Properties

Label 2254.4.a.n.1.5
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 38x^{4} + 203x^{2} - 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-5.62980\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.92350 q^{3} +4.00000 q^{4} +13.4068 q^{5} +7.84699 q^{6} +8.00000 q^{8} -11.6062 q^{9} +26.8137 q^{10} -46.1770 q^{11} +15.6940 q^{12} -72.7465 q^{13} +52.6017 q^{15} +16.0000 q^{16} +51.6451 q^{17} -23.2123 q^{18} -115.382 q^{19} +53.6274 q^{20} -92.3541 q^{22} +23.0000 q^{23} +31.3880 q^{24} +54.7435 q^{25} -145.493 q^{26} -151.471 q^{27} -12.8001 q^{29} +105.203 q^{30} +41.0425 q^{31} +32.0000 q^{32} -181.175 q^{33} +103.290 q^{34} -46.4247 q^{36} +268.884 q^{37} -230.763 q^{38} -285.421 q^{39} +107.255 q^{40} +204.674 q^{41} +163.610 q^{43} -184.708 q^{44} -155.602 q^{45} +46.0000 q^{46} -259.589 q^{47} +62.7760 q^{48} +109.487 q^{50} +202.630 q^{51} -290.986 q^{52} -766.655 q^{53} -302.942 q^{54} -619.088 q^{55} -452.699 q^{57} -25.6003 q^{58} -584.803 q^{59} +210.407 q^{60} -713.386 q^{61} +82.0850 q^{62} +64.0000 q^{64} -975.301 q^{65} -362.351 q^{66} +1064.46 q^{67} +206.581 q^{68} +90.2404 q^{69} -659.926 q^{71} -92.8494 q^{72} +653.396 q^{73} +537.769 q^{74} +214.786 q^{75} -461.526 q^{76} -570.842 q^{78} -1291.12 q^{79} +214.509 q^{80} -280.930 q^{81} +409.348 q^{82} +91.8152 q^{83} +692.398 q^{85} +327.221 q^{86} -50.2214 q^{87} -369.416 q^{88} +532.663 q^{89} -311.204 q^{90} +92.0000 q^{92} +161.030 q^{93} -519.178 q^{94} -1546.90 q^{95} +125.552 q^{96} -480.841 q^{97} +535.939 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} + 24 q^{4} + 48 q^{8} - 52 q^{9} - 84 q^{11} + 52 q^{15} + 96 q^{16} - 104 q^{18} - 168 q^{22} + 138 q^{23} - 286 q^{25} - 22 q^{29} + 104 q^{30} + 192 q^{32} - 208 q^{36} - 180 q^{37} - 414 q^{39}+ \cdots + 600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.92350 0.755077 0.377539 0.925994i \(-0.376771\pi\)
0.377539 + 0.925994i \(0.376771\pi\)
\(4\) 4.00000 0.500000
\(5\) 13.4068 1.19914 0.599572 0.800321i \(-0.295337\pi\)
0.599572 + 0.800321i \(0.295337\pi\)
\(6\) 7.84699 0.533920
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −11.6062 −0.429858
\(10\) 26.8137 0.847923
\(11\) −46.1770 −1.26572 −0.632859 0.774267i \(-0.718119\pi\)
−0.632859 + 0.774267i \(0.718119\pi\)
\(12\) 15.6940 0.377539
\(13\) −72.7465 −1.55202 −0.776010 0.630721i \(-0.782759\pi\)
−0.776010 + 0.630721i \(0.782759\pi\)
\(14\) 0 0
\(15\) 52.6017 0.905447
\(16\) 16.0000 0.250000
\(17\) 51.6451 0.736811 0.368405 0.929665i \(-0.379904\pi\)
0.368405 + 0.929665i \(0.379904\pi\)
\(18\) −23.2123 −0.303956
\(19\) −115.382 −1.39318 −0.696588 0.717471i \(-0.745299\pi\)
−0.696588 + 0.717471i \(0.745299\pi\)
\(20\) 53.6274 0.599572
\(21\) 0 0
\(22\) −92.3541 −0.894998
\(23\) 23.0000 0.208514
\(24\) 31.3880 0.266960
\(25\) 54.7435 0.437948
\(26\) −145.493 −1.09744
\(27\) −151.471 −1.07965
\(28\) 0 0
\(29\) −12.8001 −0.0819630 −0.0409815 0.999160i \(-0.513048\pi\)
−0.0409815 + 0.999160i \(0.513048\pi\)
\(30\) 105.203 0.640248
\(31\) 41.0425 0.237789 0.118894 0.992907i \(-0.462065\pi\)
0.118894 + 0.992907i \(0.462065\pi\)
\(32\) 32.0000 0.176777
\(33\) −181.175 −0.955715
\(34\) 103.290 0.521004
\(35\) 0 0
\(36\) −46.4247 −0.214929
\(37\) 268.884 1.19471 0.597356 0.801977i \(-0.296218\pi\)
0.597356 + 0.801977i \(0.296218\pi\)
\(38\) −230.763 −0.985124
\(39\) −285.421 −1.17189
\(40\) 107.255 0.423962
\(41\) 204.674 0.779627 0.389813 0.920894i \(-0.372540\pi\)
0.389813 + 0.920894i \(0.372540\pi\)
\(42\) 0 0
\(43\) 163.610 0.580240 0.290120 0.956990i \(-0.406305\pi\)
0.290120 + 0.956990i \(0.406305\pi\)
\(44\) −184.708 −0.632859
\(45\) −155.602 −0.515462
\(46\) 46.0000 0.147442
\(47\) −259.589 −0.805637 −0.402818 0.915280i \(-0.631969\pi\)
−0.402818 + 0.915280i \(0.631969\pi\)
\(48\) 62.7760 0.188769
\(49\) 0 0
\(50\) 109.487 0.309676
\(51\) 202.630 0.556349
\(52\) −290.986 −0.776010
\(53\) −766.655 −1.98695 −0.993473 0.114069i \(-0.963612\pi\)
−0.993473 + 0.114069i \(0.963612\pi\)
\(54\) −302.942 −0.763430
\(55\) −619.088 −1.51778
\(56\) 0 0
\(57\) −452.699 −1.05196
\(58\) −25.6003 −0.0579566
\(59\) −584.803 −1.29042 −0.645211 0.764004i \(-0.723231\pi\)
−0.645211 + 0.764004i \(0.723231\pi\)
\(60\) 210.407 0.452723
\(61\) −713.386 −1.49737 −0.748686 0.662925i \(-0.769315\pi\)
−0.748686 + 0.662925i \(0.769315\pi\)
\(62\) 82.0850 0.168142
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −975.301 −1.86110
\(66\) −362.351 −0.675793
\(67\) 1064.46 1.94096 0.970482 0.241173i \(-0.0775322\pi\)
0.970482 + 0.241173i \(0.0775322\pi\)
\(68\) 206.581 0.368405
\(69\) 90.2404 0.157445
\(70\) 0 0
\(71\) −659.926 −1.10308 −0.551541 0.834148i \(-0.685960\pi\)
−0.551541 + 0.834148i \(0.685960\pi\)
\(72\) −92.8494 −0.151978
\(73\) 653.396 1.04759 0.523796 0.851844i \(-0.324515\pi\)
0.523796 + 0.851844i \(0.324515\pi\)
\(74\) 537.769 0.844788
\(75\) 214.786 0.330684
\(76\) −461.526 −0.696588
\(77\) 0 0
\(78\) −570.842 −0.828655
\(79\) −1291.12 −1.83876 −0.919381 0.393369i \(-0.871309\pi\)
−0.919381 + 0.393369i \(0.871309\pi\)
\(80\) 214.509 0.299786
\(81\) −280.930 −0.385364
\(82\) 409.348 0.551279
\(83\) 91.8152 0.121422 0.0607110 0.998155i \(-0.480663\pi\)
0.0607110 + 0.998155i \(0.480663\pi\)
\(84\) 0 0
\(85\) 692.398 0.883543
\(86\) 327.221 0.410292
\(87\) −50.2214 −0.0618884
\(88\) −369.416 −0.447499
\(89\) 532.663 0.634406 0.317203 0.948358i \(-0.397256\pi\)
0.317203 + 0.948358i \(0.397256\pi\)
\(90\) −311.204 −0.364487
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 161.030 0.179549
\(94\) −519.178 −0.569671
\(95\) −1546.90 −1.67062
\(96\) 125.552 0.133480
\(97\) −480.841 −0.503320 −0.251660 0.967816i \(-0.580976\pi\)
−0.251660 + 0.967816i \(0.580976\pi\)
\(98\) 0 0
\(99\) 535.939 0.544079
\(100\) 218.974 0.218974
\(101\) −43.4054 −0.0427624 −0.0213812 0.999771i \(-0.506806\pi\)
−0.0213812 + 0.999771i \(0.506806\pi\)
\(102\) 405.259 0.393398
\(103\) −1443.38 −1.38078 −0.690390 0.723437i \(-0.742561\pi\)
−0.690390 + 0.723437i \(0.742561\pi\)
\(104\) −581.972 −0.548722
\(105\) 0 0
\(106\) −1533.31 −1.40498
\(107\) −1076.06 −0.972211 −0.486105 0.873900i \(-0.661583\pi\)
−0.486105 + 0.873900i \(0.661583\pi\)
\(108\) −605.885 −0.539827
\(109\) −536.625 −0.471553 −0.235777 0.971807i \(-0.575763\pi\)
−0.235777 + 0.971807i \(0.575763\pi\)
\(110\) −1238.18 −1.07323
\(111\) 1054.97 0.902099
\(112\) 0 0
\(113\) −238.411 −0.198476 −0.0992382 0.995064i \(-0.531641\pi\)
−0.0992382 + 0.995064i \(0.531641\pi\)
\(114\) −905.398 −0.743845
\(115\) 308.357 0.250039
\(116\) −51.2006 −0.0409815
\(117\) 844.308 0.667148
\(118\) −1169.61 −0.912466
\(119\) 0 0
\(120\) 420.814 0.320124
\(121\) 801.319 0.602043
\(122\) −1426.77 −1.05880
\(123\) 803.038 0.588678
\(124\) 164.170 0.118894
\(125\) −941.919 −0.673982
\(126\) 0 0
\(127\) −2643.06 −1.84673 −0.923363 0.383929i \(-0.874571\pi\)
−0.923363 + 0.383929i \(0.874571\pi\)
\(128\) 128.000 0.0883883
\(129\) 641.925 0.438126
\(130\) −1950.60 −1.31599
\(131\) 22.5348 0.0150296 0.00751479 0.999972i \(-0.497608\pi\)
0.00751479 + 0.999972i \(0.497608\pi\)
\(132\) −724.702 −0.477858
\(133\) 0 0
\(134\) 2128.92 1.37247
\(135\) −2030.75 −1.29466
\(136\) 413.161 0.260502
\(137\) −2035.85 −1.26959 −0.634797 0.772679i \(-0.718916\pi\)
−0.634797 + 0.772679i \(0.718916\pi\)
\(138\) 180.481 0.111330
\(139\) 2152.00 1.31317 0.656585 0.754252i \(-0.272000\pi\)
0.656585 + 0.754252i \(0.272000\pi\)
\(140\) 0 0
\(141\) −1018.50 −0.608318
\(142\) −1319.85 −0.779997
\(143\) 3359.22 1.96442
\(144\) −185.699 −0.107465
\(145\) −171.610 −0.0982855
\(146\) 1306.79 0.740759
\(147\) 0 0
\(148\) 1075.54 0.597356
\(149\) 3410.39 1.87510 0.937551 0.347847i \(-0.113087\pi\)
0.937551 + 0.347847i \(0.113087\pi\)
\(150\) 429.572 0.233829
\(151\) −1475.33 −0.795106 −0.397553 0.917579i \(-0.630140\pi\)
−0.397553 + 0.917579i \(0.630140\pi\)
\(152\) −923.052 −0.492562
\(153\) −599.402 −0.316724
\(154\) 0 0
\(155\) 550.250 0.285143
\(156\) −1141.68 −0.585947
\(157\) 1811.96 0.921084 0.460542 0.887638i \(-0.347655\pi\)
0.460542 + 0.887638i \(0.347655\pi\)
\(158\) −2582.24 −1.30020
\(159\) −3007.97 −1.50030
\(160\) 429.019 0.211981
\(161\) 0 0
\(162\) −561.861 −0.272493
\(163\) 636.545 0.305877 0.152939 0.988236i \(-0.451126\pi\)
0.152939 + 0.988236i \(0.451126\pi\)
\(164\) 818.696 0.389813
\(165\) −2428.99 −1.14604
\(166\) 183.630 0.0858583
\(167\) 2913.65 1.35009 0.675044 0.737777i \(-0.264125\pi\)
0.675044 + 0.737777i \(0.264125\pi\)
\(168\) 0 0
\(169\) 3095.06 1.40876
\(170\) 1384.80 0.624759
\(171\) 1339.14 0.598868
\(172\) 654.441 0.290120
\(173\) 1717.24 0.754680 0.377340 0.926075i \(-0.376839\pi\)
0.377340 + 0.926075i \(0.376839\pi\)
\(174\) −100.443 −0.0437617
\(175\) 0 0
\(176\) −738.833 −0.316430
\(177\) −2294.47 −0.974369
\(178\) 1065.33 0.448593
\(179\) 342.553 0.143037 0.0715185 0.997439i \(-0.477215\pi\)
0.0715185 + 0.997439i \(0.477215\pi\)
\(180\) −622.408 −0.257731
\(181\) −2475.32 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(182\) 0 0
\(183\) −2798.97 −1.13063
\(184\) 184.000 0.0737210
\(185\) 3604.89 1.43263
\(186\) 322.060 0.126960
\(187\) −2384.82 −0.932595
\(188\) −1038.36 −0.402818
\(189\) 0 0
\(190\) −3093.81 −1.18131
\(191\) 1716.05 0.650101 0.325050 0.945697i \(-0.394619\pi\)
0.325050 + 0.945697i \(0.394619\pi\)
\(192\) 251.104 0.0943847
\(193\) 297.315 0.110887 0.0554436 0.998462i \(-0.482343\pi\)
0.0554436 + 0.998462i \(0.482343\pi\)
\(194\) −961.682 −0.355901
\(195\) −3826.59 −1.40527
\(196\) 0 0
\(197\) 2586.52 0.935442 0.467721 0.883876i \(-0.345075\pi\)
0.467721 + 0.883876i \(0.345075\pi\)
\(198\) 1071.88 0.384722
\(199\) −652.033 −0.232268 −0.116134 0.993234i \(-0.537050\pi\)
−0.116134 + 0.993234i \(0.537050\pi\)
\(200\) 437.948 0.154838
\(201\) 4176.41 1.46558
\(202\) −86.8109 −0.0302376
\(203\) 0 0
\(204\) 810.518 0.278175
\(205\) 2744.03 0.934885
\(206\) −2886.76 −0.976359
\(207\) −266.942 −0.0896316
\(208\) −1163.94 −0.388005
\(209\) 5327.98 1.76337
\(210\) 0 0
\(211\) −376.981 −0.122997 −0.0614987 0.998107i \(-0.519588\pi\)
−0.0614987 + 0.998107i \(0.519588\pi\)
\(212\) −3066.62 −0.993473
\(213\) −2589.22 −0.832912
\(214\) −2152.12 −0.687457
\(215\) 2193.50 0.695792
\(216\) −1211.77 −0.381715
\(217\) 0 0
\(218\) −1073.25 −0.333439
\(219\) 2563.60 0.791013
\(220\) −2476.35 −0.758890
\(221\) −3757.00 −1.14354
\(222\) 2109.93 0.637881
\(223\) −1944.66 −0.583963 −0.291982 0.956424i \(-0.594315\pi\)
−0.291982 + 0.956424i \(0.594315\pi\)
\(224\) 0 0
\(225\) −635.362 −0.188255
\(226\) −476.822 −0.140344
\(227\) 3226.07 0.943269 0.471634 0.881794i \(-0.343664\pi\)
0.471634 + 0.881794i \(0.343664\pi\)
\(228\) −1810.80 −0.525978
\(229\) 6496.30 1.87462 0.937310 0.348498i \(-0.113308\pi\)
0.937310 + 0.348498i \(0.113308\pi\)
\(230\) 616.715 0.176804
\(231\) 0 0
\(232\) −102.401 −0.0289783
\(233\) −2936.37 −0.825613 −0.412806 0.910819i \(-0.635451\pi\)
−0.412806 + 0.910819i \(0.635451\pi\)
\(234\) 1688.62 0.471745
\(235\) −3480.27 −0.966075
\(236\) −2339.21 −0.645211
\(237\) −5065.70 −1.38841
\(238\) 0 0
\(239\) 5555.07 1.50346 0.751731 0.659470i \(-0.229219\pi\)
0.751731 + 0.659470i \(0.229219\pi\)
\(240\) 841.627 0.226362
\(241\) −4364.87 −1.16666 −0.583332 0.812234i \(-0.698251\pi\)
−0.583332 + 0.812234i \(0.698251\pi\)
\(242\) 1602.64 0.425708
\(243\) 2987.49 0.788674
\(244\) −2853.54 −0.748686
\(245\) 0 0
\(246\) 1606.08 0.416259
\(247\) 8393.61 2.16224
\(248\) 328.340 0.0840710
\(249\) 360.237 0.0916830
\(250\) −1883.84 −0.476577
\(251\) 2635.60 0.662779 0.331389 0.943494i \(-0.392483\pi\)
0.331389 + 0.943494i \(0.392483\pi\)
\(252\) 0 0
\(253\) −1062.07 −0.263920
\(254\) −5286.13 −1.30583
\(255\) 2716.62 0.667143
\(256\) 256.000 0.0625000
\(257\) 5809.66 1.41010 0.705052 0.709156i \(-0.250924\pi\)
0.705052 + 0.709156i \(0.250924\pi\)
\(258\) 1283.85 0.309802
\(259\) 0 0
\(260\) −3901.20 −0.930548
\(261\) 148.561 0.0352325
\(262\) 45.0696 0.0106275
\(263\) −1047.20 −0.245526 −0.122763 0.992436i \(-0.539175\pi\)
−0.122763 + 0.992436i \(0.539175\pi\)
\(264\) −1449.40 −0.337896
\(265\) −10278.4 −2.38264
\(266\) 0 0
\(267\) 2089.90 0.479026
\(268\) 4257.84 0.970482
\(269\) −2832.87 −0.642094 −0.321047 0.947063i \(-0.604035\pi\)
−0.321047 + 0.947063i \(0.604035\pi\)
\(270\) −4061.50 −0.915463
\(271\) 2953.80 0.662105 0.331053 0.943612i \(-0.392596\pi\)
0.331053 + 0.943612i \(0.392596\pi\)
\(272\) 826.322 0.184203
\(273\) 0 0
\(274\) −4071.70 −0.897738
\(275\) −2527.89 −0.554318
\(276\) 360.962 0.0787223
\(277\) −8522.36 −1.84859 −0.924294 0.381680i \(-0.875346\pi\)
−0.924294 + 0.381680i \(0.875346\pi\)
\(278\) 4304.01 0.928551
\(279\) −476.346 −0.102215
\(280\) 0 0
\(281\) −4979.31 −1.05708 −0.528542 0.848907i \(-0.677261\pi\)
−0.528542 + 0.848907i \(0.677261\pi\)
\(282\) −2036.99 −0.430146
\(283\) −866.435 −0.181994 −0.0909969 0.995851i \(-0.529005\pi\)
−0.0909969 + 0.995851i \(0.529005\pi\)
\(284\) −2639.70 −0.551541
\(285\) −6069.27 −1.26145
\(286\) 6718.44 1.38905
\(287\) 0 0
\(288\) −371.397 −0.0759889
\(289\) −2245.78 −0.457110
\(290\) −343.219 −0.0694984
\(291\) −1886.58 −0.380045
\(292\) 2613.58 0.523796
\(293\) 4521.27 0.901487 0.450743 0.892654i \(-0.351159\pi\)
0.450743 + 0.892654i \(0.351159\pi\)
\(294\) 0 0
\(295\) −7840.37 −1.54740
\(296\) 2151.07 0.422394
\(297\) 6994.49 1.36654
\(298\) 6820.79 1.32590
\(299\) −1673.17 −0.323618
\(300\) 859.143 0.165342
\(301\) 0 0
\(302\) −2950.67 −0.562225
\(303\) −170.301 −0.0322889
\(304\) −1846.10 −0.348294
\(305\) −9564.25 −1.79557
\(306\) −1198.80 −0.223958
\(307\) −2434.53 −0.452593 −0.226296 0.974058i \(-0.572662\pi\)
−0.226296 + 0.974058i \(0.572662\pi\)
\(308\) 0 0
\(309\) −5663.09 −1.04260
\(310\) 1100.50 0.201627
\(311\) −7161.06 −1.30568 −0.652840 0.757496i \(-0.726423\pi\)
−0.652840 + 0.757496i \(0.726423\pi\)
\(312\) −2283.37 −0.414327
\(313\) 1586.38 0.286477 0.143238 0.989688i \(-0.454248\pi\)
0.143238 + 0.989688i \(0.454248\pi\)
\(314\) 3623.92 0.651304
\(315\) 0 0
\(316\) −5164.47 −0.919381
\(317\) 4746.43 0.840966 0.420483 0.907300i \(-0.361861\pi\)
0.420483 + 0.907300i \(0.361861\pi\)
\(318\) −6015.94 −1.06087
\(319\) 591.073 0.103742
\(320\) 858.038 0.149893
\(321\) −4221.92 −0.734095
\(322\) 0 0
\(323\) −5958.90 −1.02651
\(324\) −1123.72 −0.192682
\(325\) −3982.40 −0.679703
\(326\) 1273.09 0.216288
\(327\) −2105.45 −0.356059
\(328\) 1637.39 0.275640
\(329\) 0 0
\(330\) −4857.98 −0.810373
\(331\) 4126.46 0.685229 0.342614 0.939476i \(-0.388688\pi\)
0.342614 + 0.939476i \(0.388688\pi\)
\(332\) 367.261 0.0607110
\(333\) −3120.72 −0.513556
\(334\) 5827.29 0.954657
\(335\) 14271.1 2.32750
\(336\) 0 0
\(337\) 2842.26 0.459429 0.229715 0.973258i \(-0.426221\pi\)
0.229715 + 0.973258i \(0.426221\pi\)
\(338\) 6190.11 0.996147
\(339\) −935.406 −0.149865
\(340\) 2769.59 0.441771
\(341\) −1895.22 −0.300974
\(342\) 2678.28 0.423464
\(343\) 0 0
\(344\) 1308.88 0.205146
\(345\) 1209.84 0.188799
\(346\) 3434.49 0.533640
\(347\) −7996.17 −1.23705 −0.618526 0.785764i \(-0.712270\pi\)
−0.618526 + 0.785764i \(0.712270\pi\)
\(348\) −200.885 −0.0309442
\(349\) 9584.09 1.46998 0.734992 0.678076i \(-0.237186\pi\)
0.734992 + 0.678076i \(0.237186\pi\)
\(350\) 0 0
\(351\) 11019.0 1.67564
\(352\) −1477.67 −0.223749
\(353\) 11083.1 1.67109 0.835543 0.549426i \(-0.185153\pi\)
0.835543 + 0.549426i \(0.185153\pi\)
\(354\) −4588.95 −0.688983
\(355\) −8847.52 −1.32275
\(356\) 2130.65 0.317203
\(357\) 0 0
\(358\) 685.107 0.101142
\(359\) −3024.56 −0.444653 −0.222326 0.974972i \(-0.571365\pi\)
−0.222326 + 0.974972i \(0.571365\pi\)
\(360\) −1244.82 −0.182243
\(361\) 6453.90 0.940940
\(362\) −4950.63 −0.718783
\(363\) 3143.97 0.454589
\(364\) 0 0
\(365\) 8759.98 1.25621
\(366\) −5597.93 −0.799477
\(367\) −1663.24 −0.236568 −0.118284 0.992980i \(-0.537739\pi\)
−0.118284 + 0.992980i \(0.537739\pi\)
\(368\) 368.000 0.0521286
\(369\) −2375.48 −0.335129
\(370\) 7209.78 1.01302
\(371\) 0 0
\(372\) 644.121 0.0897745
\(373\) 1236.97 0.171710 0.0858548 0.996308i \(-0.472638\pi\)
0.0858548 + 0.996308i \(0.472638\pi\)
\(374\) −4769.64 −0.659444
\(375\) −3695.61 −0.508909
\(376\) −2076.71 −0.284836
\(377\) 931.166 0.127208
\(378\) 0 0
\(379\) −8450.68 −1.14534 −0.572668 0.819788i \(-0.694091\pi\)
−0.572668 + 0.819788i \(0.694091\pi\)
\(380\) −6187.61 −0.835310
\(381\) −10370.1 −1.39442
\(382\) 3432.11 0.459691
\(383\) 5337.77 0.712134 0.356067 0.934460i \(-0.384118\pi\)
0.356067 + 0.934460i \(0.384118\pi\)
\(384\) 502.208 0.0667400
\(385\) 0 0
\(386\) 594.631 0.0784091
\(387\) −1898.89 −0.249421
\(388\) −1923.36 −0.251660
\(389\) −14331.3 −1.86793 −0.933966 0.357361i \(-0.883677\pi\)
−0.933966 + 0.357361i \(0.883677\pi\)
\(390\) −7653.18 −0.993677
\(391\) 1187.84 0.153636
\(392\) 0 0
\(393\) 88.4153 0.0113485
\(394\) 5173.05 0.661458
\(395\) −17309.8 −2.20494
\(396\) 2143.75 0.272040
\(397\) 3622.07 0.457901 0.228950 0.973438i \(-0.426471\pi\)
0.228950 + 0.973438i \(0.426471\pi\)
\(398\) −1304.07 −0.164238
\(399\) 0 0
\(400\) 875.895 0.109487
\(401\) 13011.2 1.62032 0.810158 0.586212i \(-0.199381\pi\)
0.810158 + 0.586212i \(0.199381\pi\)
\(402\) 8352.82 1.03632
\(403\) −2985.70 −0.369053
\(404\) −173.622 −0.0213812
\(405\) −3766.39 −0.462107
\(406\) 0 0
\(407\) −12416.3 −1.51217
\(408\) 1621.04 0.196699
\(409\) −4224.19 −0.510691 −0.255346 0.966850i \(-0.582189\pi\)
−0.255346 + 0.966850i \(0.582189\pi\)
\(410\) 5488.06 0.661064
\(411\) −7987.65 −0.958642
\(412\) −5773.52 −0.690390
\(413\) 0 0
\(414\) −533.884 −0.0633791
\(415\) 1230.95 0.145603
\(416\) −2327.89 −0.274361
\(417\) 8443.38 0.991545
\(418\) 10656.0 1.24689
\(419\) 7385.94 0.861162 0.430581 0.902552i \(-0.358309\pi\)
0.430581 + 0.902552i \(0.358309\pi\)
\(420\) 0 0
\(421\) 4982.36 0.576782 0.288391 0.957513i \(-0.406880\pi\)
0.288391 + 0.957513i \(0.406880\pi\)
\(422\) −753.962 −0.0869723
\(423\) 3012.83 0.346310
\(424\) −6133.24 −0.702491
\(425\) 2827.23 0.322685
\(426\) −5178.44 −0.588958
\(427\) 0 0
\(428\) −4304.24 −0.486105
\(429\) 13179.9 1.48329
\(430\) 4386.99 0.491999
\(431\) 12505.4 1.39760 0.698799 0.715318i \(-0.253718\pi\)
0.698799 + 0.715318i \(0.253718\pi\)
\(432\) −2423.54 −0.269913
\(433\) −17336.3 −1.92409 −0.962044 0.272893i \(-0.912020\pi\)
−0.962044 + 0.272893i \(0.912020\pi\)
\(434\) 0 0
\(435\) −673.310 −0.0742132
\(436\) −2146.50 −0.235777
\(437\) −2653.78 −0.290497
\(438\) 5127.19 0.559331
\(439\) 14336.8 1.55867 0.779337 0.626604i \(-0.215556\pi\)
0.779337 + 0.626604i \(0.215556\pi\)
\(440\) −4952.71 −0.536616
\(441\) 0 0
\(442\) −7514.01 −0.808608
\(443\) −5855.98 −0.628050 −0.314025 0.949415i \(-0.601678\pi\)
−0.314025 + 0.949415i \(0.601678\pi\)
\(444\) 4219.87 0.451050
\(445\) 7141.33 0.760745
\(446\) −3889.31 −0.412924
\(447\) 13380.7 1.41585
\(448\) 0 0
\(449\) −464.947 −0.0488690 −0.0244345 0.999701i \(-0.507779\pi\)
−0.0244345 + 0.999701i \(0.507779\pi\)
\(450\) −1270.72 −0.133117
\(451\) −9451.23 −0.986788
\(452\) −953.645 −0.0992382
\(453\) −5788.47 −0.600366
\(454\) 6452.15 0.666992
\(455\) 0 0
\(456\) −3621.59 −0.371923
\(457\) 10204.3 1.04450 0.522252 0.852791i \(-0.325092\pi\)
0.522252 + 0.852791i \(0.325092\pi\)
\(458\) 12992.6 1.32556
\(459\) −7822.75 −0.795500
\(460\) 1233.43 0.125019
\(461\) −6067.39 −0.612986 −0.306493 0.951873i \(-0.599156\pi\)
−0.306493 + 0.951873i \(0.599156\pi\)
\(462\) 0 0
\(463\) −917.651 −0.0921098 −0.0460549 0.998939i \(-0.514665\pi\)
−0.0460549 + 0.998939i \(0.514665\pi\)
\(464\) −204.802 −0.0204908
\(465\) 2158.91 0.215305
\(466\) −5872.73 −0.583796
\(467\) 355.721 0.0352480 0.0176240 0.999845i \(-0.494390\pi\)
0.0176240 + 0.999845i \(0.494390\pi\)
\(468\) 3377.23 0.333574
\(469\) 0 0
\(470\) −6960.54 −0.683118
\(471\) 7109.22 0.695489
\(472\) −4678.43 −0.456233
\(473\) −7555.04 −0.734421
\(474\) −10131.4 −0.981752
\(475\) −6316.38 −0.610138
\(476\) 0 0
\(477\) 8897.92 0.854105
\(478\) 11110.1 1.06311
\(479\) −8646.13 −0.824743 −0.412371 0.911016i \(-0.635299\pi\)
−0.412371 + 0.911016i \(0.635299\pi\)
\(480\) 1683.25 0.160062
\(481\) −19560.4 −1.85421
\(482\) −8729.74 −0.824956
\(483\) 0 0
\(484\) 3205.28 0.301021
\(485\) −6446.56 −0.603553
\(486\) 5974.99 0.557677
\(487\) −11184.7 −1.04071 −0.520357 0.853949i \(-0.674201\pi\)
−0.520357 + 0.853949i \(0.674201\pi\)
\(488\) −5707.09 −0.529401
\(489\) 2497.48 0.230961
\(490\) 0 0
\(491\) −568.402 −0.0522436 −0.0261218 0.999659i \(-0.508316\pi\)
−0.0261218 + 0.999659i \(0.508316\pi\)
\(492\) 3212.15 0.294339
\(493\) −661.065 −0.0603913
\(494\) 16787.2 1.52893
\(495\) 7185.24 0.652430
\(496\) 656.680 0.0594472
\(497\) 0 0
\(498\) 720.473 0.0648297
\(499\) 6290.35 0.564318 0.282159 0.959368i \(-0.408949\pi\)
0.282159 + 0.959368i \(0.408949\pi\)
\(500\) −3767.67 −0.336991
\(501\) 11431.7 1.01942
\(502\) 5271.20 0.468655
\(503\) −20085.3 −1.78043 −0.890217 0.455537i \(-0.849447\pi\)
−0.890217 + 0.455537i \(0.849447\pi\)
\(504\) 0 0
\(505\) −581.930 −0.0512783
\(506\) −2124.14 −0.186620
\(507\) 12143.4 1.06373
\(508\) −10572.3 −0.923363
\(509\) 5646.93 0.491740 0.245870 0.969303i \(-0.420926\pi\)
0.245870 + 0.969303i \(0.420926\pi\)
\(510\) 5433.24 0.471741
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 17477.0 1.50415
\(514\) 11619.3 0.997093
\(515\) −19351.2 −1.65576
\(516\) 2567.70 0.219063
\(517\) 11987.0 1.01971
\(518\) 0 0
\(519\) 6737.61 0.569842
\(520\) −7802.41 −0.657997
\(521\) 5409.83 0.454911 0.227456 0.973788i \(-0.426959\pi\)
0.227456 + 0.973788i \(0.426959\pi\)
\(522\) 297.121 0.0249131
\(523\) 10925.2 0.913433 0.456716 0.889612i \(-0.349025\pi\)
0.456716 + 0.889612i \(0.349025\pi\)
\(524\) 90.1393 0.00751479
\(525\) 0 0
\(526\) −2094.40 −0.173613
\(527\) 2119.65 0.175205
\(528\) −2898.81 −0.238929
\(529\) 529.000 0.0434783
\(530\) −20556.8 −1.68478
\(531\) 6787.33 0.554699
\(532\) 0 0
\(533\) −14889.3 −1.21000
\(534\) 4179.80 0.338722
\(535\) −14426.6 −1.16582
\(536\) 8515.69 0.686234
\(537\) 1344.01 0.108004
\(538\) −5665.74 −0.454029
\(539\) 0 0
\(540\) −8123.00 −0.647330
\(541\) −20304.8 −1.61363 −0.806813 0.590806i \(-0.798810\pi\)
−0.806813 + 0.590806i \(0.798810\pi\)
\(542\) 5907.60 0.468179
\(543\) −9711.90 −0.767546
\(544\) 1652.64 0.130251
\(545\) −7194.44 −0.565461
\(546\) 0 0
\(547\) −21070.9 −1.64703 −0.823517 0.567292i \(-0.807991\pi\)
−0.823517 + 0.567292i \(0.807991\pi\)
\(548\) −8143.40 −0.634797
\(549\) 8279.67 0.643657
\(550\) −5055.78 −0.391962
\(551\) 1476.90 0.114189
\(552\) 721.924 0.0556650
\(553\) 0 0
\(554\) −17044.7 −1.30715
\(555\) 14143.8 1.08175
\(556\) 8608.02 0.656585
\(557\) 23294.5 1.77203 0.886014 0.463658i \(-0.153463\pi\)
0.886014 + 0.463658i \(0.153463\pi\)
\(558\) −952.693 −0.0722772
\(559\) −11902.1 −0.900544
\(560\) 0 0
\(561\) −9356.83 −0.704181
\(562\) −9958.62 −0.747472
\(563\) −7847.67 −0.587460 −0.293730 0.955888i \(-0.594897\pi\)
−0.293730 + 0.955888i \(0.594897\pi\)
\(564\) −4073.99 −0.304159
\(565\) −3196.34 −0.238002
\(566\) −1732.87 −0.128689
\(567\) 0 0
\(568\) −5279.41 −0.389998
\(569\) 483.831 0.0356472 0.0178236 0.999841i \(-0.494326\pi\)
0.0178236 + 0.999841i \(0.494326\pi\)
\(570\) −12138.5 −0.891978
\(571\) −8263.38 −0.605625 −0.302812 0.953050i \(-0.597926\pi\)
−0.302812 + 0.953050i \(0.597926\pi\)
\(572\) 13436.9 0.982210
\(573\) 6732.93 0.490877
\(574\) 0 0
\(575\) 1259.10 0.0913184
\(576\) −742.795 −0.0537323
\(577\) 14891.3 1.07441 0.537203 0.843453i \(-0.319481\pi\)
0.537203 + 0.843453i \(0.319481\pi\)
\(578\) −4491.56 −0.323225
\(579\) 1166.52 0.0837284
\(580\) −686.438 −0.0491428
\(581\) 0 0
\(582\) −3773.16 −0.268733
\(583\) 35401.8 2.51491
\(584\) 5227.17 0.370380
\(585\) 11319.5 0.800007
\(586\) 9042.54 0.637447
\(587\) −25245.9 −1.77514 −0.887572 0.460669i \(-0.847610\pi\)
−0.887572 + 0.460669i \(0.847610\pi\)
\(588\) 0 0
\(589\) −4735.55 −0.331282
\(590\) −15680.7 −1.09418
\(591\) 10148.2 0.706331
\(592\) 4302.15 0.298678
\(593\) −8469.56 −0.586515 −0.293257 0.956034i \(-0.594739\pi\)
−0.293257 + 0.956034i \(0.594739\pi\)
\(594\) 13989.0 0.966288
\(595\) 0 0
\(596\) 13641.6 0.937551
\(597\) −2558.25 −0.175381
\(598\) −3346.34 −0.228833
\(599\) 23546.6 1.60616 0.803079 0.595872i \(-0.203193\pi\)
0.803079 + 0.595872i \(0.203193\pi\)
\(600\) 1718.29 0.116915
\(601\) −1709.76 −0.116045 −0.0580223 0.998315i \(-0.518479\pi\)
−0.0580223 + 0.998315i \(0.518479\pi\)
\(602\) 0 0
\(603\) −12354.3 −0.834339
\(604\) −5901.34 −0.397553
\(605\) 10743.2 0.721936
\(606\) −340.602 −0.0228317
\(607\) 14877.4 0.994822 0.497411 0.867515i \(-0.334284\pi\)
0.497411 + 0.867515i \(0.334284\pi\)
\(608\) −3692.21 −0.246281
\(609\) 0 0
\(610\) −19128.5 −1.26966
\(611\) 18884.2 1.25036
\(612\) −2397.61 −0.158362
\(613\) −4408.81 −0.290489 −0.145245 0.989396i \(-0.546397\pi\)
−0.145245 + 0.989396i \(0.546397\pi\)
\(614\) −4869.06 −0.320032
\(615\) 10766.2 0.705911
\(616\) 0 0
\(617\) 3601.95 0.235023 0.117511 0.993072i \(-0.462508\pi\)
0.117511 + 0.993072i \(0.462508\pi\)
\(618\) −11326.2 −0.737227
\(619\) 8847.54 0.574496 0.287248 0.957856i \(-0.407260\pi\)
0.287248 + 0.957856i \(0.407260\pi\)
\(620\) 2201.00 0.142572
\(621\) −3483.84 −0.225123
\(622\) −14322.1 −0.923255
\(623\) 0 0
\(624\) −4566.73 −0.292974
\(625\) −19471.1 −1.24615
\(626\) 3172.75 0.202570
\(627\) 20904.3 1.33148
\(628\) 7247.84 0.460542
\(629\) 13886.6 0.880276
\(630\) 0 0
\(631\) 17087.4 1.07803 0.539017 0.842295i \(-0.318796\pi\)
0.539017 + 0.842295i \(0.318796\pi\)
\(632\) −10328.9 −0.650100
\(633\) −1479.08 −0.0928725
\(634\) 9492.87 0.594653
\(635\) −35435.2 −2.21449
\(636\) −12031.9 −0.750149
\(637\) 0 0
\(638\) 1182.15 0.0733568
\(639\) 7659.21 0.474169
\(640\) 1716.08 0.105990
\(641\) −28613.4 −1.76312 −0.881560 0.472071i \(-0.843507\pi\)
−0.881560 + 0.472071i \(0.843507\pi\)
\(642\) −8443.83 −0.519083
\(643\) 26152.7 1.60398 0.801991 0.597336i \(-0.203774\pi\)
0.801991 + 0.597336i \(0.203774\pi\)
\(644\) 0 0
\(645\) 8606.18 0.525377
\(646\) −11917.8 −0.725850
\(647\) −3572.62 −0.217085 −0.108543 0.994092i \(-0.534618\pi\)
−0.108543 + 0.994092i \(0.534618\pi\)
\(648\) −2247.44 −0.136247
\(649\) 27004.5 1.63331
\(650\) −7964.79 −0.480623
\(651\) 0 0
\(652\) 2546.18 0.152939
\(653\) 4225.89 0.253249 0.126625 0.991951i \(-0.459586\pi\)
0.126625 + 0.991951i \(0.459586\pi\)
\(654\) −4210.89 −0.251772
\(655\) 302.121 0.0180226
\(656\) 3274.78 0.194907
\(657\) −7583.42 −0.450316
\(658\) 0 0
\(659\) −480.617 −0.0284100 −0.0142050 0.999899i \(-0.504522\pi\)
−0.0142050 + 0.999899i \(0.504522\pi\)
\(660\) −9715.97 −0.573020
\(661\) −8118.31 −0.477709 −0.238855 0.971055i \(-0.576772\pi\)
−0.238855 + 0.971055i \(0.576772\pi\)
\(662\) 8252.92 0.484530
\(663\) −14740.6 −0.863465
\(664\) 734.521 0.0429292
\(665\) 0 0
\(666\) −6241.43 −0.363139
\(667\) −294.403 −0.0170905
\(668\) 11654.6 0.675044
\(669\) −7629.85 −0.440937
\(670\) 28542.1 1.64579
\(671\) 32942.0 1.89525
\(672\) 0 0
\(673\) 12717.0 0.728387 0.364193 0.931323i \(-0.381345\pi\)
0.364193 + 0.931323i \(0.381345\pi\)
\(674\) 5684.52 0.324866
\(675\) −8292.06 −0.472832
\(676\) 12380.2 0.704382
\(677\) −9158.89 −0.519948 −0.259974 0.965616i \(-0.583714\pi\)
−0.259974 + 0.965616i \(0.583714\pi\)
\(678\) −1870.81 −0.105971
\(679\) 0 0
\(680\) 5539.19 0.312379
\(681\) 12657.5 0.712241
\(682\) −3790.44 −0.212820
\(683\) −26020.5 −1.45775 −0.728877 0.684645i \(-0.759957\pi\)
−0.728877 + 0.684645i \(0.759957\pi\)
\(684\) 5356.55 0.299434
\(685\) −27294.3 −1.52243
\(686\) 0 0
\(687\) 25488.2 1.41548
\(688\) 2617.76 0.145060
\(689\) 55771.5 3.08378
\(690\) 2419.68 0.133501
\(691\) −19424.2 −1.06936 −0.534682 0.845053i \(-0.679569\pi\)
−0.534682 + 0.845053i \(0.679569\pi\)
\(692\) 6868.98 0.377340
\(693\) 0 0
\(694\) −15992.3 −0.874728
\(695\) 28851.6 1.57468
\(696\) −401.771 −0.0218809
\(697\) 10570.4 0.574437
\(698\) 19168.2 1.03944
\(699\) −11520.8 −0.623401
\(700\) 0 0
\(701\) −4667.12 −0.251462 −0.125731 0.992064i \(-0.540128\pi\)
−0.125731 + 0.992064i \(0.540128\pi\)
\(702\) 22038.0 1.18486
\(703\) −31024.3 −1.66444
\(704\) −2955.33 −0.158215
\(705\) −13654.8 −0.729461
\(706\) 22166.2 1.18164
\(707\) 0 0
\(708\) −9177.90 −0.487184
\(709\) 7897.34 0.418323 0.209161 0.977881i \(-0.432927\pi\)
0.209161 + 0.977881i \(0.432927\pi\)
\(710\) −17695.0 −0.935329
\(711\) 14984.9 0.790406
\(712\) 4261.30 0.224296
\(713\) 943.978 0.0495824
\(714\) 0 0
\(715\) 45036.5 2.35562
\(716\) 1370.21 0.0715185
\(717\) 21795.3 1.13523
\(718\) −6049.13 −0.314417
\(719\) 26374.3 1.36801 0.684003 0.729479i \(-0.260237\pi\)
0.684003 + 0.729479i \(0.260237\pi\)
\(720\) −2489.63 −0.128866
\(721\) 0 0
\(722\) 12907.8 0.665345
\(723\) −17125.6 −0.880921
\(724\) −9901.27 −0.508257
\(725\) −700.724 −0.0358955
\(726\) 6287.94 0.321443
\(727\) −22247.4 −1.13495 −0.567475 0.823390i \(-0.692080\pi\)
−0.567475 + 0.823390i \(0.692080\pi\)
\(728\) 0 0
\(729\) 19306.5 0.980874
\(730\) 17520.0 0.888277
\(731\) 8449.67 0.427527
\(732\) −11195.9 −0.565316
\(733\) −15509.2 −0.781506 −0.390753 0.920496i \(-0.627785\pi\)
−0.390753 + 0.920496i \(0.627785\pi\)
\(734\) −3326.48 −0.167279
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −49153.7 −2.45671
\(738\) −4750.96 −0.236972
\(739\) −10116.7 −0.503583 −0.251792 0.967781i \(-0.581020\pi\)
−0.251792 + 0.967781i \(0.581020\pi\)
\(740\) 14419.6 0.716316
\(741\) 32932.3 1.63266
\(742\) 0 0
\(743\) 14506.2 0.716261 0.358130 0.933672i \(-0.383414\pi\)
0.358130 + 0.933672i \(0.383414\pi\)
\(744\) 1288.24 0.0634801
\(745\) 45722.6 2.24852
\(746\) 2473.93 0.121417
\(747\) −1065.62 −0.0521942
\(748\) −9539.28 −0.466297
\(749\) 0 0
\(750\) −7391.23 −0.359853
\(751\) −22064.7 −1.07211 −0.536054 0.844184i \(-0.680085\pi\)
−0.536054 + 0.844184i \(0.680085\pi\)
\(752\) −4153.42 −0.201409
\(753\) 10340.8 0.500449
\(754\) 1862.33 0.0899498
\(755\) −19779.6 −0.953447
\(756\) 0 0
\(757\) 11951.9 0.573844 0.286922 0.957954i \(-0.407368\pi\)
0.286922 + 0.957954i \(0.407368\pi\)
\(758\) −16901.4 −0.809874
\(759\) −4167.04 −0.199280
\(760\) −12375.2 −0.590653
\(761\) 20108.0 0.957839 0.478920 0.877859i \(-0.341029\pi\)
0.478920 + 0.877859i \(0.341029\pi\)
\(762\) −20740.1 −0.986004
\(763\) 0 0
\(764\) 6864.21 0.325050
\(765\) −8036.09 −0.379798
\(766\) 10675.5 0.503555
\(767\) 42542.4 2.00276
\(768\) 1004.42 0.0471923
\(769\) −10292.2 −0.482635 −0.241317 0.970446i \(-0.577580\pi\)
−0.241317 + 0.970446i \(0.577580\pi\)
\(770\) 0 0
\(771\) 22794.2 1.06474
\(772\) 1189.26 0.0554436
\(773\) 16385.0 0.762391 0.381195 0.924495i \(-0.375513\pi\)
0.381195 + 0.924495i \(0.375513\pi\)
\(774\) −3797.78 −0.176367
\(775\) 2246.81 0.104139
\(776\) −3846.73 −0.177950
\(777\) 0 0
\(778\) −28662.6 −1.32083
\(779\) −23615.6 −1.08616
\(780\) −15306.4 −0.702636
\(781\) 30473.4 1.39619
\(782\) 2375.68 0.108637
\(783\) 1938.85 0.0884917
\(784\) 0 0
\(785\) 24292.7 1.10451
\(786\) 176.831 0.00802460
\(787\) −19333.1 −0.875669 −0.437835 0.899056i \(-0.644254\pi\)
−0.437835 + 0.899056i \(0.644254\pi\)
\(788\) 10346.1 0.467721
\(789\) −4108.70 −0.185391
\(790\) −34619.6 −1.55913
\(791\) 0 0
\(792\) 4287.51 0.192361
\(793\) 51896.3 2.32395
\(794\) 7244.14 0.323785
\(795\) −40327.4 −1.79907
\(796\) −2608.13 −0.116134
\(797\) −39244.1 −1.74416 −0.872082 0.489360i \(-0.837230\pi\)
−0.872082 + 0.489360i \(0.837230\pi\)
\(798\) 0 0
\(799\) −13406.5 −0.593602
\(800\) 1751.79 0.0774189
\(801\) −6182.17 −0.272705
\(802\) 26022.3 1.14574
\(803\) −30171.9 −1.32596
\(804\) 16705.6 0.732789
\(805\) 0 0
\(806\) −5971.40 −0.260960
\(807\) −11114.8 −0.484830
\(808\) −347.244 −0.0151188
\(809\) −2695.64 −0.117149 −0.0585747 0.998283i \(-0.518656\pi\)
−0.0585747 + 0.998283i \(0.518656\pi\)
\(810\) −7532.78 −0.326759
\(811\) 41226.8 1.78504 0.892522 0.451005i \(-0.148934\pi\)
0.892522 + 0.451005i \(0.148934\pi\)
\(812\) 0 0
\(813\) 11589.2 0.499941
\(814\) −24832.6 −1.06926
\(815\) 8534.05 0.366791
\(816\) 3242.07 0.139087
\(817\) −18877.6 −0.808377
\(818\) −8448.38 −0.361113
\(819\) 0 0
\(820\) 10976.1 0.467443
\(821\) 15286.8 0.649834 0.324917 0.945742i \(-0.394664\pi\)
0.324917 + 0.945742i \(0.394664\pi\)
\(822\) −15975.3 −0.677862
\(823\) −38784.6 −1.64270 −0.821352 0.570422i \(-0.806780\pi\)
−0.821352 + 0.570422i \(0.806780\pi\)
\(824\) −11547.0 −0.488180
\(825\) −9918.17 −0.418553
\(826\) 0 0
\(827\) 17195.8 0.723045 0.361523 0.932363i \(-0.382257\pi\)
0.361523 + 0.932363i \(0.382257\pi\)
\(828\) −1067.77 −0.0448158
\(829\) −40600.0 −1.70096 −0.850481 0.526007i \(-0.823689\pi\)
−0.850481 + 0.526007i \(0.823689\pi\)
\(830\) 2461.90 0.102957
\(831\) −33437.5 −1.39583
\(832\) −4655.78 −0.194002
\(833\) 0 0
\(834\) 16886.8 0.701128
\(835\) 39062.8 1.61895
\(836\) 21311.9 0.881684
\(837\) −6216.76 −0.256729
\(838\) 14771.9 0.608933
\(839\) 1563.80 0.0643483 0.0321741 0.999482i \(-0.489757\pi\)
0.0321741 + 0.999482i \(0.489757\pi\)
\(840\) 0 0
\(841\) −24225.2 −0.993282
\(842\) 9964.72 0.407847
\(843\) −19536.3 −0.798181
\(844\) −1507.92 −0.0614987
\(845\) 41494.9 1.68931
\(846\) 6025.67 0.244878
\(847\) 0 0
\(848\) −12266.5 −0.496736
\(849\) −3399.46 −0.137419
\(850\) 5654.47 0.228172
\(851\) 6184.34 0.249114
\(852\) −10356.9 −0.416456
\(853\) −41988.4 −1.68541 −0.842705 0.538375i \(-0.819038\pi\)
−0.842705 + 0.538375i \(0.819038\pi\)
\(854\) 0 0
\(855\) 17953.6 0.718129
\(856\) −8608.47 −0.343728
\(857\) −16539.9 −0.659269 −0.329634 0.944109i \(-0.606925\pi\)
−0.329634 + 0.944109i \(0.606925\pi\)
\(858\) 26359.8 1.04884
\(859\) −14022.0 −0.556955 −0.278477 0.960443i \(-0.589830\pi\)
−0.278477 + 0.960443i \(0.589830\pi\)
\(860\) 8773.99 0.347896
\(861\) 0 0
\(862\) 25010.8 0.988252
\(863\) 4713.59 0.185924 0.0929621 0.995670i \(-0.470366\pi\)
0.0929621 + 0.995670i \(0.470366\pi\)
\(864\) −4847.08 −0.190858
\(865\) 23022.8 0.904971
\(866\) −34672.6 −1.36054
\(867\) −8811.31 −0.345153
\(868\) 0 0
\(869\) 59620.0 2.32735
\(870\) −1346.62 −0.0524766
\(871\) −77435.8 −3.01241
\(872\) −4293.00 −0.166719
\(873\) 5580.72 0.216356
\(874\) −5307.55 −0.205413
\(875\) 0 0
\(876\) 10254.4 0.395506
\(877\) −15422.3 −0.593812 −0.296906 0.954907i \(-0.595955\pi\)
−0.296906 + 0.954907i \(0.595955\pi\)
\(878\) 28673.6 1.10215
\(879\) 17739.2 0.680692
\(880\) −9905.41 −0.379445
\(881\) −13646.3 −0.521855 −0.260928 0.965358i \(-0.584028\pi\)
−0.260928 + 0.965358i \(0.584028\pi\)
\(882\) 0 0
\(883\) −7608.14 −0.289959 −0.144980 0.989435i \(-0.546312\pi\)
−0.144980 + 0.989435i \(0.546312\pi\)
\(884\) −15028.0 −0.571772
\(885\) −30761.7 −1.16841
\(886\) −11712.0 −0.444098
\(887\) 4133.06 0.156454 0.0782270 0.996936i \(-0.475074\pi\)
0.0782270 + 0.996936i \(0.475074\pi\)
\(888\) 8439.73 0.318940
\(889\) 0 0
\(890\) 14282.7 0.537928
\(891\) 12972.5 0.487762
\(892\) −7778.62 −0.291982
\(893\) 29951.8 1.12239
\(894\) 26761.3 1.00116
\(895\) 4592.56 0.171522
\(896\) 0 0
\(897\) −6564.68 −0.244357
\(898\) −929.893 −0.0345556
\(899\) −525.350 −0.0194899
\(900\) −2541.45 −0.0941277
\(901\) −39594.0 −1.46400
\(902\) −18902.5 −0.697764
\(903\) 0 0
\(904\) −1907.29 −0.0701720
\(905\) −33186.2 −1.21895
\(906\) −11576.9 −0.424523
\(907\) −44460.3 −1.62765 −0.813825 0.581110i \(-0.802619\pi\)
−0.813825 + 0.581110i \(0.802619\pi\)
\(908\) 12904.3 0.471634
\(909\) 503.771 0.0183818
\(910\) 0 0
\(911\) 6678.95 0.242902 0.121451 0.992597i \(-0.461245\pi\)
0.121451 + 0.992597i \(0.461245\pi\)
\(912\) −7243.19 −0.262989
\(913\) −4239.75 −0.153686
\(914\) 20408.7 0.738576
\(915\) −37525.3 −1.35579
\(916\) 25985.2 0.937310
\(917\) 0 0
\(918\) −15645.5 −0.562504
\(919\) −37718.6 −1.35389 −0.676944 0.736035i \(-0.736696\pi\)
−0.676944 + 0.736035i \(0.736696\pi\)
\(920\) 2466.86 0.0884021
\(921\) −9551.88 −0.341743
\(922\) −12134.8 −0.433446
\(923\) 48007.3 1.71200
\(924\) 0 0
\(925\) 14719.7 0.523221
\(926\) −1835.30 −0.0651315
\(927\) 16752.1 0.593540
\(928\) −409.605 −0.0144892
\(929\) 20995.3 0.741478 0.370739 0.928737i \(-0.379104\pi\)
0.370739 + 0.928737i \(0.379104\pi\)
\(930\) 4317.81 0.152244
\(931\) 0 0
\(932\) −11745.5 −0.412806
\(933\) −28096.4 −0.985889
\(934\) 711.442 0.0249241
\(935\) −31972.9 −1.11832
\(936\) 6754.47 0.235872
\(937\) 49138.2 1.71321 0.856603 0.515976i \(-0.172571\pi\)
0.856603 + 0.515976i \(0.172571\pi\)
\(938\) 0 0
\(939\) 6224.14 0.216312
\(940\) −13921.1 −0.483038
\(941\) 1382.17 0.0478826 0.0239413 0.999713i \(-0.492379\pi\)
0.0239413 + 0.999713i \(0.492379\pi\)
\(942\) 14218.4 0.491785
\(943\) 4707.50 0.162563
\(944\) −9356.85 −0.322606
\(945\) 0 0
\(946\) −15110.1 −0.519314
\(947\) −27905.3 −0.957550 −0.478775 0.877938i \(-0.658919\pi\)
−0.478775 + 0.877938i \(0.658919\pi\)
\(948\) −20262.8 −0.694203
\(949\) −47532.3 −1.62588
\(950\) −12632.8 −0.431433
\(951\) 18622.6 0.634995
\(952\) 0 0
\(953\) 7385.18 0.251028 0.125514 0.992092i \(-0.459942\pi\)
0.125514 + 0.992092i \(0.459942\pi\)
\(954\) 17795.8 0.603943
\(955\) 23006.9 0.779565
\(956\) 22220.3 0.751731
\(957\) 2319.07 0.0783333
\(958\) −17292.3 −0.583181
\(959\) 0 0
\(960\) 3366.51 0.113181
\(961\) −28106.5 −0.943457
\(962\) −39120.8 −1.31113
\(963\) 12488.9 0.417913
\(964\) −17459.5 −0.583332
\(965\) 3986.06 0.132970
\(966\) 0 0
\(967\) 24368.4 0.810377 0.405188 0.914233i \(-0.367206\pi\)
0.405188 + 0.914233i \(0.367206\pi\)
\(968\) 6410.55 0.212854
\(969\) −23379.7 −0.775092
\(970\) −12893.1 −0.426777
\(971\) 33043.9 1.09210 0.546050 0.837752i \(-0.316131\pi\)
0.546050 + 0.837752i \(0.316131\pi\)
\(972\) 11950.0 0.394337
\(973\) 0 0
\(974\) −22369.4 −0.735896
\(975\) −15624.9 −0.513229
\(976\) −11414.2 −0.374343
\(977\) 59118.4 1.93589 0.967946 0.251158i \(-0.0808113\pi\)
0.967946 + 0.251158i \(0.0808113\pi\)
\(978\) 4994.96 0.163314
\(979\) −24596.8 −0.802979
\(980\) 0 0
\(981\) 6228.16 0.202701
\(982\) −1136.80 −0.0369418
\(983\) 16999.5 0.551576 0.275788 0.961218i \(-0.411061\pi\)
0.275788 + 0.961218i \(0.411061\pi\)
\(984\) 6424.30 0.208129
\(985\) 34677.1 1.12173
\(986\) −1322.13 −0.0427031
\(987\) 0 0
\(988\) 33574.4 1.08112
\(989\) 3763.04 0.120988
\(990\) 14370.5 0.461337
\(991\) 30213.2 0.968471 0.484235 0.874938i \(-0.339098\pi\)
0.484235 + 0.874938i \(0.339098\pi\)
\(992\) 1313.36 0.0420355
\(993\) 16190.2 0.517401
\(994\) 0 0
\(995\) −8741.70 −0.278523
\(996\) 1440.95 0.0458415
\(997\) 31255.0 0.992835 0.496417 0.868084i \(-0.334649\pi\)
0.496417 + 0.868084i \(0.334649\pi\)
\(998\) 12580.7 0.399033
\(999\) −40728.2 −1.28987
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.n.1.5 yes 6
7.6 odd 2 inner 2254.4.a.n.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2254.4.a.n.1.2 6 7.6 odd 2 inner
2254.4.a.n.1.5 yes 6 1.1 even 1 trivial