Properties

Label 2254.4.a.s
Level $2254$
Weight $4$
Character orbit 2254.a
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 178 x^{9} - 29 x^{8} + 11409 x^{7} + 5153 x^{6} - 327598 x^{5} - 270393 x^{4} + 4277164 x^{3} + \cdots - 33055073 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{10}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + \beta_1 q^{3} + 4 q^{4} + (\beta_{3} - 2) q^{5} - 2 \beta_1 q^{6} - 8 q^{8} + (\beta_{4} - \beta_{3} + \beta_{2} + 6) q^{9} + ( - 2 \beta_{3} + 4) q^{10} + ( - \beta_{9} + \beta_{5} + \cdots + \beta_1) q^{11}+ \cdots + (8 \beta_{10} + 11 \beta_{9} + \cdots + 328) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 22 q^{2} + 44 q^{4} - 17 q^{5} - 88 q^{8} + 59 q^{9} + 34 q^{10} - 3 q^{13} - 144 q^{15} + 176 q^{16} - 47 q^{17} - 118 q^{18} + 138 q^{19} - 68 q^{20} - 253 q^{23} + 350 q^{25} + 6 q^{26} + 87 q^{27}+ \cdots + 3525 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{11} - 178 x^{9} - 29 x^{8} + 11409 x^{7} + 5153 x^{6} - 327598 x^{5} - 270393 x^{4} + 4277164 x^{3} + \cdots - 33055073 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 894730436 \nu^{10} + 22340866396 \nu^{9} - 113873204817 \nu^{8} - 3696821733796 \nu^{7} + \cdots + 79\!\cdots\!13 ) / 247483648506465 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 3367525582 \nu^{10} + 84689834653 \nu^{9} + 521736289584 \nu^{8} + \cdots + 18\!\cdots\!84 ) / 742450945519395 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 1210343378 \nu^{10} + 3533447093 \nu^{9} + 172671180807 \nu^{8} - 516669798044 \nu^{7} + \cdots - 16\!\cdots\!18 ) / 148490189103879 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 9699812414 \nu^{10} + 17970313301 \nu^{9} + 1626206213568 \nu^{8} + \cdots - 14\!\cdots\!52 ) / 742450945519395 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 1401849014 \nu^{10} + 10498739203 \nu^{9} + 235670829176 \nu^{8} - 1686231730597 \nu^{7} + \cdots + 29\!\cdots\!84 ) / 49496729701293 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 26898920738 \nu^{10} + 97647142948 \nu^{9} - 4247574688626 \nu^{8} - 16789859715403 \nu^{7} + \cdots + 26\!\cdots\!59 ) / 742450945519395 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 9871258094 \nu^{10} + 16438387241 \nu^{9} + 1617580714560 \nu^{8} + \cdots + 26\!\cdots\!65 ) / 148490189103879 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 19755070309 \nu^{10} - 71185717561 \nu^{9} - 3281784074643 \nu^{8} + 11219304530896 \nu^{7} + \cdots - 19\!\cdots\!13 ) / 247483648506465 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 83140076393 \nu^{10} - 43653383927 \nu^{9} - 13865417081346 \nu^{8} + \cdots - 34\!\cdots\!21 ) / 742450945519395 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + \beta_{2} + 33 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{9} + \beta_{8} + \beta_{7} + 5\beta_{6} - \beta_{5} - 3\beta_{3} - 4\beta_{2} + 47\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7 \beta_{10} - 7 \beta_{9} - 8 \beta_{8} - 13 \beta_{7} + 12 \beta_{6} + 6 \beta_{5} + 76 \beta_{4} + \cdots + 1662 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 13 \beta_{10} + 199 \beta_{9} + 146 \beta_{8} + 124 \beta_{7} + 387 \beta_{6} - 148 \beta_{5} + \cdots + 144 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 866 \beta_{10} - 1012 \beta_{9} - 890 \beta_{8} - 1395 \beta_{7} + 1111 \beta_{6} + 665 \beta_{5} + \cdots + 100201 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 1480 \beta_{10} + 16418 \beta_{9} + 14377 \beta_{8} + 10743 \beta_{7} + 26176 \beta_{6} + \cdots - 30330 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 79682 \beta_{10} - 103552 \beta_{9} - 77990 \beta_{8} - 116535 \beta_{7} + 78277 \beta_{6} + \cdots + 6513465 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 131365 \beta_{10} + 1280149 \beta_{9} + 1239167 \beta_{8} + 854206 \beta_{7} + 1739427 \beta_{6} + \cdots - 4834334 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 6598968 \beta_{10} - 9225737 \beta_{9} - 6355162 \beta_{8} - 9066898 \beta_{7} + 5039062 \beta_{6} + \cdots + 439414551 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.65181
−6.92791
−4.68259
−3.62203
−3.17667
−1.96532
3.85892
4.04898
5.44340
7.40070
8.27433
−2.00000 −8.65181 4.00000 −8.28906 17.3036 0 −8.00000 47.8538 16.5781
1.2 −2.00000 −6.92791 4.00000 18.3858 13.8558 0 −8.00000 20.9959 −36.7717
1.3 −2.00000 −4.68259 4.00000 −19.8302 9.36518 0 −8.00000 −5.07336 39.6604
1.4 −2.00000 −3.62203 4.00000 11.6858 7.24405 0 −8.00000 −13.8809 −23.3717
1.5 −2.00000 −3.17667 4.00000 0.0260643 6.35334 0 −8.00000 −16.9088 −0.0521286
1.6 −2.00000 −1.96532 4.00000 −4.37870 3.93063 0 −8.00000 −23.1375 8.75740
1.7 −2.00000 3.85892 4.00000 15.2739 −7.71785 0 −8.00000 −12.1087 −30.5477
1.8 −2.00000 4.04898 4.00000 −5.73149 −8.09796 0 −8.00000 −10.6058 11.4630
1.9 −2.00000 5.44340 4.00000 −7.06685 −10.8868 0 −8.00000 2.63057 14.1337
1.10 −2.00000 7.40070 4.00000 3.86030 −14.8014 0 −8.00000 27.7703 −7.72059
1.11 −2.00000 8.27433 4.00000 −20.9356 −16.5487 0 −8.00000 41.4645 41.8712
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.11
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2254.4.a.s 11
7.b odd 2 1 2254.4.a.t 11
7.d odd 6 2 322.4.e.c 22
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.4.e.c 22 7.d odd 6 2
2254.4.a.s 11 1.a even 1 1 trivial
2254.4.a.t 11 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{11} - 178 T_{3}^{9} - 29 T_{3}^{8} + 11409 T_{3}^{7} + 5153 T_{3}^{6} - 327598 T_{3}^{5} + \cdots - 33055073 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2254))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{11} \) Copy content Toggle raw display
$3$ \( T^{11} - 178 T^{9} + \cdots - 33055073 \) Copy content Toggle raw display
$5$ \( T^{11} + \cdots - 201518793 \) Copy content Toggle raw display
$7$ \( T^{11} \) Copy content Toggle raw display
$11$ \( T^{11} + \cdots + 11\!\cdots\!25 \) Copy content Toggle raw display
$13$ \( T^{11} + \cdots - 10\!\cdots\!67 \) Copy content Toggle raw display
$17$ \( T^{11} + \cdots - 62\!\cdots\!61 \) Copy content Toggle raw display
$19$ \( T^{11} + \cdots + 24\!\cdots\!29 \) Copy content Toggle raw display
$23$ \( (T + 23)^{11} \) Copy content Toggle raw display
$29$ \( T^{11} + \cdots + 80\!\cdots\!55 \) Copy content Toggle raw display
$31$ \( T^{11} + \cdots - 22\!\cdots\!25 \) Copy content Toggle raw display
$37$ \( T^{11} + \cdots - 15\!\cdots\!23 \) Copy content Toggle raw display
$41$ \( T^{11} + \cdots - 14\!\cdots\!51 \) Copy content Toggle raw display
$43$ \( T^{11} + \cdots + 22\!\cdots\!55 \) Copy content Toggle raw display
$47$ \( T^{11} + \cdots - 54\!\cdots\!27 \) Copy content Toggle raw display
$53$ \( T^{11} + \cdots + 16\!\cdots\!23 \) Copy content Toggle raw display
$59$ \( T^{11} + \cdots - 79\!\cdots\!99 \) Copy content Toggle raw display
$61$ \( T^{11} + \cdots - 94\!\cdots\!93 \) Copy content Toggle raw display
$67$ \( T^{11} + \cdots - 12\!\cdots\!91 \) Copy content Toggle raw display
$71$ \( T^{11} + \cdots + 31\!\cdots\!13 \) Copy content Toggle raw display
$73$ \( T^{11} + \cdots - 90\!\cdots\!45 \) Copy content Toggle raw display
$79$ \( T^{11} + \cdots - 24\!\cdots\!75 \) Copy content Toggle raw display
$83$ \( T^{11} + \cdots - 53\!\cdots\!33 \) Copy content Toggle raw display
$89$ \( T^{11} + \cdots - 93\!\cdots\!05 \) Copy content Toggle raw display
$97$ \( T^{11} + \cdots - 85\!\cdots\!95 \) Copy content Toggle raw display
show more
show less