Properties

Label 2254.4.a.u.1.3
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 234 x^{9} - 105 x^{8} + 18997 x^{7} + 16513 x^{6} - 621598 x^{5} - 743169 x^{4} + \cdots - 12103441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.89611\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -5.89611 q^{3} +4.00000 q^{4} -12.9445 q^{5} +11.7922 q^{6} -8.00000 q^{8} +7.76415 q^{9} +25.8891 q^{10} +12.8116 q^{11} -23.5845 q^{12} -21.0208 q^{13} +76.3225 q^{15} +16.0000 q^{16} +58.8720 q^{17} -15.5283 q^{18} +152.626 q^{19} -51.7782 q^{20} -25.6232 q^{22} +23.0000 q^{23} +47.1689 q^{24} +42.5611 q^{25} +42.0417 q^{26} +113.417 q^{27} +209.234 q^{29} -152.645 q^{30} +238.911 q^{31} -32.0000 q^{32} -75.5386 q^{33} -117.744 q^{34} +31.0566 q^{36} -364.105 q^{37} -305.252 q^{38} +123.941 q^{39} +103.556 q^{40} -235.402 q^{41} -458.046 q^{43} +51.2464 q^{44} -100.503 q^{45} -46.0000 q^{46} +164.072 q^{47} -94.3378 q^{48} -85.1222 q^{50} -347.116 q^{51} -84.0833 q^{52} -245.524 q^{53} -226.833 q^{54} -165.840 q^{55} -899.899 q^{57} -418.467 q^{58} +389.626 q^{59} +305.290 q^{60} +386.464 q^{61} -477.822 q^{62} +64.0000 q^{64} +272.105 q^{65} +151.077 q^{66} +573.894 q^{67} +235.488 q^{68} -135.611 q^{69} +724.966 q^{71} -62.1132 q^{72} +1239.25 q^{73} +728.210 q^{74} -250.945 q^{75} +610.503 q^{76} -247.882 q^{78} +35.5640 q^{79} -207.113 q^{80} -878.350 q^{81} +470.805 q^{82} -1195.88 q^{83} -762.070 q^{85} +916.091 q^{86} -1233.67 q^{87} -102.493 q^{88} -88.3557 q^{89} +201.007 q^{90} +92.0000 q^{92} -1408.65 q^{93} -328.144 q^{94} -1975.67 q^{95} +188.676 q^{96} -1759.37 q^{97} +99.4712 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 22 q^{2} + 44 q^{4} + 23 q^{5} - 88 q^{8} + 171 q^{9} - 46 q^{10} - 48 q^{11} + 77 q^{13} + 104 q^{15} + 176 q^{16} + 97 q^{17} - 342 q^{18} + 138 q^{19} + 92 q^{20} + 96 q^{22} + 253 q^{23} + 30 q^{25}+ \cdots - 2545 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −5.89611 −1.13471 −0.567354 0.823474i \(-0.692033\pi\)
−0.567354 + 0.823474i \(0.692033\pi\)
\(4\) 4.00000 0.500000
\(5\) −12.9445 −1.15779 −0.578897 0.815400i \(-0.696517\pi\)
−0.578897 + 0.815400i \(0.696517\pi\)
\(6\) 11.7922 0.802359
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 7.76415 0.287561
\(10\) 25.8891 0.818685
\(11\) 12.8116 0.351167 0.175584 0.984464i \(-0.443819\pi\)
0.175584 + 0.984464i \(0.443819\pi\)
\(12\) −23.5845 −0.567354
\(13\) −21.0208 −0.448472 −0.224236 0.974535i \(-0.571989\pi\)
−0.224236 + 0.974535i \(0.571989\pi\)
\(14\) 0 0
\(15\) 76.3225 1.31376
\(16\) 16.0000 0.250000
\(17\) 58.8720 0.839915 0.419957 0.907544i \(-0.362045\pi\)
0.419957 + 0.907544i \(0.362045\pi\)
\(18\) −15.5283 −0.203336
\(19\) 152.626 1.84288 0.921441 0.388519i \(-0.127013\pi\)
0.921441 + 0.388519i \(0.127013\pi\)
\(20\) −51.7782 −0.578897
\(21\) 0 0
\(22\) −25.6232 −0.248313
\(23\) 23.0000 0.208514
\(24\) 47.1689 0.401180
\(25\) 42.5611 0.340489
\(26\) 42.0417 0.317117
\(27\) 113.417 0.808410
\(28\) 0 0
\(29\) 209.234 1.33978 0.669891 0.742459i \(-0.266341\pi\)
0.669891 + 0.742459i \(0.266341\pi\)
\(30\) −152.645 −0.928968
\(31\) 238.911 1.38418 0.692092 0.721810i \(-0.256689\pi\)
0.692092 + 0.721810i \(0.256689\pi\)
\(32\) −32.0000 −0.176777
\(33\) −75.5386 −0.398472
\(34\) −117.744 −0.593909
\(35\) 0 0
\(36\) 31.0566 0.143781
\(37\) −364.105 −1.61780 −0.808898 0.587948i \(-0.799936\pi\)
−0.808898 + 0.587948i \(0.799936\pi\)
\(38\) −305.252 −1.30311
\(39\) 123.941 0.508884
\(40\) 103.556 0.409342
\(41\) −235.402 −0.896675 −0.448338 0.893864i \(-0.647984\pi\)
−0.448338 + 0.893864i \(0.647984\pi\)
\(42\) 0 0
\(43\) −458.046 −1.62445 −0.812224 0.583345i \(-0.801744\pi\)
−0.812224 + 0.583345i \(0.801744\pi\)
\(44\) 51.2464 0.175584
\(45\) −100.503 −0.332937
\(46\) −46.0000 −0.147442
\(47\) 164.072 0.509200 0.254600 0.967046i \(-0.418056\pi\)
0.254600 + 0.967046i \(0.418056\pi\)
\(48\) −94.3378 −0.283677
\(49\) 0 0
\(50\) −85.1222 −0.240762
\(51\) −347.116 −0.953057
\(52\) −84.0833 −0.224236
\(53\) −245.524 −0.636328 −0.318164 0.948036i \(-0.603066\pi\)
−0.318164 + 0.948036i \(0.603066\pi\)
\(54\) −226.833 −0.571632
\(55\) −165.840 −0.406580
\(56\) 0 0
\(57\) −899.899 −2.09113
\(58\) −418.467 −0.947370
\(59\) 389.626 0.859746 0.429873 0.902889i \(-0.358558\pi\)
0.429873 + 0.902889i \(0.358558\pi\)
\(60\) 305.290 0.656879
\(61\) 386.464 0.811174 0.405587 0.914057i \(-0.367067\pi\)
0.405587 + 0.914057i \(0.367067\pi\)
\(62\) −477.822 −0.978765
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 272.105 0.519238
\(66\) 151.077 0.281763
\(67\) 573.894 1.04645 0.523226 0.852194i \(-0.324728\pi\)
0.523226 + 0.852194i \(0.324728\pi\)
\(68\) 235.488 0.419957
\(69\) −135.611 −0.236603
\(70\) 0 0
\(71\) 724.966 1.21180 0.605899 0.795542i \(-0.292814\pi\)
0.605899 + 0.795542i \(0.292814\pi\)
\(72\) −62.1132 −0.101668
\(73\) 1239.25 1.98689 0.993445 0.114312i \(-0.0364663\pi\)
0.993445 + 0.114312i \(0.0364663\pi\)
\(74\) 728.210 1.14396
\(75\) −250.945 −0.386355
\(76\) 610.503 0.921441
\(77\) 0 0
\(78\) −247.882 −0.359835
\(79\) 35.5640 0.0506490 0.0253245 0.999679i \(-0.491938\pi\)
0.0253245 + 0.999679i \(0.491938\pi\)
\(80\) −207.113 −0.289449
\(81\) −878.350 −1.20487
\(82\) 470.805 0.634045
\(83\) −1195.88 −1.58151 −0.790755 0.612132i \(-0.790312\pi\)
−0.790755 + 0.612132i \(0.790312\pi\)
\(84\) 0 0
\(85\) −762.070 −0.972449
\(86\) 916.091 1.14866
\(87\) −1233.67 −1.52026
\(88\) −102.493 −0.124156
\(89\) −88.3557 −0.105232 −0.0526162 0.998615i \(-0.516756\pi\)
−0.0526162 + 0.998615i \(0.516756\pi\)
\(90\) 201.007 0.235422
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −1408.65 −1.57064
\(94\) −328.144 −0.360059
\(95\) −1975.67 −2.13368
\(96\) 188.676 0.200590
\(97\) −1759.37 −1.84162 −0.920811 0.390009i \(-0.872472\pi\)
−0.920811 + 0.390009i \(0.872472\pi\)
\(98\) 0 0
\(99\) 99.4712 0.100982
\(100\) 170.244 0.170244
\(101\) 158.671 0.156320 0.0781601 0.996941i \(-0.475095\pi\)
0.0781601 + 0.996941i \(0.475095\pi\)
\(102\) 694.231 0.673913
\(103\) 109.309 0.104568 0.0522841 0.998632i \(-0.483350\pi\)
0.0522841 + 0.998632i \(0.483350\pi\)
\(104\) 168.167 0.158559
\(105\) 0 0
\(106\) 491.049 0.449952
\(107\) 489.965 0.442679 0.221340 0.975197i \(-0.428957\pi\)
0.221340 + 0.975197i \(0.428957\pi\)
\(108\) 453.667 0.404205
\(109\) −2055.49 −1.80624 −0.903120 0.429388i \(-0.858729\pi\)
−0.903120 + 0.429388i \(0.858729\pi\)
\(110\) 331.680 0.287495
\(111\) 2146.80 1.83573
\(112\) 0 0
\(113\) −1677.71 −1.39668 −0.698342 0.715764i \(-0.746079\pi\)
−0.698342 + 0.715764i \(0.746079\pi\)
\(114\) 1799.80 1.47865
\(115\) −297.724 −0.241417
\(116\) 836.934 0.669891
\(117\) −163.209 −0.128963
\(118\) −779.253 −0.607933
\(119\) 0 0
\(120\) −610.580 −0.464484
\(121\) −1166.86 −0.876681
\(122\) −772.927 −0.573586
\(123\) 1387.96 1.01746
\(124\) 955.644 0.692092
\(125\) 1067.13 0.763579
\(126\) 0 0
\(127\) −658.313 −0.459967 −0.229983 0.973195i \(-0.573867\pi\)
−0.229983 + 0.973195i \(0.573867\pi\)
\(128\) −128.000 −0.0883883
\(129\) 2700.69 1.84327
\(130\) −544.210 −0.367157
\(131\) 2061.93 1.37520 0.687602 0.726088i \(-0.258664\pi\)
0.687602 + 0.726088i \(0.258664\pi\)
\(132\) −302.155 −0.199236
\(133\) 0 0
\(134\) −1147.79 −0.739953
\(135\) −1468.13 −0.935973
\(136\) −470.976 −0.296955
\(137\) 140.764 0.0877831 0.0438916 0.999036i \(-0.486024\pi\)
0.0438916 + 0.999036i \(0.486024\pi\)
\(138\) 271.221 0.167303
\(139\) 333.739 0.203650 0.101825 0.994802i \(-0.467532\pi\)
0.101825 + 0.994802i \(0.467532\pi\)
\(140\) 0 0
\(141\) −967.388 −0.577793
\(142\) −1449.93 −0.856870
\(143\) −269.310 −0.157489
\(144\) 124.226 0.0718903
\(145\) −2708.43 −1.55119
\(146\) −2478.50 −1.40494
\(147\) 0 0
\(148\) −1456.42 −0.808898
\(149\) 316.025 0.173757 0.0868783 0.996219i \(-0.472311\pi\)
0.0868783 + 0.996219i \(0.472311\pi\)
\(150\) 501.890 0.273194
\(151\) 1485.50 0.800585 0.400292 0.916387i \(-0.368909\pi\)
0.400292 + 0.916387i \(0.368909\pi\)
\(152\) −1221.01 −0.651557
\(153\) 457.091 0.241527
\(154\) 0 0
\(155\) −3092.59 −1.60260
\(156\) 495.765 0.254442
\(157\) −16.5978 −0.00843724 −0.00421862 0.999991i \(-0.501343\pi\)
−0.00421862 + 0.999991i \(0.501343\pi\)
\(158\) −71.1281 −0.0358142
\(159\) 1447.64 0.722046
\(160\) 414.225 0.204671
\(161\) 0 0
\(162\) 1756.70 0.851972
\(163\) 1952.79 0.938372 0.469186 0.883099i \(-0.344547\pi\)
0.469186 + 0.883099i \(0.344547\pi\)
\(164\) −941.610 −0.448338
\(165\) 977.813 0.461349
\(166\) 2391.77 1.11830
\(167\) −2373.55 −1.09983 −0.549913 0.835222i \(-0.685339\pi\)
−0.549913 + 0.835222i \(0.685339\pi\)
\(168\) 0 0
\(169\) −1755.12 −0.798873
\(170\) 1524.14 0.687625
\(171\) 1185.01 0.529941
\(172\) −1832.18 −0.812224
\(173\) −1663.75 −0.731172 −0.365586 0.930778i \(-0.619131\pi\)
−0.365586 + 0.930778i \(0.619131\pi\)
\(174\) 2467.33 1.07499
\(175\) 0 0
\(176\) 204.986 0.0877919
\(177\) −2297.28 −0.975561
\(178\) 176.711 0.0744105
\(179\) −256.393 −0.107060 −0.0535299 0.998566i \(-0.517047\pi\)
−0.0535299 + 0.998566i \(0.517047\pi\)
\(180\) −402.013 −0.166468
\(181\) 229.505 0.0942485 0.0471243 0.998889i \(-0.484994\pi\)
0.0471243 + 0.998889i \(0.484994\pi\)
\(182\) 0 0
\(183\) −2278.63 −0.920445
\(184\) −184.000 −0.0737210
\(185\) 4713.17 1.87308
\(186\) 2817.29 1.11061
\(187\) 754.244 0.294951
\(188\) 656.289 0.254600
\(189\) 0 0
\(190\) 3951.34 1.50874
\(191\) 1495.82 0.566668 0.283334 0.959021i \(-0.408560\pi\)
0.283334 + 0.959021i \(0.408560\pi\)
\(192\) −377.351 −0.141838
\(193\) 495.110 0.184657 0.0923286 0.995729i \(-0.470569\pi\)
0.0923286 + 0.995729i \(0.470569\pi\)
\(194\) 3518.75 1.30222
\(195\) −1604.36 −0.589183
\(196\) 0 0
\(197\) 1979.85 0.716035 0.358017 0.933715i \(-0.383453\pi\)
0.358017 + 0.933715i \(0.383453\pi\)
\(198\) −198.942 −0.0714051
\(199\) −2023.26 −0.720728 −0.360364 0.932812i \(-0.617348\pi\)
−0.360364 + 0.932812i \(0.617348\pi\)
\(200\) −340.489 −0.120381
\(201\) −3383.74 −1.18742
\(202\) −317.342 −0.110535
\(203\) 0 0
\(204\) −1388.46 −0.476529
\(205\) 3047.18 1.03817
\(206\) −218.618 −0.0739409
\(207\) 178.575 0.0599606
\(208\) −336.333 −0.112118
\(209\) 1955.38 0.647160
\(210\) 0 0
\(211\) −222.612 −0.0726316 −0.0363158 0.999340i \(-0.511562\pi\)
−0.0363158 + 0.999340i \(0.511562\pi\)
\(212\) −982.098 −0.318164
\(213\) −4274.48 −1.37504
\(214\) −979.930 −0.313022
\(215\) 5929.19 1.88078
\(216\) −907.334 −0.285816
\(217\) 0 0
\(218\) 4110.98 1.27720
\(219\) −7306.74 −2.25454
\(220\) −663.361 −0.203290
\(221\) −1237.54 −0.376678
\(222\) −4293.61 −1.29805
\(223\) 4542.87 1.36418 0.682092 0.731266i \(-0.261070\pi\)
0.682092 + 0.731266i \(0.261070\pi\)
\(224\) 0 0
\(225\) 330.451 0.0979114
\(226\) 3355.41 0.987605
\(227\) −1788.28 −0.522874 −0.261437 0.965220i \(-0.584196\pi\)
−0.261437 + 0.965220i \(0.584196\pi\)
\(228\) −3599.59 −1.04557
\(229\) −5393.71 −1.55645 −0.778224 0.627987i \(-0.783879\pi\)
−0.778224 + 0.627987i \(0.783879\pi\)
\(230\) 595.449 0.170708
\(231\) 0 0
\(232\) −1673.87 −0.473685
\(233\) 5619.96 1.58015 0.790077 0.613008i \(-0.210041\pi\)
0.790077 + 0.613008i \(0.210041\pi\)
\(234\) 326.418 0.0911906
\(235\) −2123.84 −0.589549
\(236\) 1558.51 0.429873
\(237\) −209.690 −0.0574718
\(238\) 0 0
\(239\) 1759.52 0.476208 0.238104 0.971240i \(-0.423474\pi\)
0.238104 + 0.971240i \(0.423474\pi\)
\(240\) 1221.16 0.328440
\(241\) −4671.17 −1.24853 −0.624267 0.781211i \(-0.714602\pi\)
−0.624267 + 0.781211i \(0.714602\pi\)
\(242\) 2333.73 0.619907
\(243\) 2116.60 0.558765
\(244\) 1545.85 0.405587
\(245\) 0 0
\(246\) −2775.92 −0.719456
\(247\) −3208.32 −0.826480
\(248\) −1911.29 −0.489383
\(249\) 7051.07 1.79455
\(250\) −2134.27 −0.539932
\(251\) −6737.86 −1.69438 −0.847191 0.531288i \(-0.821708\pi\)
−0.847191 + 0.531288i \(0.821708\pi\)
\(252\) 0 0
\(253\) 294.667 0.0732235
\(254\) 1316.63 0.325246
\(255\) 4493.25 1.10344
\(256\) 256.000 0.0625000
\(257\) 720.298 0.174829 0.0874143 0.996172i \(-0.472140\pi\)
0.0874143 + 0.996172i \(0.472140\pi\)
\(258\) −5401.38 −1.30339
\(259\) 0 0
\(260\) 1088.42 0.259619
\(261\) 1624.52 0.385270
\(262\) −4123.86 −0.972415
\(263\) 8283.70 1.94219 0.971093 0.238702i \(-0.0767218\pi\)
0.971093 + 0.238702i \(0.0767218\pi\)
\(264\) 604.309 0.140881
\(265\) 3178.20 0.736737
\(266\) 0 0
\(267\) 520.955 0.119408
\(268\) 2295.57 0.523226
\(269\) 4673.70 1.05933 0.529666 0.848206i \(-0.322317\pi\)
0.529666 + 0.848206i \(0.322317\pi\)
\(270\) 2936.26 0.661833
\(271\) 5874.48 1.31679 0.658393 0.752674i \(-0.271237\pi\)
0.658393 + 0.752674i \(0.271237\pi\)
\(272\) 941.951 0.209979
\(273\) 0 0
\(274\) −281.528 −0.0620721
\(275\) 545.276 0.119569
\(276\) −542.442 −0.118301
\(277\) 3572.67 0.774950 0.387475 0.921880i \(-0.373347\pi\)
0.387475 + 0.921880i \(0.373347\pi\)
\(278\) −667.478 −0.144002
\(279\) 1854.94 0.398037
\(280\) 0 0
\(281\) 791.003 0.167926 0.0839631 0.996469i \(-0.473242\pi\)
0.0839631 + 0.996469i \(0.473242\pi\)
\(282\) 1934.78 0.408561
\(283\) −5126.83 −1.07689 −0.538443 0.842662i \(-0.680987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(284\) 2899.86 0.605899
\(285\) 11648.8 2.42110
\(286\) 538.621 0.111361
\(287\) 0 0
\(288\) −248.453 −0.0508341
\(289\) −1447.09 −0.294544
\(290\) 5416.87 1.09686
\(291\) 10373.5 2.08970
\(292\) 4956.99 0.993445
\(293\) 2443.73 0.487249 0.243625 0.969870i \(-0.421664\pi\)
0.243625 + 0.969870i \(0.421664\pi\)
\(294\) 0 0
\(295\) −5043.54 −0.995410
\(296\) 2912.84 0.571978
\(297\) 1453.05 0.283887
\(298\) −632.049 −0.122865
\(299\) −483.479 −0.0935128
\(300\) −1003.78 −0.193178
\(301\) 0 0
\(302\) −2971.00 −0.566099
\(303\) −935.541 −0.177378
\(304\) 2442.01 0.460720
\(305\) −5002.59 −0.939173
\(306\) −914.181 −0.170785
\(307\) −3867.30 −0.718952 −0.359476 0.933154i \(-0.617045\pi\)
−0.359476 + 0.933154i \(0.617045\pi\)
\(308\) 0 0
\(309\) −644.498 −0.118654
\(310\) 6185.19 1.13321
\(311\) 9233.41 1.68353 0.841767 0.539841i \(-0.181516\pi\)
0.841767 + 0.539841i \(0.181516\pi\)
\(312\) −991.530 −0.179918
\(313\) −2273.51 −0.410563 −0.205282 0.978703i \(-0.565811\pi\)
−0.205282 + 0.978703i \(0.565811\pi\)
\(314\) 33.1955 0.00596603
\(315\) 0 0
\(316\) 142.256 0.0253245
\(317\) −6166.98 −1.09266 −0.546329 0.837571i \(-0.683975\pi\)
−0.546329 + 0.837571i \(0.683975\pi\)
\(318\) −2895.28 −0.510564
\(319\) 2680.62 0.470488
\(320\) −828.451 −0.144724
\(321\) −2888.89 −0.502312
\(322\) 0 0
\(323\) 8985.38 1.54786
\(324\) −3513.40 −0.602435
\(325\) −894.670 −0.152700
\(326\) −3905.59 −0.663529
\(327\) 12119.4 2.04955
\(328\) 1883.22 0.317023
\(329\) 0 0
\(330\) −1955.63 −0.326223
\(331\) 4566.40 0.758285 0.379142 0.925338i \(-0.376219\pi\)
0.379142 + 0.925338i \(0.376219\pi\)
\(332\) −4783.54 −0.790755
\(333\) −2826.97 −0.465215
\(334\) 4747.11 0.777695
\(335\) −7428.79 −1.21158
\(336\) 0 0
\(337\) −4102.09 −0.663071 −0.331536 0.943443i \(-0.607567\pi\)
−0.331536 + 0.943443i \(0.607567\pi\)
\(338\) 3510.25 0.564889
\(339\) 9891.94 1.58483
\(340\) −3048.28 −0.486224
\(341\) 3060.83 0.486080
\(342\) −2370.02 −0.374725
\(343\) 0 0
\(344\) 3664.37 0.574329
\(345\) 1755.42 0.273938
\(346\) 3327.51 0.517017
\(347\) −3075.49 −0.475795 −0.237897 0.971290i \(-0.576458\pi\)
−0.237897 + 0.971290i \(0.576458\pi\)
\(348\) −4934.66 −0.760131
\(349\) 3383.09 0.518890 0.259445 0.965758i \(-0.416460\pi\)
0.259445 + 0.965758i \(0.416460\pi\)
\(350\) 0 0
\(351\) −2384.11 −0.362549
\(352\) −409.971 −0.0620782
\(353\) 11394.3 1.71801 0.859003 0.511971i \(-0.171085\pi\)
0.859003 + 0.511971i \(0.171085\pi\)
\(354\) 4594.56 0.689826
\(355\) −9384.35 −1.40301
\(356\) −353.423 −0.0526162
\(357\) 0 0
\(358\) 512.786 0.0757028
\(359\) −9614.23 −1.41342 −0.706712 0.707501i \(-0.749823\pi\)
−0.706712 + 0.707501i \(0.749823\pi\)
\(360\) 804.027 0.117711
\(361\) 16435.6 2.39621
\(362\) −459.010 −0.0666438
\(363\) 6879.96 0.994777
\(364\) 0 0
\(365\) −16041.5 −2.30041
\(366\) 4557.27 0.650853
\(367\) 8435.35 1.19979 0.599893 0.800080i \(-0.295210\pi\)
0.599893 + 0.800080i \(0.295210\pi\)
\(368\) 368.000 0.0521286
\(369\) −1827.70 −0.257849
\(370\) −9426.34 −1.32447
\(371\) 0 0
\(372\) −5634.59 −0.785322
\(373\) −6006.02 −0.833726 −0.416863 0.908969i \(-0.636871\pi\)
−0.416863 + 0.908969i \(0.636871\pi\)
\(374\) −1508.49 −0.208562
\(375\) −6291.94 −0.866438
\(376\) −1312.58 −0.180029
\(377\) −4398.27 −0.600855
\(378\) 0 0
\(379\) −1668.89 −0.226188 −0.113094 0.993584i \(-0.536076\pi\)
−0.113094 + 0.993584i \(0.536076\pi\)
\(380\) −7902.68 −1.06684
\(381\) 3881.49 0.521928
\(382\) −2991.64 −0.400695
\(383\) 6067.78 0.809528 0.404764 0.914421i \(-0.367354\pi\)
0.404764 + 0.914421i \(0.367354\pi\)
\(384\) 754.702 0.100295
\(385\) 0 0
\(386\) −990.221 −0.130572
\(387\) −3556.34 −0.467128
\(388\) −7037.50 −0.920811
\(389\) 7672.25 0.999996 0.499998 0.866026i \(-0.333334\pi\)
0.499998 + 0.866026i \(0.333334\pi\)
\(390\) 3208.72 0.416616
\(391\) 1354.05 0.175134
\(392\) 0 0
\(393\) −12157.4 −1.56045
\(394\) −3959.71 −0.506313
\(395\) −460.360 −0.0586411
\(396\) 397.885 0.0504911
\(397\) 240.873 0.0304510 0.0152255 0.999884i \(-0.495153\pi\)
0.0152255 + 0.999884i \(0.495153\pi\)
\(398\) 4046.51 0.509632
\(399\) 0 0
\(400\) 680.978 0.0851222
\(401\) 10924.7 1.36048 0.680239 0.732991i \(-0.261876\pi\)
0.680239 + 0.732991i \(0.261876\pi\)
\(402\) 6767.48 0.839630
\(403\) −5022.11 −0.620767
\(404\) 634.684 0.0781601
\(405\) 11369.8 1.39499
\(406\) 0 0
\(407\) −4664.77 −0.568118
\(408\) 2776.93 0.336957
\(409\) 7689.39 0.929623 0.464812 0.885410i \(-0.346122\pi\)
0.464812 + 0.885410i \(0.346122\pi\)
\(410\) −6094.35 −0.734094
\(411\) −829.961 −0.0996082
\(412\) 437.236 0.0522841
\(413\) 0 0
\(414\) −357.151 −0.0423986
\(415\) 15480.2 1.83106
\(416\) 672.667 0.0792793
\(417\) −1967.76 −0.231083
\(418\) −3910.76 −0.457611
\(419\) 6179.10 0.720450 0.360225 0.932865i \(-0.382700\pi\)
0.360225 + 0.932865i \(0.382700\pi\)
\(420\) 0 0
\(421\) 2730.71 0.316120 0.158060 0.987430i \(-0.449476\pi\)
0.158060 + 0.987430i \(0.449476\pi\)
\(422\) 445.224 0.0513583
\(423\) 1273.88 0.146426
\(424\) 1964.20 0.224976
\(425\) 2505.66 0.285982
\(426\) 8548.96 0.972297
\(427\) 0 0
\(428\) 1959.86 0.221340
\(429\) 1587.89 0.178704
\(430\) −11858.4 −1.32991
\(431\) −7518.72 −0.840288 −0.420144 0.907458i \(-0.638020\pi\)
−0.420144 + 0.907458i \(0.638020\pi\)
\(432\) 1814.67 0.202102
\(433\) 11944.3 1.32565 0.662827 0.748772i \(-0.269356\pi\)
0.662827 + 0.748772i \(0.269356\pi\)
\(434\) 0 0
\(435\) 15969.2 1.76015
\(436\) −8221.96 −0.903120
\(437\) 3510.39 0.384267
\(438\) 14613.5 1.59420
\(439\) −9551.57 −1.03843 −0.519216 0.854643i \(-0.673776\pi\)
−0.519216 + 0.854643i \(0.673776\pi\)
\(440\) 1326.72 0.143748
\(441\) 0 0
\(442\) 2475.08 0.266351
\(443\) 7896.15 0.846857 0.423428 0.905930i \(-0.360827\pi\)
0.423428 + 0.905930i \(0.360827\pi\)
\(444\) 8587.22 0.917863
\(445\) 1143.72 0.121837
\(446\) −9085.74 −0.964624
\(447\) −1863.32 −0.197163
\(448\) 0 0
\(449\) −445.645 −0.0468403 −0.0234201 0.999726i \(-0.507456\pi\)
−0.0234201 + 0.999726i \(0.507456\pi\)
\(450\) −660.902 −0.0692338
\(451\) −3015.88 −0.314883
\(452\) −6710.82 −0.698342
\(453\) −8758.68 −0.908430
\(454\) 3576.57 0.369728
\(455\) 0 0
\(456\) 7199.19 0.739327
\(457\) −4431.13 −0.453566 −0.226783 0.973945i \(-0.572821\pi\)
−0.226783 + 0.973945i \(0.572821\pi\)
\(458\) 10787.4 1.10057
\(459\) 6677.07 0.678995
\(460\) −1190.90 −0.120708
\(461\) −763.727 −0.0771590 −0.0385795 0.999256i \(-0.512283\pi\)
−0.0385795 + 0.999256i \(0.512283\pi\)
\(462\) 0 0
\(463\) −14826.9 −1.48826 −0.744132 0.668033i \(-0.767136\pi\)
−0.744132 + 0.668033i \(0.767136\pi\)
\(464\) 3347.74 0.334946
\(465\) 18234.3 1.81848
\(466\) −11239.9 −1.11734
\(467\) −6593.35 −0.653328 −0.326664 0.945141i \(-0.605924\pi\)
−0.326664 + 0.945141i \(0.605924\pi\)
\(468\) −652.836 −0.0644815
\(469\) 0 0
\(470\) 4247.68 0.416874
\(471\) 97.8623 0.00957379
\(472\) −3117.01 −0.303966
\(473\) −5868.30 −0.570454
\(474\) 419.379 0.0406387
\(475\) 6495.92 0.627481
\(476\) 0 0
\(477\) −1906.29 −0.182983
\(478\) −3519.03 −0.336730
\(479\) −15862.5 −1.51311 −0.756553 0.653932i \(-0.773118\pi\)
−0.756553 + 0.653932i \(0.773118\pi\)
\(480\) −2442.32 −0.232242
\(481\) 7653.79 0.725536
\(482\) 9342.35 0.882847
\(483\) 0 0
\(484\) −4667.45 −0.438341
\(485\) 22774.3 2.13222
\(486\) −4233.20 −0.395107
\(487\) 7245.32 0.674162 0.337081 0.941476i \(-0.390560\pi\)
0.337081 + 0.941476i \(0.390560\pi\)
\(488\) −3091.71 −0.286793
\(489\) −11513.9 −1.06478
\(490\) 0 0
\(491\) 19714.8 1.81205 0.906023 0.423227i \(-0.139103\pi\)
0.906023 + 0.423227i \(0.139103\pi\)
\(492\) 5551.84 0.508732
\(493\) 12318.0 1.12530
\(494\) 6416.64 0.584410
\(495\) −1287.61 −0.116917
\(496\) 3822.58 0.346046
\(497\) 0 0
\(498\) −14102.1 −1.26894
\(499\) −12798.2 −1.14815 −0.574074 0.818803i \(-0.694638\pi\)
−0.574074 + 0.818803i \(0.694638\pi\)
\(500\) 4268.53 0.381789
\(501\) 13994.7 1.24798
\(502\) 13475.7 1.19811
\(503\) 9450.70 0.837745 0.418873 0.908045i \(-0.362425\pi\)
0.418873 + 0.908045i \(0.362425\pi\)
\(504\) 0 0
\(505\) −2053.92 −0.180987
\(506\) −589.334 −0.0517768
\(507\) 10348.4 0.906487
\(508\) −2633.25 −0.229983
\(509\) 5686.25 0.495164 0.247582 0.968867i \(-0.420364\pi\)
0.247582 + 0.968867i \(0.420364\pi\)
\(510\) −8986.51 −0.780253
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) 17310.3 1.48980
\(514\) −1440.60 −0.123622
\(515\) −1414.95 −0.121069
\(516\) 10802.8 0.921637
\(517\) 2102.03 0.178814
\(518\) 0 0
\(519\) 9809.67 0.829667
\(520\) −2176.84 −0.183578
\(521\) −5996.66 −0.504258 −0.252129 0.967694i \(-0.581131\pi\)
−0.252129 + 0.967694i \(0.581131\pi\)
\(522\) −3249.04 −0.272427
\(523\) 15839.5 1.32430 0.662152 0.749369i \(-0.269643\pi\)
0.662152 + 0.749369i \(0.269643\pi\)
\(524\) 8247.72 0.687602
\(525\) 0 0
\(526\) −16567.4 −1.37333
\(527\) 14065.2 1.16260
\(528\) −1208.62 −0.0996181
\(529\) 529.000 0.0434783
\(530\) −6356.40 −0.520952
\(531\) 3025.12 0.247230
\(532\) 0 0
\(533\) 4948.36 0.402133
\(534\) −1041.91 −0.0844342
\(535\) −6342.37 −0.512532
\(536\) −4591.15 −0.369977
\(537\) 1511.72 0.121482
\(538\) −9347.40 −0.749061
\(539\) 0 0
\(540\) −5872.51 −0.467986
\(541\) −18060.1 −1.43524 −0.717620 0.696435i \(-0.754768\pi\)
−0.717620 + 0.696435i \(0.754768\pi\)
\(542\) −11749.0 −0.931108
\(543\) −1353.19 −0.106944
\(544\) −1883.90 −0.148477
\(545\) 26607.4 2.09126
\(546\) 0 0
\(547\) −7336.84 −0.573493 −0.286746 0.958007i \(-0.592574\pi\)
−0.286746 + 0.958007i \(0.592574\pi\)
\(548\) 563.057 0.0438916
\(549\) 3000.56 0.233262
\(550\) −1090.55 −0.0845478
\(551\) 31934.4 2.46906
\(552\) 1084.88 0.0836517
\(553\) 0 0
\(554\) −7145.35 −0.547973
\(555\) −27789.4 −2.12539
\(556\) 1334.96 0.101825
\(557\) −11409.2 −0.867908 −0.433954 0.900935i \(-0.642882\pi\)
−0.433954 + 0.900935i \(0.642882\pi\)
\(558\) −3709.88 −0.281455
\(559\) 9628.50 0.728519
\(560\) 0 0
\(561\) −4447.11 −0.334683
\(562\) −1582.01 −0.118742
\(563\) 3108.20 0.232673 0.116337 0.993210i \(-0.462885\pi\)
0.116337 + 0.993210i \(0.462885\pi\)
\(564\) −3869.55 −0.288896
\(565\) 21717.1 1.61707
\(566\) 10253.7 0.761473
\(567\) 0 0
\(568\) −5799.73 −0.428435
\(569\) 2619.60 0.193004 0.0965019 0.995333i \(-0.469235\pi\)
0.0965019 + 0.995333i \(0.469235\pi\)
\(570\) −23297.5 −1.71198
\(571\) 7686.35 0.563334 0.281667 0.959512i \(-0.409113\pi\)
0.281667 + 0.959512i \(0.409113\pi\)
\(572\) −1077.24 −0.0787443
\(573\) −8819.51 −0.643002
\(574\) 0 0
\(575\) 978.906 0.0709968
\(576\) 496.906 0.0359451
\(577\) 12401.1 0.894738 0.447369 0.894349i \(-0.352361\pi\)
0.447369 + 0.894349i \(0.352361\pi\)
\(578\) 2894.19 0.208274
\(579\) −2919.23 −0.209532
\(580\) −10833.7 −0.775597
\(581\) 0 0
\(582\) −20746.9 −1.47764
\(583\) −3145.56 −0.223458
\(584\) −9913.98 −0.702472
\(585\) 2112.66 0.149313
\(586\) −4887.45 −0.344537
\(587\) 5716.81 0.401973 0.200986 0.979594i \(-0.435585\pi\)
0.200986 + 0.979594i \(0.435585\pi\)
\(588\) 0 0
\(589\) 36464.0 2.55089
\(590\) 10087.1 0.703861
\(591\) −11673.4 −0.812490
\(592\) −5825.68 −0.404449
\(593\) −15544.0 −1.07642 −0.538210 0.842811i \(-0.680899\pi\)
−0.538210 + 0.842811i \(0.680899\pi\)
\(594\) −2906.10 −0.200739
\(595\) 0 0
\(596\) 1264.10 0.0868783
\(597\) 11929.4 0.817816
\(598\) 966.958 0.0661235
\(599\) −15021.9 −1.02467 −0.512337 0.858785i \(-0.671220\pi\)
−0.512337 + 0.858785i \(0.671220\pi\)
\(600\) 2007.56 0.136597
\(601\) 11378.9 0.772307 0.386153 0.922435i \(-0.373804\pi\)
0.386153 + 0.922435i \(0.373804\pi\)
\(602\) 0 0
\(603\) 4455.80 0.300919
\(604\) 5942.00 0.400292
\(605\) 15104.5 1.01502
\(606\) 1871.08 0.125425
\(607\) −9434.98 −0.630896 −0.315448 0.948943i \(-0.602155\pi\)
−0.315448 + 0.948943i \(0.602155\pi\)
\(608\) −4884.02 −0.325779
\(609\) 0 0
\(610\) 10005.2 0.664095
\(611\) −3448.93 −0.228362
\(612\) 1828.36 0.120763
\(613\) −20154.7 −1.32796 −0.663980 0.747750i \(-0.731134\pi\)
−0.663980 + 0.747750i \(0.731134\pi\)
\(614\) 7734.60 0.508376
\(615\) −17966.5 −1.17801
\(616\) 0 0
\(617\) 28318.9 1.84777 0.923886 0.382668i \(-0.124995\pi\)
0.923886 + 0.382668i \(0.124995\pi\)
\(618\) 1289.00 0.0839013
\(619\) 3720.57 0.241587 0.120794 0.992678i \(-0.461456\pi\)
0.120794 + 0.992678i \(0.461456\pi\)
\(620\) −12370.4 −0.801300
\(621\) 2608.59 0.168565
\(622\) −18466.8 −1.19044
\(623\) 0 0
\(624\) 1983.06 0.127221
\(625\) −19133.7 −1.22456
\(626\) 4547.02 0.290312
\(627\) −11529.1 −0.734337
\(628\) −66.3911 −0.00421862
\(629\) −21435.6 −1.35881
\(630\) 0 0
\(631\) 12468.1 0.786606 0.393303 0.919409i \(-0.371332\pi\)
0.393303 + 0.919409i \(0.371332\pi\)
\(632\) −284.512 −0.0179071
\(633\) 1312.55 0.0824156
\(634\) 12334.0 0.772625
\(635\) 8521.55 0.532547
\(636\) 5790.56 0.361023
\(637\) 0 0
\(638\) −5361.23 −0.332685
\(639\) 5628.74 0.348466
\(640\) 1656.90 0.102336
\(641\) 1319.33 0.0812957 0.0406479 0.999174i \(-0.487058\pi\)
0.0406479 + 0.999174i \(0.487058\pi\)
\(642\) 5777.78 0.355188
\(643\) 9473.96 0.581052 0.290526 0.956867i \(-0.406170\pi\)
0.290526 + 0.956867i \(0.406170\pi\)
\(644\) 0 0
\(645\) −34959.2 −2.13413
\(646\) −17970.8 −1.09450
\(647\) 12271.0 0.745631 0.372816 0.927905i \(-0.378392\pi\)
0.372816 + 0.927905i \(0.378392\pi\)
\(648\) 7026.80 0.425986
\(649\) 4991.74 0.301915
\(650\) 1789.34 0.107975
\(651\) 0 0
\(652\) 7811.17 0.469186
\(653\) −29239.6 −1.75227 −0.876136 0.482064i \(-0.839887\pi\)
−0.876136 + 0.482064i \(0.839887\pi\)
\(654\) −24238.8 −1.44925
\(655\) −26690.7 −1.59220
\(656\) −3766.44 −0.224169
\(657\) 9621.70 0.571352
\(658\) 0 0
\(659\) 2743.35 0.162164 0.0810819 0.996707i \(-0.474162\pi\)
0.0810819 + 0.996707i \(0.474162\pi\)
\(660\) 3911.25 0.230675
\(661\) −25028.3 −1.47275 −0.736376 0.676572i \(-0.763465\pi\)
−0.736376 + 0.676572i \(0.763465\pi\)
\(662\) −9132.81 −0.536188
\(663\) 7296.66 0.427419
\(664\) 9567.08 0.559148
\(665\) 0 0
\(666\) 5653.93 0.328957
\(667\) 4812.37 0.279364
\(668\) −9494.22 −0.549913
\(669\) −26785.3 −1.54795
\(670\) 14857.6 0.856714
\(671\) 4951.22 0.284858
\(672\) 0 0
\(673\) −17201.1 −0.985219 −0.492609 0.870251i \(-0.663957\pi\)
−0.492609 + 0.870251i \(0.663957\pi\)
\(674\) 8204.18 0.468862
\(675\) 4827.14 0.275255
\(676\) −7020.50 −0.399437
\(677\) 12366.8 0.702060 0.351030 0.936364i \(-0.385832\pi\)
0.351030 + 0.936364i \(0.385832\pi\)
\(678\) −19783.9 −1.12064
\(679\) 0 0
\(680\) 6096.56 0.343813
\(681\) 10543.9 0.593310
\(682\) −6121.66 −0.343711
\(683\) 4091.25 0.229206 0.114603 0.993411i \(-0.463440\pi\)
0.114603 + 0.993411i \(0.463440\pi\)
\(684\) 4740.04 0.264971
\(685\) −1822.13 −0.101635
\(686\) 0 0
\(687\) 31801.9 1.76611
\(688\) −7328.73 −0.406112
\(689\) 5161.13 0.285375
\(690\) −3510.83 −0.193703
\(691\) 8816.73 0.485389 0.242695 0.970103i \(-0.421969\pi\)
0.242695 + 0.970103i \(0.421969\pi\)
\(692\) −6655.01 −0.365586
\(693\) 0 0
\(694\) 6150.98 0.336438
\(695\) −4320.10 −0.235785
\(696\) 9869.32 0.537494
\(697\) −13858.6 −0.753130
\(698\) −6766.18 −0.366911
\(699\) −33135.9 −1.79301
\(700\) 0 0
\(701\) −3370.35 −0.181593 −0.0907963 0.995869i \(-0.528941\pi\)
−0.0907963 + 0.995869i \(0.528941\pi\)
\(702\) 4768.23 0.256361
\(703\) −55571.8 −2.98141
\(704\) 819.942 0.0438959
\(705\) 12522.4 0.668965
\(706\) −22788.5 −1.21481
\(707\) 0 0
\(708\) −9189.13 −0.487780
\(709\) −27565.3 −1.46013 −0.730067 0.683375i \(-0.760511\pi\)
−0.730067 + 0.683375i \(0.760511\pi\)
\(710\) 18768.7 0.992080
\(711\) 276.125 0.0145647
\(712\) 706.845 0.0372053
\(713\) 5494.95 0.288622
\(714\) 0 0
\(715\) 3486.10 0.182340
\(716\) −1025.57 −0.0535299
\(717\) −10374.3 −0.540357
\(718\) 19228.5 0.999442
\(719\) 8370.38 0.434162 0.217081 0.976154i \(-0.430346\pi\)
0.217081 + 0.976154i \(0.430346\pi\)
\(720\) −1608.05 −0.0832342
\(721\) 0 0
\(722\) −32871.2 −1.69438
\(723\) 27541.8 1.41672
\(724\) 918.020 0.0471243
\(725\) 8905.22 0.456181
\(726\) −13759.9 −0.703414
\(727\) −15995.5 −0.816012 −0.408006 0.912979i \(-0.633776\pi\)
−0.408006 + 0.912979i \(0.633776\pi\)
\(728\) 0 0
\(729\) 11235.7 0.570835
\(730\) 32083.0 1.62664
\(731\) −26966.0 −1.36440
\(732\) −9114.53 −0.460222
\(733\) −15834.5 −0.797899 −0.398950 0.916973i \(-0.630625\pi\)
−0.398950 + 0.916973i \(0.630625\pi\)
\(734\) −16870.7 −0.848377
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 7352.49 0.367480
\(738\) 3655.40 0.182327
\(739\) 11264.3 0.560711 0.280355 0.959896i \(-0.409548\pi\)
0.280355 + 0.959896i \(0.409548\pi\)
\(740\) 18852.7 0.936538
\(741\) 18916.6 0.937813
\(742\) 0 0
\(743\) 7326.72 0.361765 0.180883 0.983505i \(-0.442105\pi\)
0.180883 + 0.983505i \(0.442105\pi\)
\(744\) 11269.2 0.555306
\(745\) −4090.79 −0.201175
\(746\) 12012.0 0.589533
\(747\) −9285.03 −0.454781
\(748\) 3016.98 0.147475
\(749\) 0 0
\(750\) 12583.9 0.612664
\(751\) −28755.5 −1.39721 −0.698603 0.715510i \(-0.746195\pi\)
−0.698603 + 0.715510i \(0.746195\pi\)
\(752\) 2625.15 0.127300
\(753\) 39727.2 1.92263
\(754\) 8796.53 0.424868
\(755\) −19229.1 −0.926913
\(756\) 0 0
\(757\) 15928.3 0.764760 0.382380 0.924005i \(-0.375104\pi\)
0.382380 + 0.924005i \(0.375104\pi\)
\(758\) 3337.78 0.159939
\(759\) −1737.39 −0.0830872
\(760\) 15805.4 0.754369
\(761\) 20406.9 0.972074 0.486037 0.873938i \(-0.338442\pi\)
0.486037 + 0.873938i \(0.338442\pi\)
\(762\) −7762.97 −0.369059
\(763\) 0 0
\(764\) 5983.27 0.283334
\(765\) −5916.83 −0.279638
\(766\) −12135.6 −0.572422
\(767\) −8190.27 −0.385572
\(768\) −1509.40 −0.0709192
\(769\) 20579.9 0.965059 0.482530 0.875880i \(-0.339718\pi\)
0.482530 + 0.875880i \(0.339718\pi\)
\(770\) 0 0
\(771\) −4246.96 −0.198379
\(772\) 1980.44 0.0923286
\(773\) 31392.9 1.46071 0.730353 0.683070i \(-0.239356\pi\)
0.730353 + 0.683070i \(0.239356\pi\)
\(774\) 7112.67 0.330310
\(775\) 10168.3 0.471299
\(776\) 14075.0 0.651112
\(777\) 0 0
\(778\) −15344.5 −0.707104
\(779\) −35928.5 −1.65247
\(780\) −6417.45 −0.294592
\(781\) 9287.97 0.425544
\(782\) −2708.11 −0.123839
\(783\) 23730.6 1.08309
\(784\) 0 0
\(785\) 214.850 0.00976859
\(786\) 24314.7 1.10341
\(787\) −37409.7 −1.69443 −0.847213 0.531254i \(-0.821721\pi\)
−0.847213 + 0.531254i \(0.821721\pi\)
\(788\) 7919.42 0.358017
\(789\) −48841.6 −2.20381
\(790\) 920.720 0.0414655
\(791\) 0 0
\(792\) −795.769 −0.0357026
\(793\) −8123.79 −0.363788
\(794\) −481.745 −0.0215321
\(795\) −18739.0 −0.835981
\(796\) −8093.03 −0.360364
\(797\) 18800.9 0.835587 0.417793 0.908542i \(-0.362804\pi\)
0.417793 + 0.908542i \(0.362804\pi\)
\(798\) 0 0
\(799\) 9659.25 0.427684
\(800\) −1361.96 −0.0601905
\(801\) −686.007 −0.0302607
\(802\) −21849.3 −0.962003
\(803\) 15876.7 0.697731
\(804\) −13535.0 −0.593708
\(805\) 0 0
\(806\) 10044.2 0.438948
\(807\) −27556.7 −1.20203
\(808\) −1269.37 −0.0552675
\(809\) 22375.5 0.972413 0.486207 0.873844i \(-0.338380\pi\)
0.486207 + 0.873844i \(0.338380\pi\)
\(810\) −22739.7 −0.986408
\(811\) 5013.76 0.217086 0.108543 0.994092i \(-0.465381\pi\)
0.108543 + 0.994092i \(0.465381\pi\)
\(812\) 0 0
\(813\) −34636.6 −1.49417
\(814\) 9329.53 0.401720
\(815\) −25278.0 −1.08644
\(816\) −5553.85 −0.238264
\(817\) −69909.6 −2.99367
\(818\) −15378.8 −0.657343
\(819\) 0 0
\(820\) 12188.7 0.519083
\(821\) 11210.4 0.476547 0.238274 0.971198i \(-0.423419\pi\)
0.238274 + 0.971198i \(0.423419\pi\)
\(822\) 1659.92 0.0704336
\(823\) −12289.5 −0.520515 −0.260257 0.965539i \(-0.583807\pi\)
−0.260257 + 0.965539i \(0.583807\pi\)
\(824\) −874.472 −0.0369705
\(825\) −3215.01 −0.135675
\(826\) 0 0
\(827\) −8887.19 −0.373686 −0.186843 0.982390i \(-0.559826\pi\)
−0.186843 + 0.982390i \(0.559826\pi\)
\(828\) 714.302 0.0299803
\(829\) 16836.7 0.705382 0.352691 0.935740i \(-0.385267\pi\)
0.352691 + 0.935740i \(0.385267\pi\)
\(830\) −30960.4 −1.29476
\(831\) −21064.9 −0.879342
\(832\) −1345.33 −0.0560589
\(833\) 0 0
\(834\) 3935.53 0.163401
\(835\) 30724.6 1.27337
\(836\) 7821.52 0.323580
\(837\) 27096.5 1.11899
\(838\) −12358.2 −0.509435
\(839\) 15226.8 0.626566 0.313283 0.949660i \(-0.398571\pi\)
0.313283 + 0.949660i \(0.398571\pi\)
\(840\) 0 0
\(841\) 19389.7 0.795018
\(842\) −5461.42 −0.223531
\(843\) −4663.84 −0.190547
\(844\) −890.449 −0.0363158
\(845\) 22719.3 0.924931
\(846\) −2547.76 −0.103539
\(847\) 0 0
\(848\) −3928.39 −0.159082
\(849\) 30228.4 1.22195
\(850\) −5011.31 −0.202220
\(851\) −8374.41 −0.337334
\(852\) −17097.9 −0.687518
\(853\) −32570.6 −1.30738 −0.653691 0.756762i \(-0.726780\pi\)
−0.653691 + 0.756762i \(0.726780\pi\)
\(854\) 0 0
\(855\) −15339.4 −0.613563
\(856\) −3919.72 −0.156511
\(857\) 26573.4 1.05919 0.529597 0.848249i \(-0.322343\pi\)
0.529597 + 0.848249i \(0.322343\pi\)
\(858\) −3175.77 −0.126362
\(859\) 10254.7 0.407317 0.203658 0.979042i \(-0.434717\pi\)
0.203658 + 0.979042i \(0.434717\pi\)
\(860\) 23716.8 0.940389
\(861\) 0 0
\(862\) 15037.4 0.594173
\(863\) 25341.8 0.999587 0.499794 0.866144i \(-0.333409\pi\)
0.499794 + 0.866144i \(0.333409\pi\)
\(864\) −3629.34 −0.142908
\(865\) 21536.5 0.846547
\(866\) −23888.7 −0.937379
\(867\) 8532.22 0.334221
\(868\) 0 0
\(869\) 455.632 0.0177863
\(870\) −31938.5 −1.24461
\(871\) −12063.7 −0.469304
\(872\) 16443.9 0.638602
\(873\) −13660.0 −0.529579
\(874\) −7020.78 −0.271718
\(875\) 0 0
\(876\) −29227.0 −1.12727
\(877\) 12594.8 0.484943 0.242471 0.970159i \(-0.422042\pi\)
0.242471 + 0.970159i \(0.422042\pi\)
\(878\) 19103.1 0.734282
\(879\) −14408.5 −0.552885
\(880\) −2653.44 −0.101645
\(881\) −40740.9 −1.55800 −0.778999 0.627025i \(-0.784272\pi\)
−0.778999 + 0.627025i \(0.784272\pi\)
\(882\) 0 0
\(883\) 4433.94 0.168985 0.0844926 0.996424i \(-0.473073\pi\)
0.0844926 + 0.996424i \(0.473073\pi\)
\(884\) −4950.15 −0.188339
\(885\) 29737.3 1.12950
\(886\) −15792.3 −0.598818
\(887\) −19202.6 −0.726900 −0.363450 0.931614i \(-0.618401\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(888\) −17174.4 −0.649027
\(889\) 0 0
\(890\) −2287.45 −0.0861521
\(891\) −11253.1 −0.423111
\(892\) 18171.5 0.682092
\(893\) 25041.6 0.938395
\(894\) 3726.63 0.139415
\(895\) 3318.89 0.123953
\(896\) 0 0
\(897\) 2850.65 0.106110
\(898\) 891.290 0.0331211
\(899\) 49988.2 1.85451
\(900\) 1321.80 0.0489557
\(901\) −14454.5 −0.534461
\(902\) 6031.76 0.222656
\(903\) 0 0
\(904\) 13421.6 0.493802
\(905\) −2970.84 −0.109120
\(906\) 17517.4 0.642357
\(907\) 25546.0 0.935215 0.467608 0.883936i \(-0.345116\pi\)
0.467608 + 0.883936i \(0.345116\pi\)
\(908\) −7153.13 −0.261437
\(909\) 1231.94 0.0449516
\(910\) 0 0
\(911\) −47365.7 −1.72261 −0.861304 0.508089i \(-0.830352\pi\)
−0.861304 + 0.508089i \(0.830352\pi\)
\(912\) −14398.4 −0.522783
\(913\) −15321.2 −0.555375
\(914\) 8862.26 0.320719
\(915\) 29495.9 1.06569
\(916\) −21574.8 −0.778224
\(917\) 0 0
\(918\) −13354.1 −0.480122
\(919\) 6661.75 0.239120 0.119560 0.992827i \(-0.461852\pi\)
0.119560 + 0.992827i \(0.461852\pi\)
\(920\) 2381.80 0.0853538
\(921\) 22802.0 0.815801
\(922\) 1527.45 0.0545597
\(923\) −15239.4 −0.543457
\(924\) 0 0
\(925\) −15496.7 −0.550842
\(926\) 29653.9 1.05236
\(927\) 848.691 0.0300698
\(928\) −6695.48 −0.236842
\(929\) −12168.4 −0.429743 −0.214872 0.976642i \(-0.568933\pi\)
−0.214872 + 0.976642i \(0.568933\pi\)
\(930\) −36468.6 −1.28586
\(931\) 0 0
\(932\) 22479.8 0.790077
\(933\) −54441.3 −1.91032
\(934\) 13186.7 0.461972
\(935\) −9763.34 −0.341492
\(936\) 1305.67 0.0455953
\(937\) 19003.8 0.662569 0.331285 0.943531i \(-0.392518\pi\)
0.331285 + 0.943531i \(0.392518\pi\)
\(938\) 0 0
\(939\) 13404.9 0.465869
\(940\) −8495.35 −0.294774
\(941\) 20231.2 0.700868 0.350434 0.936587i \(-0.386034\pi\)
0.350434 + 0.936587i \(0.386034\pi\)
\(942\) −195.725 −0.00676969
\(943\) −5414.26 −0.186970
\(944\) 6234.02 0.214937
\(945\) 0 0
\(946\) 11736.6 0.403372
\(947\) −3117.17 −0.106963 −0.0534817 0.998569i \(-0.517032\pi\)
−0.0534817 + 0.998569i \(0.517032\pi\)
\(948\) −838.759 −0.0287359
\(949\) −26050.0 −0.891064
\(950\) −12991.8 −0.443696
\(951\) 36361.2 1.23985
\(952\) 0 0
\(953\) 47116.8 1.60153 0.800767 0.598976i \(-0.204425\pi\)
0.800767 + 0.598976i \(0.204425\pi\)
\(954\) 3812.58 0.129389
\(955\) −19362.7 −0.656085
\(956\) 7038.07 0.238104
\(957\) −15805.2 −0.533866
\(958\) 31725.1 1.06993
\(959\) 0 0
\(960\) 4884.64 0.164220
\(961\) 27287.5 0.915963
\(962\) −15307.6 −0.513031
\(963\) 3804.16 0.127297
\(964\) −18684.7 −0.624267
\(965\) −6408.98 −0.213795
\(966\) 0 0
\(967\) −640.862 −0.0213120 −0.0106560 0.999943i \(-0.503392\pi\)
−0.0106560 + 0.999943i \(0.503392\pi\)
\(968\) 9334.90 0.309954
\(969\) −52978.8 −1.75637
\(970\) −45548.6 −1.50771
\(971\) −32681.9 −1.08013 −0.540067 0.841622i \(-0.681601\pi\)
−0.540067 + 0.841622i \(0.681601\pi\)
\(972\) 8466.40 0.279383
\(973\) 0 0
\(974\) −14490.6 −0.476704
\(975\) 5275.08 0.173269
\(976\) 6183.42 0.202793
\(977\) −35650.5 −1.16741 −0.583706 0.811965i \(-0.698398\pi\)
−0.583706 + 0.811965i \(0.698398\pi\)
\(978\) 23027.8 0.752911
\(979\) −1131.98 −0.0369542
\(980\) 0 0
\(981\) −15959.1 −0.519404
\(982\) −39429.5 −1.28131
\(983\) 15011.9 0.487086 0.243543 0.969890i \(-0.421690\pi\)
0.243543 + 0.969890i \(0.421690\pi\)
\(984\) −11103.7 −0.359728
\(985\) −25628.3 −0.829021
\(986\) −24636.0 −0.795709
\(987\) 0 0
\(988\) −12833.3 −0.413240
\(989\) −10535.0 −0.338721
\(990\) 2575.22 0.0826725
\(991\) −39792.6 −1.27553 −0.637767 0.770229i \(-0.720142\pi\)
−0.637767 + 0.770229i \(0.720142\pi\)
\(992\) −7645.15 −0.244691
\(993\) −26924.0 −0.860431
\(994\) 0 0
\(995\) 26190.1 0.834455
\(996\) 28204.3 0.897276
\(997\) −25568.6 −0.812202 −0.406101 0.913828i \(-0.633112\pi\)
−0.406101 + 0.913828i \(0.633112\pi\)
\(998\) 25596.4 0.811864
\(999\) −41295.6 −1.30784
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.u.1.3 11
7.3 odd 6 322.4.e.d.93.3 22
7.5 odd 6 322.4.e.d.277.3 yes 22
7.6 odd 2 2254.4.a.r.1.9 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.d.93.3 22 7.3 odd 6
322.4.e.d.277.3 yes 22 7.5 odd 6
2254.4.a.r.1.9 11 7.6 odd 2
2254.4.a.u.1.3 11 1.1 even 1 trivial