Properties

Label 2254.4.a.u.1.10
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 234 x^{9} - 105 x^{8} + 18997 x^{7} + 16513 x^{6} - 621598 x^{5} - 743169 x^{4} + \cdots - 12103441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(8.71952\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +8.71952 q^{3} +4.00000 q^{4} -10.2018 q^{5} -17.4390 q^{6} -8.00000 q^{8} +49.0300 q^{9} +20.4036 q^{10} -47.6338 q^{11} +34.8781 q^{12} +44.4484 q^{13} -88.9548 q^{15} +16.0000 q^{16} -24.4794 q^{17} -98.0600 q^{18} -116.475 q^{19} -40.8072 q^{20} +95.2675 q^{22} +23.0000 q^{23} -69.7561 q^{24} -20.9233 q^{25} -88.8968 q^{26} +192.091 q^{27} -57.1589 q^{29} +177.910 q^{30} -156.511 q^{31} -32.0000 q^{32} -415.343 q^{33} +48.9587 q^{34} +196.120 q^{36} +131.743 q^{37} +232.951 q^{38} +387.569 q^{39} +81.6144 q^{40} +391.272 q^{41} +144.126 q^{43} -190.535 q^{44} -500.194 q^{45} -46.0000 q^{46} +330.386 q^{47} +139.512 q^{48} +41.8466 q^{50} -213.448 q^{51} +177.794 q^{52} +222.623 q^{53} -384.182 q^{54} +485.950 q^{55} -1015.61 q^{57} +114.318 q^{58} +869.735 q^{59} -355.819 q^{60} -182.244 q^{61} +313.022 q^{62} +64.0000 q^{64} -453.454 q^{65} +830.687 q^{66} +492.053 q^{67} -97.9174 q^{68} +200.549 q^{69} +1085.88 q^{71} -392.240 q^{72} +1104.26 q^{73} -263.485 q^{74} -182.441 q^{75} -465.901 q^{76} -775.137 q^{78} -58.3125 q^{79} -163.229 q^{80} +351.130 q^{81} -782.545 q^{82} -1178.21 q^{83} +249.733 q^{85} -288.251 q^{86} -498.398 q^{87} +381.070 q^{88} +49.9905 q^{89} +1000.39 q^{90} +92.0000 q^{92} -1364.70 q^{93} -660.771 q^{94} +1188.26 q^{95} -279.025 q^{96} -548.910 q^{97} -2335.48 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 22 q^{2} + 44 q^{4} + 23 q^{5} - 88 q^{8} + 171 q^{9} - 46 q^{10} - 48 q^{11} + 77 q^{13} + 104 q^{15} + 176 q^{16} + 97 q^{17} - 342 q^{18} + 138 q^{19} + 92 q^{20} + 96 q^{22} + 253 q^{23} + 30 q^{25}+ \cdots - 2545 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 8.71952 1.67807 0.839036 0.544076i \(-0.183120\pi\)
0.839036 + 0.544076i \(0.183120\pi\)
\(4\) 4.00000 0.500000
\(5\) −10.2018 −0.912477 −0.456238 0.889858i \(-0.650804\pi\)
−0.456238 + 0.889858i \(0.650804\pi\)
\(6\) −17.4390 −1.18658
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 49.0300 1.81593
\(10\) 20.4036 0.645218
\(11\) −47.6338 −1.30565 −0.652824 0.757510i \(-0.726416\pi\)
−0.652824 + 0.757510i \(0.726416\pi\)
\(12\) 34.8781 0.839036
\(13\) 44.4484 0.948290 0.474145 0.880447i \(-0.342757\pi\)
0.474145 + 0.880447i \(0.342757\pi\)
\(14\) 0 0
\(15\) −88.9548 −1.53120
\(16\) 16.0000 0.250000
\(17\) −24.4794 −0.349242 −0.174621 0.984636i \(-0.555870\pi\)
−0.174621 + 0.984636i \(0.555870\pi\)
\(18\) −98.0600 −1.28405
\(19\) −116.475 −1.40638 −0.703191 0.711001i \(-0.748242\pi\)
−0.703191 + 0.711001i \(0.748242\pi\)
\(20\) −40.8072 −0.456238
\(21\) 0 0
\(22\) 95.2675 0.923232
\(23\) 23.0000 0.208514
\(24\) −69.7561 −0.593288
\(25\) −20.9233 −0.167386
\(26\) −88.8968 −0.670542
\(27\) 192.091 1.36918
\(28\) 0 0
\(29\) −57.1589 −0.366005 −0.183003 0.983112i \(-0.558582\pi\)
−0.183003 + 0.983112i \(0.558582\pi\)
\(30\) 177.910 1.08272
\(31\) −156.511 −0.906780 −0.453390 0.891312i \(-0.649785\pi\)
−0.453390 + 0.891312i \(0.649785\pi\)
\(32\) −32.0000 −0.176777
\(33\) −415.343 −2.19097
\(34\) 48.9587 0.246951
\(35\) 0 0
\(36\) 196.120 0.907963
\(37\) 131.743 0.585360 0.292680 0.956210i \(-0.405453\pi\)
0.292680 + 0.956210i \(0.405453\pi\)
\(38\) 232.951 0.994463
\(39\) 387.569 1.59130
\(40\) 81.6144 0.322609
\(41\) 391.272 1.49040 0.745201 0.666840i \(-0.232353\pi\)
0.745201 + 0.666840i \(0.232353\pi\)
\(42\) 0 0
\(43\) 144.126 0.511138 0.255569 0.966791i \(-0.417737\pi\)
0.255569 + 0.966791i \(0.417737\pi\)
\(44\) −190.535 −0.652824
\(45\) −500.194 −1.65699
\(46\) −46.0000 −0.147442
\(47\) 330.386 1.02536 0.512678 0.858581i \(-0.328654\pi\)
0.512678 + 0.858581i \(0.328654\pi\)
\(48\) 139.512 0.419518
\(49\) 0 0
\(50\) 41.8466 0.118360
\(51\) −213.448 −0.586053
\(52\) 177.794 0.474145
\(53\) 222.623 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(54\) −384.182 −0.968158
\(55\) 485.950 1.19137
\(56\) 0 0
\(57\) −1015.61 −2.36001
\(58\) 114.318 0.258805
\(59\) 869.735 1.91915 0.959575 0.281454i \(-0.0908167\pi\)
0.959575 + 0.281454i \(0.0908167\pi\)
\(60\) −355.819 −0.765601
\(61\) −182.244 −0.382523 −0.191261 0.981539i \(-0.561258\pi\)
−0.191261 + 0.981539i \(0.561258\pi\)
\(62\) 313.022 0.641190
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −453.454 −0.865293
\(66\) 830.687 1.54925
\(67\) 492.053 0.897221 0.448610 0.893727i \(-0.351919\pi\)
0.448610 + 0.893727i \(0.351919\pi\)
\(68\) −97.9174 −0.174621
\(69\) 200.549 0.349902
\(70\) 0 0
\(71\) 1085.88 1.81507 0.907533 0.419980i \(-0.137963\pi\)
0.907533 + 0.419980i \(0.137963\pi\)
\(72\) −392.240 −0.642027
\(73\) 1104.26 1.77046 0.885229 0.465156i \(-0.154002\pi\)
0.885229 + 0.465156i \(0.154002\pi\)
\(74\) −263.485 −0.413912
\(75\) −182.441 −0.280886
\(76\) −465.901 −0.703191
\(77\) 0 0
\(78\) −775.137 −1.12522
\(79\) −58.3125 −0.0830464 −0.0415232 0.999138i \(-0.513221\pi\)
−0.0415232 + 0.999138i \(0.513221\pi\)
\(80\) −163.229 −0.228119
\(81\) 351.130 0.481660
\(82\) −782.545 −1.05387
\(83\) −1178.21 −1.55814 −0.779069 0.626939i \(-0.784308\pi\)
−0.779069 + 0.626939i \(0.784308\pi\)
\(84\) 0 0
\(85\) 249.733 0.318675
\(86\) −288.251 −0.361429
\(87\) −498.398 −0.614183
\(88\) 381.070 0.461616
\(89\) 49.9905 0.0595391 0.0297695 0.999557i \(-0.490523\pi\)
0.0297695 + 0.999557i \(0.490523\pi\)
\(90\) 1000.39 1.17167
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −1364.70 −1.52164
\(94\) −660.771 −0.725036
\(95\) 1188.26 1.28329
\(96\) −279.025 −0.296644
\(97\) −548.910 −0.574570 −0.287285 0.957845i \(-0.592753\pi\)
−0.287285 + 0.957845i \(0.592753\pi\)
\(98\) 0 0
\(99\) −2335.48 −2.37096
\(100\) −83.6932 −0.0836932
\(101\) 1709.02 1.68370 0.841850 0.539712i \(-0.181467\pi\)
0.841850 + 0.539712i \(0.181467\pi\)
\(102\) 426.896 0.414402
\(103\) −1189.67 −1.13807 −0.569037 0.822312i \(-0.692684\pi\)
−0.569037 + 0.822312i \(0.692684\pi\)
\(104\) −355.587 −0.335271
\(105\) 0 0
\(106\) −445.246 −0.407983
\(107\) −834.807 −0.754241 −0.377121 0.926164i \(-0.623086\pi\)
−0.377121 + 0.926164i \(0.623086\pi\)
\(108\) 768.363 0.684591
\(109\) −604.155 −0.530895 −0.265448 0.964125i \(-0.585520\pi\)
−0.265448 + 0.964125i \(0.585520\pi\)
\(110\) −971.900 −0.842428
\(111\) 1148.73 0.982277
\(112\) 0 0
\(113\) 695.157 0.578716 0.289358 0.957221i \(-0.406558\pi\)
0.289358 + 0.957221i \(0.406558\pi\)
\(114\) 2031.22 1.66878
\(115\) −234.641 −0.190265
\(116\) −228.636 −0.183003
\(117\) 2179.31 1.72202
\(118\) −1739.47 −1.35704
\(119\) 0 0
\(120\) 711.638 0.541361
\(121\) 937.975 0.704715
\(122\) 364.487 0.270484
\(123\) 3411.71 2.50100
\(124\) −626.043 −0.453390
\(125\) 1488.68 1.06521
\(126\) 0 0
\(127\) 1227.11 0.857390 0.428695 0.903449i \(-0.358974\pi\)
0.428695 + 0.903449i \(0.358974\pi\)
\(128\) −128.000 −0.0883883
\(129\) 1256.71 0.857727
\(130\) 906.908 0.611854
\(131\) −1943.67 −1.29633 −0.648166 0.761499i \(-0.724464\pi\)
−0.648166 + 0.761499i \(0.724464\pi\)
\(132\) −1661.37 −1.09549
\(133\) 0 0
\(134\) −984.105 −0.634431
\(135\) −1959.67 −1.24935
\(136\) 195.835 0.123476
\(137\) 3002.30 1.87229 0.936145 0.351615i \(-0.114368\pi\)
0.936145 + 0.351615i \(0.114368\pi\)
\(138\) −401.098 −0.247418
\(139\) −1599.49 −0.976023 −0.488012 0.872837i \(-0.662278\pi\)
−0.488012 + 0.872837i \(0.662278\pi\)
\(140\) 0 0
\(141\) 2880.80 1.72062
\(142\) −2171.75 −1.28345
\(143\) −2117.25 −1.23813
\(144\) 784.480 0.453981
\(145\) 583.124 0.333971
\(146\) −2208.51 −1.25190
\(147\) 0 0
\(148\) 526.970 0.292680
\(149\) 373.153 0.205167 0.102583 0.994724i \(-0.467289\pi\)
0.102583 + 0.994724i \(0.467289\pi\)
\(150\) 364.882 0.198617
\(151\) 276.916 0.149239 0.0746196 0.997212i \(-0.476226\pi\)
0.0746196 + 0.997212i \(0.476226\pi\)
\(152\) 931.803 0.497231
\(153\) −1200.22 −0.634198
\(154\) 0 0
\(155\) 1596.69 0.827415
\(156\) 1550.27 0.795650
\(157\) −2195.24 −1.11592 −0.557960 0.829868i \(-0.688416\pi\)
−0.557960 + 0.829868i \(0.688416\pi\)
\(158\) 116.625 0.0587227
\(159\) 1941.17 0.968205
\(160\) 326.458 0.161305
\(161\) 0 0
\(162\) −702.260 −0.340585
\(163\) 509.827 0.244986 0.122493 0.992469i \(-0.460911\pi\)
0.122493 + 0.992469i \(0.460911\pi\)
\(164\) 1565.09 0.745201
\(165\) 4237.25 1.99921
\(166\) 2356.42 1.10177
\(167\) 2612.83 1.21070 0.605350 0.795960i \(-0.293033\pi\)
0.605350 + 0.795960i \(0.293033\pi\)
\(168\) 0 0
\(169\) −221.339 −0.100746
\(170\) −499.467 −0.225337
\(171\) −5710.78 −2.55389
\(172\) 576.502 0.255569
\(173\) 1989.26 0.874222 0.437111 0.899407i \(-0.356002\pi\)
0.437111 + 0.899407i \(0.356002\pi\)
\(174\) 996.797 0.434293
\(175\) 0 0
\(176\) −762.140 −0.326412
\(177\) 7583.67 3.22047
\(178\) −99.9809 −0.0421005
\(179\) −10.6376 −0.00444187 −0.00222093 0.999998i \(-0.500707\pi\)
−0.00222093 + 0.999998i \(0.500707\pi\)
\(180\) −2000.78 −0.828495
\(181\) −310.208 −0.127390 −0.0636949 0.997969i \(-0.520288\pi\)
−0.0636949 + 0.997969i \(0.520288\pi\)
\(182\) 0 0
\(183\) −1589.08 −0.641901
\(184\) −184.000 −0.0737210
\(185\) −1344.01 −0.534128
\(186\) 2729.40 1.07596
\(187\) 1166.04 0.455987
\(188\) 1321.54 0.512678
\(189\) 0 0
\(190\) −2376.52 −0.907424
\(191\) −52.8909 −0.0200369 −0.0100185 0.999950i \(-0.503189\pi\)
−0.0100185 + 0.999950i \(0.503189\pi\)
\(192\) 558.049 0.209759
\(193\) −441.361 −0.164611 −0.0823054 0.996607i \(-0.526228\pi\)
−0.0823054 + 0.996607i \(0.526228\pi\)
\(194\) 1097.82 0.406283
\(195\) −3953.90 −1.45202
\(196\) 0 0
\(197\) 5481.13 1.98231 0.991153 0.132726i \(-0.0423730\pi\)
0.991153 + 0.132726i \(0.0423730\pi\)
\(198\) 4670.97 1.67652
\(199\) 1718.02 0.611996 0.305998 0.952032i \(-0.401010\pi\)
0.305998 + 0.952032i \(0.401010\pi\)
\(200\) 167.386 0.0591800
\(201\) 4290.46 1.50560
\(202\) −3418.04 −1.19056
\(203\) 0 0
\(204\) −853.793 −0.293027
\(205\) −3991.68 −1.35996
\(206\) 2379.34 0.804739
\(207\) 1127.69 0.378647
\(208\) 711.175 0.237073
\(209\) 5548.16 1.83624
\(210\) 0 0
\(211\) 675.408 0.220365 0.110182 0.993911i \(-0.464856\pi\)
0.110182 + 0.993911i \(0.464856\pi\)
\(212\) 890.493 0.288487
\(213\) 9468.31 3.04581
\(214\) 1669.61 0.533329
\(215\) −1470.34 −0.466402
\(216\) −1536.73 −0.484079
\(217\) 0 0
\(218\) 1208.31 0.375400
\(219\) 9628.58 2.97095
\(220\) 1943.80 0.595686
\(221\) −1088.07 −0.331183
\(222\) −2297.46 −0.694575
\(223\) 1948.32 0.585063 0.292532 0.956256i \(-0.405502\pi\)
0.292532 + 0.956256i \(0.405502\pi\)
\(224\) 0 0
\(225\) −1025.87 −0.303961
\(226\) −1390.31 −0.409214
\(227\) −1606.14 −0.469617 −0.234808 0.972042i \(-0.575446\pi\)
−0.234808 + 0.972042i \(0.575446\pi\)
\(228\) −4062.43 −1.18001
\(229\) 3301.37 0.952665 0.476333 0.879265i \(-0.341966\pi\)
0.476333 + 0.879265i \(0.341966\pi\)
\(230\) 469.283 0.134537
\(231\) 0 0
\(232\) 457.271 0.129402
\(233\) 2193.56 0.616760 0.308380 0.951263i \(-0.400213\pi\)
0.308380 + 0.951263i \(0.400213\pi\)
\(234\) −4358.61 −1.21766
\(235\) −3370.53 −0.935613
\(236\) 3478.94 0.959575
\(237\) −508.457 −0.139358
\(238\) 0 0
\(239\) −3553.43 −0.961725 −0.480862 0.876796i \(-0.659676\pi\)
−0.480862 + 0.876796i \(0.659676\pi\)
\(240\) −1423.28 −0.382800
\(241\) 3204.36 0.856478 0.428239 0.903666i \(-0.359134\pi\)
0.428239 + 0.903666i \(0.359134\pi\)
\(242\) −1875.95 −0.498309
\(243\) −2124.77 −0.560922
\(244\) −728.974 −0.191261
\(245\) 0 0
\(246\) −6823.41 −1.76848
\(247\) −5177.14 −1.33366
\(248\) 1252.09 0.320595
\(249\) −10273.4 −2.61467
\(250\) −2977.36 −0.753219
\(251\) 7610.49 1.91382 0.956912 0.290378i \(-0.0937810\pi\)
0.956912 + 0.290378i \(0.0937810\pi\)
\(252\) 0 0
\(253\) −1095.58 −0.272246
\(254\) −2454.22 −0.606266
\(255\) 2177.55 0.534760
\(256\) 256.000 0.0625000
\(257\) −3868.87 −0.939040 −0.469520 0.882922i \(-0.655573\pi\)
−0.469520 + 0.882922i \(0.655573\pi\)
\(258\) −2513.41 −0.606504
\(259\) 0 0
\(260\) −1813.82 −0.432646
\(261\) −2802.50 −0.664638
\(262\) 3887.35 0.916645
\(263\) 1455.83 0.341331 0.170666 0.985329i \(-0.445408\pi\)
0.170666 + 0.985329i \(0.445408\pi\)
\(264\) 3322.75 0.774625
\(265\) −2271.16 −0.526476
\(266\) 0 0
\(267\) 435.893 0.0999109
\(268\) 1968.21 0.448610
\(269\) −5926.71 −1.34334 −0.671669 0.740851i \(-0.734422\pi\)
−0.671669 + 0.740851i \(0.734422\pi\)
\(270\) 3919.34 0.883421
\(271\) −7649.64 −1.71470 −0.857348 0.514737i \(-0.827890\pi\)
−0.857348 + 0.514737i \(0.827890\pi\)
\(272\) −391.670 −0.0873105
\(273\) 0 0
\(274\) −6004.60 −1.32391
\(275\) 996.656 0.218548
\(276\) 802.196 0.174951
\(277\) −7120.13 −1.54443 −0.772215 0.635361i \(-0.780851\pi\)
−0.772215 + 0.635361i \(0.780851\pi\)
\(278\) 3198.99 0.690153
\(279\) −7673.72 −1.64664
\(280\) 0 0
\(281\) −96.0293 −0.0203866 −0.0101933 0.999948i \(-0.503245\pi\)
−0.0101933 + 0.999948i \(0.503245\pi\)
\(282\) −5761.61 −1.21666
\(283\) −1899.83 −0.399057 −0.199528 0.979892i \(-0.563941\pi\)
−0.199528 + 0.979892i \(0.563941\pi\)
\(284\) 4343.50 0.907533
\(285\) 10361.0 2.15346
\(286\) 4234.49 0.875492
\(287\) 0 0
\(288\) −1568.96 −0.321013
\(289\) −4313.76 −0.878030
\(290\) −1166.25 −0.236153
\(291\) −4786.23 −0.964170
\(292\) 4417.02 0.885229
\(293\) 8109.02 1.61684 0.808420 0.588607i \(-0.200323\pi\)
0.808420 + 0.588607i \(0.200323\pi\)
\(294\) 0 0
\(295\) −8872.86 −1.75118
\(296\) −1053.94 −0.206956
\(297\) −9150.01 −1.78767
\(298\) −746.306 −0.145075
\(299\) 1022.31 0.197732
\(300\) −729.764 −0.140443
\(301\) 0 0
\(302\) −553.832 −0.105528
\(303\) 14901.8 2.82537
\(304\) −1863.61 −0.351596
\(305\) 1859.21 0.349043
\(306\) 2400.44 0.448445
\(307\) −421.150 −0.0782941 −0.0391470 0.999233i \(-0.512464\pi\)
−0.0391470 + 0.999233i \(0.512464\pi\)
\(308\) 0 0
\(309\) −10373.3 −1.90977
\(310\) −3193.38 −0.585071
\(311\) 1223.90 0.223154 0.111577 0.993756i \(-0.464410\pi\)
0.111577 + 0.993756i \(0.464410\pi\)
\(312\) −3100.55 −0.562609
\(313\) 6678.19 1.20599 0.602993 0.797747i \(-0.293975\pi\)
0.602993 + 0.797747i \(0.293975\pi\)
\(314\) 4390.49 0.789075
\(315\) 0 0
\(316\) −233.250 −0.0415232
\(317\) −52.0616 −0.00922420 −0.00461210 0.999989i \(-0.501468\pi\)
−0.00461210 + 0.999989i \(0.501468\pi\)
\(318\) −3882.33 −0.684624
\(319\) 2722.70 0.477874
\(320\) −652.915 −0.114060
\(321\) −7279.11 −1.26567
\(322\) 0 0
\(323\) 2851.24 0.491168
\(324\) 1404.52 0.240830
\(325\) −930.008 −0.158731
\(326\) −1019.65 −0.173231
\(327\) −5267.94 −0.890880
\(328\) −3130.18 −0.526937
\(329\) 0 0
\(330\) −8474.50 −1.41365
\(331\) −7564.09 −1.25607 −0.628036 0.778184i \(-0.716141\pi\)
−0.628036 + 0.778184i \(0.716141\pi\)
\(332\) −4712.84 −0.779069
\(333\) 6459.33 1.06297
\(334\) −5225.66 −0.856094
\(335\) −5019.82 −0.818693
\(336\) 0 0
\(337\) 9037.89 1.46091 0.730453 0.682963i \(-0.239309\pi\)
0.730453 + 0.682963i \(0.239309\pi\)
\(338\) 442.677 0.0712381
\(339\) 6061.43 0.971127
\(340\) 998.934 0.159338
\(341\) 7455.20 1.18393
\(342\) 11421.6 1.80587
\(343\) 0 0
\(344\) −1153.00 −0.180715
\(345\) −2045.96 −0.319278
\(346\) −3978.52 −0.618169
\(347\) 1593.80 0.246570 0.123285 0.992371i \(-0.460657\pi\)
0.123285 + 0.992371i \(0.460657\pi\)
\(348\) −1993.59 −0.307091
\(349\) −7630.96 −1.17042 −0.585209 0.810882i \(-0.698988\pi\)
−0.585209 + 0.810882i \(0.698988\pi\)
\(350\) 0 0
\(351\) 8538.13 1.29838
\(352\) 1524.28 0.230808
\(353\) 9282.20 1.39955 0.699776 0.714362i \(-0.253283\pi\)
0.699776 + 0.714362i \(0.253283\pi\)
\(354\) −15167.3 −2.27722
\(355\) −11077.9 −1.65621
\(356\) 199.962 0.0297695
\(357\) 0 0
\(358\) 21.2753 0.00314087
\(359\) −5980.57 −0.879226 −0.439613 0.898187i \(-0.644884\pi\)
−0.439613 + 0.898187i \(0.644884\pi\)
\(360\) 4001.55 0.585834
\(361\) 6707.50 0.977912
\(362\) 620.415 0.0900782
\(363\) 8178.69 1.18256
\(364\) 0 0
\(365\) −11265.4 −1.61550
\(366\) 3178.15 0.453892
\(367\) 6369.05 0.905890 0.452945 0.891538i \(-0.350373\pi\)
0.452945 + 0.891538i \(0.350373\pi\)
\(368\) 368.000 0.0521286
\(369\) 19184.1 2.70646
\(370\) 2688.02 0.377685
\(371\) 0 0
\(372\) −5458.79 −0.760821
\(373\) 2692.60 0.373774 0.186887 0.982381i \(-0.440160\pi\)
0.186887 + 0.982381i \(0.440160\pi\)
\(374\) −2332.09 −0.322431
\(375\) 12980.6 1.78750
\(376\) −2643.08 −0.362518
\(377\) −2540.62 −0.347079
\(378\) 0 0
\(379\) 1084.67 0.147008 0.0735038 0.997295i \(-0.476582\pi\)
0.0735038 + 0.997295i \(0.476582\pi\)
\(380\) 4753.03 0.641646
\(381\) 10699.8 1.43876
\(382\) 105.782 0.0141683
\(383\) 95.3045 0.0127150 0.00635748 0.999980i \(-0.497976\pi\)
0.00635748 + 0.999980i \(0.497976\pi\)
\(384\) −1116.10 −0.148322
\(385\) 0 0
\(386\) 882.722 0.116397
\(387\) 7066.48 0.928189
\(388\) −2195.64 −0.287285
\(389\) 3766.29 0.490895 0.245448 0.969410i \(-0.421065\pi\)
0.245448 + 0.969410i \(0.421065\pi\)
\(390\) 7907.80 1.02674
\(391\) −563.025 −0.0728220
\(392\) 0 0
\(393\) −16947.9 −2.17534
\(394\) −10962.3 −1.40170
\(395\) 594.892 0.0757779
\(396\) −9341.93 −1.18548
\(397\) 11403.4 1.44161 0.720807 0.693136i \(-0.243772\pi\)
0.720807 + 0.693136i \(0.243772\pi\)
\(398\) −3436.04 −0.432746
\(399\) 0 0
\(400\) −334.773 −0.0418466
\(401\) −11444.0 −1.42515 −0.712575 0.701596i \(-0.752471\pi\)
−0.712575 + 0.701596i \(0.752471\pi\)
\(402\) −8580.92 −1.06462
\(403\) −6956.66 −0.859890
\(404\) 6836.07 0.841850
\(405\) −3582.16 −0.439503
\(406\) 0 0
\(407\) −6275.39 −0.764274
\(408\) 1707.59 0.207201
\(409\) 9949.99 1.20292 0.601461 0.798902i \(-0.294585\pi\)
0.601461 + 0.798902i \(0.294585\pi\)
\(410\) 7983.37 0.961635
\(411\) 26178.6 3.14184
\(412\) −4758.68 −0.569037
\(413\) 0 0
\(414\) −2255.38 −0.267744
\(415\) 12019.9 1.42176
\(416\) −1422.35 −0.167636
\(417\) −13946.8 −1.63784
\(418\) −11096.3 −1.29842
\(419\) −4875.16 −0.568418 −0.284209 0.958762i \(-0.591731\pi\)
−0.284209 + 0.958762i \(0.591731\pi\)
\(420\) 0 0
\(421\) −2216.12 −0.256549 −0.128275 0.991739i \(-0.540944\pi\)
−0.128275 + 0.991739i \(0.540944\pi\)
\(422\) −1350.82 −0.155821
\(423\) 16198.8 1.86197
\(424\) −1780.99 −0.203991
\(425\) 512.189 0.0584584
\(426\) −18936.6 −2.15371
\(427\) 0 0
\(428\) −3339.23 −0.377121
\(429\) −18461.4 −2.07768
\(430\) 2940.68 0.329796
\(431\) 1336.31 0.149346 0.0746729 0.997208i \(-0.476209\pi\)
0.0746729 + 0.997208i \(0.476209\pi\)
\(432\) 3073.45 0.342295
\(433\) 14882.9 1.65179 0.825897 0.563821i \(-0.190669\pi\)
0.825897 + 0.563821i \(0.190669\pi\)
\(434\) 0 0
\(435\) 5084.56 0.560428
\(436\) −2416.62 −0.265448
\(437\) −2678.93 −0.293251
\(438\) −19257.2 −2.10078
\(439\) −16084.7 −1.74870 −0.874351 0.485293i \(-0.838713\pi\)
−0.874351 + 0.485293i \(0.838713\pi\)
\(440\) −3887.60 −0.421214
\(441\) 0 0
\(442\) 2176.14 0.234182
\(443\) 12470.5 1.33746 0.668728 0.743507i \(-0.266839\pi\)
0.668728 + 0.743507i \(0.266839\pi\)
\(444\) 4594.92 0.491138
\(445\) −509.993 −0.0543280
\(446\) −3896.64 −0.413702
\(447\) 3253.71 0.344285
\(448\) 0 0
\(449\) −11606.7 −1.21994 −0.609971 0.792424i \(-0.708819\pi\)
−0.609971 + 0.792424i \(0.708819\pi\)
\(450\) 2051.74 0.214933
\(451\) −18637.8 −1.94594
\(452\) 2780.63 0.289358
\(453\) 2414.57 0.250434
\(454\) 3212.27 0.332069
\(455\) 0 0
\(456\) 8124.87 0.834390
\(457\) 17684.6 1.81018 0.905091 0.425218i \(-0.139803\pi\)
0.905091 + 0.425218i \(0.139803\pi\)
\(458\) −6602.73 −0.673636
\(459\) −4702.26 −0.478176
\(460\) −938.565 −0.0951323
\(461\) 1063.02 0.107396 0.0536982 0.998557i \(-0.482899\pi\)
0.0536982 + 0.998557i \(0.482899\pi\)
\(462\) 0 0
\(463\) −9453.24 −0.948876 −0.474438 0.880289i \(-0.657349\pi\)
−0.474438 + 0.880289i \(0.657349\pi\)
\(464\) −914.543 −0.0915013
\(465\) 13922.4 1.38846
\(466\) −4387.12 −0.436115
\(467\) 17792.1 1.76300 0.881500 0.472183i \(-0.156534\pi\)
0.881500 + 0.472183i \(0.156534\pi\)
\(468\) 8717.22 0.861012
\(469\) 0 0
\(470\) 6741.05 0.661578
\(471\) −19141.5 −1.87259
\(472\) −6957.88 −0.678522
\(473\) −6865.24 −0.667366
\(474\) 1016.91 0.0985409
\(475\) 2437.05 0.235409
\(476\) 0 0
\(477\) 10915.2 1.04774
\(478\) 7106.86 0.680042
\(479\) 1685.46 0.160774 0.0803870 0.996764i \(-0.474384\pi\)
0.0803870 + 0.996764i \(0.474384\pi\)
\(480\) 2846.55 0.270681
\(481\) 5855.75 0.555091
\(482\) −6408.73 −0.605621
\(483\) 0 0
\(484\) 3751.90 0.352357
\(485\) 5599.86 0.524282
\(486\) 4249.54 0.396632
\(487\) 6246.48 0.581221 0.290611 0.956841i \(-0.406142\pi\)
0.290611 + 0.956841i \(0.406142\pi\)
\(488\) 1457.95 0.135242
\(489\) 4445.45 0.411105
\(490\) 0 0
\(491\) −3481.97 −0.320039 −0.160020 0.987114i \(-0.551156\pi\)
−0.160020 + 0.987114i \(0.551156\pi\)
\(492\) 13646.8 1.25050
\(493\) 1399.21 0.127824
\(494\) 10354.3 0.943039
\(495\) 23826.1 2.16344
\(496\) −2504.17 −0.226695
\(497\) 0 0
\(498\) 20546.9 1.84885
\(499\) 4686.08 0.420396 0.210198 0.977659i \(-0.432589\pi\)
0.210198 + 0.977659i \(0.432589\pi\)
\(500\) 5954.72 0.532606
\(501\) 22782.6 2.03164
\(502\) −15221.0 −1.35328
\(503\) 14176.5 1.25665 0.628327 0.777949i \(-0.283740\pi\)
0.628327 + 0.777949i \(0.283740\pi\)
\(504\) 0 0
\(505\) −17435.1 −1.53634
\(506\) 2191.15 0.192507
\(507\) −1929.97 −0.169059
\(508\) 4908.44 0.428695
\(509\) −5433.63 −0.473166 −0.236583 0.971611i \(-0.576028\pi\)
−0.236583 + 0.971611i \(0.576028\pi\)
\(510\) −4355.11 −0.378132
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −22373.8 −1.92559
\(514\) 7737.73 0.664002
\(515\) 12136.8 1.03847
\(516\) 5026.82 0.428863
\(517\) −15737.5 −1.33875
\(518\) 0 0
\(519\) 17345.4 1.46701
\(520\) 3627.63 0.305927
\(521\) 11942.6 1.00425 0.502124 0.864796i \(-0.332552\pi\)
0.502124 + 0.864796i \(0.332552\pi\)
\(522\) 5605.00 0.469970
\(523\) 8321.41 0.695736 0.347868 0.937544i \(-0.386906\pi\)
0.347868 + 0.937544i \(0.386906\pi\)
\(524\) −7774.69 −0.648166
\(525\) 0 0
\(526\) −2911.65 −0.241358
\(527\) 3831.28 0.316686
\(528\) −6645.49 −0.547743
\(529\) 529.000 0.0434783
\(530\) 4542.31 0.372275
\(531\) 42643.1 3.48503
\(532\) 0 0
\(533\) 17391.4 1.41333
\(534\) −871.786 −0.0706477
\(535\) 8516.53 0.688228
\(536\) −3936.42 −0.317215
\(537\) −92.7550 −0.00745377
\(538\) 11853.4 0.949883
\(539\) 0 0
\(540\) −7838.69 −0.624673
\(541\) −8200.26 −0.651676 −0.325838 0.945426i \(-0.605646\pi\)
−0.325838 + 0.945426i \(0.605646\pi\)
\(542\) 15299.3 1.21247
\(543\) −2704.86 −0.213769
\(544\) 783.339 0.0617379
\(545\) 6163.47 0.484429
\(546\) 0 0
\(547\) 2098.90 0.164063 0.0820317 0.996630i \(-0.473859\pi\)
0.0820317 + 0.996630i \(0.473859\pi\)
\(548\) 12009.2 0.936145
\(549\) −8935.40 −0.694633
\(550\) −1993.31 −0.154537
\(551\) 6657.61 0.514743
\(552\) −1604.39 −0.123709
\(553\) 0 0
\(554\) 14240.3 1.09208
\(555\) −11719.1 −0.896305
\(556\) −6397.97 −0.488012
\(557\) −7430.71 −0.565259 −0.282630 0.959229i \(-0.591207\pi\)
−0.282630 + 0.959229i \(0.591207\pi\)
\(558\) 15347.4 1.16435
\(559\) 6406.15 0.484707
\(560\) 0 0
\(561\) 10167.3 0.765179
\(562\) 192.059 0.0144155
\(563\) −813.440 −0.0608924 −0.0304462 0.999536i \(-0.509693\pi\)
−0.0304462 + 0.999536i \(0.509693\pi\)
\(564\) 11523.2 0.860310
\(565\) −7091.85 −0.528065
\(566\) 3799.66 0.282176
\(567\) 0 0
\(568\) −8687.01 −0.641723
\(569\) −13513.3 −0.995622 −0.497811 0.867286i \(-0.665863\pi\)
−0.497811 + 0.867286i \(0.665863\pi\)
\(570\) −20722.1 −1.52272
\(571\) 3982.03 0.291844 0.145922 0.989296i \(-0.453385\pi\)
0.145922 + 0.989296i \(0.453385\pi\)
\(572\) −8468.98 −0.619066
\(573\) −461.183 −0.0336234
\(574\) 0 0
\(575\) −481.236 −0.0349025
\(576\) 3137.92 0.226991
\(577\) −6101.18 −0.440200 −0.220100 0.975477i \(-0.570638\pi\)
−0.220100 + 0.975477i \(0.570638\pi\)
\(578\) 8627.52 0.620861
\(579\) −3848.46 −0.276229
\(580\) 2332.50 0.166986
\(581\) 0 0
\(582\) 9572.45 0.681771
\(583\) −10604.4 −0.753325
\(584\) −8834.05 −0.625951
\(585\) −22232.8 −1.57131
\(586\) −16218.0 −1.14328
\(587\) −20382.8 −1.43320 −0.716600 0.697485i \(-0.754303\pi\)
−0.716600 + 0.697485i \(0.754303\pi\)
\(588\) 0 0
\(589\) 18229.6 1.27528
\(590\) 17745.7 1.23827
\(591\) 47792.8 3.32645
\(592\) 2107.88 0.146340
\(593\) 9515.15 0.658922 0.329461 0.944169i \(-0.393133\pi\)
0.329461 + 0.944169i \(0.393133\pi\)
\(594\) 18300.0 1.26407
\(595\) 0 0
\(596\) 1492.61 0.102583
\(597\) 14980.3 1.02697
\(598\) −2044.63 −0.139818
\(599\) −1109.19 −0.0756598 −0.0378299 0.999284i \(-0.512045\pi\)
−0.0378299 + 0.999284i \(0.512045\pi\)
\(600\) 1459.53 0.0993084
\(601\) 17645.1 1.19760 0.598802 0.800897i \(-0.295644\pi\)
0.598802 + 0.800897i \(0.295644\pi\)
\(602\) 0 0
\(603\) 24125.3 1.62929
\(604\) 1107.66 0.0746196
\(605\) −9569.03 −0.643036
\(606\) −29803.6 −1.99784
\(607\) −22071.9 −1.47590 −0.737950 0.674856i \(-0.764206\pi\)
−0.737950 + 0.674856i \(0.764206\pi\)
\(608\) 3727.21 0.248616
\(609\) 0 0
\(610\) −3718.42 −0.246811
\(611\) 14685.1 0.972334
\(612\) −4800.89 −0.317099
\(613\) −23736.1 −1.56393 −0.781967 0.623320i \(-0.785783\pi\)
−0.781967 + 0.623320i \(0.785783\pi\)
\(614\) 842.299 0.0553623
\(615\) −34805.6 −2.28211
\(616\) 0 0
\(617\) −27074.5 −1.76658 −0.883290 0.468826i \(-0.844677\pi\)
−0.883290 + 0.468826i \(0.844677\pi\)
\(618\) 20746.7 1.35041
\(619\) 26991.9 1.75266 0.876331 0.481710i \(-0.159984\pi\)
0.876331 + 0.481710i \(0.159984\pi\)
\(620\) 6386.77 0.413708
\(621\) 4418.09 0.285494
\(622\) −2447.79 −0.157793
\(623\) 0 0
\(624\) 6201.10 0.397825
\(625\) −12571.8 −0.804595
\(626\) −13356.4 −0.852760
\(627\) 48377.3 3.08134
\(628\) −8780.97 −0.557960
\(629\) −3224.97 −0.204432
\(630\) 0 0
\(631\) −10438.6 −0.658562 −0.329281 0.944232i \(-0.606806\pi\)
−0.329281 + 0.944232i \(0.606806\pi\)
\(632\) 466.500 0.0293613
\(633\) 5889.23 0.369788
\(634\) 104.123 0.00652250
\(635\) −12518.7 −0.782348
\(636\) 7764.67 0.484102
\(637\) 0 0
\(638\) −5445.39 −0.337908
\(639\) 53240.5 3.29603
\(640\) 1305.83 0.0806523
\(641\) −5231.20 −0.322340 −0.161170 0.986927i \(-0.551527\pi\)
−0.161170 + 0.986927i \(0.551527\pi\)
\(642\) 14558.2 0.894965
\(643\) 23379.7 1.43391 0.716957 0.697117i \(-0.245534\pi\)
0.716957 + 0.697117i \(0.245534\pi\)
\(644\) 0 0
\(645\) −12820.7 −0.782656
\(646\) −5702.48 −0.347308
\(647\) 4299.72 0.261266 0.130633 0.991431i \(-0.458299\pi\)
0.130633 + 0.991431i \(0.458299\pi\)
\(648\) −2809.04 −0.170292
\(649\) −41428.7 −2.50573
\(650\) 1860.02 0.112240
\(651\) 0 0
\(652\) 2039.31 0.122493
\(653\) −21893.3 −1.31202 −0.656011 0.754752i \(-0.727757\pi\)
−0.656011 + 0.754752i \(0.727757\pi\)
\(654\) 10535.9 0.629948
\(655\) 19829.0 1.18287
\(656\) 6260.36 0.372601
\(657\) 54141.7 3.21502
\(658\) 0 0
\(659\) 15102.7 0.892745 0.446372 0.894847i \(-0.352716\pi\)
0.446372 + 0.894847i \(0.352716\pi\)
\(660\) 16949.0 0.999604
\(661\) 96.2346 0.00566277 0.00283139 0.999996i \(-0.499099\pi\)
0.00283139 + 0.999996i \(0.499099\pi\)
\(662\) 15128.2 0.888178
\(663\) −9487.43 −0.555749
\(664\) 9425.68 0.550885
\(665\) 0 0
\(666\) −12918.7 −0.751634
\(667\) −1314.66 −0.0763173
\(668\) 10451.3 0.605350
\(669\) 16988.4 0.981778
\(670\) 10039.6 0.578903
\(671\) 8680.94 0.499440
\(672\) 0 0
\(673\) 23038.4 1.31956 0.659780 0.751459i \(-0.270649\pi\)
0.659780 + 0.751459i \(0.270649\pi\)
\(674\) −18075.8 −1.03302
\(675\) −4019.18 −0.229182
\(676\) −885.354 −0.0503729
\(677\) −22225.8 −1.26175 −0.630875 0.775884i \(-0.717304\pi\)
−0.630875 + 0.775884i \(0.717304\pi\)
\(678\) −12122.9 −0.686690
\(679\) 0 0
\(680\) −1997.87 −0.112669
\(681\) −14004.7 −0.788051
\(682\) −14910.4 −0.837168
\(683\) 7187.69 0.402679 0.201339 0.979522i \(-0.435471\pi\)
0.201339 + 0.979522i \(0.435471\pi\)
\(684\) −22843.1 −1.27694
\(685\) −30628.8 −1.70842
\(686\) 0 0
\(687\) 28786.3 1.59864
\(688\) 2306.01 0.127785
\(689\) 9895.25 0.547139
\(690\) 4091.92 0.225763
\(691\) −4050.60 −0.222999 −0.111499 0.993765i \(-0.535565\pi\)
−0.111499 + 0.993765i \(0.535565\pi\)
\(692\) 7957.03 0.437111
\(693\) 0 0
\(694\) −3187.60 −0.174351
\(695\) 16317.7 0.890598
\(696\) 3987.19 0.217146
\(697\) −9578.10 −0.520511
\(698\) 15261.9 0.827611
\(699\) 19126.8 1.03497
\(700\) 0 0
\(701\) −12995.1 −0.700168 −0.350084 0.936718i \(-0.613847\pi\)
−0.350084 + 0.936718i \(0.613847\pi\)
\(702\) −17076.3 −0.918094
\(703\) −15344.8 −0.823241
\(704\) −3048.56 −0.163206
\(705\) −29389.4 −1.57003
\(706\) −18564.4 −0.989633
\(707\) 0 0
\(708\) 30334.7 1.61024
\(709\) 21281.5 1.12728 0.563640 0.826020i \(-0.309400\pi\)
0.563640 + 0.826020i \(0.309400\pi\)
\(710\) 22155.8 1.17111
\(711\) −2859.06 −0.150806
\(712\) −399.924 −0.0210502
\(713\) −3599.75 −0.189077
\(714\) 0 0
\(715\) 21599.7 1.12977
\(716\) −42.5505 −0.00222093
\(717\) −30984.2 −1.61384
\(718\) 11961.1 0.621707
\(719\) 19425.2 1.00756 0.503781 0.863831i \(-0.331942\pi\)
0.503781 + 0.863831i \(0.331942\pi\)
\(720\) −8003.11 −0.414247
\(721\) 0 0
\(722\) −13415.0 −0.691488
\(723\) 27940.5 1.43723
\(724\) −1240.83 −0.0636949
\(725\) 1195.95 0.0612643
\(726\) −16357.4 −0.836198
\(727\) 16613.0 0.847515 0.423758 0.905776i \(-0.360711\pi\)
0.423758 + 0.905776i \(0.360711\pi\)
\(728\) 0 0
\(729\) −28007.5 −1.42293
\(730\) 22530.8 1.14233
\(731\) −3528.10 −0.178511
\(732\) −6356.30 −0.320950
\(733\) 28860.0 1.45426 0.727128 0.686501i \(-0.240854\pi\)
0.727128 + 0.686501i \(0.240854\pi\)
\(734\) −12738.1 −0.640561
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −23438.3 −1.17145
\(738\) −38368.2 −1.91376
\(739\) 4377.48 0.217900 0.108950 0.994047i \(-0.465251\pi\)
0.108950 + 0.994047i \(0.465251\pi\)
\(740\) −5376.04 −0.267064
\(741\) −45142.2 −2.23798
\(742\) 0 0
\(743\) 13092.1 0.646436 0.323218 0.946325i \(-0.395235\pi\)
0.323218 + 0.946325i \(0.395235\pi\)
\(744\) 10917.6 0.537981
\(745\) −3806.83 −0.187210
\(746\) −5385.20 −0.264298
\(747\) −57767.6 −2.82946
\(748\) 4664.17 0.227993
\(749\) 0 0
\(750\) −25961.1 −1.26396
\(751\) −29469.3 −1.43189 −0.715944 0.698157i \(-0.754004\pi\)
−0.715944 + 0.698157i \(0.754004\pi\)
\(752\) 5286.17 0.256339
\(753\) 66359.8 3.21153
\(754\) 5081.25 0.245422
\(755\) −2825.04 −0.136177
\(756\) 0 0
\(757\) 25951.8 1.24602 0.623009 0.782214i \(-0.285910\pi\)
0.623009 + 0.782214i \(0.285910\pi\)
\(758\) −2169.34 −0.103950
\(759\) −9552.90 −0.456849
\(760\) −9506.06 −0.453712
\(761\) 9234.94 0.439903 0.219952 0.975511i \(-0.429410\pi\)
0.219952 + 0.975511i \(0.429410\pi\)
\(762\) −21399.6 −1.01736
\(763\) 0 0
\(764\) −211.564 −0.0100185
\(765\) 12244.4 0.578690
\(766\) −190.609 −0.00899084
\(767\) 38658.3 1.81991
\(768\) 2232.20 0.104879
\(769\) −13479.5 −0.632099 −0.316050 0.948743i \(-0.602357\pi\)
−0.316050 + 0.948743i \(0.602357\pi\)
\(770\) 0 0
\(771\) −33734.7 −1.57578
\(772\) −1765.44 −0.0823054
\(773\) 1615.52 0.0751697 0.0375849 0.999293i \(-0.488034\pi\)
0.0375849 + 0.999293i \(0.488034\pi\)
\(774\) −14133.0 −0.656329
\(775\) 3274.72 0.151783
\(776\) 4391.28 0.203141
\(777\) 0 0
\(778\) −7532.57 −0.347115
\(779\) −45573.6 −2.09608
\(780\) −15815.6 −0.726012
\(781\) −51724.4 −2.36984
\(782\) 1126.05 0.0514929
\(783\) −10979.7 −0.501127
\(784\) 0 0
\(785\) 22395.4 1.01825
\(786\) 33895.8 1.53820
\(787\) −20500.9 −0.928563 −0.464281 0.885688i \(-0.653687\pi\)
−0.464281 + 0.885688i \(0.653687\pi\)
\(788\) 21924.5 0.991153
\(789\) 12694.1 0.572778
\(790\) −1189.78 −0.0535831
\(791\) 0 0
\(792\) 18683.9 0.838260
\(793\) −8100.44 −0.362743
\(794\) −22806.8 −1.01937
\(795\) −19803.4 −0.883464
\(796\) 6872.08 0.305998
\(797\) −30024.8 −1.33442 −0.667209 0.744870i \(-0.732511\pi\)
−0.667209 + 0.744870i \(0.732511\pi\)
\(798\) 0 0
\(799\) −8087.62 −0.358097
\(800\) 669.546 0.0295900
\(801\) 2451.03 0.108119
\(802\) 22888.0 1.00773
\(803\) −52599.9 −2.31159
\(804\) 17161.8 0.752801
\(805\) 0 0
\(806\) 13913.3 0.608034
\(807\) −51678.0 −2.25422
\(808\) −13672.1 −0.595278
\(809\) −35008.7 −1.52143 −0.760716 0.649084i \(-0.775152\pi\)
−0.760716 + 0.649084i \(0.775152\pi\)
\(810\) 7164.32 0.310776
\(811\) 35468.2 1.53570 0.767852 0.640628i \(-0.221326\pi\)
0.767852 + 0.640628i \(0.221326\pi\)
\(812\) 0 0
\(813\) −66701.2 −2.87738
\(814\) 12550.8 0.540423
\(815\) −5201.16 −0.223544
\(816\) −3415.17 −0.146513
\(817\) −16787.1 −0.718856
\(818\) −19900.0 −0.850595
\(819\) 0 0
\(820\) −15966.7 −0.679979
\(821\) −742.947 −0.0315823 −0.0157911 0.999875i \(-0.505027\pi\)
−0.0157911 + 0.999875i \(0.505027\pi\)
\(822\) −52357.2 −2.22161
\(823\) −43289.9 −1.83353 −0.916763 0.399431i \(-0.869208\pi\)
−0.916763 + 0.399431i \(0.869208\pi\)
\(824\) 9517.35 0.402370
\(825\) 8690.36 0.366739
\(826\) 0 0
\(827\) −40732.0 −1.71269 −0.856343 0.516408i \(-0.827269\pi\)
−0.856343 + 0.516408i \(0.827269\pi\)
\(828\) 4510.76 0.189323
\(829\) 18816.7 0.788336 0.394168 0.919038i \(-0.371033\pi\)
0.394168 + 0.919038i \(0.371033\pi\)
\(830\) −24039.7 −1.00534
\(831\) −62084.1 −2.59166
\(832\) 2844.70 0.118536
\(833\) 0 0
\(834\) 27893.6 1.15813
\(835\) −26655.6 −1.10473
\(836\) 22192.6 0.918120
\(837\) −30064.3 −1.24155
\(838\) 9750.32 0.401932
\(839\) 43333.9 1.78314 0.891568 0.452886i \(-0.149606\pi\)
0.891568 + 0.452886i \(0.149606\pi\)
\(840\) 0 0
\(841\) −21121.9 −0.866040
\(842\) 4432.24 0.181408
\(843\) −837.329 −0.0342101
\(844\) 2701.63 0.110182
\(845\) 2258.05 0.0919282
\(846\) −32397.6 −1.31661
\(847\) 0 0
\(848\) 3561.97 0.144244
\(849\) −16565.6 −0.669646
\(850\) −1024.38 −0.0413363
\(851\) 3030.08 0.122056
\(852\) 37873.3 1.52291
\(853\) −29347.3 −1.17800 −0.588999 0.808134i \(-0.700478\pi\)
−0.588999 + 0.808134i \(0.700478\pi\)
\(854\) 0 0
\(855\) 58260.3 2.33036
\(856\) 6678.46 0.266665
\(857\) 37377.1 1.48982 0.744910 0.667164i \(-0.232492\pi\)
0.744910 + 0.667164i \(0.232492\pi\)
\(858\) 36922.7 1.46914
\(859\) 13909.6 0.552491 0.276246 0.961087i \(-0.410910\pi\)
0.276246 + 0.961087i \(0.410910\pi\)
\(860\) −5881.36 −0.233201
\(861\) 0 0
\(862\) −2672.63 −0.105603
\(863\) −44798.7 −1.76705 −0.883525 0.468384i \(-0.844837\pi\)
−0.883525 + 0.468384i \(0.844837\pi\)
\(864\) −6146.91 −0.242039
\(865\) −20294.0 −0.797707
\(866\) −29765.8 −1.16799
\(867\) −37613.9 −1.47340
\(868\) 0 0
\(869\) 2777.64 0.108429
\(870\) −10169.1 −0.396282
\(871\) 21871.0 0.850826
\(872\) 4833.24 0.187700
\(873\) −26913.0 −1.04338
\(874\) 5357.86 0.207360
\(875\) 0 0
\(876\) 38514.3 1.48548
\(877\) 30660.0 1.18052 0.590259 0.807214i \(-0.299025\pi\)
0.590259 + 0.807214i \(0.299025\pi\)
\(878\) 32169.4 1.23652
\(879\) 70706.7 2.71317
\(880\) 7775.20 0.297843
\(881\) −37429.6 −1.43137 −0.715683 0.698425i \(-0.753885\pi\)
−0.715683 + 0.698425i \(0.753885\pi\)
\(882\) 0 0
\(883\) 5281.76 0.201297 0.100649 0.994922i \(-0.467908\pi\)
0.100649 + 0.994922i \(0.467908\pi\)
\(884\) −4352.27 −0.165591
\(885\) −77367.0 −2.93860
\(886\) −24941.1 −0.945725
\(887\) 8822.51 0.333969 0.166985 0.985959i \(-0.446597\pi\)
0.166985 + 0.985959i \(0.446597\pi\)
\(888\) −9189.85 −0.347287
\(889\) 0 0
\(890\) 1019.99 0.0384157
\(891\) −16725.6 −0.628878
\(892\) 7793.28 0.292532
\(893\) −38481.8 −1.44204
\(894\) −6507.43 −0.243446
\(895\) 108.523 0.00405310
\(896\) 0 0
\(897\) 8914.08 0.331809
\(898\) 23213.4 0.862629
\(899\) 8945.99 0.331886
\(900\) −4103.48 −0.151981
\(901\) −5449.67 −0.201504
\(902\) 37275.6 1.37599
\(903\) 0 0
\(904\) −5561.26 −0.204607
\(905\) 3164.68 0.116240
\(906\) −4829.15 −0.177084
\(907\) −16922.0 −0.619498 −0.309749 0.950818i \(-0.600245\pi\)
−0.309749 + 0.950818i \(0.600245\pi\)
\(908\) −6424.55 −0.234808
\(909\) 83793.1 3.05747
\(910\) 0 0
\(911\) −4095.71 −0.148954 −0.0744769 0.997223i \(-0.523729\pi\)
−0.0744769 + 0.997223i \(0.523729\pi\)
\(912\) −16249.7 −0.590003
\(913\) 56122.6 2.03438
\(914\) −35369.3 −1.27999
\(915\) 16211.4 0.585719
\(916\) 13205.5 0.476333
\(917\) 0 0
\(918\) 9404.52 0.338121
\(919\) −50949.8 −1.82881 −0.914407 0.404797i \(-0.867342\pi\)
−0.914407 + 0.404797i \(0.867342\pi\)
\(920\) 1877.13 0.0672687
\(921\) −3672.22 −0.131383
\(922\) −2126.04 −0.0759408
\(923\) 48265.5 1.72121
\(924\) 0 0
\(925\) −2756.49 −0.0979814
\(926\) 18906.5 0.670957
\(927\) −58329.5 −2.06666
\(928\) 1829.09 0.0647012
\(929\) 29361.2 1.03693 0.518465 0.855099i \(-0.326504\pi\)
0.518465 + 0.855099i \(0.326504\pi\)
\(930\) −27844.8 −0.981791
\(931\) 0 0
\(932\) 8774.25 0.308380
\(933\) 10671.8 0.374468
\(934\) −35584.2 −1.24663
\(935\) −11895.7 −0.416077
\(936\) −17434.4 −0.608828
\(937\) −4856.38 −0.169318 −0.0846589 0.996410i \(-0.526980\pi\)
−0.0846589 + 0.996410i \(0.526980\pi\)
\(938\) 0 0
\(939\) 58230.6 2.02373
\(940\) −13482.1 −0.467806
\(941\) −17659.3 −0.611772 −0.305886 0.952068i \(-0.598953\pi\)
−0.305886 + 0.952068i \(0.598953\pi\)
\(942\) 38282.9 1.32412
\(943\) 8999.27 0.310770
\(944\) 13915.8 0.479787
\(945\) 0 0
\(946\) 13730.5 0.471899
\(947\) 2362.58 0.0810702 0.0405351 0.999178i \(-0.487094\pi\)
0.0405351 + 0.999178i \(0.487094\pi\)
\(948\) −2033.83 −0.0696789
\(949\) 49082.4 1.67891
\(950\) −4874.10 −0.166460
\(951\) −453.952 −0.0154789
\(952\) 0 0
\(953\) 51826.5 1.76162 0.880811 0.473469i \(-0.156998\pi\)
0.880811 + 0.473469i \(0.156998\pi\)
\(954\) −21830.4 −0.740866
\(955\) 539.583 0.0182832
\(956\) −14213.7 −0.480862
\(957\) 23740.6 0.801906
\(958\) −3370.92 −0.113684
\(959\) 0 0
\(960\) −5693.10 −0.191400
\(961\) −5295.37 −0.177751
\(962\) −11711.5 −0.392509
\(963\) −40930.6 −1.36965
\(964\) 12817.5 0.428239
\(965\) 4502.68 0.150203
\(966\) 0 0
\(967\) 9508.48 0.316207 0.158103 0.987423i \(-0.449462\pi\)
0.158103 + 0.987423i \(0.449462\pi\)
\(968\) −7503.80 −0.249154
\(969\) 24861.4 0.824215
\(970\) −11199.7 −0.370723
\(971\) −46010.2 −1.52064 −0.760318 0.649551i \(-0.774957\pi\)
−0.760318 + 0.649551i \(0.774957\pi\)
\(972\) −8499.07 −0.280461
\(973\) 0 0
\(974\) −12493.0 −0.410986
\(975\) −8109.22 −0.266362
\(976\) −2915.90 −0.0956307
\(977\) 24820.7 0.812778 0.406389 0.913700i \(-0.366788\pi\)
0.406389 + 0.913700i \(0.366788\pi\)
\(978\) −8890.90 −0.290695
\(979\) −2381.23 −0.0777371
\(980\) 0 0
\(981\) −29621.7 −0.964066
\(982\) 6963.95 0.226302
\(983\) 59896.5 1.94344 0.971720 0.236137i \(-0.0758814\pi\)
0.971720 + 0.236137i \(0.0758814\pi\)
\(984\) −27293.7 −0.884238
\(985\) −55917.4 −1.80881
\(986\) −2798.43 −0.0903855
\(987\) 0 0
\(988\) −20708.6 −0.666829
\(989\) 3314.89 0.106580
\(990\) −47652.3 −1.52979
\(991\) −665.739 −0.0213399 −0.0106700 0.999943i \(-0.503396\pi\)
−0.0106700 + 0.999943i \(0.503396\pi\)
\(992\) 5008.35 0.160298
\(993\) −65955.2 −2.10778
\(994\) 0 0
\(995\) −17526.9 −0.558432
\(996\) −41093.7 −1.30733
\(997\) −16179.2 −0.513941 −0.256971 0.966419i \(-0.582724\pi\)
−0.256971 + 0.966419i \(0.582724\pi\)
\(998\) −9372.16 −0.297265
\(999\) 25306.5 0.801465
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.u.1.10 11
7.3 odd 6 322.4.e.d.93.10 22
7.5 odd 6 322.4.e.d.277.10 yes 22
7.6 odd 2 2254.4.a.r.1.2 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.d.93.10 22 7.3 odd 6
322.4.e.d.277.10 yes 22 7.5 odd 6
2254.4.a.r.1.2 11 7.6 odd 2
2254.4.a.u.1.10 11 1.1 even 1 trivial