Properties

Label 2254.4.a.u.1.11
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 234 x^{9} - 105 x^{8} + 18997 x^{7} + 16513 x^{6} - 621598 x^{5} - 743169 x^{4} + \cdots - 12103441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(9.96286\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +9.96286 q^{3} +4.00000 q^{4} +11.8037 q^{5} -19.9257 q^{6} -8.00000 q^{8} +72.2585 q^{9} -23.6074 q^{10} +4.60635 q^{11} +39.8514 q^{12} -44.6962 q^{13} +117.598 q^{15} +16.0000 q^{16} +42.8996 q^{17} -144.517 q^{18} +80.8065 q^{19} +47.2147 q^{20} -9.21269 q^{22} +23.0000 q^{23} -79.7029 q^{24} +14.3270 q^{25} +89.3924 q^{26} +450.904 q^{27} +83.4085 q^{29} -235.197 q^{30} -29.1874 q^{31} -32.0000 q^{32} +45.8924 q^{33} -85.7992 q^{34} +289.034 q^{36} -11.7683 q^{37} -161.613 q^{38} -445.302 q^{39} -94.4295 q^{40} +385.859 q^{41} +60.7982 q^{43} +18.4254 q^{44} +852.917 q^{45} -46.0000 q^{46} -113.269 q^{47} +159.406 q^{48} -28.6541 q^{50} +427.403 q^{51} -178.785 q^{52} -652.574 q^{53} -901.808 q^{54} +54.3719 q^{55} +805.063 q^{57} -166.817 q^{58} +318.100 q^{59} +470.394 q^{60} +266.802 q^{61} +58.3747 q^{62} +64.0000 q^{64} -527.580 q^{65} -91.7847 q^{66} +957.595 q^{67} +171.598 q^{68} +229.146 q^{69} -540.145 q^{71} -578.068 q^{72} -989.786 q^{73} +23.5365 q^{74} +142.738 q^{75} +323.226 q^{76} +890.604 q^{78} +240.319 q^{79} +188.859 q^{80} +2541.31 q^{81} -771.718 q^{82} -1281.34 q^{83} +506.374 q^{85} -121.596 q^{86} +830.987 q^{87} -36.8508 q^{88} +372.062 q^{89} -1705.83 q^{90} +92.0000 q^{92} -290.789 q^{93} +226.538 q^{94} +953.815 q^{95} -318.811 q^{96} +1477.84 q^{97} +332.848 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 22 q^{2} + 44 q^{4} + 23 q^{5} - 88 q^{8} + 171 q^{9} - 46 q^{10} - 48 q^{11} + 77 q^{13} + 104 q^{15} + 176 q^{16} + 97 q^{17} - 342 q^{18} + 138 q^{19} + 92 q^{20} + 96 q^{22} + 253 q^{23} + 30 q^{25}+ \cdots - 2545 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 9.96286 1.91735 0.958676 0.284499i \(-0.0918273\pi\)
0.958676 + 0.284499i \(0.0918273\pi\)
\(4\) 4.00000 0.500000
\(5\) 11.8037 1.05575 0.527877 0.849321i \(-0.322988\pi\)
0.527877 + 0.849321i \(0.322988\pi\)
\(6\) −19.9257 −1.35577
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 72.2585 2.67624
\(10\) −23.6074 −0.746531
\(11\) 4.60635 0.126260 0.0631302 0.998005i \(-0.479892\pi\)
0.0631302 + 0.998005i \(0.479892\pi\)
\(12\) 39.8514 0.958676
\(13\) −44.6962 −0.953576 −0.476788 0.879018i \(-0.658199\pi\)
−0.476788 + 0.879018i \(0.658199\pi\)
\(14\) 0 0
\(15\) 117.598 2.02425
\(16\) 16.0000 0.250000
\(17\) 42.8996 0.612040 0.306020 0.952025i \(-0.401002\pi\)
0.306020 + 0.952025i \(0.401002\pi\)
\(18\) −144.517 −1.89239
\(19\) 80.8065 0.975699 0.487849 0.872928i \(-0.337781\pi\)
0.487849 + 0.872928i \(0.337781\pi\)
\(20\) 47.2147 0.527877
\(21\) 0 0
\(22\) −9.21269 −0.0892796
\(23\) 23.0000 0.208514
\(24\) −79.7029 −0.677887
\(25\) 14.3270 0.114616
\(26\) 89.3924 0.674280
\(27\) 450.904 3.21395
\(28\) 0 0
\(29\) 83.4085 0.534089 0.267044 0.963684i \(-0.413953\pi\)
0.267044 + 0.963684i \(0.413953\pi\)
\(30\) −235.197 −1.43136
\(31\) −29.1874 −0.169103 −0.0845517 0.996419i \(-0.526946\pi\)
−0.0845517 + 0.996419i \(0.526946\pi\)
\(32\) −32.0000 −0.176777
\(33\) 45.8924 0.242086
\(34\) −85.7992 −0.432778
\(35\) 0 0
\(36\) 289.034 1.33812
\(37\) −11.7683 −0.0522889 −0.0261445 0.999658i \(-0.508323\pi\)
−0.0261445 + 0.999658i \(0.508323\pi\)
\(38\) −161.613 −0.689923
\(39\) −445.302 −1.82834
\(40\) −94.4295 −0.373265
\(41\) 385.859 1.46978 0.734891 0.678186i \(-0.237233\pi\)
0.734891 + 0.678186i \(0.237233\pi\)
\(42\) 0 0
\(43\) 60.7982 0.215619 0.107810 0.994172i \(-0.465616\pi\)
0.107810 + 0.994172i \(0.465616\pi\)
\(44\) 18.4254 0.0631302
\(45\) 852.917 2.82545
\(46\) −46.0000 −0.147442
\(47\) −113.269 −0.351532 −0.175766 0.984432i \(-0.556240\pi\)
−0.175766 + 0.984432i \(0.556240\pi\)
\(48\) 159.406 0.479338
\(49\) 0 0
\(50\) −28.6541 −0.0810460
\(51\) 427.403 1.17350
\(52\) −178.785 −0.476788
\(53\) −652.574 −1.69128 −0.845641 0.533752i \(-0.820782\pi\)
−0.845641 + 0.533752i \(0.820782\pi\)
\(54\) −901.808 −2.27260
\(55\) 54.3719 0.133300
\(56\) 0 0
\(57\) 805.063 1.87076
\(58\) −166.817 −0.377658
\(59\) 318.100 0.701917 0.350958 0.936391i \(-0.385856\pi\)
0.350958 + 0.936391i \(0.385856\pi\)
\(60\) 470.394 1.01213
\(61\) 266.802 0.560008 0.280004 0.959999i \(-0.409664\pi\)
0.280004 + 0.959999i \(0.409664\pi\)
\(62\) 58.3747 0.119574
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −527.580 −1.00674
\(66\) −91.7847 −0.171181
\(67\) 957.595 1.74610 0.873051 0.487629i \(-0.162138\pi\)
0.873051 + 0.487629i \(0.162138\pi\)
\(68\) 171.598 0.306020
\(69\) 229.146 0.399796
\(70\) 0 0
\(71\) −540.145 −0.902866 −0.451433 0.892305i \(-0.649087\pi\)
−0.451433 + 0.892305i \(0.649087\pi\)
\(72\) −578.068 −0.946194
\(73\) −989.786 −1.58693 −0.793464 0.608618i \(-0.791724\pi\)
−0.793464 + 0.608618i \(0.791724\pi\)
\(74\) 23.5365 0.0369739
\(75\) 142.738 0.219760
\(76\) 323.226 0.487849
\(77\) 0 0
\(78\) 890.604 1.29283
\(79\) 240.319 0.342253 0.171126 0.985249i \(-0.445259\pi\)
0.171126 + 0.985249i \(0.445259\pi\)
\(80\) 188.859 0.263938
\(81\) 2541.31 3.48603
\(82\) −771.718 −1.03929
\(83\) −1281.34 −1.69452 −0.847262 0.531176i \(-0.821750\pi\)
−0.847262 + 0.531176i \(0.821750\pi\)
\(84\) 0 0
\(85\) 506.374 0.646164
\(86\) −121.596 −0.152466
\(87\) 830.987 1.02404
\(88\) −36.8508 −0.0446398
\(89\) 372.062 0.443129 0.221565 0.975146i \(-0.428884\pi\)
0.221565 + 0.975146i \(0.428884\pi\)
\(90\) −1705.83 −1.99790
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −290.789 −0.324231
\(94\) 226.538 0.248571
\(95\) 953.815 1.03010
\(96\) −318.811 −0.338943
\(97\) 1477.84 1.54692 0.773462 0.633843i \(-0.218524\pi\)
0.773462 + 0.633843i \(0.218524\pi\)
\(98\) 0 0
\(99\) 332.848 0.337903
\(100\) 57.3081 0.0573081
\(101\) −1524.82 −1.50223 −0.751116 0.660171i \(-0.770484\pi\)
−0.751116 + 0.660171i \(0.770484\pi\)
\(102\) −854.806 −0.829788
\(103\) −635.654 −0.608086 −0.304043 0.952658i \(-0.598337\pi\)
−0.304043 + 0.952658i \(0.598337\pi\)
\(104\) 357.570 0.337140
\(105\) 0 0
\(106\) 1305.15 1.19592
\(107\) 1826.01 1.64978 0.824892 0.565291i \(-0.191236\pi\)
0.824892 + 0.565291i \(0.191236\pi\)
\(108\) 1803.62 1.60697
\(109\) 2108.02 1.85240 0.926200 0.377032i \(-0.123055\pi\)
0.926200 + 0.377032i \(0.123055\pi\)
\(110\) −108.744 −0.0942573
\(111\) −117.246 −0.100256
\(112\) 0 0
\(113\) 342.787 0.285369 0.142684 0.989768i \(-0.454427\pi\)
0.142684 + 0.989768i \(0.454427\pi\)
\(114\) −1610.13 −1.32283
\(115\) 271.485 0.220140
\(116\) 333.634 0.267044
\(117\) −3229.68 −2.55200
\(118\) −636.200 −0.496330
\(119\) 0 0
\(120\) −940.788 −0.715681
\(121\) −1309.78 −0.984058
\(122\) −533.603 −0.395985
\(123\) 3844.26 2.81809
\(124\) −116.749 −0.0845517
\(125\) −1306.35 −0.934747
\(126\) 0 0
\(127\) −2405.93 −1.68104 −0.840520 0.541780i \(-0.817751\pi\)
−0.840520 + 0.541780i \(0.817751\pi\)
\(128\) −128.000 −0.0883883
\(129\) 605.724 0.413419
\(130\) 1055.16 0.711874
\(131\) 2047.24 1.36541 0.682704 0.730695i \(-0.260804\pi\)
0.682704 + 0.730695i \(0.260804\pi\)
\(132\) 183.569 0.121043
\(133\) 0 0
\(134\) −1915.19 −1.23468
\(135\) 5322.33 3.39314
\(136\) −343.197 −0.216389
\(137\) −174.150 −0.108603 −0.0543017 0.998525i \(-0.517293\pi\)
−0.0543017 + 0.998525i \(0.517293\pi\)
\(138\) −458.291 −0.282698
\(139\) 688.080 0.419872 0.209936 0.977715i \(-0.432674\pi\)
0.209936 + 0.977715i \(0.432674\pi\)
\(140\) 0 0
\(141\) −1128.48 −0.674011
\(142\) 1080.29 0.638422
\(143\) −205.886 −0.120399
\(144\) 1156.14 0.669060
\(145\) 984.528 0.563866
\(146\) 1979.57 1.12213
\(147\) 0 0
\(148\) −47.0731 −0.0261445
\(149\) −2128.33 −1.17020 −0.585100 0.810961i \(-0.698945\pi\)
−0.585100 + 0.810961i \(0.698945\pi\)
\(150\) −285.476 −0.155394
\(151\) 3145.53 1.69523 0.847613 0.530614i \(-0.178039\pi\)
0.847613 + 0.530614i \(0.178039\pi\)
\(152\) −646.452 −0.344962
\(153\) 3099.86 1.63797
\(154\) 0 0
\(155\) −344.518 −0.178532
\(156\) −1781.21 −0.914171
\(157\) 1580.39 0.803367 0.401684 0.915778i \(-0.368425\pi\)
0.401684 + 0.915778i \(0.368425\pi\)
\(158\) −480.637 −0.242009
\(159\) −6501.50 −3.24278
\(160\) −377.718 −0.186633
\(161\) 0 0
\(162\) −5082.63 −2.46499
\(163\) 1334.83 0.641422 0.320711 0.947177i \(-0.396078\pi\)
0.320711 + 0.947177i \(0.396078\pi\)
\(164\) 1543.44 0.734891
\(165\) 541.699 0.255583
\(166\) 2562.68 1.19821
\(167\) −650.417 −0.301382 −0.150691 0.988581i \(-0.548150\pi\)
−0.150691 + 0.988581i \(0.548150\pi\)
\(168\) 0 0
\(169\) −199.250 −0.0906920
\(170\) −1012.75 −0.456907
\(171\) 5838.96 2.61121
\(172\) 243.193 0.107810
\(173\) −72.0315 −0.0316558 −0.0158279 0.999875i \(-0.505038\pi\)
−0.0158279 + 0.999875i \(0.505038\pi\)
\(174\) −1661.97 −0.724103
\(175\) 0 0
\(176\) 73.7015 0.0315651
\(177\) 3169.18 1.34582
\(178\) −744.124 −0.313340
\(179\) 2189.74 0.914351 0.457176 0.889376i \(-0.348861\pi\)
0.457176 + 0.889376i \(0.348861\pi\)
\(180\) 3411.67 1.41273
\(181\) 1197.04 0.491578 0.245789 0.969323i \(-0.420953\pi\)
0.245789 + 0.969323i \(0.420953\pi\)
\(182\) 0 0
\(183\) 2658.11 1.07373
\(184\) −184.000 −0.0737210
\(185\) −138.909 −0.0552042
\(186\) 581.579 0.229266
\(187\) 197.610 0.0772765
\(188\) −453.077 −0.175766
\(189\) 0 0
\(190\) −1907.63 −0.728389
\(191\) 3172.81 1.20197 0.600986 0.799259i \(-0.294775\pi\)
0.600986 + 0.799259i \(0.294775\pi\)
\(192\) 637.623 0.239669
\(193\) −2797.24 −1.04326 −0.521631 0.853171i \(-0.674676\pi\)
−0.521631 + 0.853171i \(0.674676\pi\)
\(194\) −2955.67 −1.09384
\(195\) −5256.20 −1.93028
\(196\) 0 0
\(197\) 4600.10 1.66367 0.831836 0.555022i \(-0.187290\pi\)
0.831836 + 0.555022i \(0.187290\pi\)
\(198\) −665.695 −0.238934
\(199\) −1775.34 −0.632416 −0.316208 0.948690i \(-0.602410\pi\)
−0.316208 + 0.948690i \(0.602410\pi\)
\(200\) −114.616 −0.0405230
\(201\) 9540.38 3.34789
\(202\) 3049.64 1.06224
\(203\) 0 0
\(204\) 1709.61 0.586749
\(205\) 4554.56 1.55173
\(206\) 1271.31 0.429981
\(207\) 1661.95 0.558035
\(208\) −715.139 −0.238394
\(209\) 372.223 0.123192
\(210\) 0 0
\(211\) 4329.50 1.41258 0.706292 0.707920i \(-0.250366\pi\)
0.706292 + 0.707920i \(0.250366\pi\)
\(212\) −2610.30 −0.845641
\(213\) −5381.39 −1.73111
\(214\) −3652.02 −1.16657
\(215\) 717.643 0.227641
\(216\) −3607.23 −1.13630
\(217\) 0 0
\(218\) −4216.04 −1.30985
\(219\) −9861.10 −3.04270
\(220\) 217.487 0.0666500
\(221\) −1917.45 −0.583627
\(222\) 234.491 0.0708919
\(223\) −2457.40 −0.737935 −0.368967 0.929442i \(-0.620289\pi\)
−0.368967 + 0.929442i \(0.620289\pi\)
\(224\) 0 0
\(225\) 1035.25 0.306741
\(226\) −685.573 −0.201786
\(227\) −737.033 −0.215500 −0.107750 0.994178i \(-0.534365\pi\)
−0.107750 + 0.994178i \(0.534365\pi\)
\(228\) 3220.25 0.935379
\(229\) −1117.06 −0.322347 −0.161173 0.986926i \(-0.551528\pi\)
−0.161173 + 0.986926i \(0.551528\pi\)
\(230\) −542.970 −0.155662
\(231\) 0 0
\(232\) −667.268 −0.188829
\(233\) −1660.79 −0.466961 −0.233481 0.972361i \(-0.575012\pi\)
−0.233481 + 0.972361i \(0.575012\pi\)
\(234\) 6459.36 1.80454
\(235\) −1336.99 −0.371131
\(236\) 1272.40 0.350958
\(237\) 2394.26 0.656219
\(238\) 0 0
\(239\) −6359.15 −1.72109 −0.860543 0.509379i \(-0.829875\pi\)
−0.860543 + 0.509379i \(0.829875\pi\)
\(240\) 1881.58 0.506063
\(241\) −5325.63 −1.42346 −0.711731 0.702452i \(-0.752088\pi\)
−0.711731 + 0.702452i \(0.752088\pi\)
\(242\) 2619.56 0.695834
\(243\) 13144.3 3.46999
\(244\) 1067.21 0.280004
\(245\) 0 0
\(246\) −7688.51 −1.99269
\(247\) −3611.74 −0.930404
\(248\) 233.499 0.0597871
\(249\) −12765.8 −3.24900
\(250\) 2612.70 0.660966
\(251\) 2613.61 0.657250 0.328625 0.944461i \(-0.393415\pi\)
0.328625 + 0.944461i \(0.393415\pi\)
\(252\) 0 0
\(253\) 105.946 0.0263271
\(254\) 4811.87 1.18868
\(255\) 5044.93 1.23892
\(256\) 256.000 0.0625000
\(257\) −4998.11 −1.21313 −0.606564 0.795035i \(-0.707453\pi\)
−0.606564 + 0.795035i \(0.707453\pi\)
\(258\) −1211.45 −0.292331
\(259\) 0 0
\(260\) −2110.32 −0.503371
\(261\) 6026.97 1.42935
\(262\) −4094.49 −0.965490
\(263\) −5547.29 −1.30061 −0.650306 0.759673i \(-0.725359\pi\)
−0.650306 + 0.759673i \(0.725359\pi\)
\(264\) −367.139 −0.0855903
\(265\) −7702.78 −1.78558
\(266\) 0 0
\(267\) 3706.80 0.849635
\(268\) 3830.38 0.873051
\(269\) 5278.63 1.19644 0.598222 0.801330i \(-0.295874\pi\)
0.598222 + 0.801330i \(0.295874\pi\)
\(270\) −10644.7 −2.39931
\(271\) −4868.81 −1.09136 −0.545681 0.837993i \(-0.683729\pi\)
−0.545681 + 0.837993i \(0.683729\pi\)
\(272\) 686.394 0.153010
\(273\) 0 0
\(274\) 348.301 0.0767942
\(275\) 65.9953 0.0144715
\(276\) 916.583 0.199898
\(277\) 1826.24 0.396131 0.198066 0.980189i \(-0.436534\pi\)
0.198066 + 0.980189i \(0.436534\pi\)
\(278\) −1376.16 −0.296894
\(279\) −2109.04 −0.452561
\(280\) 0 0
\(281\) −4630.71 −0.983078 −0.491539 0.870856i \(-0.663565\pi\)
−0.491539 + 0.870856i \(0.663565\pi\)
\(282\) 2256.97 0.476598
\(283\) −6261.47 −1.31521 −0.657607 0.753361i \(-0.728431\pi\)
−0.657607 + 0.753361i \(0.728431\pi\)
\(284\) −2160.58 −0.451433
\(285\) 9502.72 1.97506
\(286\) 411.772 0.0851350
\(287\) 0 0
\(288\) −2312.27 −0.473097
\(289\) −3072.62 −0.625407
\(290\) −1969.06 −0.398714
\(291\) 14723.5 2.96600
\(292\) −3959.14 −0.793464
\(293\) −2024.03 −0.403568 −0.201784 0.979430i \(-0.564674\pi\)
−0.201784 + 0.979430i \(0.564674\pi\)
\(294\) 0 0
\(295\) 3754.75 0.741051
\(296\) 94.1461 0.0184869
\(297\) 2077.02 0.405794
\(298\) 4256.67 0.827457
\(299\) −1028.01 −0.198834
\(300\) 570.953 0.109880
\(301\) 0 0
\(302\) −6291.05 −1.19871
\(303\) −15191.6 −2.88031
\(304\) 1292.90 0.243925
\(305\) 3149.24 0.591230
\(306\) −6199.73 −1.15822
\(307\) −7703.59 −1.43214 −0.716070 0.698028i \(-0.754061\pi\)
−0.716070 + 0.698028i \(0.754061\pi\)
\(308\) 0 0
\(309\) −6332.93 −1.16591
\(310\) 689.037 0.126241
\(311\) 2858.35 0.521164 0.260582 0.965452i \(-0.416085\pi\)
0.260582 + 0.965452i \(0.416085\pi\)
\(312\) 3562.41 0.646417
\(313\) −749.127 −0.135282 −0.0676408 0.997710i \(-0.521547\pi\)
−0.0676408 + 0.997710i \(0.521547\pi\)
\(314\) −3160.78 −0.568067
\(315\) 0 0
\(316\) 961.275 0.171126
\(317\) 7316.56 1.29634 0.648169 0.761497i \(-0.275535\pi\)
0.648169 + 0.761497i \(0.275535\pi\)
\(318\) 13003.0 2.29299
\(319\) 384.208 0.0674343
\(320\) 755.436 0.131969
\(321\) 18192.3 3.16322
\(322\) 0 0
\(323\) 3466.57 0.597167
\(324\) 10165.3 1.74301
\(325\) −640.364 −0.109295
\(326\) −2669.66 −0.453554
\(327\) 21001.9 3.55171
\(328\) −3086.87 −0.519646
\(329\) 0 0
\(330\) −1083.40 −0.180725
\(331\) 3045.14 0.505667 0.252834 0.967510i \(-0.418637\pi\)
0.252834 + 0.967510i \(0.418637\pi\)
\(332\) −5125.36 −0.847262
\(333\) −850.357 −0.139938
\(334\) 1300.83 0.213109
\(335\) 11303.2 1.84345
\(336\) 0 0
\(337\) 2125.20 0.343523 0.171761 0.985139i \(-0.445054\pi\)
0.171761 + 0.985139i \(0.445054\pi\)
\(338\) 398.501 0.0641289
\(339\) 3415.13 0.547152
\(340\) 2025.49 0.323082
\(341\) −134.447 −0.0213511
\(342\) −11677.9 −1.84640
\(343\) 0 0
\(344\) −486.386 −0.0762330
\(345\) 2704.76 0.422086
\(346\) 144.063 0.0223840
\(347\) −9606.09 −1.48611 −0.743057 0.669228i \(-0.766625\pi\)
−0.743057 + 0.669228i \(0.766625\pi\)
\(348\) 3323.95 0.512018
\(349\) −636.545 −0.0976317 −0.0488159 0.998808i \(-0.515545\pi\)
−0.0488159 + 0.998808i \(0.515545\pi\)
\(350\) 0 0
\(351\) −20153.7 −3.06474
\(352\) −147.403 −0.0223199
\(353\) 5977.38 0.901258 0.450629 0.892711i \(-0.351200\pi\)
0.450629 + 0.892711i \(0.351200\pi\)
\(354\) −6338.37 −0.951640
\(355\) −6375.71 −0.953204
\(356\) 1488.25 0.221565
\(357\) 0 0
\(358\) −4379.48 −0.646544
\(359\) −13016.3 −1.91357 −0.956785 0.290797i \(-0.906080\pi\)
−0.956785 + 0.290797i \(0.906080\pi\)
\(360\) −6823.33 −0.998948
\(361\) −329.311 −0.0480116
\(362\) −2394.09 −0.347598
\(363\) −13049.2 −1.88679
\(364\) 0 0
\(365\) −11683.1 −1.67540
\(366\) −5316.21 −0.759243
\(367\) 6167.72 0.877255 0.438627 0.898669i \(-0.355465\pi\)
0.438627 + 0.898669i \(0.355465\pi\)
\(368\) 368.000 0.0521286
\(369\) 27881.6 3.93349
\(370\) 277.818 0.0390353
\(371\) 0 0
\(372\) −1163.16 −0.162115
\(373\) −1964.93 −0.272761 −0.136381 0.990657i \(-0.543547\pi\)
−0.136381 + 0.990657i \(0.543547\pi\)
\(374\) −395.221 −0.0546427
\(375\) −13015.0 −1.79224
\(376\) 906.153 0.124285
\(377\) −3728.04 −0.509294
\(378\) 0 0
\(379\) −5891.81 −0.798528 −0.399264 0.916836i \(-0.630734\pi\)
−0.399264 + 0.916836i \(0.630734\pi\)
\(380\) 3815.26 0.515049
\(381\) −23970.0 −3.22315
\(382\) −6345.63 −0.849923
\(383\) −13514.7 −1.80306 −0.901529 0.432718i \(-0.857555\pi\)
−0.901529 + 0.432718i \(0.857555\pi\)
\(384\) −1275.25 −0.169472
\(385\) 0 0
\(386\) 5594.48 0.737698
\(387\) 4393.19 0.577050
\(388\) 5911.35 0.773462
\(389\) −41.5038 −0.00540958 −0.00270479 0.999996i \(-0.500861\pi\)
−0.00270479 + 0.999996i \(0.500861\pi\)
\(390\) 10512.4 1.36491
\(391\) 986.691 0.127619
\(392\) 0 0
\(393\) 20396.4 2.61797
\(394\) −9200.19 −1.17639
\(395\) 2836.65 0.361335
\(396\) 1331.39 0.168952
\(397\) 6465.08 0.817313 0.408656 0.912688i \(-0.365997\pi\)
0.408656 + 0.912688i \(0.365997\pi\)
\(398\) 3550.69 0.447185
\(399\) 0 0
\(400\) 229.233 0.0286541
\(401\) −2444.04 −0.304363 −0.152181 0.988353i \(-0.548630\pi\)
−0.152181 + 0.988353i \(0.548630\pi\)
\(402\) −19080.8 −2.36732
\(403\) 1304.56 0.161253
\(404\) −6099.28 −0.751116
\(405\) 29996.9 3.68038
\(406\) 0 0
\(407\) −54.2087 −0.00660203
\(408\) −3419.22 −0.414894
\(409\) 6908.70 0.835241 0.417620 0.908622i \(-0.362864\pi\)
0.417620 + 0.908622i \(0.362864\pi\)
\(410\) −9109.11 −1.09724
\(411\) −1735.03 −0.208231
\(412\) −2542.61 −0.304043
\(413\) 0 0
\(414\) −3323.89 −0.394590
\(415\) −15124.5 −1.78900
\(416\) 1430.28 0.168570
\(417\) 6855.25 0.805043
\(418\) −744.445 −0.0871101
\(419\) 2222.30 0.259109 0.129554 0.991572i \(-0.458645\pi\)
0.129554 + 0.991572i \(0.458645\pi\)
\(420\) 0 0
\(421\) −1014.89 −0.117489 −0.0587445 0.998273i \(-0.518710\pi\)
−0.0587445 + 0.998273i \(0.518710\pi\)
\(422\) −8659.01 −0.998848
\(423\) −8184.66 −0.940784
\(424\) 5220.59 0.597959
\(425\) 614.624 0.0701498
\(426\) 10762.8 1.22408
\(427\) 0 0
\(428\) 7304.03 0.824892
\(429\) −2051.21 −0.230847
\(430\) −1435.29 −0.160967
\(431\) −3350.13 −0.374409 −0.187204 0.982321i \(-0.559943\pi\)
−0.187204 + 0.982321i \(0.559943\pi\)
\(432\) 7214.46 0.803486
\(433\) 1204.51 0.133684 0.0668419 0.997764i \(-0.478708\pi\)
0.0668419 + 0.997764i \(0.478708\pi\)
\(434\) 0 0
\(435\) 9808.71 1.08113
\(436\) 8432.08 0.926200
\(437\) 1858.55 0.203447
\(438\) 19722.2 2.15151
\(439\) 5226.22 0.568186 0.284093 0.958797i \(-0.408308\pi\)
0.284093 + 0.958797i \(0.408308\pi\)
\(440\) −434.975 −0.0471287
\(441\) 0 0
\(442\) 3834.90 0.412687
\(443\) 4858.51 0.521072 0.260536 0.965464i \(-0.416101\pi\)
0.260536 + 0.965464i \(0.416101\pi\)
\(444\) −468.982 −0.0501282
\(445\) 4391.70 0.467835
\(446\) 4914.79 0.521799
\(447\) −21204.3 −2.24369
\(448\) 0 0
\(449\) 11797.4 1.23999 0.619994 0.784606i \(-0.287135\pi\)
0.619994 + 0.784606i \(0.287135\pi\)
\(450\) −2070.50 −0.216899
\(451\) 1777.40 0.185575
\(452\) 1371.15 0.142684
\(453\) 31338.4 3.25035
\(454\) 1474.07 0.152382
\(455\) 0 0
\(456\) −6440.51 −0.661413
\(457\) 2317.80 0.237247 0.118624 0.992939i \(-0.462152\pi\)
0.118624 + 0.992939i \(0.462152\pi\)
\(458\) 2234.12 0.227934
\(459\) 19343.6 1.96706
\(460\) 1085.94 0.110070
\(461\) 6605.88 0.667389 0.333695 0.942681i \(-0.391705\pi\)
0.333695 + 0.942681i \(0.391705\pi\)
\(462\) 0 0
\(463\) 13744.4 1.37961 0.689804 0.723996i \(-0.257697\pi\)
0.689804 + 0.723996i \(0.257697\pi\)
\(464\) 1334.54 0.133522
\(465\) −3432.39 −0.342308
\(466\) 3321.58 0.330191
\(467\) −11563.1 −1.14578 −0.572889 0.819633i \(-0.694177\pi\)
−0.572889 + 0.819633i \(0.694177\pi\)
\(468\) −12918.7 −1.27600
\(469\) 0 0
\(470\) 2673.99 0.262429
\(471\) 15745.2 1.54034
\(472\) −2544.80 −0.248165
\(473\) 280.057 0.0272242
\(474\) −4788.52 −0.464017
\(475\) 1157.72 0.111831
\(476\) 0 0
\(477\) −47154.0 −4.52628
\(478\) 12718.3 1.21699
\(479\) 17590.9 1.67797 0.838985 0.544155i \(-0.183150\pi\)
0.838985 + 0.544155i \(0.183150\pi\)
\(480\) −3763.15 −0.357841
\(481\) 525.997 0.0498615
\(482\) 10651.3 1.00654
\(483\) 0 0
\(484\) −5239.13 −0.492029
\(485\) 17443.9 1.63317
\(486\) −26288.6 −2.45366
\(487\) −8379.26 −0.779672 −0.389836 0.920884i \(-0.627468\pi\)
−0.389836 + 0.920884i \(0.627468\pi\)
\(488\) −2134.41 −0.197993
\(489\) 13298.7 1.22983
\(490\) 0 0
\(491\) −15435.2 −1.41869 −0.709347 0.704859i \(-0.751010\pi\)
−0.709347 + 0.704859i \(0.751010\pi\)
\(492\) 15377.0 1.40904
\(493\) 3578.19 0.326884
\(494\) 7223.48 0.657895
\(495\) 3928.83 0.356743
\(496\) −466.998 −0.0422758
\(497\) 0 0
\(498\) 25531.6 2.29739
\(499\) 12303.0 1.10372 0.551859 0.833937i \(-0.313918\pi\)
0.551859 + 0.833937i \(0.313918\pi\)
\(500\) −5225.40 −0.467374
\(501\) −6480.02 −0.577856
\(502\) −5227.22 −0.464746
\(503\) −1978.55 −0.175386 −0.0876931 0.996148i \(-0.527949\pi\)
−0.0876931 + 0.996148i \(0.527949\pi\)
\(504\) 0 0
\(505\) −17998.5 −1.58599
\(506\) −211.892 −0.0186161
\(507\) −1985.10 −0.173888
\(508\) −9623.74 −0.840520
\(509\) −2138.21 −0.186197 −0.0930987 0.995657i \(-0.529677\pi\)
−0.0930987 + 0.995657i \(0.529677\pi\)
\(510\) −10089.9 −0.876052
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) 36436.0 3.13584
\(514\) 9996.23 0.857811
\(515\) −7503.06 −0.641989
\(516\) 2422.89 0.206709
\(517\) −521.757 −0.0443846
\(518\) 0 0
\(519\) −717.640 −0.0606953
\(520\) 4220.64 0.355937
\(521\) 14496.3 1.21899 0.609495 0.792790i \(-0.291372\pi\)
0.609495 + 0.792790i \(0.291372\pi\)
\(522\) −12053.9 −1.01070
\(523\) −1064.47 −0.0889984 −0.0444992 0.999009i \(-0.514169\pi\)
−0.0444992 + 0.999009i \(0.514169\pi\)
\(524\) 8188.98 0.682704
\(525\) 0 0
\(526\) 11094.6 0.919671
\(527\) −1252.13 −0.103498
\(528\) 734.278 0.0605215
\(529\) 529.000 0.0434783
\(530\) 15405.6 1.26259
\(531\) 22985.4 1.87850
\(532\) 0 0
\(533\) −17246.4 −1.40155
\(534\) −7413.60 −0.600782
\(535\) 21553.6 1.74177
\(536\) −7660.76 −0.617340
\(537\) 21816.1 1.75313
\(538\) −10557.3 −0.846014
\(539\) 0 0
\(540\) 21289.3 1.69657
\(541\) −5778.57 −0.459224 −0.229612 0.973282i \(-0.573746\pi\)
−0.229612 + 0.973282i \(0.573746\pi\)
\(542\) 9737.61 0.771709
\(543\) 11926.0 0.942528
\(544\) −1372.79 −0.108194
\(545\) 24882.4 1.95568
\(546\) 0 0
\(547\) 683.854 0.0534543 0.0267271 0.999643i \(-0.491491\pi\)
0.0267271 + 0.999643i \(0.491491\pi\)
\(548\) −696.601 −0.0543017
\(549\) 19278.7 1.49872
\(550\) −131.991 −0.0102329
\(551\) 6739.95 0.521110
\(552\) −1833.17 −0.141349
\(553\) 0 0
\(554\) −3652.49 −0.280107
\(555\) −1383.93 −0.105846
\(556\) 2752.32 0.209936
\(557\) 11916.8 0.906516 0.453258 0.891379i \(-0.350262\pi\)
0.453258 + 0.891379i \(0.350262\pi\)
\(558\) 4218.07 0.320009
\(559\) −2717.45 −0.205610
\(560\) 0 0
\(561\) 1968.76 0.148166
\(562\) 9261.42 0.695141
\(563\) 11461.3 0.857967 0.428984 0.903312i \(-0.358872\pi\)
0.428984 + 0.903312i \(0.358872\pi\)
\(564\) −4513.94 −0.337005
\(565\) 4046.15 0.301279
\(566\) 12522.9 0.929997
\(567\) 0 0
\(568\) 4321.16 0.319211
\(569\) −24135.3 −1.77822 −0.889109 0.457695i \(-0.848675\pi\)
−0.889109 + 0.457695i \(0.848675\pi\)
\(570\) −19005.4 −1.39658
\(571\) 24832.3 1.81996 0.909982 0.414647i \(-0.136095\pi\)
0.909982 + 0.414647i \(0.136095\pi\)
\(572\) −823.544 −0.0601995
\(573\) 31610.3 2.30461
\(574\) 0 0
\(575\) 329.522 0.0238991
\(576\) 4624.54 0.334530
\(577\) −5663.64 −0.408632 −0.204316 0.978905i \(-0.565497\pi\)
−0.204316 + 0.978905i \(0.565497\pi\)
\(578\) 6145.24 0.442229
\(579\) −27868.5 −2.00030
\(580\) 3938.11 0.281933
\(581\) 0 0
\(582\) −29446.9 −2.09728
\(583\) −3005.98 −0.213542
\(584\) 7918.29 0.561063
\(585\) −38122.1 −2.69428
\(586\) 4048.07 0.285365
\(587\) 6199.90 0.435940 0.217970 0.975955i \(-0.430056\pi\)
0.217970 + 0.975955i \(0.430056\pi\)
\(588\) 0 0
\(589\) −2358.53 −0.164994
\(590\) −7509.51 −0.524003
\(591\) 45830.1 3.18985
\(592\) −188.292 −0.0130722
\(593\) −17208.9 −1.19171 −0.595857 0.803090i \(-0.703188\pi\)
−0.595857 + 0.803090i \(0.703188\pi\)
\(594\) −4154.04 −0.286940
\(595\) 0 0
\(596\) −8513.33 −0.585100
\(597\) −17687.5 −1.21256
\(598\) 2056.02 0.140597
\(599\) 12255.1 0.835943 0.417971 0.908460i \(-0.362741\pi\)
0.417971 + 0.908460i \(0.362741\pi\)
\(600\) −1141.91 −0.0776968
\(601\) −21764.9 −1.47722 −0.738610 0.674133i \(-0.764517\pi\)
−0.738610 + 0.674133i \(0.764517\pi\)
\(602\) 0 0
\(603\) 69194.4 4.67299
\(604\) 12582.1 0.847613
\(605\) −15460.3 −1.03892
\(606\) 30383.1 2.03668
\(607\) −15469.7 −1.03442 −0.517211 0.855858i \(-0.673030\pi\)
−0.517211 + 0.855858i \(0.673030\pi\)
\(608\) −2585.81 −0.172481
\(609\) 0 0
\(610\) −6298.49 −0.418063
\(611\) 5062.70 0.335213
\(612\) 12399.5 0.818984
\(613\) −10199.0 −0.671996 −0.335998 0.941863i \(-0.609074\pi\)
−0.335998 + 0.941863i \(0.609074\pi\)
\(614\) 15407.2 1.01268
\(615\) 45376.4 2.97521
\(616\) 0 0
\(617\) 16429.1 1.07198 0.535989 0.844225i \(-0.319939\pi\)
0.535989 + 0.844225i \(0.319939\pi\)
\(618\) 12665.9 0.824426
\(619\) 26369.9 1.71227 0.856135 0.516753i \(-0.172859\pi\)
0.856135 + 0.516753i \(0.172859\pi\)
\(620\) −1378.07 −0.0892658
\(621\) 10370.8 0.670154
\(622\) −5716.70 −0.368519
\(623\) 0 0
\(624\) −7124.83 −0.457086
\(625\) −17210.6 −1.10148
\(626\) 1498.25 0.0956586
\(627\) 3708.40 0.236203
\(628\) 6321.55 0.401684
\(629\) −504.854 −0.0320029
\(630\) 0 0
\(631\) 22428.4 1.41499 0.707497 0.706717i \(-0.249824\pi\)
0.707497 + 0.706717i \(0.249824\pi\)
\(632\) −1922.55 −0.121005
\(633\) 43134.2 2.70842
\(634\) −14633.1 −0.916649
\(635\) −28398.9 −1.77477
\(636\) −26006.0 −1.62139
\(637\) 0 0
\(638\) −768.417 −0.0476832
\(639\) −39030.1 −2.41629
\(640\) −1510.87 −0.0933163
\(641\) 20783.9 1.28068 0.640340 0.768092i \(-0.278794\pi\)
0.640340 + 0.768092i \(0.278794\pi\)
\(642\) −36384.5 −2.23673
\(643\) −6962.28 −0.427007 −0.213503 0.976942i \(-0.568487\pi\)
−0.213503 + 0.976942i \(0.568487\pi\)
\(644\) 0 0
\(645\) 7149.77 0.436468
\(646\) −6933.14 −0.422261
\(647\) −29508.1 −1.79302 −0.896508 0.443027i \(-0.853905\pi\)
−0.896508 + 0.443027i \(0.853905\pi\)
\(648\) −20330.5 −1.23250
\(649\) 1465.28 0.0886244
\(650\) 1280.73 0.0772835
\(651\) 0 0
\(652\) 5339.31 0.320711
\(653\) −16503.7 −0.989036 −0.494518 0.869167i \(-0.664655\pi\)
−0.494518 + 0.869167i \(0.664655\pi\)
\(654\) −42003.8 −2.51144
\(655\) 24165.0 1.44154
\(656\) 6173.74 0.367445
\(657\) −71520.5 −4.24700
\(658\) 0 0
\(659\) −1536.50 −0.0908247 −0.0454123 0.998968i \(-0.514460\pi\)
−0.0454123 + 0.998968i \(0.514460\pi\)
\(660\) 2166.80 0.127792
\(661\) 3901.31 0.229566 0.114783 0.993391i \(-0.463383\pi\)
0.114783 + 0.993391i \(0.463383\pi\)
\(662\) −6090.27 −0.357561
\(663\) −19103.3 −1.11902
\(664\) 10250.7 0.599104
\(665\) 0 0
\(666\) 1700.71 0.0989510
\(667\) 1918.40 0.111365
\(668\) −2601.67 −0.150691
\(669\) −24482.7 −1.41488
\(670\) −22606.3 −1.30352
\(671\) 1228.98 0.0707068
\(672\) 0 0
\(673\) −31727.1 −1.81722 −0.908611 0.417643i \(-0.862856\pi\)
−0.908611 + 0.417643i \(0.862856\pi\)
\(674\) −4250.40 −0.242907
\(675\) 6460.12 0.368370
\(676\) −797.001 −0.0453460
\(677\) −15653.5 −0.888646 −0.444323 0.895867i \(-0.646556\pi\)
−0.444323 + 0.895867i \(0.646556\pi\)
\(678\) −6830.27 −0.386895
\(679\) 0 0
\(680\) −4050.99 −0.228453
\(681\) −7342.95 −0.413190
\(682\) 268.894 0.0150975
\(683\) 11400.0 0.638669 0.319334 0.947642i \(-0.396541\pi\)
0.319334 + 0.947642i \(0.396541\pi\)
\(684\) 23355.8 1.30560
\(685\) −2055.62 −0.114658
\(686\) 0 0
\(687\) −11129.1 −0.618053
\(688\) 972.771 0.0539049
\(689\) 29167.6 1.61277
\(690\) −5409.53 −0.298460
\(691\) −6450.93 −0.355145 −0.177572 0.984108i \(-0.556824\pi\)
−0.177572 + 0.984108i \(0.556824\pi\)
\(692\) −288.126 −0.0158279
\(693\) 0 0
\(694\) 19212.2 1.05084
\(695\) 8121.89 0.443282
\(696\) −6647.89 −0.362051
\(697\) 16553.2 0.899565
\(698\) 1273.09 0.0690361
\(699\) −16546.2 −0.895329
\(700\) 0 0
\(701\) 10471.5 0.564197 0.282098 0.959385i \(-0.408970\pi\)
0.282098 + 0.959385i \(0.408970\pi\)
\(702\) 40307.4 2.16710
\(703\) −950.952 −0.0510183
\(704\) 294.806 0.0157826
\(705\) −13320.3 −0.711589
\(706\) −11954.8 −0.637286
\(707\) 0 0
\(708\) 12676.7 0.672911
\(709\) −7948.32 −0.421023 −0.210512 0.977591i \(-0.567513\pi\)
−0.210512 + 0.977591i \(0.567513\pi\)
\(710\) 12751.4 0.674017
\(711\) 17365.1 0.915951
\(712\) −2976.50 −0.156670
\(713\) −671.309 −0.0352605
\(714\) 0 0
\(715\) −2430.22 −0.127112
\(716\) 8758.96 0.457176
\(717\) −63355.3 −3.29993
\(718\) 26032.5 1.35310
\(719\) 5747.90 0.298137 0.149068 0.988827i \(-0.452373\pi\)
0.149068 + 0.988827i \(0.452373\pi\)
\(720\) 13646.7 0.706363
\(721\) 0 0
\(722\) 658.623 0.0339493
\(723\) −53058.5 −2.72928
\(724\) 4788.17 0.245789
\(725\) 1195.00 0.0612152
\(726\) 26098.3 1.33416
\(727\) −7627.21 −0.389103 −0.194551 0.980892i \(-0.562325\pi\)
−0.194551 + 0.980892i \(0.562325\pi\)
\(728\) 0 0
\(729\) 62339.6 3.16718
\(730\) 23366.2 1.18469
\(731\) 2608.22 0.131968
\(732\) 10632.4 0.536866
\(733\) −9862.40 −0.496966 −0.248483 0.968636i \(-0.579932\pi\)
−0.248483 + 0.968636i \(0.579932\pi\)
\(734\) −12335.4 −0.620313
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 4411.01 0.220464
\(738\) −55763.2 −2.78140
\(739\) 12312.1 0.612867 0.306434 0.951892i \(-0.400864\pi\)
0.306434 + 0.951892i \(0.400864\pi\)
\(740\) −555.636 −0.0276021
\(741\) −35983.3 −1.78391
\(742\) 0 0
\(743\) 1575.54 0.0777941 0.0388971 0.999243i \(-0.487616\pi\)
0.0388971 + 0.999243i \(0.487616\pi\)
\(744\) 2326.32 0.114633
\(745\) −25122.2 −1.23544
\(746\) 3929.85 0.192871
\(747\) −92587.8 −4.53495
\(748\) 790.442 0.0386383
\(749\) 0 0
\(750\) 26029.9 1.26731
\(751\) −9080.79 −0.441229 −0.220614 0.975361i \(-0.570806\pi\)
−0.220614 + 0.975361i \(0.570806\pi\)
\(752\) −1812.31 −0.0878830
\(753\) 26039.0 1.26018
\(754\) 7456.08 0.360125
\(755\) 37128.8 1.78974
\(756\) 0 0
\(757\) −8814.72 −0.423219 −0.211609 0.977354i \(-0.567870\pi\)
−0.211609 + 0.977354i \(0.567870\pi\)
\(758\) 11783.6 0.564645
\(759\) 1055.52 0.0504784
\(760\) −7630.52 −0.364195
\(761\) 1939.62 0.0923932 0.0461966 0.998932i \(-0.485290\pi\)
0.0461966 + 0.998932i \(0.485290\pi\)
\(762\) 47940.0 2.27911
\(763\) 0 0
\(764\) 12691.3 0.600986
\(765\) 36589.8 1.72929
\(766\) 27029.5 1.27495
\(767\) −14217.9 −0.669331
\(768\) 2550.49 0.119835
\(769\) −35373.4 −1.65877 −0.829387 0.558674i \(-0.811310\pi\)
−0.829387 + 0.558674i \(0.811310\pi\)
\(770\) 0 0
\(771\) −49795.5 −2.32599
\(772\) −11189.0 −0.521631
\(773\) −7121.74 −0.331373 −0.165686 0.986178i \(-0.552984\pi\)
−0.165686 + 0.986178i \(0.552984\pi\)
\(774\) −8786.37 −0.408036
\(775\) −418.168 −0.0193820
\(776\) −11822.7 −0.546920
\(777\) 0 0
\(778\) 83.0076 0.00382515
\(779\) 31179.9 1.43406
\(780\) −21024.8 −0.965140
\(781\) −2488.10 −0.113996
\(782\) −1973.38 −0.0902404
\(783\) 37609.2 1.71653
\(784\) 0 0
\(785\) 18654.4 0.848158
\(786\) −40792.8 −1.85118
\(787\) 12339.2 0.558888 0.279444 0.960162i \(-0.409850\pi\)
0.279444 + 0.960162i \(0.409850\pi\)
\(788\) 18400.4 0.831836
\(789\) −55266.9 −2.49373
\(790\) −5673.29 −0.255502
\(791\) 0 0
\(792\) −2662.78 −0.119467
\(793\) −11925.0 −0.534010
\(794\) −12930.2 −0.577928
\(795\) −76741.7 −3.42358
\(796\) −7101.37 −0.316208
\(797\) 4533.69 0.201495 0.100748 0.994912i \(-0.467877\pi\)
0.100748 + 0.994912i \(0.467877\pi\)
\(798\) 0 0
\(799\) −4859.20 −0.215152
\(800\) −458.465 −0.0202615
\(801\) 26884.6 1.18592
\(802\) 4888.08 0.215217
\(803\) −4559.30 −0.200366
\(804\) 38161.5 1.67395
\(805\) 0 0
\(806\) −2609.13 −0.114023
\(807\) 52590.2 2.29401
\(808\) 12198.6 0.531119
\(809\) 31358.8 1.36281 0.681407 0.731905i \(-0.261369\pi\)
0.681407 + 0.731905i \(0.261369\pi\)
\(810\) −59993.7 −2.60243
\(811\) −41598.6 −1.80114 −0.900571 0.434709i \(-0.856851\pi\)
−0.900571 + 0.434709i \(0.856851\pi\)
\(812\) 0 0
\(813\) −48507.2 −2.09252
\(814\) 108.417 0.00466834
\(815\) 15755.9 0.677184
\(816\) 6838.44 0.293374
\(817\) 4912.89 0.210380
\(818\) −13817.4 −0.590604
\(819\) 0 0
\(820\) 18218.2 0.775864
\(821\) −34783.4 −1.47862 −0.739311 0.673365i \(-0.764848\pi\)
−0.739311 + 0.673365i \(0.764848\pi\)
\(822\) 3470.07 0.147242
\(823\) −37165.3 −1.57412 −0.787060 0.616876i \(-0.788398\pi\)
−0.787060 + 0.616876i \(0.788398\pi\)
\(824\) 5085.23 0.214991
\(825\) 657.501 0.0277470
\(826\) 0 0
\(827\) −28232.1 −1.18709 −0.593546 0.804800i \(-0.702273\pi\)
−0.593546 + 0.804800i \(0.702273\pi\)
\(828\) 6647.78 0.279017
\(829\) −30435.1 −1.27510 −0.637549 0.770410i \(-0.720051\pi\)
−0.637549 + 0.770410i \(0.720051\pi\)
\(830\) 30249.1 1.26501
\(831\) 18194.6 0.759523
\(832\) −2860.56 −0.119197
\(833\) 0 0
\(834\) −13710.5 −0.569251
\(835\) −7677.32 −0.318185
\(836\) 1488.89 0.0615961
\(837\) −13160.7 −0.543489
\(838\) −4444.61 −0.183218
\(839\) 45535.7 1.87374 0.936870 0.349679i \(-0.113709\pi\)
0.936870 + 0.349679i \(0.113709\pi\)
\(840\) 0 0
\(841\) −17432.0 −0.714749
\(842\) 2029.79 0.0830772
\(843\) −46135.1 −1.88491
\(844\) 17318.0 0.706292
\(845\) −2351.89 −0.0957484
\(846\) 16369.3 0.665235
\(847\) 0 0
\(848\) −10441.2 −0.422821
\(849\) −62382.1 −2.52173
\(850\) −1229.25 −0.0496034
\(851\) −270.670 −0.0109030
\(852\) −21525.6 −0.865556
\(853\) 11248.5 0.451515 0.225757 0.974184i \(-0.427514\pi\)
0.225757 + 0.974184i \(0.427514\pi\)
\(854\) 0 0
\(855\) 68921.2 2.75679
\(856\) −14608.1 −0.583287
\(857\) 24226.4 0.965647 0.482823 0.875718i \(-0.339611\pi\)
0.482823 + 0.875718i \(0.339611\pi\)
\(858\) 4102.43 0.163234
\(859\) 24266.8 0.963879 0.481939 0.876205i \(-0.339933\pi\)
0.481939 + 0.876205i \(0.339933\pi\)
\(860\) 2870.57 0.113821
\(861\) 0 0
\(862\) 6700.27 0.264747
\(863\) −9960.81 −0.392897 −0.196448 0.980514i \(-0.562941\pi\)
−0.196448 + 0.980514i \(0.562941\pi\)
\(864\) −14428.9 −0.568151
\(865\) −850.237 −0.0334207
\(866\) −2409.02 −0.0945287
\(867\) −30612.1 −1.19912
\(868\) 0 0
\(869\) 1106.99 0.0432130
\(870\) −19617.4 −0.764474
\(871\) −42800.9 −1.66504
\(872\) −16864.2 −0.654923
\(873\) 106786. 4.13994
\(874\) −3717.10 −0.143859
\(875\) 0 0
\(876\) −39444.4 −1.52135
\(877\) −22575.7 −0.869243 −0.434622 0.900613i \(-0.643118\pi\)
−0.434622 + 0.900613i \(0.643118\pi\)
\(878\) −10452.4 −0.401768
\(879\) −20165.2 −0.773781
\(880\) 869.950 0.0333250
\(881\) −5032.20 −0.192440 −0.0962198 0.995360i \(-0.530675\pi\)
−0.0962198 + 0.995360i \(0.530675\pi\)
\(882\) 0 0
\(883\) 44961.8 1.71357 0.856787 0.515671i \(-0.172457\pi\)
0.856787 + 0.515671i \(0.172457\pi\)
\(884\) −7669.80 −0.291814
\(885\) 37408.1 1.42086
\(886\) −9717.03 −0.368454
\(887\) 12229.9 0.462954 0.231477 0.972840i \(-0.425644\pi\)
0.231477 + 0.972840i \(0.425644\pi\)
\(888\) 937.964 0.0354460
\(889\) 0 0
\(890\) −8783.40 −0.330809
\(891\) 11706.2 0.440147
\(892\) −9829.58 −0.368967
\(893\) −9152.88 −0.342989
\(894\) 42408.6 1.58653
\(895\) 25847.0 0.965330
\(896\) 0 0
\(897\) −10241.9 −0.381236
\(898\) −23594.9 −0.876805
\(899\) −2434.47 −0.0903162
\(900\) 4141.00 0.153370
\(901\) −27995.2 −1.03513
\(902\) −3554.80 −0.131222
\(903\) 0 0
\(904\) −2742.29 −0.100893
\(905\) 14129.5 0.518985
\(906\) −62676.8 −2.29834
\(907\) −14640.9 −0.535991 −0.267995 0.963420i \(-0.586361\pi\)
−0.267995 + 0.963420i \(0.586361\pi\)
\(908\) −2948.13 −0.107750
\(909\) −110181. −4.02033
\(910\) 0 0
\(911\) 7735.65 0.281332 0.140666 0.990057i \(-0.455076\pi\)
0.140666 + 0.990057i \(0.455076\pi\)
\(912\) 12881.0 0.467690
\(913\) −5902.30 −0.213951
\(914\) −4635.60 −0.167759
\(915\) 31375.5 1.13360
\(916\) −4468.24 −0.161173
\(917\) 0 0
\(918\) −38687.2 −1.39092
\(919\) 20281.0 0.727973 0.363986 0.931404i \(-0.381415\pi\)
0.363986 + 0.931404i \(0.381415\pi\)
\(920\) −2171.88 −0.0778312
\(921\) −76749.8 −2.74592
\(922\) −13211.8 −0.471915
\(923\) 24142.4 0.860951
\(924\) 0 0
\(925\) −168.604 −0.00599316
\(926\) −27488.9 −0.975530
\(927\) −45931.4 −1.62738
\(928\) −2669.07 −0.0944144
\(929\) −10956.5 −0.386946 −0.193473 0.981106i \(-0.561975\pi\)
−0.193473 + 0.981106i \(0.561975\pi\)
\(930\) 6864.78 0.242048
\(931\) 0 0
\(932\) −6643.16 −0.233481
\(933\) 28477.3 0.999256
\(934\) 23126.3 0.810187
\(935\) 2332.53 0.0815850
\(936\) 25837.4 0.902268
\(937\) 1853.60 0.0646258 0.0323129 0.999478i \(-0.489713\pi\)
0.0323129 + 0.999478i \(0.489713\pi\)
\(938\) 0 0
\(939\) −7463.44 −0.259383
\(940\) −5347.97 −0.185566
\(941\) −5012.93 −0.173663 −0.0868315 0.996223i \(-0.527674\pi\)
−0.0868315 + 0.996223i \(0.527674\pi\)
\(942\) −31490.4 −1.08918
\(943\) 8874.75 0.306471
\(944\) 5089.60 0.175479
\(945\) 0 0
\(946\) −560.115 −0.0192504
\(947\) −17071.1 −0.585783 −0.292892 0.956146i \(-0.594618\pi\)
−0.292892 + 0.956146i \(0.594618\pi\)
\(948\) 9577.04 0.328110
\(949\) 44239.7 1.51326
\(950\) −2315.43 −0.0790764
\(951\) 72893.8 2.48554
\(952\) 0 0
\(953\) −41078.3 −1.39628 −0.698141 0.715960i \(-0.745989\pi\)
−0.698141 + 0.715960i \(0.745989\pi\)
\(954\) 94308.1 3.20056
\(955\) 37450.9 1.26899
\(956\) −25436.6 −0.860543
\(957\) 3827.81 0.129295
\(958\) −35181.7 −1.18650
\(959\) 0 0
\(960\) 7526.30 0.253032
\(961\) −28939.1 −0.971404
\(962\) −1051.99 −0.0352574
\(963\) 131945. 4.41522
\(964\) −21302.5 −0.711731
\(965\) −33017.7 −1.10143
\(966\) 0 0
\(967\) −52684.5 −1.75204 −0.876018 0.482279i \(-0.839809\pi\)
−0.876018 + 0.482279i \(0.839809\pi\)
\(968\) 10478.3 0.347917
\(969\) 34536.9 1.14498
\(970\) −34887.8 −1.15483
\(971\) −40592.2 −1.34157 −0.670786 0.741651i \(-0.734043\pi\)
−0.670786 + 0.741651i \(0.734043\pi\)
\(972\) 52577.3 1.73500
\(973\) 0 0
\(974\) 16758.5 0.551312
\(975\) −6379.85 −0.209558
\(976\) 4268.83 0.140002
\(977\) 14073.1 0.460837 0.230419 0.973092i \(-0.425990\pi\)
0.230419 + 0.973092i \(0.425990\pi\)
\(978\) −26597.4 −0.869623
\(979\) 1713.85 0.0559497
\(980\) 0 0
\(981\) 152322. 4.95747
\(982\) 30870.3 1.00317
\(983\) 15345.0 0.497893 0.248946 0.968517i \(-0.419916\pi\)
0.248946 + 0.968517i \(0.419916\pi\)
\(984\) −30754.1 −0.996345
\(985\) 54298.1 1.75643
\(986\) −7156.39 −0.231142
\(987\) 0 0
\(988\) −14447.0 −0.465202
\(989\) 1398.36 0.0449598
\(990\) −7857.66 −0.252255
\(991\) −17131.1 −0.549130 −0.274565 0.961568i \(-0.588534\pi\)
−0.274565 + 0.961568i \(0.588534\pi\)
\(992\) 933.996 0.0298935
\(993\) 30338.3 0.969542
\(994\) 0 0
\(995\) −20955.6 −0.667675
\(996\) −51063.3 −1.62450
\(997\) 9120.39 0.289715 0.144857 0.989453i \(-0.453728\pi\)
0.144857 + 0.989453i \(0.453728\pi\)
\(998\) −24605.9 −0.780447
\(999\) −5306.36 −0.168054
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.u.1.11 11
7.3 odd 6 322.4.e.d.93.11 22
7.5 odd 6 322.4.e.d.277.11 yes 22
7.6 odd 2 2254.4.a.r.1.1 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.d.93.11 22 7.3 odd 6
322.4.e.d.277.11 yes 22 7.5 odd 6
2254.4.a.r.1.1 11 7.6 odd 2
2254.4.a.u.1.11 11 1.1 even 1 trivial