Properties

Label 2254.4.a.u.1.4
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 234 x^{9} - 105 x^{8} + 18997 x^{7} + 16513 x^{6} - 621598 x^{5} - 743169 x^{4} + \cdots - 12103441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.73826\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.73826 q^{3} +4.00000 q^{4} -15.3436 q^{5} +7.47652 q^{6} -8.00000 q^{8} -13.0254 q^{9} +30.6872 q^{10} +50.1520 q^{11} -14.9530 q^{12} +48.5248 q^{13} +57.3583 q^{15} +16.0000 q^{16} +123.081 q^{17} +26.0508 q^{18} -76.1082 q^{19} -61.3743 q^{20} -100.304 q^{22} +23.0000 q^{23} +29.9061 q^{24} +110.425 q^{25} -97.0497 q^{26} +149.625 q^{27} -154.546 q^{29} -114.717 q^{30} +262.327 q^{31} -32.0000 q^{32} -187.481 q^{33} -246.162 q^{34} -52.1016 q^{36} +313.312 q^{37} +152.216 q^{38} -181.399 q^{39} +122.749 q^{40} +249.375 q^{41} +192.473 q^{43} +200.608 q^{44} +199.856 q^{45} -46.0000 q^{46} +410.610 q^{47} -59.8122 q^{48} -220.851 q^{50} -460.109 q^{51} +194.099 q^{52} -11.5547 q^{53} -299.251 q^{54} -769.512 q^{55} +284.512 q^{57} +309.092 q^{58} -430.746 q^{59} +229.433 q^{60} -561.392 q^{61} -524.653 q^{62} +64.0000 q^{64} -744.545 q^{65} +374.963 q^{66} -659.887 q^{67} +492.324 q^{68} -85.9800 q^{69} -920.555 q^{71} +104.203 q^{72} +351.457 q^{73} -626.624 q^{74} -412.799 q^{75} -304.433 q^{76} +362.797 q^{78} -586.480 q^{79} -245.497 q^{80} -207.653 q^{81} -498.749 q^{82} +538.459 q^{83} -1888.50 q^{85} -384.946 q^{86} +577.734 q^{87} -401.216 q^{88} +431.970 q^{89} -399.713 q^{90} +92.0000 q^{92} -980.646 q^{93} -821.220 q^{94} +1167.77 q^{95} +119.624 q^{96} +953.090 q^{97} -653.251 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 22 q^{2} + 44 q^{4} + 23 q^{5} - 88 q^{8} + 171 q^{9} - 46 q^{10} - 48 q^{11} + 77 q^{13} + 104 q^{15} + 176 q^{16} + 97 q^{17} - 342 q^{18} + 138 q^{19} + 92 q^{20} + 96 q^{22} + 253 q^{23} + 30 q^{25}+ \cdots - 2545 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.73826 −0.719429 −0.359714 0.933062i \(-0.617126\pi\)
−0.359714 + 0.933062i \(0.617126\pi\)
\(4\) 4.00000 0.500000
\(5\) −15.3436 −1.37237 −0.686186 0.727426i \(-0.740716\pi\)
−0.686186 + 0.727426i \(0.740716\pi\)
\(6\) 7.47652 0.508713
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) −13.0254 −0.482422
\(10\) 30.6872 0.970413
\(11\) 50.1520 1.37467 0.687337 0.726339i \(-0.258780\pi\)
0.687337 + 0.726339i \(0.258780\pi\)
\(12\) −14.9530 −0.359714
\(13\) 48.5248 1.03526 0.517630 0.855605i \(-0.326815\pi\)
0.517630 + 0.855605i \(0.326815\pi\)
\(14\) 0 0
\(15\) 57.3583 0.987323
\(16\) 16.0000 0.250000
\(17\) 123.081 1.75597 0.877986 0.478686i \(-0.158887\pi\)
0.877986 + 0.478686i \(0.158887\pi\)
\(18\) 26.0508 0.341124
\(19\) −76.1082 −0.918970 −0.459485 0.888186i \(-0.651966\pi\)
−0.459485 + 0.888186i \(0.651966\pi\)
\(20\) −61.3743 −0.686186
\(21\) 0 0
\(22\) −100.304 −0.972041
\(23\) 23.0000 0.208514
\(24\) 29.9061 0.254356
\(25\) 110.425 0.883403
\(26\) −97.0497 −0.732039
\(27\) 149.625 1.06650
\(28\) 0 0
\(29\) −154.546 −0.989603 −0.494802 0.869006i \(-0.664759\pi\)
−0.494802 + 0.869006i \(0.664759\pi\)
\(30\) −114.717 −0.698143
\(31\) 262.327 1.51985 0.759924 0.650012i \(-0.225236\pi\)
0.759924 + 0.650012i \(0.225236\pi\)
\(32\) −32.0000 −0.176777
\(33\) −187.481 −0.988980
\(34\) −246.162 −1.24166
\(35\) 0 0
\(36\) −52.1016 −0.241211
\(37\) 313.312 1.39211 0.696057 0.717987i \(-0.254936\pi\)
0.696057 + 0.717987i \(0.254936\pi\)
\(38\) 152.216 0.649810
\(39\) −181.399 −0.744795
\(40\) 122.749 0.485207
\(41\) 249.375 0.949896 0.474948 0.880014i \(-0.342467\pi\)
0.474948 + 0.880014i \(0.342467\pi\)
\(42\) 0 0
\(43\) 192.473 0.682602 0.341301 0.939954i \(-0.389133\pi\)
0.341301 + 0.939954i \(0.389133\pi\)
\(44\) 200.608 0.687337
\(45\) 199.856 0.662063
\(46\) −46.0000 −0.147442
\(47\) 410.610 1.27433 0.637166 0.770727i \(-0.280107\pi\)
0.637166 + 0.770727i \(0.280107\pi\)
\(48\) −59.8122 −0.179857
\(49\) 0 0
\(50\) −220.851 −0.624660
\(51\) −460.109 −1.26330
\(52\) 194.099 0.517630
\(53\) −11.5547 −0.0299465 −0.0149733 0.999888i \(-0.504766\pi\)
−0.0149733 + 0.999888i \(0.504766\pi\)
\(54\) −299.251 −0.754127
\(55\) −769.512 −1.88656
\(56\) 0 0
\(57\) 284.512 0.661133
\(58\) 309.092 0.699755
\(59\) −430.746 −0.950482 −0.475241 0.879856i \(-0.657639\pi\)
−0.475241 + 0.879856i \(0.657639\pi\)
\(60\) 229.433 0.493662
\(61\) −561.392 −1.17834 −0.589171 0.808008i \(-0.700546\pi\)
−0.589171 + 0.808008i \(0.700546\pi\)
\(62\) −524.653 −1.07469
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −744.545 −1.42076
\(66\) 374.963 0.699314
\(67\) −659.887 −1.20325 −0.601627 0.798777i \(-0.705481\pi\)
−0.601627 + 0.798777i \(0.705481\pi\)
\(68\) 492.324 0.877986
\(69\) −85.9800 −0.150011
\(70\) 0 0
\(71\) −920.555 −1.53873 −0.769364 0.638810i \(-0.779427\pi\)
−0.769364 + 0.638810i \(0.779427\pi\)
\(72\) 104.203 0.170562
\(73\) 351.457 0.563492 0.281746 0.959489i \(-0.409087\pi\)
0.281746 + 0.959489i \(0.409087\pi\)
\(74\) −626.624 −0.984373
\(75\) −412.799 −0.635546
\(76\) −304.433 −0.459485
\(77\) 0 0
\(78\) 362.797 0.526650
\(79\) −586.480 −0.835242 −0.417621 0.908621i \(-0.637136\pi\)
−0.417621 + 0.908621i \(0.637136\pi\)
\(80\) −245.497 −0.343093
\(81\) −207.653 −0.284846
\(82\) −498.749 −0.671678
\(83\) 538.459 0.712091 0.356046 0.934469i \(-0.384125\pi\)
0.356046 + 0.934469i \(0.384125\pi\)
\(84\) 0 0
\(85\) −1888.50 −2.40985
\(86\) −384.946 −0.482672
\(87\) 577.734 0.711949
\(88\) −401.216 −0.486021
\(89\) 431.970 0.514481 0.257240 0.966347i \(-0.417187\pi\)
0.257240 + 0.966347i \(0.417187\pi\)
\(90\) −399.713 −0.468149
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −980.646 −1.09342
\(94\) −821.220 −0.901089
\(95\) 1167.77 1.26117
\(96\) 119.624 0.127178
\(97\) 953.090 0.997646 0.498823 0.866704i \(-0.333766\pi\)
0.498823 + 0.866704i \(0.333766\pi\)
\(98\) 0 0
\(99\) −653.251 −0.663173
\(100\) 441.702 0.441702
\(101\) −879.033 −0.866010 −0.433005 0.901392i \(-0.642547\pi\)
−0.433005 + 0.901392i \(0.642547\pi\)
\(102\) 920.218 0.893286
\(103\) 706.202 0.675574 0.337787 0.941223i \(-0.390322\pi\)
0.337787 + 0.941223i \(0.390322\pi\)
\(104\) −388.199 −0.366019
\(105\) 0 0
\(106\) 23.1095 0.0211754
\(107\) 1528.18 1.38070 0.690351 0.723475i \(-0.257456\pi\)
0.690351 + 0.723475i \(0.257456\pi\)
\(108\) 598.502 0.533249
\(109\) −593.239 −0.521303 −0.260651 0.965433i \(-0.583937\pi\)
−0.260651 + 0.965433i \(0.583937\pi\)
\(110\) 1539.02 1.33400
\(111\) −1171.24 −1.00153
\(112\) 0 0
\(113\) −56.3707 −0.0469284 −0.0234642 0.999725i \(-0.507470\pi\)
−0.0234642 + 0.999725i \(0.507470\pi\)
\(114\) −569.025 −0.467492
\(115\) −352.902 −0.286159
\(116\) −618.185 −0.494802
\(117\) −632.056 −0.499432
\(118\) 861.493 0.672092
\(119\) 0 0
\(120\) −458.866 −0.349072
\(121\) 1184.23 0.889728
\(122\) 1122.78 0.833214
\(123\) −932.227 −0.683383
\(124\) 1049.31 0.759924
\(125\) 223.626 0.160014
\(126\) 0 0
\(127\) −971.337 −0.678679 −0.339339 0.940664i \(-0.610204\pi\)
−0.339339 + 0.940664i \(0.610204\pi\)
\(128\) −128.000 −0.0883883
\(129\) −719.515 −0.491083
\(130\) 1489.09 1.00463
\(131\) 1420.67 0.947515 0.473757 0.880655i \(-0.342897\pi\)
0.473757 + 0.880655i \(0.342897\pi\)
\(132\) −749.926 −0.494490
\(133\) 0 0
\(134\) 1319.77 0.850829
\(135\) −2295.79 −1.46363
\(136\) −984.648 −0.620830
\(137\) 1660.08 1.03526 0.517630 0.855605i \(-0.326814\pi\)
0.517630 + 0.855605i \(0.326814\pi\)
\(138\) 171.960 0.106074
\(139\) 1238.35 0.755653 0.377826 0.925876i \(-0.376672\pi\)
0.377826 + 0.925876i \(0.376672\pi\)
\(140\) 0 0
\(141\) −1534.97 −0.916791
\(142\) 1841.11 1.08805
\(143\) 2433.62 1.42314
\(144\) −208.406 −0.120606
\(145\) 2371.29 1.35810
\(146\) −702.913 −0.398449
\(147\) 0 0
\(148\) 1253.25 0.696057
\(149\) −2631.75 −1.44699 −0.723494 0.690331i \(-0.757465\pi\)
−0.723494 + 0.690331i \(0.757465\pi\)
\(150\) 825.598 0.449399
\(151\) −240.094 −0.129395 −0.0646974 0.997905i \(-0.520608\pi\)
−0.0646974 + 0.997905i \(0.520608\pi\)
\(152\) 608.866 0.324905
\(153\) −1603.18 −0.847120
\(154\) 0 0
\(155\) −4025.03 −2.08579
\(156\) −725.594 −0.372398
\(157\) −1883.73 −0.957567 −0.478784 0.877933i \(-0.658922\pi\)
−0.478784 + 0.877933i \(0.658922\pi\)
\(158\) 1172.96 0.590605
\(159\) 43.1946 0.0215444
\(160\) 490.995 0.242603
\(161\) 0 0
\(162\) 415.306 0.201417
\(163\) −3371.63 −1.62016 −0.810080 0.586319i \(-0.800576\pi\)
−0.810080 + 0.586319i \(0.800576\pi\)
\(164\) 997.498 0.474948
\(165\) 2876.64 1.35725
\(166\) −1076.92 −0.503525
\(167\) 286.494 0.132752 0.0663760 0.997795i \(-0.478856\pi\)
0.0663760 + 0.997795i \(0.478856\pi\)
\(168\) 0 0
\(169\) 157.660 0.0717614
\(170\) 3777.01 1.70402
\(171\) 991.340 0.443331
\(172\) 769.892 0.341301
\(173\) −4065.65 −1.78674 −0.893370 0.449322i \(-0.851665\pi\)
−0.893370 + 0.449322i \(0.851665\pi\)
\(174\) −1155.47 −0.503424
\(175\) 0 0
\(176\) 802.433 0.343668
\(177\) 1610.24 0.683804
\(178\) −863.941 −0.363793
\(179\) 611.659 0.255405 0.127703 0.991813i \(-0.459240\pi\)
0.127703 + 0.991813i \(0.459240\pi\)
\(180\) 799.425 0.331031
\(181\) −1876.36 −0.770545 −0.385272 0.922803i \(-0.625892\pi\)
−0.385272 + 0.922803i \(0.625892\pi\)
\(182\) 0 0
\(183\) 2098.63 0.847733
\(184\) −184.000 −0.0737210
\(185\) −4807.33 −1.91050
\(186\) 1961.29 0.773166
\(187\) 6172.76 2.41389
\(188\) 1642.44 0.637166
\(189\) 0 0
\(190\) −2335.54 −0.891780
\(191\) 4580.79 1.73536 0.867682 0.497120i \(-0.165609\pi\)
0.867682 + 0.497120i \(0.165609\pi\)
\(192\) −239.249 −0.0899286
\(193\) 1265.94 0.472147 0.236074 0.971735i \(-0.424139\pi\)
0.236074 + 0.971735i \(0.424139\pi\)
\(194\) −1906.18 −0.705442
\(195\) 2783.30 1.02214
\(196\) 0 0
\(197\) 3145.60 1.13764 0.568819 0.822462i \(-0.307400\pi\)
0.568819 + 0.822462i \(0.307400\pi\)
\(198\) 1306.50 0.468934
\(199\) 3249.56 1.15756 0.578782 0.815482i \(-0.303528\pi\)
0.578782 + 0.815482i \(0.303528\pi\)
\(200\) −883.403 −0.312330
\(201\) 2466.83 0.865655
\(202\) 1758.07 0.612362
\(203\) 0 0
\(204\) −1840.44 −0.631648
\(205\) −3826.30 −1.30361
\(206\) −1412.40 −0.477703
\(207\) −299.584 −0.100592
\(208\) 776.397 0.258815
\(209\) −3816.98 −1.26328
\(210\) 0 0
\(211\) 2447.79 0.798638 0.399319 0.916812i \(-0.369247\pi\)
0.399319 + 0.916812i \(0.369247\pi\)
\(212\) −46.2189 −0.0149733
\(213\) 3441.27 1.10701
\(214\) −3056.37 −0.976304
\(215\) −2953.23 −0.936783
\(216\) −1197.00 −0.377064
\(217\) 0 0
\(218\) 1186.48 0.368617
\(219\) −1313.84 −0.405392
\(220\) −3078.05 −0.943281
\(221\) 5972.49 1.81789
\(222\) 2342.49 0.708186
\(223\) −1501.46 −0.450876 −0.225438 0.974258i \(-0.572381\pi\)
−0.225438 + 0.974258i \(0.572381\pi\)
\(224\) 0 0
\(225\) −1438.34 −0.426173
\(226\) 112.741 0.0331834
\(227\) −3673.27 −1.07403 −0.537013 0.843574i \(-0.680447\pi\)
−0.537013 + 0.843574i \(0.680447\pi\)
\(228\) 1138.05 0.330567
\(229\) 4350.70 1.25547 0.627735 0.778427i \(-0.283982\pi\)
0.627735 + 0.778427i \(0.283982\pi\)
\(230\) 705.805 0.202345
\(231\) 0 0
\(232\) 1236.37 0.349878
\(233\) −3366.22 −0.946474 −0.473237 0.880935i \(-0.656915\pi\)
−0.473237 + 0.880935i \(0.656915\pi\)
\(234\) 1264.11 0.353152
\(235\) −6300.22 −1.74886
\(236\) −1722.99 −0.475241
\(237\) 2192.41 0.600897
\(238\) 0 0
\(239\) −4025.61 −1.08952 −0.544760 0.838592i \(-0.683379\pi\)
−0.544760 + 0.838592i \(0.683379\pi\)
\(240\) 917.733 0.246831
\(241\) −2041.55 −0.545676 −0.272838 0.962060i \(-0.587962\pi\)
−0.272838 + 0.962060i \(0.587962\pi\)
\(242\) −2368.46 −0.629133
\(243\) −3263.63 −0.861571
\(244\) −2245.57 −0.589171
\(245\) 0 0
\(246\) 1864.45 0.483225
\(247\) −3693.14 −0.951372
\(248\) −2098.61 −0.537347
\(249\) −2012.90 −0.512299
\(250\) −447.253 −0.113147
\(251\) 4772.70 1.20020 0.600099 0.799925i \(-0.295128\pi\)
0.600099 + 0.799925i \(0.295128\pi\)
\(252\) 0 0
\(253\) 1153.50 0.286639
\(254\) 1942.67 0.479898
\(255\) 7059.72 1.73371
\(256\) 256.000 0.0625000
\(257\) −2558.07 −0.620887 −0.310443 0.950592i \(-0.600478\pi\)
−0.310443 + 0.950592i \(0.600478\pi\)
\(258\) 1439.03 0.347248
\(259\) 0 0
\(260\) −2978.18 −0.710380
\(261\) 2013.03 0.477407
\(262\) −2841.34 −0.669994
\(263\) 1259.39 0.295276 0.147638 0.989041i \(-0.452833\pi\)
0.147638 + 0.989041i \(0.452833\pi\)
\(264\) 1499.85 0.349657
\(265\) 177.291 0.0410977
\(266\) 0 0
\(267\) −1614.82 −0.370132
\(268\) −2639.55 −0.601627
\(269\) 7288.59 1.65202 0.826009 0.563656i \(-0.190606\pi\)
0.826009 + 0.563656i \(0.190606\pi\)
\(270\) 4591.58 1.03494
\(271\) −4735.04 −1.06138 −0.530688 0.847567i \(-0.678067\pi\)
−0.530688 + 0.847567i \(0.678067\pi\)
\(272\) 1969.30 0.438993
\(273\) 0 0
\(274\) −3320.17 −0.732039
\(275\) 5538.06 1.21439
\(276\) −343.920 −0.0750056
\(277\) 6353.58 1.37816 0.689079 0.724686i \(-0.258015\pi\)
0.689079 + 0.724686i \(0.258015\pi\)
\(278\) −2476.71 −0.534327
\(279\) −3416.91 −0.733208
\(280\) 0 0
\(281\) −470.688 −0.0999250 −0.0499625 0.998751i \(-0.515910\pi\)
−0.0499625 + 0.998751i \(0.515910\pi\)
\(282\) 3069.93 0.648269
\(283\) −5705.87 −1.19851 −0.599256 0.800558i \(-0.704537\pi\)
−0.599256 + 0.800558i \(0.704537\pi\)
\(284\) −3682.22 −0.769364
\(285\) −4365.44 −0.907320
\(286\) −4867.24 −1.00631
\(287\) 0 0
\(288\) 416.813 0.0852810
\(289\) 10235.9 2.08344
\(290\) −4742.58 −0.960324
\(291\) −3562.90 −0.717735
\(292\) 1405.83 0.281746
\(293\) −3850.89 −0.767820 −0.383910 0.923371i \(-0.625423\pi\)
−0.383910 + 0.923371i \(0.625423\pi\)
\(294\) 0 0
\(295\) 6609.19 1.30441
\(296\) −2506.50 −0.492186
\(297\) 7504.02 1.46609
\(298\) 5263.50 1.02317
\(299\) 1116.07 0.215866
\(300\) −1651.20 −0.317773
\(301\) 0 0
\(302\) 480.189 0.0914959
\(303\) 3286.05 0.623032
\(304\) −1217.73 −0.229742
\(305\) 8613.76 1.61712
\(306\) 3206.36 0.599004
\(307\) 3517.53 0.653929 0.326964 0.945037i \(-0.393974\pi\)
0.326964 + 0.945037i \(0.393974\pi\)
\(308\) 0 0
\(309\) −2639.97 −0.486027
\(310\) 8050.06 1.47488
\(311\) 9947.46 1.81373 0.906863 0.421426i \(-0.138470\pi\)
0.906863 + 0.421426i \(0.138470\pi\)
\(312\) 1451.19 0.263325
\(313\) 3354.69 0.605809 0.302904 0.953021i \(-0.402044\pi\)
0.302904 + 0.953021i \(0.402044\pi\)
\(314\) 3767.46 0.677102
\(315\) 0 0
\(316\) −2345.92 −0.417621
\(317\) 9148.17 1.62086 0.810430 0.585836i \(-0.199234\pi\)
0.810430 + 0.585836i \(0.199234\pi\)
\(318\) −86.3892 −0.0152342
\(319\) −7750.81 −1.36038
\(320\) −981.989 −0.171546
\(321\) −5712.75 −0.993317
\(322\) 0 0
\(323\) −9367.48 −1.61369
\(324\) −830.612 −0.142423
\(325\) 5358.37 0.914551
\(326\) 6743.25 1.14563
\(327\) 2217.68 0.375040
\(328\) −1995.00 −0.335839
\(329\) 0 0
\(330\) −5753.27 −0.959719
\(331\) 7072.35 1.17442 0.587208 0.809436i \(-0.300227\pi\)
0.587208 + 0.809436i \(0.300227\pi\)
\(332\) 2153.84 0.356046
\(333\) −4081.02 −0.671587
\(334\) −572.988 −0.0938698
\(335\) 10125.0 1.65131
\(336\) 0 0
\(337\) −9017.84 −1.45767 −0.728833 0.684692i \(-0.759937\pi\)
−0.728833 + 0.684692i \(0.759937\pi\)
\(338\) −315.319 −0.0507429
\(339\) 210.728 0.0337616
\(340\) −7554.01 −1.20492
\(341\) 13156.2 2.08929
\(342\) −1982.68 −0.313483
\(343\) 0 0
\(344\) −1539.78 −0.241336
\(345\) 1319.24 0.205871
\(346\) 8131.31 1.26342
\(347\) 9367.01 1.44913 0.724564 0.689207i \(-0.242041\pi\)
0.724564 + 0.689207i \(0.242041\pi\)
\(348\) 2310.94 0.355975
\(349\) 820.873 0.125904 0.0629518 0.998017i \(-0.479949\pi\)
0.0629518 + 0.998017i \(0.479949\pi\)
\(350\) 0 0
\(351\) 7260.55 1.10410
\(352\) −1604.87 −0.243010
\(353\) 5781.36 0.871702 0.435851 0.900019i \(-0.356447\pi\)
0.435851 + 0.900019i \(0.356447\pi\)
\(354\) −3220.49 −0.483522
\(355\) 14124.6 2.11171
\(356\) 1727.88 0.257240
\(357\) 0 0
\(358\) −1223.32 −0.180599
\(359\) −1847.18 −0.271561 −0.135781 0.990739i \(-0.543354\pi\)
−0.135781 + 0.990739i \(0.543354\pi\)
\(360\) −1598.85 −0.234074
\(361\) −1066.54 −0.155495
\(362\) 3752.72 0.544857
\(363\) −4426.95 −0.640096
\(364\) 0 0
\(365\) −5392.60 −0.773320
\(366\) −4197.26 −0.599438
\(367\) 3727.30 0.530146 0.265073 0.964228i \(-0.414604\pi\)
0.265073 + 0.964228i \(0.414604\pi\)
\(368\) 368.000 0.0521286
\(369\) −3248.20 −0.458251
\(370\) 9614.66 1.35093
\(371\) 0 0
\(372\) −3922.58 −0.546711
\(373\) −3540.61 −0.491490 −0.245745 0.969334i \(-0.579033\pi\)
−0.245745 + 0.969334i \(0.579033\pi\)
\(374\) −12345.5 −1.70688
\(375\) −835.974 −0.115119
\(376\) −3284.88 −0.450544
\(377\) −7499.33 −1.02450
\(378\) 0 0
\(379\) 3016.44 0.408823 0.204412 0.978885i \(-0.434472\pi\)
0.204412 + 0.978885i \(0.434472\pi\)
\(380\) 4671.09 0.630584
\(381\) 3631.11 0.488261
\(382\) −9161.59 −1.22709
\(383\) 8440.45 1.12608 0.563038 0.826431i \(-0.309633\pi\)
0.563038 + 0.826431i \(0.309633\pi\)
\(384\) 478.497 0.0635891
\(385\) 0 0
\(386\) −2531.88 −0.333859
\(387\) −2507.04 −0.329302
\(388\) 3812.36 0.498823
\(389\) −1589.08 −0.207120 −0.103560 0.994623i \(-0.533023\pi\)
−0.103560 + 0.994623i \(0.533023\pi\)
\(390\) −5566.60 −0.722759
\(391\) 2830.86 0.366146
\(392\) 0 0
\(393\) −5310.83 −0.681669
\(394\) −6291.20 −0.804432
\(395\) 8998.69 1.14626
\(396\) −2613.00 −0.331587
\(397\) −10782.7 −1.36314 −0.681569 0.731753i \(-0.738702\pi\)
−0.681569 + 0.731753i \(0.738702\pi\)
\(398\) −6499.12 −0.818522
\(399\) 0 0
\(400\) 1766.81 0.220851
\(401\) −4015.39 −0.500048 −0.250024 0.968240i \(-0.580438\pi\)
−0.250024 + 0.968240i \(0.580438\pi\)
\(402\) −4933.66 −0.612111
\(403\) 12729.4 1.57344
\(404\) −3516.13 −0.433005
\(405\) 3186.14 0.390915
\(406\) 0 0
\(407\) 15713.2 1.91370
\(408\) 3680.87 0.446643
\(409\) 8257.36 0.998290 0.499145 0.866519i \(-0.333648\pi\)
0.499145 + 0.866519i \(0.333648\pi\)
\(410\) 7652.60 0.921792
\(411\) −6205.83 −0.744795
\(412\) 2824.81 0.337787
\(413\) 0 0
\(414\) 599.169 0.0711293
\(415\) −8261.89 −0.977254
\(416\) −1552.79 −0.183010
\(417\) −4629.29 −0.543638
\(418\) 7633.97 0.893276
\(419\) 7604.71 0.886669 0.443335 0.896356i \(-0.353795\pi\)
0.443335 + 0.896356i \(0.353795\pi\)
\(420\) 0 0
\(421\) −2514.29 −0.291067 −0.145533 0.989353i \(-0.546490\pi\)
−0.145533 + 0.989353i \(0.546490\pi\)
\(422\) −4895.57 −0.564722
\(423\) −5348.36 −0.614766
\(424\) 92.4379 0.0105877
\(425\) 13591.3 1.55123
\(426\) −6882.55 −0.782771
\(427\) 0 0
\(428\) 6112.74 0.690351
\(429\) −9097.51 −1.02385
\(430\) 5906.45 0.662406
\(431\) 4342.25 0.485287 0.242643 0.970116i \(-0.421985\pi\)
0.242643 + 0.970116i \(0.421985\pi\)
\(432\) 2394.01 0.266624
\(433\) 3224.64 0.357890 0.178945 0.983859i \(-0.442732\pi\)
0.178945 + 0.983859i \(0.442732\pi\)
\(434\) 0 0
\(435\) −8864.50 −0.977059
\(436\) −2372.96 −0.260651
\(437\) −1750.49 −0.191618
\(438\) 2627.67 0.286655
\(439\) −9373.54 −1.01908 −0.509538 0.860448i \(-0.670184\pi\)
−0.509538 + 0.860448i \(0.670184\pi\)
\(440\) 6156.10 0.667001
\(441\) 0 0
\(442\) −11945.0 −1.28544
\(443\) −5579.73 −0.598422 −0.299211 0.954187i \(-0.596723\pi\)
−0.299211 + 0.954187i \(0.596723\pi\)
\(444\) −4684.97 −0.500763
\(445\) −6627.97 −0.706059
\(446\) 3002.92 0.318817
\(447\) 9838.16 1.04100
\(448\) 0 0
\(449\) −14442.9 −1.51805 −0.759025 0.651062i \(-0.774324\pi\)
−0.759025 + 0.651062i \(0.774324\pi\)
\(450\) 2876.67 0.301350
\(451\) 12506.6 1.30580
\(452\) −225.483 −0.0234642
\(453\) 897.536 0.0930903
\(454\) 7346.55 0.759451
\(455\) 0 0
\(456\) −2276.10 −0.233746
\(457\) −8445.79 −0.864502 −0.432251 0.901753i \(-0.642281\pi\)
−0.432251 + 0.901753i \(0.642281\pi\)
\(458\) −8701.40 −0.887751
\(459\) 18416.0 1.87274
\(460\) −1411.61 −0.143080
\(461\) 5265.12 0.531933 0.265966 0.963982i \(-0.414309\pi\)
0.265966 + 0.963982i \(0.414309\pi\)
\(462\) 0 0
\(463\) −1969.69 −0.197709 −0.0988543 0.995102i \(-0.531518\pi\)
−0.0988543 + 0.995102i \(0.531518\pi\)
\(464\) −2472.74 −0.247401
\(465\) 15046.6 1.50058
\(466\) 6732.44 0.669258
\(467\) 10344.8 1.02505 0.512526 0.858672i \(-0.328710\pi\)
0.512526 + 0.858672i \(0.328710\pi\)
\(468\) −2528.22 −0.249716
\(469\) 0 0
\(470\) 12600.4 1.23663
\(471\) 7041.88 0.688902
\(472\) 3445.97 0.336046
\(473\) 9652.92 0.938354
\(474\) −4384.83 −0.424898
\(475\) −8404.28 −0.811821
\(476\) 0 0
\(477\) 150.505 0.0144469
\(478\) 8051.22 0.770407
\(479\) 11773.7 1.12308 0.561540 0.827450i \(-0.310209\pi\)
0.561540 + 0.827450i \(0.310209\pi\)
\(480\) −1835.47 −0.174536
\(481\) 15203.4 1.44120
\(482\) 4083.10 0.385851
\(483\) 0 0
\(484\) 4736.91 0.444864
\(485\) −14623.8 −1.36914
\(486\) 6527.25 0.609222
\(487\) 525.788 0.0489234 0.0244617 0.999701i \(-0.492213\pi\)
0.0244617 + 0.999701i \(0.492213\pi\)
\(488\) 4491.13 0.416607
\(489\) 12604.0 1.16559
\(490\) 0 0
\(491\) −5414.47 −0.497661 −0.248831 0.968547i \(-0.580046\pi\)
−0.248831 + 0.968547i \(0.580046\pi\)
\(492\) −3728.91 −0.341691
\(493\) −19021.7 −1.73772
\(494\) 7386.28 0.672721
\(495\) 10023.2 0.910120
\(496\) 4197.23 0.379962
\(497\) 0 0
\(498\) 4025.80 0.362250
\(499\) −2641.01 −0.236929 −0.118465 0.992958i \(-0.537797\pi\)
−0.118465 + 0.992958i \(0.537797\pi\)
\(500\) 894.505 0.0800070
\(501\) −1070.99 −0.0955056
\(502\) −9545.39 −0.848669
\(503\) −19739.9 −1.74982 −0.874911 0.484284i \(-0.839080\pi\)
−0.874911 + 0.484284i \(0.839080\pi\)
\(504\) 0 0
\(505\) 13487.5 1.18849
\(506\) −2306.99 −0.202685
\(507\) −589.373 −0.0516272
\(508\) −3885.35 −0.339339
\(509\) 7582.71 0.660310 0.330155 0.943927i \(-0.392899\pi\)
0.330155 + 0.943927i \(0.392899\pi\)
\(510\) −14119.4 −1.22592
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −11387.7 −0.980078
\(514\) 5116.14 0.439033
\(515\) −10835.7 −0.927138
\(516\) −2878.06 −0.245542
\(517\) 20592.9 1.75179
\(518\) 0 0
\(519\) 15198.5 1.28543
\(520\) 5956.36 0.502314
\(521\) −3199.47 −0.269042 −0.134521 0.990911i \(-0.542950\pi\)
−0.134521 + 0.990911i \(0.542950\pi\)
\(522\) −4026.05 −0.337578
\(523\) −14099.5 −1.17883 −0.589416 0.807830i \(-0.700642\pi\)
−0.589416 + 0.807830i \(0.700642\pi\)
\(524\) 5682.68 0.473757
\(525\) 0 0
\(526\) −2518.79 −0.208792
\(527\) 32287.4 2.66881
\(528\) −2999.70 −0.247245
\(529\) 529.000 0.0434783
\(530\) −354.582 −0.0290605
\(531\) 5610.65 0.458534
\(532\) 0 0
\(533\) 12100.9 0.983389
\(534\) 3229.64 0.261723
\(535\) −23447.8 −1.89484
\(536\) 5279.09 0.425414
\(537\) −2286.54 −0.183746
\(538\) −14577.2 −1.16815
\(539\) 0 0
\(540\) −9183.16 −0.731815
\(541\) −23848.0 −1.89521 −0.947604 0.319448i \(-0.896502\pi\)
−0.947604 + 0.319448i \(0.896502\pi\)
\(542\) 9470.08 0.750507
\(543\) 7014.32 0.554352
\(544\) −3938.59 −0.310415
\(545\) 9102.41 0.715421
\(546\) 0 0
\(547\) 22391.6 1.75027 0.875135 0.483879i \(-0.160773\pi\)
0.875135 + 0.483879i \(0.160773\pi\)
\(548\) 6640.34 0.517630
\(549\) 7312.36 0.568458
\(550\) −11076.1 −0.858704
\(551\) 11762.2 0.909415
\(552\) 687.840 0.0530370
\(553\) 0 0
\(554\) −12707.2 −0.974505
\(555\) 17971.1 1.37447
\(556\) 4953.41 0.377826
\(557\) 11947.3 0.908842 0.454421 0.890787i \(-0.349846\pi\)
0.454421 + 0.890787i \(0.349846\pi\)
\(558\) 6833.82 0.518457
\(559\) 9339.72 0.706669
\(560\) 0 0
\(561\) −23075.4 −1.73662
\(562\) 941.377 0.0706576
\(563\) −1037.06 −0.0776322 −0.0388161 0.999246i \(-0.512359\pi\)
−0.0388161 + 0.999246i \(0.512359\pi\)
\(564\) −6139.87 −0.458396
\(565\) 864.928 0.0644032
\(566\) 11411.7 0.847475
\(567\) 0 0
\(568\) 7364.44 0.544023
\(569\) 14072.6 1.03683 0.518415 0.855129i \(-0.326522\pi\)
0.518415 + 0.855129i \(0.326522\pi\)
\(570\) 8730.88 0.641572
\(571\) −23568.7 −1.72735 −0.863676 0.504047i \(-0.831844\pi\)
−0.863676 + 0.504047i \(0.831844\pi\)
\(572\) 9734.48 0.711572
\(573\) −17124.2 −1.24847
\(574\) 0 0
\(575\) 2539.78 0.184202
\(576\) −833.626 −0.0603028
\(577\) 11196.9 0.807856 0.403928 0.914791i \(-0.367645\pi\)
0.403928 + 0.914791i \(0.367645\pi\)
\(578\) −20471.9 −1.47321
\(579\) −4732.42 −0.339676
\(580\) 9485.16 0.679052
\(581\) 0 0
\(582\) 7125.80 0.507515
\(583\) −579.493 −0.0411667
\(584\) −2811.65 −0.199224
\(585\) 9697.99 0.685406
\(586\) 7701.77 0.542931
\(587\) 17414.2 1.22447 0.612234 0.790677i \(-0.290271\pi\)
0.612234 + 0.790677i \(0.290271\pi\)
\(588\) 0 0
\(589\) −19965.2 −1.39669
\(590\) −13218.4 −0.922360
\(591\) −11759.1 −0.818450
\(592\) 5012.99 0.348028
\(593\) 28003.8 1.93925 0.969626 0.244592i \(-0.0786539\pi\)
0.969626 + 0.244592i \(0.0786539\pi\)
\(594\) −15008.0 −1.03668
\(595\) 0 0
\(596\) −10527.0 −0.723494
\(597\) −12147.7 −0.832785
\(598\) −2232.14 −0.152641
\(599\) −4079.06 −0.278240 −0.139120 0.990275i \(-0.544427\pi\)
−0.139120 + 0.990275i \(0.544427\pi\)
\(600\) 3302.39 0.224699
\(601\) −8199.39 −0.556506 −0.278253 0.960508i \(-0.589755\pi\)
−0.278253 + 0.960508i \(0.589755\pi\)
\(602\) 0 0
\(603\) 8595.29 0.580476
\(604\) −960.378 −0.0646974
\(605\) −18170.3 −1.22104
\(606\) −6572.11 −0.440550
\(607\) −4077.30 −0.272640 −0.136320 0.990665i \(-0.543528\pi\)
−0.136320 + 0.990665i \(0.543528\pi\)
\(608\) 2435.46 0.162452
\(609\) 0 0
\(610\) −17227.5 −1.14348
\(611\) 19924.8 1.31926
\(612\) −6412.72 −0.423560
\(613\) −17662.5 −1.16376 −0.581879 0.813276i \(-0.697682\pi\)
−0.581879 + 0.813276i \(0.697682\pi\)
\(614\) −7035.06 −0.462397
\(615\) 14303.7 0.937855
\(616\) 0 0
\(617\) 167.228 0.0109114 0.00545570 0.999985i \(-0.498263\pi\)
0.00545570 + 0.999985i \(0.498263\pi\)
\(618\) 5279.93 0.343673
\(619\) −26088.7 −1.69401 −0.847006 0.531584i \(-0.821597\pi\)
−0.847006 + 0.531584i \(0.821597\pi\)
\(620\) −16100.1 −1.04290
\(621\) 3441.38 0.222380
\(622\) −19894.9 −1.28250
\(623\) 0 0
\(624\) −2902.38 −0.186199
\(625\) −17234.4 −1.10300
\(626\) −6709.37 −0.428371
\(627\) 14268.9 0.908842
\(628\) −7534.92 −0.478784
\(629\) 38562.8 2.44451
\(630\) 0 0
\(631\) 17963.2 1.13329 0.566643 0.823963i \(-0.308242\pi\)
0.566643 + 0.823963i \(0.308242\pi\)
\(632\) 4691.84 0.295303
\(633\) −9150.47 −0.574563
\(634\) −18296.3 −1.14612
\(635\) 14903.8 0.931400
\(636\) 172.778 0.0107722
\(637\) 0 0
\(638\) 15501.6 0.961935
\(639\) 11990.6 0.742317
\(640\) 1963.98 0.121302
\(641\) 5509.28 0.339475 0.169738 0.985489i \(-0.445708\pi\)
0.169738 + 0.985489i \(0.445708\pi\)
\(642\) 11425.5 0.702381
\(643\) −4311.62 −0.264438 −0.132219 0.991221i \(-0.542210\pi\)
−0.132219 + 0.991221i \(0.542210\pi\)
\(644\) 0 0
\(645\) 11039.9 0.673949
\(646\) 18735.0 1.14105
\(647\) −14142.2 −0.859331 −0.429665 0.902988i \(-0.641368\pi\)
−0.429665 + 0.902988i \(0.641368\pi\)
\(648\) 1661.22 0.100708
\(649\) −21602.8 −1.30660
\(650\) −10716.7 −0.646685
\(651\) 0 0
\(652\) −13486.5 −0.810080
\(653\) 27908.6 1.67251 0.836253 0.548344i \(-0.184741\pi\)
0.836253 + 0.548344i \(0.184741\pi\)
\(654\) −4435.37 −0.265193
\(655\) −21798.1 −1.30034
\(656\) 3989.99 0.237474
\(657\) −4577.86 −0.271841
\(658\) 0 0
\(659\) 7297.00 0.431337 0.215668 0.976467i \(-0.430807\pi\)
0.215668 + 0.976467i \(0.430807\pi\)
\(660\) 11506.5 0.678624
\(661\) 30889.9 1.81767 0.908835 0.417157i \(-0.136973\pi\)
0.908835 + 0.417157i \(0.136973\pi\)
\(662\) −14144.7 −0.830437
\(663\) −22326.7 −1.30784
\(664\) −4307.67 −0.251762
\(665\) 0 0
\(666\) 8162.03 0.474883
\(667\) −3554.56 −0.206347
\(668\) 1145.98 0.0663760
\(669\) 5612.86 0.324373
\(670\) −20250.0 −1.16765
\(671\) −28155.0 −1.61984
\(672\) 0 0
\(673\) −7671.51 −0.439398 −0.219699 0.975568i \(-0.570508\pi\)
−0.219699 + 0.975568i \(0.570508\pi\)
\(674\) 18035.7 1.03073
\(675\) 16522.4 0.942147
\(676\) 630.639 0.0358807
\(677\) −10663.3 −0.605352 −0.302676 0.953093i \(-0.597880\pi\)
−0.302676 + 0.953093i \(0.597880\pi\)
\(678\) −421.457 −0.0238731
\(679\) 0 0
\(680\) 15108.0 0.852009
\(681\) 13731.7 0.772685
\(682\) −26312.4 −1.47735
\(683\) −16289.0 −0.912562 −0.456281 0.889836i \(-0.650819\pi\)
−0.456281 + 0.889836i \(0.650819\pi\)
\(684\) 3965.36 0.221666
\(685\) −25471.6 −1.42076
\(686\) 0 0
\(687\) −16264.1 −0.903221
\(688\) 3079.57 0.170650
\(689\) −560.691 −0.0310024
\(690\) −2638.48 −0.145573
\(691\) −16771.9 −0.923348 −0.461674 0.887050i \(-0.652751\pi\)
−0.461674 + 0.887050i \(0.652751\pi\)
\(692\) −16262.6 −0.893370
\(693\) 0 0
\(694\) −18734.0 −1.02469
\(695\) −19000.8 −1.03704
\(696\) −4621.87 −0.251712
\(697\) 30693.3 1.66799
\(698\) −1641.75 −0.0890273
\(699\) 12583.8 0.680921
\(700\) 0 0
\(701\) −12347.4 −0.665272 −0.332636 0.943055i \(-0.607938\pi\)
−0.332636 + 0.943055i \(0.607938\pi\)
\(702\) −14521.1 −0.780717
\(703\) −23845.6 −1.27931
\(704\) 3209.73 0.171834
\(705\) 23551.9 1.25818
\(706\) −11562.7 −0.616386
\(707\) 0 0
\(708\) 6440.97 0.341902
\(709\) −516.206 −0.0273435 −0.0136717 0.999907i \(-0.504352\pi\)
−0.0136717 + 0.999907i \(0.504352\pi\)
\(710\) −28249.2 −1.49320
\(711\) 7639.13 0.402939
\(712\) −3455.76 −0.181896
\(713\) 6033.51 0.316910
\(714\) 0 0
\(715\) −37340.4 −1.95308
\(716\) 2446.63 0.127703
\(717\) 15048.8 0.783832
\(718\) 3694.36 0.192023
\(719\) 35577.3 1.84535 0.922676 0.385576i \(-0.125997\pi\)
0.922676 + 0.385576i \(0.125997\pi\)
\(720\) 3197.70 0.165516
\(721\) 0 0
\(722\) 2133.08 0.109952
\(723\) 7631.85 0.392575
\(724\) −7505.43 −0.385272
\(725\) −17065.8 −0.874219
\(726\) 8853.91 0.452616
\(727\) 19868.9 1.01361 0.506806 0.862060i \(-0.330826\pi\)
0.506806 + 0.862060i \(0.330826\pi\)
\(728\) 0 0
\(729\) 17806.9 0.904685
\(730\) 10785.2 0.546820
\(731\) 23689.8 1.19863
\(732\) 8394.52 0.423867
\(733\) −20954.6 −1.05590 −0.527950 0.849275i \(-0.677039\pi\)
−0.527950 + 0.849275i \(0.677039\pi\)
\(734\) −7454.61 −0.374870
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −33094.7 −1.65408
\(738\) 6496.41 0.324033
\(739\) −14005.9 −0.697181 −0.348590 0.937275i \(-0.613340\pi\)
−0.348590 + 0.937275i \(0.613340\pi\)
\(740\) −19229.3 −0.955248
\(741\) 13805.9 0.684444
\(742\) 0 0
\(743\) −1643.38 −0.0811439 −0.0405719 0.999177i \(-0.512918\pi\)
−0.0405719 + 0.999177i \(0.512918\pi\)
\(744\) 7845.17 0.386583
\(745\) 40380.4 1.98580
\(746\) 7081.22 0.347536
\(747\) −7013.65 −0.343529
\(748\) 24691.1 1.20694
\(749\) 0 0
\(750\) 1671.95 0.0814012
\(751\) −6205.21 −0.301506 −0.150753 0.988571i \(-0.548170\pi\)
−0.150753 + 0.988571i \(0.548170\pi\)
\(752\) 6569.76 0.318583
\(753\) −17841.6 −0.863457
\(754\) 14998.7 0.724428
\(755\) 3683.91 0.177578
\(756\) 0 0
\(757\) 40899.2 1.96368 0.981841 0.189705i \(-0.0607532\pi\)
0.981841 + 0.189705i \(0.0607532\pi\)
\(758\) −6032.88 −0.289082
\(759\) −4312.07 −0.206217
\(760\) −9342.18 −0.445890
\(761\) −15510.4 −0.738832 −0.369416 0.929264i \(-0.620442\pi\)
−0.369416 + 0.929264i \(0.620442\pi\)
\(762\) −7262.22 −0.345253
\(763\) 0 0
\(764\) 18323.2 0.867682
\(765\) 24598.5 1.16256
\(766\) −16880.9 −0.796256
\(767\) −20901.9 −0.983995
\(768\) −956.995 −0.0449643
\(769\) 10646.4 0.499246 0.249623 0.968343i \(-0.419693\pi\)
0.249623 + 0.968343i \(0.419693\pi\)
\(770\) 0 0
\(771\) 9562.73 0.446684
\(772\) 5063.76 0.236074
\(773\) 10230.6 0.476026 0.238013 0.971262i \(-0.423504\pi\)
0.238013 + 0.971262i \(0.423504\pi\)
\(774\) 5014.08 0.232852
\(775\) 28967.5 1.34264
\(776\) −7624.72 −0.352721
\(777\) 0 0
\(778\) 3178.16 0.146456
\(779\) −18979.4 −0.872926
\(780\) 11133.2 0.511068
\(781\) −46167.7 −2.11525
\(782\) −5661.73 −0.258904
\(783\) −23124.0 −1.05541
\(784\) 0 0
\(785\) 28903.2 1.31414
\(786\) 10621.7 0.482013
\(787\) −3275.04 −0.148339 −0.0741694 0.997246i \(-0.523631\pi\)
−0.0741694 + 0.997246i \(0.523631\pi\)
\(788\) 12582.4 0.568819
\(789\) −4707.94 −0.212430
\(790\) −17997.4 −0.810530
\(791\) 0 0
\(792\) 5226.01 0.234467
\(793\) −27241.4 −1.21989
\(794\) 21565.3 0.963885
\(795\) −662.760 −0.0295669
\(796\) 12998.2 0.578782
\(797\) 20657.2 0.918087 0.459044 0.888414i \(-0.348192\pi\)
0.459044 + 0.888414i \(0.348192\pi\)
\(798\) 0 0
\(799\) 50538.3 2.23769
\(800\) −3533.61 −0.156165
\(801\) −5626.59 −0.248197
\(802\) 8030.79 0.353587
\(803\) 17626.3 0.774617
\(804\) 9867.31 0.432828
\(805\) 0 0
\(806\) −25458.7 −1.11259
\(807\) −27246.6 −1.18851
\(808\) 7032.26 0.306181
\(809\) 22546.1 0.979827 0.489914 0.871771i \(-0.337028\pi\)
0.489914 + 0.871771i \(0.337028\pi\)
\(810\) −6372.28 −0.276419
\(811\) −42856.7 −1.85561 −0.927806 0.373064i \(-0.878307\pi\)
−0.927806 + 0.373064i \(0.878307\pi\)
\(812\) 0 0
\(813\) 17700.8 0.763585
\(814\) −31426.5 −1.35319
\(815\) 51732.8 2.22346
\(816\) −7361.74 −0.315824
\(817\) −14648.8 −0.627290
\(818\) −16514.7 −0.705897
\(819\) 0 0
\(820\) −15305.2 −0.651805
\(821\) −22567.9 −0.959350 −0.479675 0.877446i \(-0.659245\pi\)
−0.479675 + 0.877446i \(0.659245\pi\)
\(822\) 12411.7 0.526650
\(823\) −3575.51 −0.151439 −0.0757196 0.997129i \(-0.524125\pi\)
−0.0757196 + 0.997129i \(0.524125\pi\)
\(824\) −5649.61 −0.238851
\(825\) −20702.7 −0.873668
\(826\) 0 0
\(827\) −25118.0 −1.05615 −0.528076 0.849197i \(-0.677086\pi\)
−0.528076 + 0.849197i \(0.677086\pi\)
\(828\) −1198.34 −0.0502960
\(829\) −10559.6 −0.442399 −0.221200 0.975229i \(-0.570997\pi\)
−0.221200 + 0.975229i \(0.570997\pi\)
\(830\) 16523.8 0.691023
\(831\) −23751.4 −0.991487
\(832\) 3105.59 0.129407
\(833\) 0 0
\(834\) 9258.57 0.384410
\(835\) −4395.84 −0.182185
\(836\) −15267.9 −0.631642
\(837\) 39250.7 1.62091
\(838\) −15209.4 −0.626970
\(839\) 28017.9 1.15290 0.576452 0.817131i \(-0.304437\pi\)
0.576452 + 0.817131i \(0.304437\pi\)
\(840\) 0 0
\(841\) −504.491 −0.0206852
\(842\) 5028.58 0.205815
\(843\) 1759.56 0.0718889
\(844\) 9791.15 0.399319
\(845\) −2419.06 −0.0984832
\(846\) 10696.7 0.434705
\(847\) 0 0
\(848\) −184.876 −0.00748663
\(849\) 21330.0 0.862243
\(850\) −27182.5 −1.09689
\(851\) 7206.18 0.290276
\(852\) 13765.1 0.553503
\(853\) 14286.2 0.573448 0.286724 0.958013i \(-0.407434\pi\)
0.286724 + 0.958013i \(0.407434\pi\)
\(854\) 0 0
\(855\) −15210.7 −0.608415
\(856\) −12225.5 −0.488152
\(857\) −27467.7 −1.09484 −0.547421 0.836857i \(-0.684390\pi\)
−0.547421 + 0.836857i \(0.684390\pi\)
\(858\) 18195.0 0.723971
\(859\) −3545.68 −0.140835 −0.0704173 0.997518i \(-0.522433\pi\)
−0.0704173 + 0.997518i \(0.522433\pi\)
\(860\) −11812.9 −0.468391
\(861\) 0 0
\(862\) −8684.49 −0.343150
\(863\) −13581.5 −0.535714 −0.267857 0.963459i \(-0.586315\pi\)
−0.267857 + 0.963459i \(0.586315\pi\)
\(864\) −4788.01 −0.188532
\(865\) 62381.7 2.45207
\(866\) −6449.29 −0.253067
\(867\) −38264.6 −1.49889
\(868\) 0 0
\(869\) −29413.1 −1.14818
\(870\) 17729.0 0.690885
\(871\) −32020.9 −1.24568
\(872\) 4745.91 0.184308
\(873\) −12414.4 −0.481287
\(874\) 3500.98 0.135495
\(875\) 0 0
\(876\) −5255.35 −0.202696
\(877\) −29529.1 −1.13698 −0.568488 0.822692i \(-0.692471\pi\)
−0.568488 + 0.822692i \(0.692471\pi\)
\(878\) 18747.1 0.720596
\(879\) 14395.6 0.552392
\(880\) −12312.2 −0.471641
\(881\) 43648.0 1.66917 0.834585 0.550879i \(-0.185708\pi\)
0.834585 + 0.550879i \(0.185708\pi\)
\(882\) 0 0
\(883\) 15451.0 0.588865 0.294433 0.955672i \(-0.404869\pi\)
0.294433 + 0.955672i \(0.404869\pi\)
\(884\) 23889.9 0.908943
\(885\) −24706.9 −0.938433
\(886\) 11159.5 0.423148
\(887\) −45587.9 −1.72570 −0.862849 0.505462i \(-0.831322\pi\)
−0.862849 + 0.505462i \(0.831322\pi\)
\(888\) 9369.94 0.354093
\(889\) 0 0
\(890\) 13255.9 0.499259
\(891\) −10414.2 −0.391571
\(892\) −6005.85 −0.225438
\(893\) −31250.8 −1.17107
\(894\) −19676.3 −0.736101
\(895\) −9385.03 −0.350511
\(896\) 0 0
\(897\) −4172.17 −0.155301
\(898\) 28885.9 1.07342
\(899\) −40541.6 −1.50405
\(900\) −5753.34 −0.213087
\(901\) −1422.17 −0.0525852
\(902\) −25013.3 −0.923338
\(903\) 0 0
\(904\) 450.965 0.0165917
\(905\) 28790.0 1.05747
\(906\) −1795.07 −0.0658248
\(907\) 29939.6 1.09606 0.548031 0.836458i \(-0.315378\pi\)
0.548031 + 0.836458i \(0.315378\pi\)
\(908\) −14693.1 −0.537013
\(909\) 11449.8 0.417783
\(910\) 0 0
\(911\) 9534.22 0.346743 0.173371 0.984857i \(-0.444534\pi\)
0.173371 + 0.984857i \(0.444534\pi\)
\(912\) 4552.20 0.165283
\(913\) 27004.8 0.978893
\(914\) 16891.6 0.611295
\(915\) −32200.5 −1.16340
\(916\) 17402.8 0.627735
\(917\) 0 0
\(918\) −36832.1 −1.32423
\(919\) 1921.78 0.0689812 0.0344906 0.999405i \(-0.489019\pi\)
0.0344906 + 0.999405i \(0.489019\pi\)
\(920\) 2823.22 0.101173
\(921\) −13149.4 −0.470455
\(922\) −10530.2 −0.376133
\(923\) −44669.8 −1.59298
\(924\) 0 0
\(925\) 34597.6 1.22980
\(926\) 3939.37 0.139801
\(927\) −9198.56 −0.325912
\(928\) 4945.48 0.174939
\(929\) −39700.7 −1.40209 −0.701043 0.713119i \(-0.747282\pi\)
−0.701043 + 0.713119i \(0.747282\pi\)
\(930\) −30093.2 −1.06107
\(931\) 0 0
\(932\) −13464.9 −0.473237
\(933\) −37186.2 −1.30485
\(934\) −20689.6 −0.724821
\(935\) −94712.3 −3.31275
\(936\) 5056.44 0.176576
\(937\) 52946.6 1.84599 0.922993 0.384816i \(-0.125735\pi\)
0.922993 + 0.384816i \(0.125735\pi\)
\(938\) 0 0
\(939\) −12540.7 −0.435836
\(940\) −25200.9 −0.874428
\(941\) −7982.65 −0.276543 −0.138271 0.990394i \(-0.544155\pi\)
−0.138271 + 0.990394i \(0.544155\pi\)
\(942\) −14083.8 −0.487127
\(943\) 5735.61 0.198067
\(944\) −6891.94 −0.237620
\(945\) 0 0
\(946\) −19305.8 −0.663517
\(947\) −4772.39 −0.163761 −0.0818806 0.996642i \(-0.526093\pi\)
−0.0818806 + 0.996642i \(0.526093\pi\)
\(948\) 8769.65 0.300448
\(949\) 17054.4 0.583360
\(950\) 16808.6 0.574044
\(951\) −34198.2 −1.16609
\(952\) 0 0
\(953\) 37000.3 1.25767 0.628834 0.777540i \(-0.283533\pi\)
0.628834 + 0.777540i \(0.283533\pi\)
\(954\) −301.010 −0.0102155
\(955\) −70285.8 −2.38156
\(956\) −16102.4 −0.544760
\(957\) 28974.5 0.978698
\(958\) −23547.4 −0.794137
\(959\) 0 0
\(960\) 3670.93 0.123415
\(961\) 39024.3 1.30994
\(962\) −30406.8 −1.01908
\(963\) −19905.2 −0.666082
\(964\) −8166.20 −0.272838
\(965\) −19424.1 −0.647961
\(966\) 0 0
\(967\) 23119.4 0.768841 0.384420 0.923158i \(-0.374401\pi\)
0.384420 + 0.923158i \(0.374401\pi\)
\(968\) −9473.82 −0.314566
\(969\) 35018.1 1.16093
\(970\) 29247.6 0.968128
\(971\) 36166.0 1.19529 0.597643 0.801762i \(-0.296104\pi\)
0.597643 + 0.801762i \(0.296104\pi\)
\(972\) −13054.5 −0.430785
\(973\) 0 0
\(974\) −1051.58 −0.0345941
\(975\) −20031.0 −0.657954
\(976\) −8982.27 −0.294585
\(977\) 37011.8 1.21199 0.605994 0.795469i \(-0.292775\pi\)
0.605994 + 0.795469i \(0.292775\pi\)
\(978\) −25208.0 −0.824196
\(979\) 21664.2 0.707243
\(980\) 0 0
\(981\) 7727.18 0.251488
\(982\) 10828.9 0.351899
\(983\) −48524.7 −1.57446 −0.787232 0.616657i \(-0.788487\pi\)
−0.787232 + 0.616657i \(0.788487\pi\)
\(984\) 7457.82 0.241612
\(985\) −48264.8 −1.56126
\(986\) 38043.4 1.22875
\(987\) 0 0
\(988\) −14772.6 −0.475686
\(989\) 4426.88 0.142332
\(990\) −20046.4 −0.643552
\(991\) 7123.34 0.228335 0.114168 0.993461i \(-0.463580\pi\)
0.114168 + 0.993461i \(0.463580\pi\)
\(992\) −8394.45 −0.268674
\(993\) −26438.3 −0.844909
\(994\) 0 0
\(995\) −49859.9 −1.58861
\(996\) −8051.60 −0.256149
\(997\) −101.084 −0.00321101 −0.00160550 0.999999i \(-0.500511\pi\)
−0.00160550 + 0.999999i \(0.500511\pi\)
\(998\) 5282.01 0.167534
\(999\) 46879.5 1.48469
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.u.1.4 11
7.3 odd 6 322.4.e.d.93.4 22
7.5 odd 6 322.4.e.d.277.4 yes 22
7.6 odd 2 2254.4.a.r.1.8 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.d.93.4 22 7.3 odd 6
322.4.e.d.277.4 yes 22 7.5 odd 6
2254.4.a.r.1.8 11 7.6 odd 2
2254.4.a.u.1.4 11 1.1 even 1 trivial