) 1197.69 0.554972 0.277486 0.960730i \(-0.410499\pi\)
0.277486 + 0.960730i \(0.410499\pi\)
\(168\) 0 0
\(169\) 3.91989 0.00178420
\(170\) 1602.85 0.723136
\(171\) −2630.38 −1.17632
\(172\) 1231.07 0.545746
\(173\) −1292.18 −0.567875 −0.283938 0.958843i \(-0.591641\pi\)
−0.283938 + 0.958843i \(0.591641\pi\)
\(174\) 575.697 0.250824
\(175\) 0 0
\(176\) −953.778 −0.408487
\(177\) −140.107 −0.0594978
\(178\) −1266.13 −0.533150
\(179\) 2625.32 1.09623 0.548116 0.836402i \(-0.315345\pi\)
0.548116 + 0.836402i \(0.315345\pi\)
\(180\) −1293.35 −0.535557
\(181\) 490.418 0.201395 0.100697 0.994917i \(-0.467893\pi\)
0.100697 + 0.994917i \(0.467893\pi\)
\(182\) 0 0
\(183\) −1995.56 −0.806098
\(184\) −184.000 −0.0737210
\(185\) −1043.53 −0.414712
\(186\) 490.770 0.193468
\(187\) 3225.20 1.26123
\(188\) 1747.81 0.678045
\(189\) 0 0
\(190\) −3569.95 −1.36311
\(191\) 3128.91 1.18534 0.592671 0.805445i \(-0.298073\pi\)
0.592671 + 0.805445i \(0.298073\pi\)
\(192\) 145.544 0.0547069
\(193\) 5084.73 1.89641 0.948205 0.317659i \(-0.102897\pi\)
0.948205 + 0.317659i \(0.102897\pi\)
\(194\) −1442.90 −0.533989
\(195\) −1580.34 −0.580361
\(196\) 0 0
\(197\) −4191.04 −1.51573 −0.757866 0.652410i \(-0.773758\pi\)
−0.757866 + 0.652410i \(0.773758\pi\)
\(198\) −2602.43 −0.934073
\(199\) 4661.20 1.66042 0.830210 0.557450i \(-0.188220\pi\)
0.830210 + 0.557450i \(0.188220\pi\)
\(200\) −755.325 −0.267048
\(201\) 638.983 0.224231
\(202\) −2461.40 −0.857344
\(203\) 0 0
\(204\) −492.158 −0.168911
\(205\) −2489.94 −0.848317
\(206\) 1229.09 0.415701
\(207\) −502.052 −0.168575
\(208\) −750.623 −0.250223
\(209\) −7183.33 −2.37742
\(210\) 0 0
\(211\) −1063.04 −0.346836 −0.173418 0.984848i \(-0.555481\pi\)
−0.173418 + 0.984848i \(0.555481\pi\)
\(212\) 1629.88 0.528020
\(213\) 2365.35 0.760898
\(214\) −3177.59 −1.01503
\(215\) 4558.87 1.44610
\(216\) 888.334 0.279831
\(217\) 0 0
\(218\) −1701.42 −0.528598
\(219\) 2162.40 0.667221
\(220\) −3532.00 −1.08240
\(221\) 2538.24 0.772580
\(222\) 320.416 0.0968691
\(223\) −2777.01 −0.833912 −0.416956 0.908927i \(-0.636903\pi\)
−0.416956 + 0.908927i \(0.636903\pi\)
\(224\) 0 0
\(225\) −2060.94 −0.610648
\(226\) −1988.79 −0.585365
\(227\) 588.055 0.171941 0.0859704 0.996298i \(-0.472601\pi\)
0.0859704 + 0.996298i \(0.472601\pi\)
\(228\) 1096.16 0.318398
\(229\) −782.498 −0.225803 −0.112902 0.993606i \(-0.536014\pi\)
−0.112902 + 0.993606i \(0.536014\pi\)
\(230\) −681.383 −0.195344
\(231\) 0 0
\(232\) 1012.60 0.286555
\(233\) 285.260 0.0802059 0.0401030 0.999196i \(-0.487231\pi\)
0.0401030 + 0.999196i \(0.487231\pi\)
\(234\) −2048.11 −0.572176
\(235\) 6472.45 1.79666
\(236\) −246.437 −0.0679733
\(237\) 1674.77 0.459022
\(238\) 0 0
\(239\) −1867.46 −0.505422 −0.252711 0.967542i \(-0.581322\pi\)
−0.252711 + 0.967542i \(0.581322\pi\)
\(240\) 538.974 0.144961
\(241\) 1257.32 0.336062 0.168031 0.985782i \(-0.446259\pi\)
0.168031 + 0.985782i \(0.446259\pi\)
\(242\) −4444.98 −1.18072
\(243\) 3764.15 0.993705
\(244\) −3510.02 −0.920927
\(245\) 0 0
\(246\) 764.538 0.198151
\(247\) −5653.28 −1.45631
\(248\) 863.224 0.221027
\(249\) 2717.36 0.691590
\(250\) 906.074 0.229221
\(251\) 1582.01 0.397832 0.198916 0.980017i \(-0.436258\pi\)
0.198916 + 0.980017i \(0.436258\pi\)
\(252\) 0 0
\(253\) −1371.06 −0.340702
\(254\) 4162.09 1.02816
\(255\) −1822.54 −0.447577
\(256\) 256.000 0.0625000
\(257\) 5590.33 1.35687 0.678435 0.734661i \(-0.262659\pi\)
0.678435 + 0.734661i \(0.262659\pi\)
\(258\) −1399.81 −0.337783
\(259\) 0 0
\(260\) −2779.69 −0.663034
\(261\) 2762.93 0.655254
\(262\) 2102.13 0.495687
\(263\) −2291.99 −0.537376 −0.268688 0.963227i \(-0.586590\pi\)
−0.268688 + 0.963227i \(0.586590\pi\)
\(264\) 1084.51 0.252828
\(265\) 6035.71 1.39913
\(266\) 0 0
\(267\) 1439.67 0.329987
\(268\) 1123.92 0.256173
\(269\) 2171.50 0.492188 0.246094 0.969246i \(-0.420853\pi\)
0.246094 + 0.969246i \(0.420853\pi\)
\(270\) 3289.65 0.741489
\(271\) −7493.52 −1.67970 −0.839850 0.542818i \(-0.817357\pi\)
−0.839850 + 0.542818i \(0.817357\pi\)
\(272\) −865.665 −0.192973
\(273\) 0 0
\(274\) 3373.35 0.743764
\(275\) −5628.22 −1.23416
\(276\) 209.220 0.0456287
\(277\) 2702.11 0.586116 0.293058 0.956095i \(-0.405327\pi\)
0.293058 + 0.956095i \(0.405327\pi\)
\(278\) 4995.23 1.07768
\(279\) 2355.35 0.505415
\(280\) 0 0
\(281\) −208.991 −0.0443679 −0.0221840 0.999754i \(-0.507062\pi\)
−0.0221840 + 0.999754i \(0.507062\pi\)
\(282\) −1987.37 −0.419668
\(283\) −6585.03 −1.38318 −0.691589 0.722292i \(-0.743089\pi\)
−0.691589 + 0.722292i \(0.743089\pi\)
\(284\) 4160.46 0.869288
\(285\) 4059.25 0.843682
\(286\) −5593.19 −1.15641
\(287\) 0 0
\(288\) 698.507 0.142916
\(289\) −1985.75 −0.404183
\(290\) 3749.84 0.759305
\(291\) 1640.66 0.330506
\(292\) 3803.48 0.762267
\(293\) −848.877 −0.169256 −0.0846278 0.996413i \(-0.526970\pi\)
−0.0846278 + 0.996413i \(0.526970\pi\)
\(294\) 0 0
\(295\) −912.600 −0.180114
\(296\) 563.586 0.110668
\(297\) 6619.33 1.29324
\(298\) 1947.79 0.378632
\(299\) −1079.02 −0.208700
\(300\) 858.852 0.165286
\(301\) 0 0
\(302\) 2305.77 0.439345
\(303\) 2798.76 0.530643
\(304\) 1928.05 0.363754
\(305\) −12998.2 −2.44025
\(306\) −2362.00 −0.441264
\(307\) −3261.27 −0.606288 −0.303144 0.952945i \(-0.598036\pi\)
−0.303144 + 0.952945i \(0.598036\pi\)
\(308\) 0 0
\(309\) −1397.55 −0.257293
\(310\) 3196.67 0.585673
\(311\) −2018.43 −0.368022 −0.184011 0.982924i \(-0.558908\pi\)
−0.184011 + 0.982924i \(0.558908\pi\)
\(312\) 853.506 0.154873
\(313\) 5593.70 1.01014 0.505072 0.863078i \(-0.331466\pi\)
0.505072 + 0.863078i \(0.331466\pi\)
\(314\) −656.076 −0.117913
\(315\) 0 0
\(316\) 2945.79 0.524410
\(317\) −9353.21 −1.65719 −0.828594 0.559850i \(-0.810859\pi\)
−0.828594 + 0.559850i \(0.810859\pi\)
\(318\) −1853.27 −0.326812
\(319\) 7545.31 1.32431
\(320\) 948.012 0.165611
\(321\) 3613.12 0.628239
\(322\) 0 0
\(323\) −6519.70 −1.12311
\(324\) 1347.37 0.231031
\(325\) −4429.41 −0.755998
\(326\) −6728.25 −1.14308
\(327\) 1934.62 0.327170
\(328\) 1344.76 0.226378
\(329\) 0 0
\(330\) 4016.11 0.669938
\(331\) −4495.66 −0.746538 −0.373269 0.927723i \(-0.621763\pi\)
−0.373269 + 0.927723i \(0.621763\pi\)
\(332\) 4779.62 0.790108
\(333\) 1537.77 0.253061
\(334\) −2395.39 −0.392425
\(335\) 4162.07 0.678800
\(336\) 0 0
\(337\) −5715.31 −0.923836 −0.461918 0.886923i \(-0.652838\pi\)
−0.461918 + 0.886923i \(0.652838\pi\)
\(338\) −7.83979 −0.00126162
\(339\) 2261.38 0.362305
\(340\) −3205.70 −0.511335
\(341\) 6432.22 1.02148
\(342\) 5260.77 0.831783
\(343\) 0 0
\(344\) −2462.14 −0.385901
\(345\) 774.776 0.120906
\(346\) 2584.35 0.401548
\(347\) −5558.95 −0.860000 −0.430000 0.902829i \(-0.641486\pi\)
−0.430000 + 0.902829i \(0.641486\pi\)
\(348\) −1151.39 −0.177360
\(349\) 7062.30 1.08320 0.541599 0.840637i \(-0.317819\pi\)
0.541599 + 0.840637i \(0.317819\pi\)
\(350\) 0 0
\(351\) 5209.41 0.792187
\(352\) 1907.56 0.288844
\(353\) 1279.72 0.192954 0.0964771 0.995335i \(-0.469243\pi\)
0.0964771 + 0.995335i \(0.469243\pi\)
\(354\) 280.215 0.0420713
\(355\) 15406.9 2.30342
\(356\) 2532.27 0.376994
\(357\) 0 0
\(358\) −5250.64 −0.775153
\(359\) −9650.22 −1.41872 −0.709358 0.704848i \(-0.751015\pi\)
−0.709358 + 0.704848i \(0.751015\pi\)
\(360\) 2586.69 0.378696
\(361\) 7661.99 1.11707
\(362\) −980.835 −0.142408
\(363\) 5054.22 0.730793
\(364\) 0 0
\(365\) 14084.9 2.01983
\(366\) 3991.11 0.569997
\(367\) 2122.80 0.301932 0.150966 0.988539i \(-0.451762\pi\)
0.150966 + 0.988539i \(0.451762\pi\)
\(368\) 368.000 0.0521286
\(369\) 3669.24 0.517650
\(370\) 2087.06 0.293246
\(371\) 0 0
\(372\) −981.540 −0.136802
\(373\) 11578.5 1.60727 0.803636 0.595120i \(-0.202896\pi\)
0.803636 + 0.595120i \(0.202896\pi\)
\(374\) −6450.41 −0.891826
\(375\) −1030.26 −0.141873
\(376\) −3495.63 −0.479450
\(377\) 5938.15 0.811221
\(378\) 0 0
\(379\) −4208.09 −0.570331 −0.285165 0.958478i \(-0.592048\pi\)
−0.285165 + 0.958478i \(0.592048\pi\)
\(380\) 7139.90 0.963866
\(381\) −4732.56 −0.636368
\(382\) −6257.83 −0.838163
\(383\) 9135.91 1.21886 0.609430 0.792840i \(-0.291398\pi\)
0.609430 + 0.792840i \(0.291398\pi\)
\(384\) −291.088 −0.0386837
\(385\) 0 0
\(386\) −10169.5 −1.34096
\(387\) −6718.07 −0.882425
\(388\) 2885.79 0.377587
\(389\) −1722.19 −0.224469 −0.112235 0.993682i \(-0.535801\pi\)
−0.112235 + 0.993682i \(0.535801\pi\)
\(390\) 3160.68 0.410377
\(391\) −1244.39 −0.160951
\(392\) 0 0
\(393\) −2390.25 −0.306800
\(394\) 8382.08 1.07178
\(395\) 10908.8 1.38957
\(396\) 5204.85 0.660489
\(397\) −9337.52 −1.18045 −0.590223 0.807241i \(-0.700960\pi\)
−0.590223 + 0.807241i \(0.700960\pi\)
\(398\) −9322.40 −1.17409
\(399\) 0 0
\(400\) 1510.65 0.188831
\(401\) 1661.24 0.206879 0.103439 0.994636i \(-0.467015\pi\)
0.103439 + 0.994636i \(0.467015\pi\)
\(402\) −1277.97 −0.158555
\(403\) 5062.16 0.625717
\(404\) 4922.80 0.606234
\(405\) 4989.54 0.612179
\(406\) 0 0
\(407\) 4199.50 0.511454
\(408\) 984.315 0.119438
\(409\) −8058.84 −0.974288 −0.487144 0.873322i \(-0.661961\pi\)
−0.487144 + 0.873322i \(0.661961\pi\)
\(410\) 4979.88 0.599850
\(411\) −3835.70 −0.460344
\(412\) −2458.17 −0.293945
\(413\) 0 0
\(414\) 1004.10 0.119201
\(415\) 17699.8 2.09361
\(416\) 1501.25 0.176934
\(417\) −5679.89 −0.667015
\(418\) 14366.7 1.68109
\(419\) −8223.99 −0.958874 −0.479437 0.877576i \(-0.659159\pi\)
−0.479437 + 0.877576i \(0.659159\pi\)
\(420\) 0 0
\(421\) 3038.01 0.351695 0.175847 0.984417i \(-0.443733\pi\)
0.175847 + 0.984417i \(0.443733\pi\)
\(422\) 2126.07 0.245250
\(423\) −9537.97 −1.09634
\(424\) −3259.75 −0.373367
\(425\) −5108.27 −0.583029
\(426\) −4730.70 −0.538036
\(427\) 0 0
\(428\) 6355.18 0.717732
\(429\) 6359.81 0.715745
\(430\) −9117.74 −1.02255
\(431\) −3703.90 −0.413945 −0.206973 0.978347i \(-0.566361\pi\)
−0.206973 + 0.978347i \(0.566361\pi\)
\(432\) −1776.67 −0.197870
\(433\) 308.018 0.0341856 0.0170928 0.999854i \(-0.494559\pi\)
0.0170928 + 0.999854i \(0.494559\pi\)
\(434\) 0 0
\(435\) −4263.81 −0.469963
\(436\) 3402.83 0.373775
\(437\) 2771.57 0.303392
\(438\) −4324.80 −0.471796
\(439\) 9772.63 1.06247 0.531233 0.847226i \(-0.321729\pi\)
0.531233 + 0.847226i \(0.321729\pi\)
\(440\) 7064.01 0.765371
\(441\) 0 0
\(442\) −5076.47 −0.546297
\(443\) −5835.74 −0.625879 −0.312939 0.949773i \(-0.601314\pi\)
−0.312939 + 0.949773i \(0.601314\pi\)
\(444\) −640.833 −0.0684968
\(445\) 9377.41 0.998948
\(446\) 5554.02 0.589665
\(447\) −2214.76 −0.234350
\(448\) 0 0
\(449\) −826.304 −0.0868501 −0.0434250 0.999057i \(-0.513827\pi\)
−0.0434250 + 0.999057i \(0.513827\pi\)
\(450\) 4121.87 0.431793
\(451\) 10020.3 1.04621
\(452\) 3977.58 0.413915
\(453\) −2621.80 −0.271927
\(454\) −1176.11 −0.121581
\(455\) 0 0
\(456\) −2192.31 −0.225141
\(457\) 18929.0 1.93755 0.968774 0.247946i \(-0.0797557\pi\)
0.968774 + 0.247946i \(0.0797557\pi\)
\(458\) 1565.00 0.159667
\(459\) 6007.81 0.610938
\(460\) 1362.77 0.138129
\(461\) 15366.0 1.55242 0.776208 0.630477i \(-0.217141\pi\)
0.776208 + 0.630477i \(0.217141\pi\)
\(462\) 0 0
\(463\) −16891.5 −1.69550 −0.847750 0.530397i \(-0.822043\pi\)
−0.847750 + 0.530397i \(0.822043\pi\)
\(464\) −2025.21 −0.202625
\(465\) −3634.81 −0.362495
\(466\) −570.519 −0.0567142
\(467\) −15025.6 −1.48887 −0.744435 0.667695i \(-0.767281\pi\)
−0.744435 + 0.667695i \(0.767281\pi\)
\(468\) 4096.22 0.404589
\(469\) 0 0
\(470\) −12944.9 −1.27043
\(471\) 746.000 0.0729806
\(472\) 492.875 0.0480644
\(473\) −18346.4 −1.78344
\(474\) −3349.55 −0.324578
\(475\) 11377.4 1.09901
\(476\) 0 0
\(477\) −8894.38 −0.853764
\(478\) 3734.92 0.357387
\(479\) 8951.28 0.853850 0.426925 0.904287i \(-0.359597\pi\)
0.426925 + 0.904287i \(0.359597\pi\)
\(480\) −1077.95 −0.102503
\(481\) 3305.01 0.313296
\(482\) −2514.63 −0.237631
\(483\) 0 0
\(484\) 8889.96 0.834895
\(485\) 10686.6 1.00052
\(486\) −7528.30 −0.702656
\(487\) −13182.2 −1.22658 −0.613290 0.789858i \(-0.710154\pi\)
−0.613290 + 0.789858i \(0.710154\pi\)
\(488\) 7020.04 0.651194
\(489\) 7650.45 0.707495
\(490\) 0 0
\(491\) 13672.8 1.25671 0.628355 0.777927i \(-0.283729\pi\)
0.628355 + 0.777927i \(0.283729\pi\)
\(492\) −1529.08 −0.140114
\(493\) 6848.24 0.625617
\(494\) 11306.6 1.02977
\(495\) 19274.5 1.75015
\(496\) −1726.45 −0.156290
\(497\) 0 0
\(498\) −5434.73 −0.489028
\(499\) −15613.9 −1.40075 −0.700375 0.713775i \(-0.746984\pi\)
−0.700375 + 0.713775i \(0.746984\pi\)
\(500\) −1812.15 −0.162083
\(501\) 2723.71 0.242887
\(502\) −3164.02 −0.281309
\(503\) 12622.6 1.11891 0.559457 0.828859i \(-0.311010\pi\)
0.559457 + 0.828859i \(0.311010\pi\)
\(504\) 0 0
\(505\) 18230.0 1.60638
\(506\) 2742.11 0.240913
\(507\) 8.91433 0.000780866 0
\(508\) −8324.19 −0.727020
\(509\) −13626.9 −1.18664 −0.593322 0.804965i \(-0.702184\pi\)
−0.593322 + 0.804965i \(0.702184\pi\)
\(510\) 3645.09 0.316485
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −13380.9 −1.15162
\(514\) −11180.7 −0.959452
\(515\) −9103.03 −0.778888
\(516\) 2799.61 0.238849
\(517\) −26047.3 −2.21578
\(518\) 0 0
\(519\) −2938.57 −0.248534
\(520\) 5559.37 0.468836
\(521\) 5163.25 0.434177 0.217088 0.976152i \(-0.430344\pi\)
0.217088 + 0.976152i \(0.430344\pi\)
\(522\) −5525.87 −0.463334
\(523\) −7324.10 −0.612353 −0.306176 0.951975i \(-0.599050\pi\)
−0.306176 + 0.951975i \(0.599050\pi\)
\(524\) −4204.26 −0.350504
\(525\) 0 0
\(526\) 4583.97 0.379982
\(527\) 5837.99 0.482556
\(528\) −2169.01 −0.178777
\(529\) 529.000 0.0434783
\(530\) −12071.4 −0.989338
\(531\) 1344.83 0.109907
\(532\) 0 0
\(533\) 7886.01 0.640865
\(534\) −2879.34 −0.233336
\(535\) 23534.3 1.90183
\(536\) −2247.84 −0.181142
\(537\) 5970.30 0.479772
\(538\) −4343.00 −0.348030
\(539\) 0 0
\(540\) −6579.31 −0.524312
\(541\) −7362.33 −0.585086 −0.292543 0.956252i \(-0.594501\pi\)
−0.292543 + 0.956252i \(0.594501\pi\)
\(542\) 14987.0 1.18773
\(543\) 1115.27 0.0881415
\(544\) 1731.33 0.136452
\(545\) 12601.3 0.990420
\(546\) 0 0
\(547\) 1506.22 0.117735 0.0588677 0.998266i \(-0.481251\pi\)
0.0588677 + 0.998266i \(0.481251\pi\)
\(548\) −6746.69 −0.525920
\(549\) 19154.5 1.48906
\(550\) 11256.4 0.872685
\(551\) −15252.7 −1.17929
\(552\) −418.439 −0.0322644
\(553\) 0 0
\(554\) −5404.22 −0.414447
\(555\) −2373.11 −0.181501
\(556\) −9990.46 −0.762032
\(557\) 5643.78 0.429326 0.214663 0.976688i \(-0.431135\pi\)
0.214663 + 0.976688i \(0.431135\pi\)
\(558\) −4710.69 −0.357383
\(559\) −14438.6 −1.09247
\(560\) 0 0
\(561\) 7334.52 0.551985
\(562\) 417.983 0.0313729
\(563\) 18788.6 1.40648 0.703238 0.710954i \(-0.251737\pi\)
0.703238 + 0.710954i \(0.251737\pi\)
\(564\) 3974.75 0.296750
\(565\) 14729.7 1.09678
\(566\) 13170.1 0.978054
\(567\) 0 0
\(568\) −8320.92 −0.614680
\(569\) 13699.1 1.00931 0.504654 0.863322i \(-0.331620\pi\)
0.504654 + 0.863322i \(0.331620\pi\)
\(570\) −8118.51 −0.596573
\(571\) 739.836 0.0542227 0.0271113 0.999632i \(-0.491369\pi\)
0.0271113 + 0.999632i \(0.491369\pi\)
\(572\) 11186.4 0.817703
\(573\) 7115.54 0.518771
\(574\) 0 0
\(575\) 2171.56 0.157496
\(576\) −1397.01 −0.101057
\(577\) 6479.15 0.467470 0.233735 0.972300i \(-0.424905\pi\)
0.233735 + 0.972300i \(0.424905\pi\)
\(578\) 3971.50 0.285801
\(579\) 11563.3 0.829974
\(580\) −7499.69 −0.536909
\(581\) 0 0
\(582\) −3281.33 −0.233703
\(583\) −24289.7 −1.72552
\(584\) −7606.96 −0.539004
\(585\) 15169.0 1.07207
\(586\) 1697.75 0.119682
\(587\) −2529.43 −0.177855 −0.0889274 0.996038i \(-0.528344\pi\)
−0.0889274 + 0.996038i \(0.528344\pi\)
\(588\) 0 0
\(589\) −13002.6 −0.909618
\(590\) 1825.20 0.127360
\(591\) −9530.95 −0.663369
\(592\) −1127.17 −0.0782542
\(593\) 20434.4 1.41507 0.707537 0.706677i \(-0.249806\pi\)
0.707537 + 0.706677i \(0.249806\pi\)
\(594\) −13238.7 −0.914459
\(595\) 0 0
\(596\) −3895.58 −0.267733
\(597\) 10600.2 0.726692
\(598\) 2158.04 0.147573
\(599\) 3042.51 0.207535 0.103768 0.994602i \(-0.466910\pi\)
0.103768 + 0.994602i \(0.466910\pi\)
\(600\) −1717.70 −0.116875
\(601\) 13729.5 0.931845 0.465923 0.884825i \(-0.345723\pi\)
0.465923 + 0.884825i \(0.345723\pi\)
\(602\) 0 0
\(603\) −6133.33 −0.414210
\(604\) −4611.54 −0.310664
\(605\) 32921.0 2.21228
\(606\) −5597.53 −0.375221
\(607\) 4927.30 0.329478 0.164739 0.986337i \(-0.447322\pi\)
0.164739 + 0.986337i \(0.447322\pi\)
\(608\) −3856.10 −0.257213
\(609\) 0 0
\(610\) 25996.4 1.72552
\(611\) −20499.2 −1.35730
\(612\) 4724.01 0.312021
\(613\) 22664.9 1.49336 0.746678 0.665186i \(-0.231648\pi\)
0.746678 + 0.665186i \(0.231648\pi\)
\(614\) 6522.53 0.428710
\(615\) −5662.43 −0.371270
\(616\) 0 0
\(617\) −1895.18 −0.123658 −0.0618292 0.998087i \(-0.519693\pi\)
−0.0618292 + 0.998087i \(0.519693\pi\)
\(618\) 2795.09 0.181934
\(619\) 18999.5 1.23369 0.616845 0.787085i \(-0.288411\pi\)
0.616845 + 0.787085i \(0.288411\pi\)
\(620\) −6393.33 −0.414133
\(621\) −2553.96 −0.165035
\(622\) 4036.87 0.260231
\(623\) 0 0
\(624\) −1707.01 −0.109511
\(625\) −18512.6 −1.18481
\(626\) −11187.4 −0.714279
\(627\) −16335.8 −1.04049
\(628\) 1312.15 0.0833767
\(629\) 3811.54 0.241615
\(630\) 0 0
\(631\) −16757.5 −1.05722 −0.528611 0.848864i \(-0.677287\pi\)
−0.528611 + 0.848864i \(0.677287\pi\)
\(632\) −5891.58 −0.370814
\(633\) −2417.48 −0.151795
\(634\) 18706.4 1.17181
\(635\) −30825.9 −1.92644
\(636\) 3706.54 0.231091
\(637\) 0 0
\(638\) −15090.6 −0.936431
\(639\) −22704.0 −1.40557
\(640\) −1896.02 −0.117105
\(641\) −7529.21 −0.463941 −0.231970 0.972723i \(-0.574517\pi\)
−0.231970 + 0.972723i \(0.574517\pi\)
\(642\) −7226.24 −0.444232
\(643\) 13087.0 0.802645 0.401322 0.915937i \(-0.368551\pi\)
0.401322 + 0.915937i \(0.368551\pi\)
\(644\) 0 0
\(645\) 10367.4 0.632895
\(646\) 13039.4 0.794162
\(647\) 7695.41 0.467601 0.233800 0.972285i \(-0.424884\pi\)
0.233800 + 0.972285i \(0.424884\pi\)
\(648\) −2694.74 −0.163363
\(649\) 3672.60 0.222130
\(650\) 8858.82 0.534572
\(651\) 0 0
\(652\) 13456.5 0.808279
\(653\) 14205.1 0.851282 0.425641 0.904892i \(-0.360049\pi\)
0.425641 + 0.904892i \(0.360049\pi\)
\(654\) −3869.23 −0.231344
\(655\) −15569.1 −0.928756
\(656\) −2689.52 −0.160073
\(657\) −20755.9 −1.23252
\(658\) 0 0
\(659\) 21377.7 1.26367 0.631834 0.775103i \(-0.282302\pi\)
0.631834 + 0.775103i \(0.282302\pi\)
\(660\) −8032.22 −0.473718
\(661\) 6655.83 0.391652 0.195826 0.980639i \(-0.437261\pi\)
0.195826 + 0.980639i \(0.437261\pi\)
\(662\) 8991.33 0.527882
\(663\) 5772.26 0.338124
\(664\) −9559.24 −0.558691
\(665\) 0 0
\(666\) −3075.54 −0.178941
\(667\) −2911.23 −0.169001
\(668\) 4790.78 0.277486
\(669\) −6315.27 −0.364966
\(670\) −8324.13 −0.479984
\(671\) 52309.1 3.00949
\(672\) 0 0
\(673\) −25917.1 −1.48444 −0.742222 0.670154i \(-0.766228\pi\)
−0.742222 + 0.670154i \(0.766228\pi\)
\(674\) 11430.6 0.653250
\(675\) −10484.1 −0.597826
\(676\) 15.6796 0.000892101 0
\(677\) −12548.3 −0.712361 −0.356181 0.934417i \(-0.615921\pi\)
−0.356181 + 0.934417i \(0.615921\pi\)
\(678\) −4522.76 −0.256188
\(679\) 0 0
\(680\) 6411.41 0.361568
\(681\) 1337.31 0.0752509
\(682\) −12864.4 −0.722295
\(683\) 28292.0 1.58501 0.792505 0.609866i \(-0.208777\pi\)
0.792505 + 0.609866i \(0.208777\pi\)
\(684\) −10521.5 −0.588159
\(685\) −24984.2 −1.39357
\(686\) 0 0
\(687\) −1779.50 −0.0988240
\(688\) 4924.29 0.272873
\(689\) −19116.0 −1.05698
\(690\) −1549.55 −0.0854933
\(691\) −9848.08 −0.542169 −0.271084 0.962556i \(-0.587382\pi\)
−0.271084 + 0.962556i \(0.587382\pi\)
\(692\) −5168.71 −0.283938
\(693\) 0 0
\(694\) 11117.9 0.608112
\(695\) −36996.4 −2.01921
\(696\) 2302.79 0.125412
\(697\) 9094.62 0.494237
\(698\) −14124.6 −0.765937
\(699\) 648.716 0.0351026
\(700\) 0 0
\(701\) 11704.8 0.630649 0.315324 0.948984i \(-0.397887\pi\)
0.315324 + 0.948984i \(0.397887\pi\)
\(702\) −10418.8 −0.560161
\(703\) −8489.23 −0.455445
\(704\) −3815.11 −0.204244
\(705\) 14719.2 0.786320
\(706\) −2559.45 −0.136439
\(707\) 0 0
\(708\) −560.429 −0.0297489
\(709\) 14512.5 0.768728 0.384364 0.923182i \(-0.374421\pi\)
0.384364 + 0.923182i \(0.374421\pi\)
\(710\) −30813.8 −1.62876
\(711\) −16075.4 −0.847927
\(712\) −5064.53 −0.266575
\(713\) −2481.77 −0.130355
\(714\) 0 0
\(715\) 41425.1 2.16673
\(716\) 10501.3 0.548116
\(717\) −4246.83 −0.221201
\(718\) 19300.4 1.00318
\(719\) 26255.7 1.36185 0.680927 0.732351i \(-0.261577\pi\)
0.680927 + 0.732351i \(0.261577\pi\)
\(720\) −5173.38 −0.267779
\(721\) 0 0
\(722\) −15324.0 −0.789889
\(723\) 2859.29 0.147079
\(724\) 1961.67 0.100697
\(725\) −11950.7 −0.612190
\(726\) −10108.4 −0.516748
\(727\) 9048.41 0.461605 0.230802 0.973001i \(-0.425865\pi\)
0.230802 + 0.973001i \(0.425865\pi\)
\(728\) 0 0
\(729\) −534.604 −0.0271607
\(730\) −28169.9 −1.42824
\(731\) −16651.5 −0.842514
\(732\) −7982.23 −0.403049
\(733\) 3121.90 0.157313 0.0786563 0.996902i \(-0.474937\pi\)
0.0786563 + 0.996902i \(0.474937\pi\)
\(734\) −4245.59 −0.213498
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −16749.5 −0.837146
\(738\) −7338.48 −0.366034
\(739\) 19858.4 0.988500 0.494250 0.869320i \(-0.335443\pi\)
0.494250 + 0.869320i \(0.335443\pi\)
\(740\) −4174.11 −0.207356
\(741\) −12856.3 −0.637364
\(742\) 0 0
\(743\) −5437.39 −0.268477 −0.134239 0.990949i \(-0.542859\pi\)
−0.134239 + 0.990949i \(0.542859\pi\)
\(744\) 1963.08 0.0967339
\(745\) −14426.0 −0.709433
\(746\) −23157.0 −1.13651
\(747\) −26082.8 −1.27754
\(748\) 12900.8 0.630616
\(749\) 0 0
\(750\) 2060.53 0.100320
\(751\) 34447.1 1.67376 0.836880 0.547386i \(-0.184377\pi\)
0.836880 + 0.547386i \(0.184377\pi\)
\(752\) 6991.25 0.339022
\(753\) 3597.69 0.174113
\(754\) −11876.3 −0.573620
\(755\) −17077.3 −0.823188
\(756\) 0 0
\(757\) 27562.1 1.32333 0.661665 0.749800i \(-0.269850\pi\)
0.661665 + 0.749800i \(0.269850\pi\)
\(758\) 8416.19 0.403285
\(759\) −3117.95 −0.149110
\(760\) −14279.8 −0.681556
\(761\) 25522.4 1.21575 0.607876 0.794032i \(-0.292022\pi\)
0.607876 + 0.794032i \(0.292022\pi\)
\(762\) 9465.12 0.449980
\(763\) 0 0
\(764\) 12515.7 0.592671
\(765\) 17493.8 0.826785
\(766\) −18271.8 −0.861864
\(767\) 2890.34 0.136068
\(768\) 582.176 0.0273535
\(769\) 21433.7 1.00509 0.502547 0.864550i \(-0.332396\pi\)
0.502547 + 0.864550i \(0.332396\pi\)
\(770\) 0 0
\(771\) 12713.1 0.593841
\(772\) 20338.9 0.948205
\(773\) 16285.3 0.757751 0.378876 0.925448i \(-0.376311\pi\)
0.378876 + 0.925448i \(0.376311\pi\)
\(774\) 13436.1 0.623969
\(775\) −10187.7 −0.472199
\(776\) −5771.58 −0.266995
\(777\) 0 0
\(778\) 3444.38 0.158724
\(779\) −20256.0 −0.931637
\(780\) −6321.36 −0.290181
\(781\) −62002.5 −2.84075
\(782\) 2488.79 0.113809
\(783\) 14055.2 0.641495
\(784\) 0 0
\(785\) 4859.13 0.220929
\(786\) 4780.51 0.216940
\(787\) −18939.3 −0.857832 −0.428916 0.903344i \(-0.641104\pi\)
−0.428916 + 0.903344i \(0.641104\pi\)
\(788\) −16764.2 −0.757866
\(789\) −5212.26 −0.235186
\(790\) −21817.5 −0.982574
\(791\) 0 0
\(792\) −10409.7 −0.467036
\(793\) 41167.3 1.84350
\(794\) 18675.0 0.834701
\(795\) 13726.0 0.612339
\(796\) 18644.8 0.830210
\(797\) −6446.96 −0.286528 −0.143264 0.989684i \(-0.545760\pi\)
−0.143264 + 0.989684i \(0.545760\pi\)
\(798\) 0 0
\(799\) −23640.9 −1.04675
\(800\) −3021.30 −0.133524
\(801\) −13818.8 −0.609567
\(802\) −3322.48 −0.146286
\(803\) −56682.5 −2.49101
\(804\) 2555.93 0.112115
\(805\) 0 0
\(806\) −10124.3 −0.442449
\(807\) 4938.26 0.215409
\(808\) −9845.60 −0.428672
\(809\) 9782.98 0.425156 0.212578 0.977144i \(-0.431814\pi\)
0.212578 + 0.977144i \(0.431814\pi\)
\(810\) −9979.09 −0.432876
\(811\) −40372.4 −1.74805 −0.874025 0.485881i \(-0.838499\pi\)
−0.874025 + 0.485881i \(0.838499\pi\)
\(812\) 0 0
\(813\) −17041.2 −0.735130
\(814\) −8399.01 −0.361652
\(815\) 49831.8 2.14175
\(816\) −1968.63 −0.0844557
\(817\) 37087.0 1.58814
\(818\) 16117.7 0.688926
\(819\) 0 0
\(820\) −9959.76 −0.424158
\(821\) −42623.7 −1.81191 −0.905955 0.423374i \(-0.860845\pi\)
−0.905955 + 0.423374i \(0.860845\pi\)
\(822\) 7671.41 0.325512
\(823\) 41262.0 1.74763 0.873817 0.486255i \(-0.161637\pi\)
0.873817 + 0.486255i \(0.161637\pi\)
\(824\) 4916.34 0.207851
\(825\) −12799.3 −0.540138
\(826\) 0 0
\(827\) 10967.3 0.461151 0.230575 0.973054i \(-0.425939\pi\)
0.230575 + 0.973054i \(0.425939\pi\)
\(828\) −2008.21 −0.0842875
\(829\) −15418.6 −0.645970 −0.322985 0.946404i \(-0.604686\pi\)
−0.322985 + 0.946404i \(0.604686\pi\)
\(830\) −35399.5 −1.48040
\(831\) 6144.94 0.256517
\(832\) −3002.49 −0.125111
\(833\) 0 0
\(834\) 11359.8 0.471651
\(835\) 17741.1 0.735276
\(836\) −28733.3 −1.18871
\(837\) 11981.7 0.494803
\(838\) 16448.0 0.678026
\(839\) −35087.3 −1.44380 −0.721899 0.691998i \(-0.756731\pi\)
−0.721899 + 0.691998i \(0.756731\pi\)
\(840\) 0 0
\(841\) −8367.67 −0.343092
\(842\) −6076.02 −0.248686
\(843\) −475.273 −0.0194179
\(844\) −4252.14 −0.173418
\(845\) 58.0641 0.00236387
\(846\) 19075.9 0.775230
\(847\) 0 0
\(848\) 6519.50 0.264010
\(849\) −14975.2 −0.605355
\(850\) 10216.5 0.412264
\(851\) −1620.31 −0.0652685
\(852\) 9461.41 0.380449
\(853\) 20895.1 0.838726 0.419363 0.907819i \(-0.362253\pi\)
0.419363 + 0.907819i \(0.362253\pi\)
\(854\) 0 0
\(855\) −38963.0 −1.55849
\(856\) −12710.4 −0.507513
\(857\) −9860.33 −0.393025 −0.196513 0.980501i \(-0.562962\pi\)
−0.196513 + 0.980501i \(0.562962\pi\)
\(858\) −12719.6 −0.506108
\(859\) −27508.7 −1.09265 −0.546324 0.837574i \(-0.683973\pi\)
−0.546324 + 0.837574i \(0.683973\pi\)
\(860\) 18235.5 0.723052
\(861\) 0 0
\(862\) 7407.79 0.292703
\(863\) 44397.4 1.75122 0.875611 0.483017i \(-0.160459\pi\)
0.875611 + 0.483017i \(0.160459\pi\)
\(864\) 3553.34 0.139915
\(865\) −19140.6 −0.752370
\(866\) −616.035 −0.0241729
\(867\) −4515.85 −0.176893
\(868\) 0 0
\(869\) −43900.5 −1.71372
\(870\) 8527.61 0.332314
\(871\) −13181.9 −0.512802
\(872\) −6805.66 −0.264299
\(873\) −15748.0 −0.610527
\(874\) −5543.14 −0.214530
\(875\) 0 0
\(876\) 8649.59 0.333610
\(877\) −21240.3 −0.817827 −0.408913 0.912573i \(-0.634092\pi\)
−0.408913 + 0.912573i \(0.634092\pi\)
\(878\) −19545.3 −0.751277
\(879\) −1930.45 −0.0740757
\(880\) −14128.0 −0.541199
\(881\) −24746.5 −0.946345 −0.473173 0.880970i \(-0.656891\pi\)
−0.473173 + 0.880970i \(0.656891\pi\)
\(882\) 0 0
\(883\) −6682.34 −0.254676 −0.127338 0.991859i \(-0.540643\pi\)
−0.127338 + 0.991859i \(0.540643\pi\)
\(884\) 10152.9 0.386290
\(885\) −2075.37 −0.0788278
\(886\) 11671.5 0.442563
\(887\) −9897.96 −0.374680 −0.187340 0.982295i \(-0.559987\pi\)
−0.187340 + 0.982295i \(0.559987\pi\)
\(888\) 1281.67 0.0484346
\(889\) 0 0
\(890\) −18754.8 −0.706363
\(891\) −20079.6 −0.754985
\(892\) −11108.0 −0.416956
\(893\) 52654.2 1.97313
\(894\) 4429.51 0.165710
\(895\) 38888.0 1.45238
\(896\) 0 0
\(897\) −2453.83 −0.0913389
\(898\) 1652.61 0.0614123
\(899\) 13657.9 0.506691
\(900\) −8243.75 −0.305324
\(901\) −22045.7 −0.815149
\(902\) −20040.7 −0.739780
\(903\) 0 0
\(904\) −7955.17 −0.292682
\(905\) 7264.40 0.266825
\(906\) 5243.61 0.192282
\(907\) 13540.9 0.495722 0.247861 0.968796i \(-0.420272\pi\)
0.247861 + 0.968796i \(0.420272\pi\)
\(908\) 2352.22 0.0859704
\(909\) −26864.1 −0.980228
\(910\) 0 0
\(911\) 43832.5 1.59411 0.797056 0.603906i \(-0.206390\pi\)
0.797056 + 0.603906i \(0.206390\pi\)
\(912\) 4384.62 0.159199
\(913\) −71229.7 −2.58199
\(914\) −37857.9 −1.37005
\(915\) −29559.6 −1.06799
\(916\) −3129.99 −0.112902
\(917\) 0 0
\(918\) −12015.6 −0.431998
\(919\) −445.356 −0.0159858 −0.00799290 0.999968i \(-0.502544\pi\)
−0.00799290 + 0.999968i \(0.502544\pi\)
\(920\) −2725.53 −0.0976719
\(921\) −7416.53 −0.265345
\(922\) −30731.9 −1.09772
\(923\) −48795.9 −1.74013
\(924\) 0 0
\(925\) −6651.42 −0.236429
\(926\) 33783.1 1.19890
\(927\) 13414.5 0.475284
\(928\) 4050.41 0.143277
\(929\) 17694.9 0.624922 0.312461 0.949931i \(-0.398847\pi\)
0.312461 + 0.949931i \(0.398847\pi\)
\(930\) 7269.62 0.256323
\(931\) 0 0
\(932\) 1141.04 0.0401030
\(933\) −4590.17 −0.161067
\(934\) 30051.2 1.05279
\(935\) 47773.9 1.67099
\(936\) −8192.44 −0.286088
\(937\) −17172.3 −0.598712 −0.299356 0.954141i \(-0.596772\pi\)
−0.299356 + 0.954141i \(0.596772\pi\)
\(938\) 0 0
\(939\) 12720.8 0.442095
\(940\) 25889.8 0.898332
\(941\) −12155.3 −0.421098 −0.210549 0.977583i \(-0.567525\pi\)
−0.210549 + 0.977583i \(0.567525\pi\)
\(942\) −1492.00 −0.0516051
\(943\) −3866.19 −0.133510
\(944\) −985.749 −0.0339867
\(945\) 0 0
\(946\) 36692.8 1.26108
\(947\) 25702.4 0.881960 0.440980 0.897517i \(-0.354631\pi\)
0.440980 + 0.897517i \(0.354631\pi\)
\(948\) 6699.10 0.229511
\(949\) −44609.1 −1.52589
\(950\) −22754.7 −0.777117
\(951\) −21270.4 −0.725278
\(952\) 0 0
\(953\) 13029.3 0.442874 0.221437 0.975175i \(-0.428925\pi\)
0.221437 + 0.975175i \(0.428925\pi\)
\(954\) 17788.8 0.603703
\(955\) 46347.6 1.57044
\(956\) −7469.83 −0.252711
\(957\) 17159.0 0.579593
\(958\) −17902.6 −0.603763
\(959\) 0 0
\(960\) 2155.90 0.0724805
\(961\) −18147.9 −0.609175
\(962\) −6610.02 −0.221534
\(963\) −34680.8 −1.16051
\(964\) 5029.26 0.168031
\(965\) 75318.5 2.51253
\(966\) 0 0
\(967\) 16413.3 0.545829 0.272915 0.962038i \(-0.412012\pi\)
0.272915 + 0.962038i \(0.412012\pi\)
\(968\) −17779.9 −0.590360
\(969\) −14826.6 −0.491537
\(970\) −21373.2 −0.707475
\(971\) 30138.7 0.996084 0.498042 0.867153i \(-0.334053\pi\)
0.498042 + 0.867153i \(0.334053\pi\)
\(972\) 15056.6 0.496853
\(973\) 0 0
\(974\) 26364.5 0.867323
\(975\) −10073.0 −0.330867
\(976\) −14040.1 −0.460463
\(977\) 49194.1 1.61091 0.805454 0.592658i \(-0.201921\pi\)
0.805454 + 0.592658i \(0.201921\pi\)
\(978\) −15300.9 −0.500275
\(979\) −37737.8 −1.23198
\(980\) 0 0
\(981\) −18569.6 −0.604363
\(982\) −27345.6 −0.888628
\(983\) −19382.8 −0.628905 −0.314453 0.949273i \(-0.601821\pi\)
−0.314453 + 0.949273i \(0.601821\pi\)
\(984\) 3058.15 0.0990756
\(985\) −62080.6 −2.00817
\(986\) −13696.5 −0.442378
\(987\) 0 0
\(988\) −22613.1 −0.728157
\(989\) 7078.66 0.227592
\(990\) −38548.9 −1.23754
\(991\) −3361.80 −0.107761 −0.0538805 0.998547i \(-0.517159\pi\)
−0.0538805 + 0.998547i \(0.517159\pi\)
\(992\) 3452.90 0.110514
\(993\) −10223.7 −0.326726
\(994\) 0 0
\(995\) 69044.9 2.19987
\(996\) 10869.5 0.345795
\(997\) 41154.1 1.30729 0.653643 0.756803i \(-0.273240\pi\)
0.653643 + 0.756803i \(0.273240\pi\)
\(998\) 31227.8 0.990479
\(999\) 7822.70 0.247747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.u.1.7 11
7.3 odd 6 322.4.e.d.93.7 22
7.5 odd 6 322.4.e.d.277.7 yes 22
7.6 odd 2 2254.4.a.r.1.5 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.d.93.7 22 7.3 odd 6
322.4.e.d.277.7 yes 22 7.5 odd 6
2254.4.a.r.1.5 11 7.6 odd 2
2254.4.a.u.1.7 11 1.1 even 1 trivial