Properties

Label 2254.4.a.n.1.4
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 38x^{4} + 203x^{2} - 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.39944\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.34803 q^{3} +4.00000 q^{4} +2.71681 q^{5} +6.69606 q^{6} +8.00000 q^{8} -15.7907 q^{9} +5.43361 q^{10} +14.0668 q^{11} +13.3921 q^{12} +44.4558 q^{13} +9.09595 q^{15} +16.0000 q^{16} -107.929 q^{17} -31.5814 q^{18} -34.7498 q^{19} +10.8672 q^{20} +28.1336 q^{22} +23.0000 q^{23} +26.7843 q^{24} -117.619 q^{25} +88.9116 q^{26} -143.265 q^{27} -237.901 q^{29} +18.1919 q^{30} -132.575 q^{31} +32.0000 q^{32} +47.0960 q^{33} -215.859 q^{34} -63.1627 q^{36} +58.0639 q^{37} -69.4996 q^{38} +148.839 q^{39} +21.7344 q^{40} -72.2508 q^{41} -97.4243 q^{43} +56.2671 q^{44} -42.9002 q^{45} +46.0000 q^{46} -258.518 q^{47} +53.5685 q^{48} -235.238 q^{50} -361.351 q^{51} +177.823 q^{52} +46.6039 q^{53} -286.529 q^{54} +38.2167 q^{55} -116.343 q^{57} -475.801 q^{58} -140.566 q^{59} +36.3838 q^{60} -17.3939 q^{61} -265.150 q^{62} +64.0000 q^{64} +120.778 q^{65} +94.1920 q^{66} -685.931 q^{67} -431.717 q^{68} +77.0047 q^{69} +331.606 q^{71} -126.325 q^{72} +943.497 q^{73} +116.128 q^{74} -393.792 q^{75} -138.999 q^{76} +297.679 q^{78} +827.511 q^{79} +43.4689 q^{80} -53.3059 q^{81} -144.502 q^{82} +53.7529 q^{83} -293.223 q^{85} -194.849 q^{86} -796.499 q^{87} +112.534 q^{88} -276.921 q^{89} -85.8004 q^{90} +92.0000 q^{92} -443.866 q^{93} -517.037 q^{94} -94.4084 q^{95} +107.137 q^{96} -971.792 q^{97} -222.124 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} + 24 q^{4} + 48 q^{8} - 52 q^{9} - 84 q^{11} + 52 q^{15} + 96 q^{16} - 104 q^{18} - 168 q^{22} + 138 q^{23} - 286 q^{25} - 22 q^{29} + 104 q^{30} + 192 q^{32} - 208 q^{36} - 180 q^{37} - 414 q^{39}+ \cdots + 600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.34803 0.644329 0.322165 0.946684i \(-0.395590\pi\)
0.322165 + 0.946684i \(0.395590\pi\)
\(4\) 4.00000 0.500000
\(5\) 2.71681 0.242998 0.121499 0.992592i \(-0.461230\pi\)
0.121499 + 0.992592i \(0.461230\pi\)
\(6\) 6.69606 0.455609
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −15.7907 −0.584840
\(10\) 5.43361 0.171826
\(11\) 14.0668 0.385572 0.192786 0.981241i \(-0.438248\pi\)
0.192786 + 0.981241i \(0.438248\pi\)
\(12\) 13.3921 0.322165
\(13\) 44.4558 0.948448 0.474224 0.880404i \(-0.342729\pi\)
0.474224 + 0.880404i \(0.342729\pi\)
\(14\) 0 0
\(15\) 9.09595 0.156571
\(16\) 16.0000 0.250000
\(17\) −107.929 −1.53981 −0.769903 0.638161i \(-0.779695\pi\)
−0.769903 + 0.638161i \(0.779695\pi\)
\(18\) −31.5814 −0.413544
\(19\) −34.7498 −0.419587 −0.209793 0.977746i \(-0.567279\pi\)
−0.209793 + 0.977746i \(0.567279\pi\)
\(20\) 10.8672 0.121499
\(21\) 0 0
\(22\) 28.1336 0.272641
\(23\) 23.0000 0.208514
\(24\) 26.7843 0.227805
\(25\) −117.619 −0.940952
\(26\) 88.9116 0.670654
\(27\) −143.265 −1.02116
\(28\) 0 0
\(29\) −237.901 −1.52335 −0.761673 0.647962i \(-0.775622\pi\)
−0.761673 + 0.647962i \(0.775622\pi\)
\(30\) 18.1919 0.110712
\(31\) −132.575 −0.768103 −0.384052 0.923312i \(-0.625472\pi\)
−0.384052 + 0.923312i \(0.625472\pi\)
\(32\) 32.0000 0.176777
\(33\) 47.0960 0.248435
\(34\) −215.859 −1.08881
\(35\) 0 0
\(36\) −63.1627 −0.292420
\(37\) 58.0639 0.257990 0.128995 0.991645i \(-0.458825\pi\)
0.128995 + 0.991645i \(0.458825\pi\)
\(38\) −69.4996 −0.296693
\(39\) 148.839 0.611113
\(40\) 21.7344 0.0859129
\(41\) −72.2508 −0.275212 −0.137606 0.990487i \(-0.543941\pi\)
−0.137606 + 0.990487i \(0.543941\pi\)
\(42\) 0 0
\(43\) −97.4243 −0.345513 −0.172757 0.984965i \(-0.555267\pi\)
−0.172757 + 0.984965i \(0.555267\pi\)
\(44\) 56.2671 0.192786
\(45\) −42.9002 −0.142115
\(46\) 46.0000 0.147442
\(47\) −258.518 −0.802314 −0.401157 0.916009i \(-0.631392\pi\)
−0.401157 + 0.916009i \(0.631392\pi\)
\(48\) 53.5685 0.161082
\(49\) 0 0
\(50\) −235.238 −0.665353
\(51\) −361.351 −0.992141
\(52\) 177.823 0.474224
\(53\) 46.6039 0.120784 0.0603918 0.998175i \(-0.480765\pi\)
0.0603918 + 0.998175i \(0.480765\pi\)
\(54\) −286.529 −0.722068
\(55\) 38.2167 0.0936934
\(56\) 0 0
\(57\) −116.343 −0.270352
\(58\) −475.801 −1.07717
\(59\) −140.566 −0.310172 −0.155086 0.987901i \(-0.549565\pi\)
−0.155086 + 0.987901i \(0.549565\pi\)
\(60\) 36.3838 0.0782855
\(61\) −17.3939 −0.0365093 −0.0182546 0.999833i \(-0.505811\pi\)
−0.0182546 + 0.999833i \(0.505811\pi\)
\(62\) −265.150 −0.543131
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 120.778 0.230471
\(66\) 94.1920 0.175670
\(67\) −685.931 −1.25074 −0.625372 0.780327i \(-0.715053\pi\)
−0.625372 + 0.780327i \(0.715053\pi\)
\(68\) −431.717 −0.769903
\(69\) 77.0047 0.134352
\(70\) 0 0
\(71\) 331.606 0.554287 0.277144 0.960829i \(-0.410612\pi\)
0.277144 + 0.960829i \(0.410612\pi\)
\(72\) −126.325 −0.206772
\(73\) 943.497 1.51271 0.756356 0.654160i \(-0.226978\pi\)
0.756356 + 0.654160i \(0.226978\pi\)
\(74\) 116.128 0.182427
\(75\) −393.792 −0.606283
\(76\) −138.999 −0.209793
\(77\) 0 0
\(78\) 297.679 0.432122
\(79\) 827.511 1.17851 0.589255 0.807947i \(-0.299421\pi\)
0.589255 + 0.807947i \(0.299421\pi\)
\(80\) 43.4689 0.0607496
\(81\) −53.3059 −0.0731220
\(82\) −144.502 −0.194604
\(83\) 53.7529 0.0710861 0.0355430 0.999368i \(-0.488684\pi\)
0.0355430 + 0.999368i \(0.488684\pi\)
\(84\) 0 0
\(85\) −293.223 −0.374170
\(86\) −194.849 −0.244315
\(87\) −796.499 −0.981536
\(88\) 112.534 0.136320
\(89\) −276.921 −0.329815 −0.164908 0.986309i \(-0.552733\pi\)
−0.164908 + 0.986309i \(0.552733\pi\)
\(90\) −85.8004 −0.100491
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −443.866 −0.494911
\(94\) −517.037 −0.567322
\(95\) −94.4084 −0.101959
\(96\) 107.137 0.113902
\(97\) −971.792 −1.01722 −0.508611 0.860996i \(-0.669841\pi\)
−0.508611 + 0.860996i \(0.669841\pi\)
\(98\) 0 0
\(99\) −222.124 −0.225498
\(100\) −470.476 −0.470476
\(101\) 1626.51 1.60241 0.801205 0.598390i \(-0.204193\pi\)
0.801205 + 0.598390i \(0.204193\pi\)
\(102\) −722.701 −0.701550
\(103\) 1919.35 1.83611 0.918055 0.396453i \(-0.129759\pi\)
0.918055 + 0.396453i \(0.129759\pi\)
\(104\) 355.647 0.335327
\(105\) 0 0
\(106\) 93.2077 0.0854070
\(107\) −672.883 −0.607944 −0.303972 0.952681i \(-0.598313\pi\)
−0.303972 + 0.952681i \(0.598313\pi\)
\(108\) −573.058 −0.510579
\(109\) −1857.07 −1.63188 −0.815942 0.578134i \(-0.803781\pi\)
−0.815942 + 0.578134i \(0.803781\pi\)
\(110\) 76.4334 0.0662513
\(111\) 194.400 0.166231
\(112\) 0 0
\(113\) −1327.98 −1.10554 −0.552769 0.833335i \(-0.686429\pi\)
−0.552769 + 0.833335i \(0.686429\pi\)
\(114\) −232.687 −0.191168
\(115\) 62.4865 0.0506687
\(116\) −951.602 −0.761673
\(117\) −701.988 −0.554690
\(118\) −281.132 −0.219325
\(119\) 0 0
\(120\) 72.7676 0.0553562
\(121\) −1133.13 −0.851334
\(122\) −34.7879 −0.0258159
\(123\) −241.898 −0.177327
\(124\) −530.301 −0.384052
\(125\) −659.149 −0.471648
\(126\) 0 0
\(127\) 1979.97 1.38341 0.691707 0.722178i \(-0.256859\pi\)
0.691707 + 0.722178i \(0.256859\pi\)
\(128\) 128.000 0.0883883
\(129\) −326.180 −0.222624
\(130\) 241.556 0.162968
\(131\) 263.738 0.175900 0.0879501 0.996125i \(-0.471968\pi\)
0.0879501 + 0.996125i \(0.471968\pi\)
\(132\) 188.384 0.124218
\(133\) 0 0
\(134\) −1371.86 −0.884409
\(135\) −389.222 −0.248140
\(136\) −863.434 −0.544403
\(137\) −1040.20 −0.648687 −0.324344 0.945939i \(-0.605143\pi\)
−0.324344 + 0.945939i \(0.605143\pi\)
\(138\) 154.009 0.0950011
\(139\) −394.748 −0.240878 −0.120439 0.992721i \(-0.538430\pi\)
−0.120439 + 0.992721i \(0.538430\pi\)
\(140\) 0 0
\(141\) −865.528 −0.516954
\(142\) 663.212 0.391940
\(143\) 625.350 0.365695
\(144\) −252.651 −0.146210
\(145\) −646.330 −0.370171
\(146\) 1886.99 1.06965
\(147\) 0 0
\(148\) 232.256 0.128995
\(149\) −2239.11 −1.23111 −0.615553 0.788095i \(-0.711067\pi\)
−0.615553 + 0.788095i \(0.711067\pi\)
\(150\) −787.584 −0.428706
\(151\) −532.290 −0.286868 −0.143434 0.989660i \(-0.545815\pi\)
−0.143434 + 0.989660i \(0.545815\pi\)
\(152\) −277.998 −0.148346
\(153\) 1704.28 0.900540
\(154\) 0 0
\(155\) −360.181 −0.186648
\(156\) 595.358 0.305556
\(157\) 1936.90 0.984594 0.492297 0.870427i \(-0.336157\pi\)
0.492297 + 0.870427i \(0.336157\pi\)
\(158\) 1655.02 0.833332
\(159\) 156.031 0.0778244
\(160\) 86.9378 0.0429565
\(161\) 0 0
\(162\) −106.612 −0.0517051
\(163\) −117.333 −0.0563819 −0.0281910 0.999603i \(-0.508975\pi\)
−0.0281910 + 0.999603i \(0.508975\pi\)
\(164\) −289.003 −0.137606
\(165\) 127.951 0.0603694
\(166\) 107.506 0.0502654
\(167\) −2193.72 −1.01650 −0.508250 0.861210i \(-0.669707\pi\)
−0.508250 + 0.861210i \(0.669707\pi\)
\(168\) 0 0
\(169\) −220.680 −0.100446
\(170\) −586.446 −0.264578
\(171\) 548.723 0.245391
\(172\) −389.697 −0.172757
\(173\) −1423.67 −0.625663 −0.312832 0.949809i \(-0.601278\pi\)
−0.312832 + 0.949809i \(0.601278\pi\)
\(174\) −1593.00 −0.694051
\(175\) 0 0
\(176\) 225.068 0.0963930
\(177\) −470.620 −0.199853
\(178\) −553.842 −0.233215
\(179\) −2374.20 −0.991374 −0.495687 0.868501i \(-0.665084\pi\)
−0.495687 + 0.868501i \(0.665084\pi\)
\(180\) −171.601 −0.0710576
\(181\) −3991.73 −1.63924 −0.819622 0.572905i \(-0.805816\pi\)
−0.819622 + 0.572905i \(0.805816\pi\)
\(182\) 0 0
\(183\) −58.2354 −0.0235240
\(184\) 184.000 0.0737210
\(185\) 157.748 0.0626913
\(186\) −887.732 −0.349955
\(187\) −1518.22 −0.593706
\(188\) −1034.07 −0.401157
\(189\) 0 0
\(190\) −188.817 −0.0720959
\(191\) 3287.70 1.24550 0.622748 0.782422i \(-0.286016\pi\)
0.622748 + 0.782422i \(0.286016\pi\)
\(192\) 214.274 0.0805411
\(193\) −3520.56 −1.31303 −0.656517 0.754311i \(-0.727971\pi\)
−0.656517 + 0.754311i \(0.727971\pi\)
\(194\) −1943.58 −0.719284
\(195\) 404.368 0.148499
\(196\) 0 0
\(197\) 3002.85 1.08601 0.543005 0.839730i \(-0.317286\pi\)
0.543005 + 0.839730i \(0.317286\pi\)
\(198\) −444.248 −0.159451
\(199\) −220.682 −0.0786116 −0.0393058 0.999227i \(-0.512515\pi\)
−0.0393058 + 0.999227i \(0.512515\pi\)
\(200\) −940.952 −0.332677
\(201\) −2296.52 −0.805890
\(202\) 3253.01 1.13307
\(203\) 0 0
\(204\) −1445.40 −0.496071
\(205\) −196.292 −0.0668761
\(206\) 3838.70 1.29833
\(207\) −363.186 −0.121948
\(208\) 711.293 0.237112
\(209\) −488.818 −0.161781
\(210\) 0 0
\(211\) −4453.76 −1.45313 −0.726564 0.687099i \(-0.758884\pi\)
−0.726564 + 0.687099i \(0.758884\pi\)
\(212\) 186.415 0.0603918
\(213\) 1110.23 0.357143
\(214\) −1345.77 −0.429882
\(215\) −264.683 −0.0839592
\(216\) −1146.12 −0.361034
\(217\) 0 0
\(218\) −3714.15 −1.15392
\(219\) 3158.86 0.974684
\(220\) 152.867 0.0468467
\(221\) −4798.08 −1.46043
\(222\) 388.800 0.117543
\(223\) 429.190 0.128882 0.0644411 0.997922i \(-0.479474\pi\)
0.0644411 + 0.997922i \(0.479474\pi\)
\(224\) 0 0
\(225\) 1857.28 0.550306
\(226\) −2655.96 −0.781733
\(227\) −2729.41 −0.798049 −0.399025 0.916940i \(-0.630651\pi\)
−0.399025 + 0.916940i \(0.630651\pi\)
\(228\) −465.374 −0.135176
\(229\) 6497.18 1.87487 0.937436 0.348157i \(-0.113192\pi\)
0.937436 + 0.348157i \(0.113192\pi\)
\(230\) 124.973 0.0358282
\(231\) 0 0
\(232\) −1903.20 −0.538584
\(233\) 3125.41 0.878767 0.439383 0.898300i \(-0.355197\pi\)
0.439383 + 0.898300i \(0.355197\pi\)
\(234\) −1403.98 −0.392225
\(235\) −702.344 −0.194961
\(236\) −562.264 −0.155086
\(237\) 2770.53 0.759348
\(238\) 0 0
\(239\) 65.9000 0.0178356 0.00891782 0.999960i \(-0.497161\pi\)
0.00891782 + 0.999960i \(0.497161\pi\)
\(240\) 145.535 0.0391427
\(241\) 3954.42 1.05696 0.528479 0.848947i \(-0.322763\pi\)
0.528479 + 0.848947i \(0.322763\pi\)
\(242\) −2266.25 −0.601984
\(243\) 3689.67 0.974044
\(244\) −69.5757 −0.0182546
\(245\) 0 0
\(246\) −483.796 −0.125389
\(247\) −1544.83 −0.397956
\(248\) −1060.60 −0.271566
\(249\) 179.966 0.0458028
\(250\) −1318.30 −0.333506
\(251\) 3446.26 0.866639 0.433319 0.901240i \(-0.357342\pi\)
0.433319 + 0.901240i \(0.357342\pi\)
\(252\) 0 0
\(253\) 323.536 0.0803973
\(254\) 3959.93 0.978221
\(255\) −981.719 −0.241089
\(256\) 256.000 0.0625000
\(257\) −3530.64 −0.856946 −0.428473 0.903554i \(-0.640948\pi\)
−0.428473 + 0.903554i \(0.640948\pi\)
\(258\) −652.359 −0.157419
\(259\) 0 0
\(260\) 483.111 0.115236
\(261\) 3756.61 0.890914
\(262\) 527.477 0.124380
\(263\) −4541.28 −1.06474 −0.532371 0.846511i \(-0.678699\pi\)
−0.532371 + 0.846511i \(0.678699\pi\)
\(264\) 376.768 0.0878351
\(265\) 126.614 0.0293502
\(266\) 0 0
\(267\) −927.140 −0.212510
\(268\) −2743.72 −0.625372
\(269\) 1751.64 0.397024 0.198512 0.980098i \(-0.436389\pi\)
0.198512 + 0.980098i \(0.436389\pi\)
\(270\) −778.444 −0.175461
\(271\) 7466.78 1.67371 0.836854 0.547427i \(-0.184392\pi\)
0.836854 + 0.547427i \(0.184392\pi\)
\(272\) −1726.87 −0.384951
\(273\) 0 0
\(274\) −2080.40 −0.458691
\(275\) −1654.52 −0.362805
\(276\) 308.019 0.0671759
\(277\) −2196.36 −0.476413 −0.238207 0.971215i \(-0.576560\pi\)
−0.238207 + 0.971215i \(0.576560\pi\)
\(278\) −789.496 −0.170327
\(279\) 2093.45 0.449218
\(280\) 0 0
\(281\) −1306.50 −0.277363 −0.138681 0.990337i \(-0.544286\pi\)
−0.138681 + 0.990337i \(0.544286\pi\)
\(282\) −1731.06 −0.365542
\(283\) 89.8988 0.0188831 0.00944157 0.999955i \(-0.496995\pi\)
0.00944157 + 0.999955i \(0.496995\pi\)
\(284\) 1326.42 0.277144
\(285\) −316.082 −0.0656951
\(286\) 1250.70 0.258585
\(287\) 0 0
\(288\) −505.302 −0.103386
\(289\) 6735.73 1.37100
\(290\) −1292.66 −0.261750
\(291\) −3253.59 −0.655426
\(292\) 3773.99 0.756356
\(293\) 2114.68 0.421641 0.210821 0.977525i \(-0.432386\pi\)
0.210821 + 0.977525i \(0.432386\pi\)
\(294\) 0 0
\(295\) −381.891 −0.0753713
\(296\) 464.511 0.0912134
\(297\) −2015.27 −0.393730
\(298\) −4478.22 −0.870524
\(299\) 1022.48 0.197765
\(300\) −1575.17 −0.303141
\(301\) 0 0
\(302\) −1064.58 −0.202847
\(303\) 5445.59 1.03248
\(304\) −555.997 −0.104897
\(305\) −47.2559 −0.00887169
\(306\) 3408.55 0.636778
\(307\) 9228.48 1.71563 0.857813 0.513962i \(-0.171823\pi\)
0.857813 + 0.513962i \(0.171823\pi\)
\(308\) 0 0
\(309\) 6426.05 1.18306
\(310\) −720.362 −0.131980
\(311\) −3531.94 −0.643980 −0.321990 0.946743i \(-0.604352\pi\)
−0.321990 + 0.946743i \(0.604352\pi\)
\(312\) 1190.72 0.216061
\(313\) 7131.97 1.28793 0.643966 0.765054i \(-0.277288\pi\)
0.643966 + 0.765054i \(0.277288\pi\)
\(314\) 3873.80 0.696213
\(315\) 0 0
\(316\) 3310.04 0.589255
\(317\) −7702.64 −1.36474 −0.682372 0.731005i \(-0.739051\pi\)
−0.682372 + 0.731005i \(0.739051\pi\)
\(318\) 312.063 0.0550302
\(319\) −3346.49 −0.587360
\(320\) 173.876 0.0303748
\(321\) −2252.83 −0.391716
\(322\) 0 0
\(323\) 3750.52 0.646082
\(324\) −213.224 −0.0365610
\(325\) −5228.85 −0.892444
\(326\) −234.667 −0.0398680
\(327\) −6217.54 −1.05147
\(328\) −578.007 −0.0973021
\(329\) 0 0
\(330\) 255.901 0.0426876
\(331\) 5114.80 0.849350 0.424675 0.905346i \(-0.360388\pi\)
0.424675 + 0.905346i \(0.360388\pi\)
\(332\) 215.011 0.0355430
\(333\) −916.869 −0.150883
\(334\) −4387.45 −0.718773
\(335\) −1863.54 −0.303929
\(336\) 0 0
\(337\) −12351.9 −1.99659 −0.998297 0.0583313i \(-0.981422\pi\)
−0.998297 + 0.0583313i \(0.981422\pi\)
\(338\) −441.361 −0.0710263
\(339\) −4446.12 −0.712330
\(340\) −1172.89 −0.187085
\(341\) −1864.91 −0.296159
\(342\) 1097.45 0.173518
\(343\) 0 0
\(344\) −779.394 −0.122157
\(345\) 209.207 0.0326473
\(346\) −2847.34 −0.442411
\(347\) −9580.04 −1.48209 −0.741043 0.671458i \(-0.765668\pi\)
−0.741043 + 0.671458i \(0.765668\pi\)
\(348\) −3186.00 −0.490768
\(349\) −2084.47 −0.319711 −0.159856 0.987140i \(-0.551103\pi\)
−0.159856 + 0.987140i \(0.551103\pi\)
\(350\) 0 0
\(351\) −6368.94 −0.968516
\(352\) 450.137 0.0681602
\(353\) −5195.91 −0.783430 −0.391715 0.920087i \(-0.628118\pi\)
−0.391715 + 0.920087i \(0.628118\pi\)
\(354\) −941.239 −0.141317
\(355\) 900.909 0.134691
\(356\) −1107.68 −0.164908
\(357\) 0 0
\(358\) −4748.40 −0.701007
\(359\) 2768.61 0.407024 0.203512 0.979072i \(-0.434764\pi\)
0.203512 + 0.979072i \(0.434764\pi\)
\(360\) −343.202 −0.0502453
\(361\) −5651.45 −0.823947
\(362\) −7983.46 −1.15912
\(363\) −3793.74 −0.548539
\(364\) 0 0
\(365\) 2563.30 0.367587
\(366\) −116.471 −0.0166340
\(367\) 8763.87 1.24651 0.623257 0.782017i \(-0.285809\pi\)
0.623257 + 0.782017i \(0.285809\pi\)
\(368\) 368.000 0.0521286
\(369\) 1140.89 0.160955
\(370\) 315.497 0.0443294
\(371\) 0 0
\(372\) −1775.46 −0.247456
\(373\) 2136.84 0.296626 0.148313 0.988940i \(-0.452616\pi\)
0.148313 + 0.988940i \(0.452616\pi\)
\(374\) −3036.43 −0.419814
\(375\) −2206.85 −0.303897
\(376\) −2068.15 −0.283661
\(377\) −10576.1 −1.44481
\(378\) 0 0
\(379\) −5065.66 −0.686558 −0.343279 0.939233i \(-0.611538\pi\)
−0.343279 + 0.939233i \(0.611538\pi\)
\(380\) −377.634 −0.0509795
\(381\) 6628.99 0.891374
\(382\) 6575.41 0.880699
\(383\) 10590.5 1.41292 0.706458 0.707755i \(-0.250292\pi\)
0.706458 + 0.707755i \(0.250292\pi\)
\(384\) 428.548 0.0569512
\(385\) 0 0
\(386\) −7041.12 −0.928455
\(387\) 1538.40 0.202070
\(388\) −3887.17 −0.508611
\(389\) 3352.08 0.436909 0.218454 0.975847i \(-0.429899\pi\)
0.218454 + 0.975847i \(0.429899\pi\)
\(390\) 808.736 0.105005
\(391\) −2482.37 −0.321072
\(392\) 0 0
\(393\) 883.005 0.113338
\(394\) 6005.69 0.767925
\(395\) 2248.19 0.286376
\(396\) −888.496 −0.112749
\(397\) −5136.45 −0.649348 −0.324674 0.945826i \(-0.605255\pi\)
−0.324674 + 0.945826i \(0.605255\pi\)
\(398\) −441.363 −0.0555868
\(399\) 0 0
\(400\) −1881.90 −0.235238
\(401\) 6489.15 0.808111 0.404056 0.914734i \(-0.367600\pi\)
0.404056 + 0.914734i \(0.367600\pi\)
\(402\) −4593.04 −0.569850
\(403\) −5893.74 −0.728506
\(404\) 6506.02 0.801205
\(405\) −144.822 −0.0177685
\(406\) 0 0
\(407\) 816.772 0.0994739
\(408\) −2890.81 −0.350775
\(409\) −12092.3 −1.46192 −0.730958 0.682422i \(-0.760927\pi\)
−0.730958 + 0.682422i \(0.760927\pi\)
\(410\) −392.583 −0.0472885
\(411\) −3482.62 −0.417968
\(412\) 7677.41 0.918055
\(413\) 0 0
\(414\) −726.371 −0.0862300
\(415\) 146.036 0.0172738
\(416\) 1422.59 0.167664
\(417\) −1321.63 −0.155205
\(418\) −977.635 −0.114396
\(419\) −4134.54 −0.482066 −0.241033 0.970517i \(-0.577486\pi\)
−0.241033 + 0.970517i \(0.577486\pi\)
\(420\) 0 0
\(421\) 1768.64 0.204746 0.102373 0.994746i \(-0.467356\pi\)
0.102373 + 0.994746i \(0.467356\pi\)
\(422\) −8907.53 −1.02752
\(423\) 4082.18 0.469226
\(424\) 372.831 0.0427035
\(425\) 12694.5 1.44888
\(426\) 2220.45 0.252538
\(427\) 0 0
\(428\) −2691.53 −0.303972
\(429\) 2093.69 0.235628
\(430\) −529.366 −0.0593681
\(431\) −3528.60 −0.394355 −0.197177 0.980368i \(-0.563177\pi\)
−0.197177 + 0.980368i \(0.563177\pi\)
\(432\) −2292.23 −0.255290
\(433\) 10991.6 1.21991 0.609955 0.792436i \(-0.291187\pi\)
0.609955 + 0.792436i \(0.291187\pi\)
\(434\) 0 0
\(435\) −2163.93 −0.238512
\(436\) −7428.29 −0.815942
\(437\) −799.245 −0.0874899
\(438\) 6317.72 0.689206
\(439\) −9488.77 −1.03160 −0.515802 0.856708i \(-0.672506\pi\)
−0.515802 + 0.856708i \(0.672506\pi\)
\(440\) 305.734 0.0331256
\(441\) 0 0
\(442\) −9596.17 −1.03268
\(443\) 9092.32 0.975145 0.487573 0.873082i \(-0.337882\pi\)
0.487573 + 0.873082i \(0.337882\pi\)
\(444\) 777.599 0.0831154
\(445\) −752.340 −0.0801446
\(446\) 858.381 0.0911334
\(447\) −7496.61 −0.793238
\(448\) 0 0
\(449\) −7127.43 −0.749141 −0.374570 0.927198i \(-0.622210\pi\)
−0.374570 + 0.927198i \(0.622210\pi\)
\(450\) 3714.57 0.389125
\(451\) −1016.34 −0.106114
\(452\) −5311.92 −0.552769
\(453\) −1782.12 −0.184838
\(454\) −5458.82 −0.564306
\(455\) 0 0
\(456\) −930.747 −0.0955839
\(457\) 1286.52 0.131687 0.0658436 0.997830i \(-0.479026\pi\)
0.0658436 + 0.997830i \(0.479026\pi\)
\(458\) 12994.4 1.32573
\(459\) 15462.4 1.57239
\(460\) 249.946 0.0253343
\(461\) 14471.7 1.46207 0.731037 0.682338i \(-0.239037\pi\)
0.731037 + 0.682338i \(0.239037\pi\)
\(462\) 0 0
\(463\) −5418.87 −0.543923 −0.271961 0.962308i \(-0.587672\pi\)
−0.271961 + 0.962308i \(0.587672\pi\)
\(464\) −3806.41 −0.380837
\(465\) −1205.90 −0.120263
\(466\) 6250.83 0.621382
\(467\) −1421.79 −0.140884 −0.0704418 0.997516i \(-0.522441\pi\)
−0.0704418 + 0.997516i \(0.522441\pi\)
\(468\) −2807.95 −0.277345
\(469\) 0 0
\(470\) −1404.69 −0.137858
\(471\) 6484.80 0.634403
\(472\) −1124.53 −0.109662
\(473\) −1370.45 −0.133220
\(474\) 5541.07 0.536940
\(475\) 4087.24 0.394811
\(476\) 0 0
\(477\) −735.907 −0.0706391
\(478\) 131.800 0.0126117
\(479\) −12046.2 −1.14907 −0.574535 0.818480i \(-0.694817\pi\)
−0.574535 + 0.818480i \(0.694817\pi\)
\(480\) 291.070 0.0276781
\(481\) 2581.28 0.244691
\(482\) 7908.84 0.747382
\(483\) 0 0
\(484\) −4532.50 −0.425667
\(485\) −2640.17 −0.247183
\(486\) 7379.35 0.688753
\(487\) 6788.00 0.631609 0.315804 0.948824i \(-0.397726\pi\)
0.315804 + 0.948824i \(0.397726\pi\)
\(488\) −139.151 −0.0129080
\(489\) −392.836 −0.0363285
\(490\) 0 0
\(491\) 2710.93 0.249170 0.124585 0.992209i \(-0.460240\pi\)
0.124585 + 0.992209i \(0.460240\pi\)
\(492\) −967.593 −0.0886635
\(493\) 25676.4 2.34566
\(494\) −3089.66 −0.281398
\(495\) −603.468 −0.0547957
\(496\) −2121.20 −0.192026
\(497\) 0 0
\(498\) 359.933 0.0323875
\(499\) 9408.15 0.844021 0.422011 0.906591i \(-0.361324\pi\)
0.422011 + 0.906591i \(0.361324\pi\)
\(500\) −2636.59 −0.235824
\(501\) −7344.65 −0.654960
\(502\) 6892.53 0.612806
\(503\) 11819.6 1.04773 0.523865 0.851801i \(-0.324490\pi\)
0.523865 + 0.851801i \(0.324490\pi\)
\(504\) 0 0
\(505\) 4418.90 0.389383
\(506\) 647.072 0.0568495
\(507\) −738.845 −0.0647205
\(508\) 7919.86 0.691707
\(509\) 5776.74 0.503044 0.251522 0.967852i \(-0.419069\pi\)
0.251522 + 0.967852i \(0.419069\pi\)
\(510\) −1963.44 −0.170476
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 4978.41 0.428465
\(514\) −7061.28 −0.605953
\(515\) 5214.51 0.446172
\(516\) −1304.72 −0.111312
\(517\) −3636.52 −0.309350
\(518\) 0 0
\(519\) −4766.50 −0.403133
\(520\) 966.222 0.0814840
\(521\) −7824.93 −0.657997 −0.328999 0.944330i \(-0.606711\pi\)
−0.328999 + 0.944330i \(0.606711\pi\)
\(522\) 7513.23 0.629971
\(523\) −20822.5 −1.74093 −0.870465 0.492231i \(-0.836182\pi\)
−0.870465 + 0.492231i \(0.836182\pi\)
\(524\) 1054.95 0.0879501
\(525\) 0 0
\(526\) −9082.56 −0.752886
\(527\) 14308.7 1.18273
\(528\) 753.536 0.0621088
\(529\) 529.000 0.0434783
\(530\) 253.227 0.0207538
\(531\) 2219.63 0.181401
\(532\) 0 0
\(533\) −3211.97 −0.261024
\(534\) −1854.28 −0.150267
\(535\) −1828.09 −0.147730
\(536\) −5487.45 −0.442205
\(537\) −7948.89 −0.638771
\(538\) 3503.28 0.280738
\(539\) 0 0
\(540\) −1556.89 −0.124070
\(541\) 18074.4 1.43637 0.718186 0.695851i \(-0.244973\pi\)
0.718186 + 0.695851i \(0.244973\pi\)
\(542\) 14933.6 1.18349
\(543\) −13364.4 −1.05621
\(544\) −3453.74 −0.272202
\(545\) −5045.31 −0.396545
\(546\) 0 0
\(547\) 6046.24 0.472612 0.236306 0.971679i \(-0.424063\pi\)
0.236306 + 0.971679i \(0.424063\pi\)
\(548\) −4160.79 −0.324344
\(549\) 274.662 0.0213521
\(550\) −3309.04 −0.256542
\(551\) 8267.00 0.639176
\(552\) 616.038 0.0475006
\(553\) 0 0
\(554\) −4392.72 −0.336875
\(555\) 528.146 0.0403938
\(556\) −1578.99 −0.120439
\(557\) −11786.4 −0.896598 −0.448299 0.893884i \(-0.647970\pi\)
−0.448299 + 0.893884i \(0.647970\pi\)
\(558\) 4186.91 0.317645
\(559\) −4331.08 −0.327701
\(560\) 0 0
\(561\) −5083.04 −0.382542
\(562\) −2612.99 −0.196125
\(563\) 21680.7 1.62297 0.811486 0.584372i \(-0.198659\pi\)
0.811486 + 0.584372i \(0.198659\pi\)
\(564\) −3462.11 −0.258477
\(565\) −3607.86 −0.268644
\(566\) 179.798 0.0133524
\(567\) 0 0
\(568\) 2652.85 0.195970
\(569\) 3846.99 0.283435 0.141717 0.989907i \(-0.454738\pi\)
0.141717 + 0.989907i \(0.454738\pi\)
\(570\) −632.165 −0.0464535
\(571\) −3404.68 −0.249529 −0.124765 0.992186i \(-0.539818\pi\)
−0.124765 + 0.992186i \(0.539818\pi\)
\(572\) 2501.40 0.182848
\(573\) 11007.3 0.802510
\(574\) 0 0
\(575\) −2705.24 −0.196202
\(576\) −1010.60 −0.0731050
\(577\) −13520.4 −0.975495 −0.487747 0.872985i \(-0.662181\pi\)
−0.487747 + 0.872985i \(0.662181\pi\)
\(578\) 13471.5 0.969444
\(579\) −11787.0 −0.846026
\(580\) −2585.32 −0.185085
\(581\) 0 0
\(582\) −6507.18 −0.463456
\(583\) 655.566 0.0465708
\(584\) 7547.98 0.534825
\(585\) −1907.16 −0.134789
\(586\) 4229.36 0.298145
\(587\) −3743.91 −0.263250 −0.131625 0.991300i \(-0.542020\pi\)
−0.131625 + 0.991300i \(0.542020\pi\)
\(588\) 0 0
\(589\) 4606.96 0.322286
\(590\) −763.781 −0.0532956
\(591\) 10053.6 0.699748
\(592\) 929.022 0.0644976
\(593\) −22462.0 −1.55549 −0.777744 0.628582i \(-0.783636\pi\)
−0.777744 + 0.628582i \(0.783636\pi\)
\(594\) −4030.54 −0.278409
\(595\) 0 0
\(596\) −8956.44 −0.615553
\(597\) −738.849 −0.0506517
\(598\) 2044.97 0.139841
\(599\) 2804.54 0.191303 0.0956514 0.995415i \(-0.469507\pi\)
0.0956514 + 0.995415i \(0.469507\pi\)
\(600\) −3150.34 −0.214353
\(601\) −11993.5 −0.814020 −0.407010 0.913424i \(-0.633429\pi\)
−0.407010 + 0.913424i \(0.633429\pi\)
\(602\) 0 0
\(603\) 10831.3 0.731485
\(604\) −2129.16 −0.143434
\(605\) −3078.48 −0.206873
\(606\) 10891.2 0.730073
\(607\) 9757.57 0.652467 0.326234 0.945289i \(-0.394220\pi\)
0.326234 + 0.945289i \(0.394220\pi\)
\(608\) −1111.99 −0.0741732
\(609\) 0 0
\(610\) −94.5119 −0.00627324
\(611\) −11492.6 −0.760954
\(612\) 6817.11 0.450270
\(613\) −10140.1 −0.668118 −0.334059 0.942552i \(-0.608418\pi\)
−0.334059 + 0.942552i \(0.608418\pi\)
\(614\) 18457.0 1.21313
\(615\) −657.190 −0.0430902
\(616\) 0 0
\(617\) −14606.8 −0.953076 −0.476538 0.879154i \(-0.658109\pi\)
−0.476538 + 0.879154i \(0.658109\pi\)
\(618\) 12852.1 0.836549
\(619\) −22544.3 −1.46386 −0.731931 0.681379i \(-0.761381\pi\)
−0.731931 + 0.681379i \(0.761381\pi\)
\(620\) −1440.72 −0.0933240
\(621\) −3295.09 −0.212926
\(622\) −7063.88 −0.455363
\(623\) 0 0
\(624\) 2381.43 0.152778
\(625\) 12911.6 0.826342
\(626\) 14263.9 0.910706
\(627\) −1636.58 −0.104240
\(628\) 7747.59 0.492297
\(629\) −6266.79 −0.397255
\(630\) 0 0
\(631\) −17047.0 −1.07549 −0.537743 0.843109i \(-0.680723\pi\)
−0.537743 + 0.843109i \(0.680723\pi\)
\(632\) 6620.09 0.416666
\(633\) −14911.3 −0.936292
\(634\) −15405.3 −0.965019
\(635\) 5379.18 0.336167
\(636\) 624.125 0.0389122
\(637\) 0 0
\(638\) −6692.99 −0.415326
\(639\) −5236.28 −0.324169
\(640\) 347.751 0.0214782
\(641\) 20950.9 1.29097 0.645484 0.763774i \(-0.276656\pi\)
0.645484 + 0.763774i \(0.276656\pi\)
\(642\) −4505.67 −0.276985
\(643\) −17140.2 −1.05124 −0.525618 0.850721i \(-0.676166\pi\)
−0.525618 + 0.850721i \(0.676166\pi\)
\(644\) 0 0
\(645\) −886.167 −0.0540973
\(646\) 7501.04 0.456849
\(647\) −15648.3 −0.950849 −0.475425 0.879757i \(-0.657706\pi\)
−0.475425 + 0.879757i \(0.657706\pi\)
\(648\) −426.447 −0.0258525
\(649\) −1977.31 −0.119594
\(650\) −10457.7 −0.631053
\(651\) 0 0
\(652\) −469.333 −0.0281910
\(653\) 1529.72 0.0916732 0.0458366 0.998949i \(-0.485405\pi\)
0.0458366 + 0.998949i \(0.485405\pi\)
\(654\) −12435.1 −0.743502
\(655\) 716.526 0.0427435
\(656\) −1156.01 −0.0688030
\(657\) −14898.5 −0.884695
\(658\) 0 0
\(659\) 19059.9 1.12666 0.563329 0.826233i \(-0.309520\pi\)
0.563329 + 0.826233i \(0.309520\pi\)
\(660\) 511.803 0.0301847
\(661\) 28402.8 1.67132 0.835658 0.549251i \(-0.185087\pi\)
0.835658 + 0.549251i \(0.185087\pi\)
\(662\) 10229.6 0.600581
\(663\) −16064.1 −0.940995
\(664\) 430.023 0.0251327
\(665\) 0 0
\(666\) −1833.74 −0.106690
\(667\) −5471.71 −0.317640
\(668\) −8774.89 −0.508250
\(669\) 1436.94 0.0830425
\(670\) −3727.08 −0.214910
\(671\) −244.677 −0.0140770
\(672\) 0 0
\(673\) 26105.0 1.49521 0.747603 0.664146i \(-0.231205\pi\)
0.747603 + 0.664146i \(0.231205\pi\)
\(674\) −24703.9 −1.41181
\(675\) 16850.6 0.960861
\(676\) −882.722 −0.0502231
\(677\) 7378.78 0.418892 0.209446 0.977820i \(-0.432834\pi\)
0.209446 + 0.977820i \(0.432834\pi\)
\(678\) −8892.23 −0.503694
\(679\) 0 0
\(680\) −2345.78 −0.132289
\(681\) −9138.15 −0.514206
\(682\) −3729.81 −0.209416
\(683\) 17170.3 0.961936 0.480968 0.876738i \(-0.340285\pi\)
0.480968 + 0.876738i \(0.340285\pi\)
\(684\) 2194.89 0.122696
\(685\) −2826.02 −0.157630
\(686\) 0 0
\(687\) 21752.8 1.20803
\(688\) −1558.79 −0.0863783
\(689\) 2071.81 0.114557
\(690\) 418.414 0.0230851
\(691\) −12082.1 −0.665158 −0.332579 0.943075i \(-0.607919\pi\)
−0.332579 + 0.943075i \(0.607919\pi\)
\(692\) −5694.69 −0.312832
\(693\) 0 0
\(694\) −19160.1 −1.04799
\(695\) −1072.45 −0.0585331
\(696\) −6371.99 −0.347025
\(697\) 7797.98 0.423773
\(698\) −4168.94 −0.226070
\(699\) 10464.0 0.566215
\(700\) 0 0
\(701\) 24855.8 1.33922 0.669608 0.742715i \(-0.266462\pi\)
0.669608 + 0.742715i \(0.266462\pi\)
\(702\) −12737.9 −0.684844
\(703\) −2017.71 −0.108249
\(704\) 900.274 0.0481965
\(705\) −2351.47 −0.125619
\(706\) −10391.8 −0.553968
\(707\) 0 0
\(708\) −1882.48 −0.0999264
\(709\) 5750.35 0.304596 0.152298 0.988335i \(-0.451333\pi\)
0.152298 + 0.988335i \(0.451333\pi\)
\(710\) 1801.82 0.0952409
\(711\) −13067.0 −0.689240
\(712\) −2215.37 −0.116607
\(713\) −3049.23 −0.160161
\(714\) 0 0
\(715\) 1698.95 0.0888634
\(716\) −9496.79 −0.495687
\(717\) 220.635 0.0114920
\(718\) 5537.22 0.287809
\(719\) 28485.9 1.47753 0.738767 0.673961i \(-0.235409\pi\)
0.738767 + 0.673961i \(0.235409\pi\)
\(720\) −686.403 −0.0355288
\(721\) 0 0
\(722\) −11302.9 −0.582618
\(723\) 13239.5 0.681028
\(724\) −15966.9 −0.819622
\(725\) 27981.6 1.43340
\(726\) −7587.48 −0.387876
\(727\) 7730.71 0.394383 0.197191 0.980365i \(-0.436818\pi\)
0.197191 + 0.980365i \(0.436818\pi\)
\(728\) 0 0
\(729\) 13792.4 0.700727
\(730\) 5126.60 0.259923
\(731\) 10514.9 0.532023
\(732\) −232.942 −0.0117620
\(733\) 20633.5 1.03972 0.519862 0.854250i \(-0.325983\pi\)
0.519862 + 0.854250i \(0.325983\pi\)
\(734\) 17527.7 0.881418
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −9648.84 −0.482252
\(738\) 2281.78 0.113812
\(739\) −33798.1 −1.68239 −0.841194 0.540734i \(-0.818147\pi\)
−0.841194 + 0.540734i \(0.818147\pi\)
\(740\) 630.993 0.0313456
\(741\) −5172.14 −0.256415
\(742\) 0 0
\(743\) 10083.2 0.497869 0.248934 0.968520i \(-0.419920\pi\)
0.248934 + 0.968520i \(0.419920\pi\)
\(744\) −3550.93 −0.174978
\(745\) −6083.22 −0.299157
\(746\) 4273.68 0.209746
\(747\) −848.795 −0.0415740
\(748\) −6072.87 −0.296853
\(749\) 0 0
\(750\) −4413.70 −0.214887
\(751\) 15448.5 0.750629 0.375315 0.926897i \(-0.377535\pi\)
0.375315 + 0.926897i \(0.377535\pi\)
\(752\) −4136.29 −0.200579
\(753\) 11538.2 0.558400
\(754\) −21152.1 −1.02164
\(755\) −1446.13 −0.0697086
\(756\) 0 0
\(757\) 15907.3 0.763752 0.381876 0.924213i \(-0.375278\pi\)
0.381876 + 0.924213i \(0.375278\pi\)
\(758\) −10131.3 −0.485470
\(759\) 1083.21 0.0518023
\(760\) −755.268 −0.0360479
\(761\) −23874.7 −1.13726 −0.568632 0.822592i \(-0.692527\pi\)
−0.568632 + 0.822592i \(0.692527\pi\)
\(762\) 13258.0 0.630296
\(763\) 0 0
\(764\) 13150.8 0.622748
\(765\) 4630.19 0.218830
\(766\) 21180.9 0.999082
\(767\) −6248.98 −0.294182
\(768\) 857.096 0.0402706
\(769\) −13225.1 −0.620170 −0.310085 0.950709i \(-0.600358\pi\)
−0.310085 + 0.950709i \(0.600358\pi\)
\(770\) 0 0
\(771\) −11820.7 −0.552155
\(772\) −14082.2 −0.656517
\(773\) 5278.62 0.245613 0.122806 0.992431i \(-0.460811\pi\)
0.122806 + 0.992431i \(0.460811\pi\)
\(774\) 3076.79 0.142885
\(775\) 15593.4 0.722748
\(776\) −7774.33 −0.359642
\(777\) 0 0
\(778\) 6704.17 0.308941
\(779\) 2510.70 0.115475
\(780\) 1617.47 0.0742497
\(781\) 4664.63 0.213718
\(782\) −4964.75 −0.227032
\(783\) 34082.7 1.55558
\(784\) 0 0
\(785\) 5262.18 0.239255
\(786\) 1766.01 0.0801418
\(787\) −24986.0 −1.13171 −0.565854 0.824505i \(-0.691453\pi\)
−0.565854 + 0.824505i \(0.691453\pi\)
\(788\) 12011.4 0.543005
\(789\) −15204.3 −0.686044
\(790\) 4496.37 0.202498
\(791\) 0 0
\(792\) −1776.99 −0.0797256
\(793\) −773.261 −0.0346271
\(794\) −10272.9 −0.459158
\(795\) 423.907 0.0189112
\(796\) −882.727 −0.0393058
\(797\) −3366.67 −0.149628 −0.0748141 0.997198i \(-0.523836\pi\)
−0.0748141 + 0.997198i \(0.523836\pi\)
\(798\) 0 0
\(799\) 27901.7 1.23541
\(800\) −3763.81 −0.166338
\(801\) 4372.77 0.192889
\(802\) 12978.3 0.571421
\(803\) 13272.0 0.583260
\(804\) −9186.08 −0.402945
\(805\) 0 0
\(806\) −11787.5 −0.515132
\(807\) 5864.55 0.255814
\(808\) 13012.0 0.566537
\(809\) −25761.2 −1.11955 −0.559776 0.828644i \(-0.689113\pi\)
−0.559776 + 0.828644i \(0.689113\pi\)
\(810\) −289.644 −0.0125642
\(811\) 16654.4 0.721104 0.360552 0.932739i \(-0.382588\pi\)
0.360552 + 0.932739i \(0.382588\pi\)
\(812\) 0 0
\(813\) 24999.0 1.07842
\(814\) 1633.54 0.0703387
\(815\) −318.772 −0.0137007
\(816\) −5781.61 −0.248035
\(817\) 3385.47 0.144973
\(818\) −24184.5 −1.03373
\(819\) 0 0
\(820\) −785.166 −0.0334380
\(821\) −9226.83 −0.392227 −0.196114 0.980581i \(-0.562832\pi\)
−0.196114 + 0.980581i \(0.562832\pi\)
\(822\) −6965.24 −0.295548
\(823\) −5194.26 −0.220001 −0.110000 0.993932i \(-0.535085\pi\)
−0.110000 + 0.993932i \(0.535085\pi\)
\(824\) 15354.8 0.649163
\(825\) −5539.39 −0.233766
\(826\) 0 0
\(827\) 24987.6 1.05067 0.525334 0.850896i \(-0.323940\pi\)
0.525334 + 0.850896i \(0.323940\pi\)
\(828\) −1452.74 −0.0609738
\(829\) 551.268 0.0230957 0.0115479 0.999933i \(-0.496324\pi\)
0.0115479 + 0.999933i \(0.496324\pi\)
\(830\) 292.072 0.0122144
\(831\) −7353.48 −0.306967
\(832\) 2845.17 0.118556
\(833\) 0 0
\(834\) −2643.26 −0.109747
\(835\) −5959.92 −0.247008
\(836\) −1955.27 −0.0808905
\(837\) 18993.3 0.784355
\(838\) −8269.08 −0.340872
\(839\) 45472.8 1.87115 0.935575 0.353128i \(-0.114882\pi\)
0.935575 + 0.353128i \(0.114882\pi\)
\(840\) 0 0
\(841\) 32207.7 1.32058
\(842\) 3537.28 0.144778
\(843\) −4374.19 −0.178713
\(844\) −17815.1 −0.726564
\(845\) −599.546 −0.0244083
\(846\) 8164.36 0.331793
\(847\) 0 0
\(848\) 745.662 0.0301959
\(849\) 300.984 0.0121670
\(850\) 25389.1 1.02451
\(851\) 1335.47 0.0537947
\(852\) 4440.91 0.178572
\(853\) −15598.0 −0.626103 −0.313052 0.949736i \(-0.601351\pi\)
−0.313052 + 0.949736i \(0.601351\pi\)
\(854\) 0 0
\(855\) 1490.77 0.0596297
\(856\) −5383.06 −0.214941
\(857\) 5443.13 0.216959 0.108479 0.994099i \(-0.465402\pi\)
0.108479 + 0.994099i \(0.465402\pi\)
\(858\) 4187.38 0.166614
\(859\) 6233.26 0.247586 0.123793 0.992308i \(-0.460494\pi\)
0.123793 + 0.992308i \(0.460494\pi\)
\(860\) −1058.73 −0.0419796
\(861\) 0 0
\(862\) −7057.21 −0.278851
\(863\) −37857.2 −1.49325 −0.746624 0.665246i \(-0.768327\pi\)
−0.746624 + 0.665246i \(0.768327\pi\)
\(864\) −4584.47 −0.180517
\(865\) −3867.84 −0.152035
\(866\) 21983.1 0.862607
\(867\) 22551.4 0.883376
\(868\) 0 0
\(869\) 11640.4 0.454400
\(870\) −4327.87 −0.168653
\(871\) −30493.6 −1.18627
\(872\) −14856.6 −0.576958
\(873\) 15345.3 0.594912
\(874\) −1598.49 −0.0618647
\(875\) 0 0
\(876\) 12635.4 0.487342
\(877\) 5772.86 0.222275 0.111138 0.993805i \(-0.464551\pi\)
0.111138 + 0.993805i \(0.464551\pi\)
\(878\) −18977.5 −0.729454
\(879\) 7080.01 0.271676
\(880\) 611.467 0.0234234
\(881\) −15933.8 −0.609335 −0.304668 0.952459i \(-0.598545\pi\)
−0.304668 + 0.952459i \(0.598545\pi\)
\(882\) 0 0
\(883\) −38496.6 −1.46717 −0.733587 0.679595i \(-0.762155\pi\)
−0.733587 + 0.679595i \(0.762155\pi\)
\(884\) −19192.3 −0.730213
\(885\) −1278.58 −0.0485639
\(886\) 18184.6 0.689532
\(887\) −22380.5 −0.847198 −0.423599 0.905850i \(-0.639233\pi\)
−0.423599 + 0.905850i \(0.639233\pi\)
\(888\) 1555.20 0.0587714
\(889\) 0 0
\(890\) −1504.68 −0.0566708
\(891\) −749.843 −0.0281938
\(892\) 1716.76 0.0644411
\(893\) 8983.46 0.336641
\(894\) −14993.2 −0.560904
\(895\) −6450.23 −0.240902
\(896\) 0 0
\(897\) 3423.31 0.127426
\(898\) −14254.9 −0.529723
\(899\) 31539.7 1.17009
\(900\) 7429.13 0.275153
\(901\) −5029.92 −0.185983
\(902\) −2032.67 −0.0750339
\(903\) 0 0
\(904\) −10623.8 −0.390867
\(905\) −10844.8 −0.398334
\(906\) −3564.25 −0.130700
\(907\) 34170.5 1.25095 0.625475 0.780244i \(-0.284905\pi\)
0.625475 + 0.780244i \(0.284905\pi\)
\(908\) −10917.6 −0.399025
\(909\) −25683.6 −0.937153
\(910\) 0 0
\(911\) 2638.77 0.0959674 0.0479837 0.998848i \(-0.484720\pi\)
0.0479837 + 0.998848i \(0.484720\pi\)
\(912\) −1861.49 −0.0675880
\(913\) 756.130 0.0274088
\(914\) 2573.05 0.0931170
\(915\) −158.214 −0.00571629
\(916\) 25988.7 0.937436
\(917\) 0 0
\(918\) 30924.9 1.11184
\(919\) 33287.2 1.19482 0.597412 0.801935i \(-0.296196\pi\)
0.597412 + 0.801935i \(0.296196\pi\)
\(920\) 499.892 0.0179141
\(921\) 30897.2 1.10543
\(922\) 28943.5 1.03384
\(923\) 14741.8 0.525713
\(924\) 0 0
\(925\) −6829.42 −0.242757
\(926\) −10837.7 −0.384611
\(927\) −30307.9 −1.07383
\(928\) −7612.82 −0.269292
\(929\) −15350.2 −0.542112 −0.271056 0.962564i \(-0.587373\pi\)
−0.271056 + 0.962564i \(0.587373\pi\)
\(930\) −2411.80 −0.0850386
\(931\) 0 0
\(932\) 12501.7 0.439383
\(933\) −11825.0 −0.414935
\(934\) −2843.58 −0.0996198
\(935\) −4124.70 −0.144270
\(936\) −5615.90 −0.196113
\(937\) −17483.9 −0.609578 −0.304789 0.952420i \(-0.598586\pi\)
−0.304789 + 0.952420i \(0.598586\pi\)
\(938\) 0 0
\(939\) 23878.1 0.829852
\(940\) −2809.38 −0.0974806
\(941\) 1203.31 0.0416864 0.0208432 0.999783i \(-0.493365\pi\)
0.0208432 + 0.999783i \(0.493365\pi\)
\(942\) 12969.6 0.448590
\(943\) −1661.77 −0.0573856
\(944\) −2249.06 −0.0775430
\(945\) 0 0
\(946\) −2740.89 −0.0942009
\(947\) −24703.3 −0.847675 −0.423838 0.905738i \(-0.639317\pi\)
−0.423838 + 0.905738i \(0.639317\pi\)
\(948\) 11082.1 0.379674
\(949\) 41943.9 1.43473
\(950\) 8174.47 0.279174
\(951\) −25788.7 −0.879344
\(952\) 0 0
\(953\) 1027.78 0.0349349 0.0174674 0.999847i \(-0.494440\pi\)
0.0174674 + 0.999847i \(0.494440\pi\)
\(954\) −1471.81 −0.0499494
\(955\) 8932.05 0.302654
\(956\) 263.600 0.00891782
\(957\) −11204.2 −0.378453
\(958\) −24092.4 −0.812516
\(959\) 0 0
\(960\) 582.141 0.0195714
\(961\) −12214.8 −0.410017
\(962\) 5162.56 0.173022
\(963\) 10625.3 0.355550
\(964\) 15817.7 0.528479
\(965\) −9564.68 −0.319065
\(966\) 0 0
\(967\) −1549.75 −0.0515373 −0.0257687 0.999668i \(-0.508203\pi\)
−0.0257687 + 0.999668i \(0.508203\pi\)
\(968\) −9065.01 −0.300992
\(969\) 12556.9 0.416289
\(970\) −5280.34 −0.174785
\(971\) 17142.9 0.566574 0.283287 0.959035i \(-0.408575\pi\)
0.283287 + 0.959035i \(0.408575\pi\)
\(972\) 14758.7 0.487022
\(973\) 0 0
\(974\) 13576.0 0.446615
\(975\) −17506.3 −0.575027
\(976\) −278.303 −0.00912731
\(977\) 16269.5 0.532760 0.266380 0.963868i \(-0.414172\pi\)
0.266380 + 0.963868i \(0.414172\pi\)
\(978\) −785.671 −0.0256881
\(979\) −3895.38 −0.127168
\(980\) 0 0
\(981\) 29324.4 0.954391
\(982\) 5421.86 0.176190
\(983\) −12235.2 −0.396991 −0.198495 0.980102i \(-0.563605\pi\)
−0.198495 + 0.980102i \(0.563605\pi\)
\(984\) −1935.19 −0.0626946
\(985\) 8158.15 0.263899
\(986\) 51352.9 1.65863
\(987\) 0 0
\(988\) −6179.32 −0.198978
\(989\) −2240.76 −0.0720445
\(990\) −1206.94 −0.0387464
\(991\) −31854.0 −1.02106 −0.510532 0.859858i \(-0.670552\pi\)
−0.510532 + 0.859858i \(0.670552\pi\)
\(992\) −4242.41 −0.135783
\(993\) 17124.5 0.547261
\(994\) 0 0
\(995\) −599.549 −0.0191025
\(996\) 719.865 0.0229014
\(997\) 15670.5 0.497782 0.248891 0.968532i \(-0.419934\pi\)
0.248891 + 0.968532i \(0.419934\pi\)
\(998\) 18816.3 0.596813
\(999\) −8318.50 −0.263449
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.n.1.4 yes 6
7.6 odd 2 inner 2254.4.a.n.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2254.4.a.n.1.3 6 7.6 odd 2 inner
2254.4.a.n.1.4 yes 6 1.1 even 1 trivial