Properties

Label 2254.4.a.n.1.1
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 38x^{4} + 203x^{2} - 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.740283\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -5.32887 q^{3} +4.00000 q^{4} +6.69892 q^{5} -10.6577 q^{6} +8.00000 q^{8} +1.39685 q^{9} +13.3978 q^{10} -9.88974 q^{11} -21.3155 q^{12} +13.2146 q^{13} -35.6977 q^{15} +16.0000 q^{16} -73.3216 q^{17} +2.79370 q^{18} +29.4542 q^{19} +26.7957 q^{20} -19.7795 q^{22} +23.0000 q^{23} -42.6310 q^{24} -80.1245 q^{25} +26.4291 q^{26} +136.436 q^{27} +239.701 q^{29} -71.3953 q^{30} +204.202 q^{31} +32.0000 q^{32} +52.7011 q^{33} -146.643 q^{34} +5.58741 q^{36} -416.948 q^{37} +58.9083 q^{38} -70.4187 q^{39} +53.5914 q^{40} +372.338 q^{41} -366.186 q^{43} -39.5590 q^{44} +9.35739 q^{45} +46.0000 q^{46} -306.824 q^{47} -85.2619 q^{48} -160.249 q^{50} +390.721 q^{51} +52.8583 q^{52} +282.051 q^{53} +272.872 q^{54} -66.2506 q^{55} -156.957 q^{57} +479.402 q^{58} -393.159 q^{59} -142.791 q^{60} -938.136 q^{61} +408.403 q^{62} +64.0000 q^{64} +88.5233 q^{65} +105.402 q^{66} -424.530 q^{67} -293.286 q^{68} -122.564 q^{69} -388.680 q^{71} +11.1748 q^{72} +579.008 q^{73} -833.896 q^{74} +426.973 q^{75} +117.817 q^{76} -140.837 q^{78} -946.393 q^{79} +107.183 q^{80} -764.764 q^{81} +744.676 q^{82} +1420.98 q^{83} -491.175 q^{85} -732.372 q^{86} -1277.33 q^{87} -79.1179 q^{88} +490.678 q^{89} +18.7148 q^{90} +92.0000 q^{92} -1088.16 q^{93} -613.648 q^{94} +197.311 q^{95} -170.524 q^{96} +1108.65 q^{97} -13.8145 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} + 24 q^{4} + 48 q^{8} - 52 q^{9} - 84 q^{11} + 52 q^{15} + 96 q^{16} - 104 q^{18} - 168 q^{22} + 138 q^{23} - 286 q^{25} - 22 q^{29} + 104 q^{30} + 192 q^{32} - 208 q^{36} - 180 q^{37} - 414 q^{39}+ \cdots + 600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −5.32887 −1.02554 −0.512771 0.858526i \(-0.671381\pi\)
−0.512771 + 0.858526i \(0.671381\pi\)
\(4\) 4.00000 0.500000
\(5\) 6.69892 0.599170 0.299585 0.954070i \(-0.403152\pi\)
0.299585 + 0.954070i \(0.403152\pi\)
\(6\) −10.6577 −0.725167
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 1.39685 0.0517352
\(10\) 13.3978 0.423677
\(11\) −9.88974 −0.271079 −0.135539 0.990772i \(-0.543277\pi\)
−0.135539 + 0.990772i \(0.543277\pi\)
\(12\) −21.3155 −0.512771
\(13\) 13.2146 0.281928 0.140964 0.990015i \(-0.454980\pi\)
0.140964 + 0.990015i \(0.454980\pi\)
\(14\) 0 0
\(15\) −35.6977 −0.614473
\(16\) 16.0000 0.250000
\(17\) −73.3216 −1.04606 −0.523032 0.852313i \(-0.675199\pi\)
−0.523032 + 0.852313i \(0.675199\pi\)
\(18\) 2.79370 0.0365823
\(19\) 29.4542 0.355645 0.177822 0.984063i \(-0.443095\pi\)
0.177822 + 0.984063i \(0.443095\pi\)
\(20\) 26.7957 0.299585
\(21\) 0 0
\(22\) −19.7795 −0.191682
\(23\) 23.0000 0.208514
\(24\) −42.6310 −0.362584
\(25\) −80.1245 −0.640996
\(26\) 26.4291 0.199353
\(27\) 136.436 0.972485
\(28\) 0 0
\(29\) 239.701 1.53487 0.767436 0.641125i \(-0.221532\pi\)
0.767436 + 0.641125i \(0.221532\pi\)
\(30\) −71.3953 −0.434498
\(31\) 204.202 1.18309 0.591544 0.806273i \(-0.298519\pi\)
0.591544 + 0.806273i \(0.298519\pi\)
\(32\) 32.0000 0.176777
\(33\) 52.7011 0.278003
\(34\) −146.643 −0.739679
\(35\) 0 0
\(36\) 5.58741 0.0258676
\(37\) −416.948 −1.85259 −0.926295 0.376798i \(-0.877025\pi\)
−0.926295 + 0.376798i \(0.877025\pi\)
\(38\) 58.9083 0.251479
\(39\) −70.4187 −0.289129
\(40\) 53.5914 0.211838
\(41\) 372.338 1.41828 0.709139 0.705069i \(-0.249084\pi\)
0.709139 + 0.705069i \(0.249084\pi\)
\(42\) 0 0
\(43\) −366.186 −1.29867 −0.649335 0.760502i \(-0.724953\pi\)
−0.649335 + 0.760502i \(0.724953\pi\)
\(44\) −39.5590 −0.135539
\(45\) 9.35739 0.0309982
\(46\) 46.0000 0.147442
\(47\) −306.824 −0.952231 −0.476115 0.879383i \(-0.657956\pi\)
−0.476115 + 0.879383i \(0.657956\pi\)
\(48\) −85.2619 −0.256385
\(49\) 0 0
\(50\) −160.249 −0.453253
\(51\) 390.721 1.07278
\(52\) 52.8583 0.140964
\(53\) 282.051 0.730994 0.365497 0.930813i \(-0.380899\pi\)
0.365497 + 0.930813i \(0.380899\pi\)
\(54\) 272.872 0.687651
\(55\) −66.2506 −0.162422
\(56\) 0 0
\(57\) −156.957 −0.364728
\(58\) 479.402 1.08532
\(59\) −393.159 −0.867542 −0.433771 0.901023i \(-0.642817\pi\)
−0.433771 + 0.901023i \(0.642817\pi\)
\(60\) −142.791 −0.307237
\(61\) −938.136 −1.96911 −0.984557 0.175064i \(-0.943987\pi\)
−0.984557 + 0.175064i \(0.943987\pi\)
\(62\) 408.403 0.836569
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 88.5233 0.168923
\(66\) 105.402 0.196578
\(67\) −424.530 −0.774098 −0.387049 0.922059i \(-0.626506\pi\)
−0.387049 + 0.922059i \(0.626506\pi\)
\(68\) −293.286 −0.523032
\(69\) −122.564 −0.213840
\(70\) 0 0
\(71\) −388.680 −0.649688 −0.324844 0.945768i \(-0.605312\pi\)
−0.324844 + 0.945768i \(0.605312\pi\)
\(72\) 11.1748 0.0182912
\(73\) 579.008 0.928325 0.464162 0.885750i \(-0.346355\pi\)
0.464162 + 0.885750i \(0.346355\pi\)
\(74\) −833.896 −1.30998
\(75\) 426.973 0.657368
\(76\) 117.817 0.177822
\(77\) 0 0
\(78\) −140.837 −0.204445
\(79\) −946.393 −1.34782 −0.673908 0.738815i \(-0.735386\pi\)
−0.673908 + 0.738815i \(0.735386\pi\)
\(80\) 107.183 0.149792
\(81\) −764.764 −1.04906
\(82\) 744.676 1.00287
\(83\) 1420.98 1.87919 0.939594 0.342292i \(-0.111203\pi\)
0.939594 + 0.342292i \(0.111203\pi\)
\(84\) 0 0
\(85\) −491.175 −0.626770
\(86\) −732.372 −0.918299
\(87\) −1277.33 −1.57408
\(88\) −79.1179 −0.0958409
\(89\) 490.678 0.584402 0.292201 0.956357i \(-0.405612\pi\)
0.292201 + 0.956357i \(0.405612\pi\)
\(90\) 18.7148 0.0219190
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −1088.16 −1.21331
\(94\) −613.648 −0.673329
\(95\) 197.311 0.213091
\(96\) −170.524 −0.181292
\(97\) 1108.65 1.16047 0.580237 0.814448i \(-0.302960\pi\)
0.580237 + 0.814448i \(0.302960\pi\)
\(98\) 0 0
\(99\) −13.8145 −0.0140243
\(100\) −320.498 −0.320498
\(101\) −1138.84 −1.12196 −0.560982 0.827828i \(-0.689576\pi\)
−0.560982 + 0.827828i \(0.689576\pi\)
\(102\) 781.442 0.758572
\(103\) 395.385 0.378238 0.189119 0.981954i \(-0.439437\pi\)
0.189119 + 0.981954i \(0.439437\pi\)
\(104\) 105.717 0.0996766
\(105\) 0 0
\(106\) 564.102 0.516891
\(107\) 1246.94 1.12660 0.563301 0.826252i \(-0.309531\pi\)
0.563301 + 0.826252i \(0.309531\pi\)
\(108\) 545.743 0.486242
\(109\) 437.697 0.384622 0.192311 0.981334i \(-0.438402\pi\)
0.192311 + 0.981334i \(0.438402\pi\)
\(110\) −132.501 −0.114850
\(111\) 2221.86 1.89991
\(112\) 0 0
\(113\) 1806.39 1.50381 0.751907 0.659269i \(-0.229134\pi\)
0.751907 + 0.659269i \(0.229134\pi\)
\(114\) −313.915 −0.257902
\(115\) 154.075 0.124935
\(116\) 958.803 0.767436
\(117\) 18.4588 0.0145856
\(118\) −786.318 −0.613445
\(119\) 0 0
\(120\) −285.581 −0.217249
\(121\) −1233.19 −0.926516
\(122\) −1876.27 −1.39237
\(123\) −1984.14 −1.45450
\(124\) 816.807 0.591544
\(125\) −1374.11 −0.983235
\(126\) 0 0
\(127\) −2481.90 −1.73412 −0.867059 0.498205i \(-0.833993\pi\)
−0.867059 + 0.498205i \(0.833993\pi\)
\(128\) 128.000 0.0883883
\(129\) 1951.36 1.33184
\(130\) 177.047 0.119446
\(131\) 1621.06 1.08117 0.540583 0.841291i \(-0.318204\pi\)
0.540583 + 0.841291i \(0.318204\pi\)
\(132\) 210.805 0.139001
\(133\) 0 0
\(134\) −849.060 −0.547370
\(135\) 913.973 0.582683
\(136\) −586.573 −0.369840
\(137\) −659.952 −0.411559 −0.205779 0.978598i \(-0.565973\pi\)
−0.205779 + 0.978598i \(0.565973\pi\)
\(138\) −245.128 −0.151208
\(139\) 605.899 0.369724 0.184862 0.982764i \(-0.440816\pi\)
0.184862 + 0.982764i \(0.440816\pi\)
\(140\) 0 0
\(141\) 1635.02 0.976552
\(142\) −777.360 −0.459399
\(143\) −130.689 −0.0764247
\(144\) 22.3496 0.0129338
\(145\) 1605.74 0.919649
\(146\) 1158.02 0.656425
\(147\) 0 0
\(148\) −1667.79 −0.926295
\(149\) −489.284 −0.269018 −0.134509 0.990912i \(-0.542946\pi\)
−0.134509 + 0.990912i \(0.542946\pi\)
\(150\) 853.946 0.464829
\(151\) −1947.38 −1.04950 −0.524752 0.851255i \(-0.675842\pi\)
−0.524752 + 0.851255i \(0.675842\pi\)
\(152\) 235.633 0.125739
\(153\) −102.419 −0.0541184
\(154\) 0 0
\(155\) 1367.93 0.708870
\(156\) −281.675 −0.144564
\(157\) −1991.79 −1.01250 −0.506249 0.862388i \(-0.668968\pi\)
−0.506249 + 0.862388i \(0.668968\pi\)
\(158\) −1892.79 −0.953050
\(159\) −1503.01 −0.749664
\(160\) 214.365 0.105919
\(161\) 0 0
\(162\) −1529.53 −0.741797
\(163\) 73.7887 0.0354575 0.0177288 0.999843i \(-0.494356\pi\)
0.0177288 + 0.999843i \(0.494356\pi\)
\(164\) 1489.35 0.709139
\(165\) 353.041 0.166571
\(166\) 2841.95 1.32879
\(167\) −1141.51 −0.528939 −0.264470 0.964394i \(-0.585197\pi\)
−0.264470 + 0.964394i \(0.585197\pi\)
\(168\) 0 0
\(169\) −2022.38 −0.920517
\(170\) −982.351 −0.443193
\(171\) 41.1431 0.0183994
\(172\) −1464.74 −0.649335
\(173\) −2772.24 −1.21832 −0.609160 0.793047i \(-0.708493\pi\)
−0.609160 + 0.793047i \(0.708493\pi\)
\(174\) −2554.67 −1.11304
\(175\) 0 0
\(176\) −158.236 −0.0677697
\(177\) 2095.09 0.889700
\(178\) 981.357 0.413235
\(179\) −2613.36 −1.09124 −0.545618 0.838034i \(-0.683705\pi\)
−0.545618 + 0.838034i \(0.683705\pi\)
\(180\) 37.4296 0.0154991
\(181\) −1272.00 −0.522361 −0.261180 0.965290i \(-0.584112\pi\)
−0.261180 + 0.965290i \(0.584112\pi\)
\(182\) 0 0
\(183\) 4999.20 2.01941
\(184\) 184.000 0.0737210
\(185\) −2793.10 −1.11002
\(186\) −2176.33 −0.857936
\(187\) 725.131 0.283566
\(188\) −1227.30 −0.476115
\(189\) 0 0
\(190\) 394.622 0.150678
\(191\) −2273.76 −0.861379 −0.430689 0.902500i \(-0.641730\pi\)
−0.430689 + 0.902500i \(0.641730\pi\)
\(192\) −341.048 −0.128193
\(193\) −3259.75 −1.21576 −0.607881 0.794028i \(-0.707980\pi\)
−0.607881 + 0.794028i \(0.707980\pi\)
\(194\) 2217.29 0.820579
\(195\) −471.729 −0.173237
\(196\) 0 0
\(197\) −5188.37 −1.87643 −0.938213 0.346058i \(-0.887520\pi\)
−0.938213 + 0.346058i \(0.887520\pi\)
\(198\) −27.6290 −0.00991670
\(199\) 1457.14 0.519064 0.259532 0.965734i \(-0.416432\pi\)
0.259532 + 0.965734i \(0.416432\pi\)
\(200\) −640.996 −0.226626
\(201\) 2262.26 0.793870
\(202\) −2277.67 −0.793349
\(203\) 0 0
\(204\) 1562.88 0.536391
\(205\) 2494.26 0.849789
\(206\) 790.770 0.267454
\(207\) 32.1276 0.0107875
\(208\) 211.433 0.0704820
\(209\) −291.294 −0.0964077
\(210\) 0 0
\(211\) 2010.75 0.656045 0.328022 0.944670i \(-0.393618\pi\)
0.328022 + 0.944670i \(0.393618\pi\)
\(212\) 1128.20 0.365497
\(213\) 2071.22 0.666282
\(214\) 2493.88 0.796628
\(215\) −2453.05 −0.778124
\(216\) 1091.49 0.343825
\(217\) 0 0
\(218\) 875.395 0.271969
\(219\) −3085.46 −0.952036
\(220\) −265.002 −0.0812111
\(221\) −968.913 −0.294915
\(222\) 4443.73 1.34344
\(223\) 721.559 0.216678 0.108339 0.994114i \(-0.465447\pi\)
0.108339 + 0.994114i \(0.465447\pi\)
\(224\) 0 0
\(225\) −111.922 −0.0331621
\(226\) 3612.78 1.06336
\(227\) −2335.33 −0.682825 −0.341412 0.939914i \(-0.610905\pi\)
−0.341412 + 0.939914i \(0.610905\pi\)
\(228\) −627.829 −0.182364
\(229\) −125.168 −0.0361195 −0.0180597 0.999837i \(-0.505749\pi\)
−0.0180597 + 0.999837i \(0.505749\pi\)
\(230\) 308.150 0.0883427
\(231\) 0 0
\(232\) 1917.61 0.542660
\(233\) 5045.95 1.41876 0.709381 0.704826i \(-0.248975\pi\)
0.709381 + 0.704826i \(0.248975\pi\)
\(234\) 36.9176 0.0103136
\(235\) −2055.39 −0.570548
\(236\) −1572.64 −0.433771
\(237\) 5043.20 1.38224
\(238\) 0 0
\(239\) −7111.97 −1.92483 −0.962416 0.271580i \(-0.912454\pi\)
−0.962416 + 0.271580i \(0.912454\pi\)
\(240\) −571.163 −0.153618
\(241\) −3865.74 −1.03325 −0.516627 0.856211i \(-0.672813\pi\)
−0.516627 + 0.856211i \(0.672813\pi\)
\(242\) −2466.39 −0.655146
\(243\) 391.559 0.103368
\(244\) −3752.54 −0.984557
\(245\) 0 0
\(246\) −3968.28 −1.02849
\(247\) 389.224 0.100266
\(248\) 1633.61 0.418285
\(249\) −7572.20 −1.92718
\(250\) −2748.22 −0.695252
\(251\) −4429.65 −1.11393 −0.556966 0.830535i \(-0.688035\pi\)
−0.556966 + 0.830535i \(0.688035\pi\)
\(252\) 0 0
\(253\) −227.464 −0.0565239
\(254\) −4963.80 −1.22621
\(255\) 2617.41 0.642779
\(256\) 256.000 0.0625000
\(257\) −7644.68 −1.85549 −0.927747 0.373209i \(-0.878258\pi\)
−0.927747 + 0.373209i \(0.878258\pi\)
\(258\) 3902.71 0.941754
\(259\) 0 0
\(260\) 354.093 0.0844613
\(261\) 334.826 0.0794070
\(262\) 3242.12 0.764500
\(263\) −4269.52 −1.00103 −0.500513 0.865729i \(-0.666855\pi\)
−0.500513 + 0.865729i \(0.666855\pi\)
\(264\) 421.609 0.0982888
\(265\) 1889.44 0.437989
\(266\) 0 0
\(267\) −2614.76 −0.599329
\(268\) −1698.12 −0.387049
\(269\) 4731.36 1.07240 0.536201 0.844090i \(-0.319859\pi\)
0.536201 + 0.844090i \(0.319859\pi\)
\(270\) 1827.95 0.412019
\(271\) −7314.45 −1.63956 −0.819781 0.572677i \(-0.805905\pi\)
−0.819781 + 0.572677i \(0.805905\pi\)
\(272\) −1173.15 −0.261516
\(273\) 0 0
\(274\) −1319.90 −0.291016
\(275\) 792.410 0.173760
\(276\) −490.256 −0.106920
\(277\) 2661.72 0.577355 0.288677 0.957426i \(-0.406785\pi\)
0.288677 + 0.957426i \(0.406785\pi\)
\(278\) 1211.80 0.261434
\(279\) 285.239 0.0612073
\(280\) 0 0
\(281\) 3721.81 0.790122 0.395061 0.918655i \(-0.370723\pi\)
0.395061 + 0.918655i \(0.370723\pi\)
\(282\) 3270.05 0.690527
\(283\) 1705.34 0.358204 0.179102 0.983830i \(-0.442681\pi\)
0.179102 + 0.983830i \(0.442681\pi\)
\(284\) −1554.72 −0.324844
\(285\) −1051.44 −0.218534
\(286\) −261.377 −0.0540404
\(287\) 0 0
\(288\) 44.6992 0.00914558
\(289\) 463.054 0.0942507
\(290\) 3211.47 0.650290
\(291\) −5907.83 −1.19011
\(292\) 2316.03 0.464162
\(293\) 5176.18 1.03207 0.516034 0.856568i \(-0.327408\pi\)
0.516034 + 0.856568i \(0.327408\pi\)
\(294\) 0 0
\(295\) −2633.74 −0.519805
\(296\) −3335.59 −0.654990
\(297\) −1349.31 −0.263620
\(298\) −978.569 −0.190225
\(299\) 303.935 0.0587860
\(300\) 1707.89 0.328684
\(301\) 0 0
\(302\) −3894.75 −0.742112
\(303\) 6068.71 1.15062
\(304\) 471.266 0.0889111
\(305\) −6284.49 −1.17983
\(306\) −204.839 −0.0382675
\(307\) −6788.05 −1.26194 −0.630968 0.775809i \(-0.717342\pi\)
−0.630968 + 0.775809i \(0.717342\pi\)
\(308\) 0 0
\(309\) −2106.96 −0.387898
\(310\) 2735.86 0.501247
\(311\) −2937.67 −0.535626 −0.267813 0.963471i \(-0.586301\pi\)
−0.267813 + 0.963471i \(0.586301\pi\)
\(312\) −563.350 −0.102222
\(313\) 10091.1 1.82231 0.911155 0.412063i \(-0.135192\pi\)
0.911155 + 0.412063i \(0.135192\pi\)
\(314\) −3983.58 −0.715944
\(315\) 0 0
\(316\) −3785.57 −0.673908
\(317\) 3426.21 0.607051 0.303525 0.952823i \(-0.401836\pi\)
0.303525 + 0.952823i \(0.401836\pi\)
\(318\) −3006.02 −0.530093
\(319\) −2370.58 −0.416072
\(320\) 428.731 0.0748962
\(321\) −6644.79 −1.15538
\(322\) 0 0
\(323\) −2159.62 −0.372027
\(324\) −3059.06 −0.524529
\(325\) −1058.81 −0.180715
\(326\) 147.577 0.0250722
\(327\) −2332.43 −0.394446
\(328\) 2978.70 0.501437
\(329\) 0 0
\(330\) 706.081 0.117783
\(331\) 1725.74 0.286571 0.143286 0.989681i \(-0.454233\pi\)
0.143286 + 0.989681i \(0.454233\pi\)
\(332\) 5683.91 0.939594
\(333\) −582.415 −0.0958442
\(334\) −2283.02 −0.374016
\(335\) −2843.89 −0.463816
\(336\) 0 0
\(337\) 11169.7 1.80549 0.902746 0.430174i \(-0.141548\pi\)
0.902746 + 0.430174i \(0.141548\pi\)
\(338\) −4044.75 −0.650904
\(339\) −9626.02 −1.54222
\(340\) −1964.70 −0.313385
\(341\) −2019.50 −0.320710
\(342\) 82.2861 0.0130103
\(343\) 0 0
\(344\) −2929.49 −0.459149
\(345\) −821.046 −0.128127
\(346\) −5544.48 −0.861482
\(347\) 4524.22 0.699921 0.349961 0.936764i \(-0.386195\pi\)
0.349961 + 0.936764i \(0.386195\pi\)
\(348\) −5109.34 −0.787038
\(349\) 875.472 0.134278 0.0671389 0.997744i \(-0.478613\pi\)
0.0671389 + 0.997744i \(0.478613\pi\)
\(350\) 0 0
\(351\) 1802.94 0.274171
\(352\) −316.472 −0.0479204
\(353\) 4107.69 0.619350 0.309675 0.950842i \(-0.399780\pi\)
0.309675 + 0.950842i \(0.399780\pi\)
\(354\) 4190.19 0.629113
\(355\) −2603.74 −0.389273
\(356\) 1962.71 0.292201
\(357\) 0 0
\(358\) −5226.71 −0.771621
\(359\) 5121.96 0.752999 0.376499 0.926417i \(-0.377128\pi\)
0.376499 + 0.926417i \(0.377128\pi\)
\(360\) 74.8592 0.0109595
\(361\) −5991.45 −0.873517
\(362\) −2544.01 −0.369365
\(363\) 6571.52 0.950181
\(364\) 0 0
\(365\) 3878.72 0.556224
\(366\) 9998.40 1.42794
\(367\) 4441.47 0.631724 0.315862 0.948805i \(-0.397706\pi\)
0.315862 + 0.948805i \(0.397706\pi\)
\(368\) 368.000 0.0521286
\(369\) 520.100 0.0733749
\(370\) −5586.20 −0.784900
\(371\) 0 0
\(372\) −4352.66 −0.606653
\(373\) 9168.19 1.27268 0.636342 0.771407i \(-0.280447\pi\)
0.636342 + 0.771407i \(0.280447\pi\)
\(374\) 1450.26 0.200511
\(375\) 7322.47 1.00835
\(376\) −2454.59 −0.336664
\(377\) 3167.54 0.432724
\(378\) 0 0
\(379\) −419.664 −0.0568778 −0.0284389 0.999596i \(-0.509054\pi\)
−0.0284389 + 0.999596i \(0.509054\pi\)
\(380\) 789.244 0.106546
\(381\) 13225.7 1.77841
\(382\) −4547.52 −0.609087
\(383\) −8635.25 −1.15206 −0.576032 0.817427i \(-0.695400\pi\)
−0.576032 + 0.817427i \(0.695400\pi\)
\(384\) −682.095 −0.0906459
\(385\) 0 0
\(386\) −6519.51 −0.859674
\(387\) −511.507 −0.0671870
\(388\) 4434.58 0.580237
\(389\) −6256.78 −0.815505 −0.407753 0.913092i \(-0.633687\pi\)
−0.407753 + 0.913092i \(0.633687\pi\)
\(390\) −943.459 −0.122497
\(391\) −1686.40 −0.218120
\(392\) 0 0
\(393\) −8638.42 −1.10878
\(394\) −10376.7 −1.32683
\(395\) −6339.81 −0.807571
\(396\) −55.2580 −0.00701217
\(397\) −5254.55 −0.664278 −0.332139 0.943230i \(-0.607770\pi\)
−0.332139 + 0.943230i \(0.607770\pi\)
\(398\) 2914.28 0.367034
\(399\) 0 0
\(400\) −1281.99 −0.160249
\(401\) −8738.31 −1.08821 −0.544103 0.839018i \(-0.683130\pi\)
−0.544103 + 0.839018i \(0.683130\pi\)
\(402\) 4524.53 0.561351
\(403\) 2698.44 0.333545
\(404\) −4555.34 −0.560982
\(405\) −5123.09 −0.628564
\(406\) 0 0
\(407\) 4123.51 0.502198
\(408\) 3125.77 0.379286
\(409\) 3467.93 0.419262 0.209631 0.977781i \(-0.432774\pi\)
0.209631 + 0.977781i \(0.432774\pi\)
\(410\) 4988.52 0.600891
\(411\) 3516.80 0.422070
\(412\) 1581.54 0.189119
\(413\) 0 0
\(414\) 64.2552 0.00762794
\(415\) 9519.01 1.12595
\(416\) 422.866 0.0498383
\(417\) −3228.75 −0.379167
\(418\) −582.588 −0.0681706
\(419\) −15477.9 −1.80465 −0.902323 0.431061i \(-0.858139\pi\)
−0.902323 + 0.431061i \(0.858139\pi\)
\(420\) 0 0
\(421\) −13191.0 −1.52705 −0.763527 0.645776i \(-0.776534\pi\)
−0.763527 + 0.645776i \(0.776534\pi\)
\(422\) 4021.49 0.463894
\(423\) −428.587 −0.0492639
\(424\) 2256.41 0.258445
\(425\) 5874.85 0.670523
\(426\) 4142.45 0.471132
\(427\) 0 0
\(428\) 4987.77 0.563301
\(429\) 696.423 0.0783767
\(430\) −4906.10 −0.550217
\(431\) −11868.8 −1.32645 −0.663226 0.748419i \(-0.730813\pi\)
−0.663226 + 0.748419i \(0.730813\pi\)
\(432\) 2182.97 0.243121
\(433\) −4665.32 −0.517785 −0.258893 0.965906i \(-0.583358\pi\)
−0.258893 + 0.965906i \(0.583358\pi\)
\(434\) 0 0
\(435\) −8556.76 −0.943138
\(436\) 1750.79 0.192311
\(437\) 677.445 0.0741570
\(438\) −6170.91 −0.673191
\(439\) −12477.6 −1.35654 −0.678270 0.734812i \(-0.737270\pi\)
−0.678270 + 0.734812i \(0.737270\pi\)
\(440\) −530.005 −0.0574249
\(441\) 0 0
\(442\) −1937.83 −0.208536
\(443\) −2021.34 −0.216788 −0.108394 0.994108i \(-0.534571\pi\)
−0.108394 + 0.994108i \(0.534571\pi\)
\(444\) 8887.45 0.949954
\(445\) 3287.01 0.350156
\(446\) 1443.12 0.153214
\(447\) 2607.33 0.275889
\(448\) 0 0
\(449\) 4370.38 0.459356 0.229678 0.973267i \(-0.426233\pi\)
0.229678 + 0.973267i \(0.426233\pi\)
\(450\) −223.844 −0.0234491
\(451\) −3682.32 −0.384465
\(452\) 7225.56 0.751907
\(453\) 10377.3 1.07631
\(454\) −4670.66 −0.482830
\(455\) 0 0
\(456\) −1255.66 −0.128951
\(457\) 5733.14 0.586838 0.293419 0.955984i \(-0.405207\pi\)
0.293419 + 0.955984i \(0.405207\pi\)
\(458\) −250.337 −0.0255403
\(459\) −10003.7 −1.01728
\(460\) 616.301 0.0624677
\(461\) 3614.55 0.365177 0.182588 0.983189i \(-0.441552\pi\)
0.182588 + 0.983189i \(0.441552\pi\)
\(462\) 0 0
\(463\) −9279.48 −0.931434 −0.465717 0.884934i \(-0.654204\pi\)
−0.465717 + 0.884934i \(0.654204\pi\)
\(464\) 3835.21 0.383718
\(465\) −7289.52 −0.726975
\(466\) 10091.9 1.00322
\(467\) −7961.64 −0.788909 −0.394455 0.918915i \(-0.629066\pi\)
−0.394455 + 0.918915i \(0.629066\pi\)
\(468\) 73.8352 0.00729280
\(469\) 0 0
\(470\) −4110.78 −0.403438
\(471\) 10614.0 1.03836
\(472\) −3145.27 −0.306722
\(473\) 3621.48 0.352042
\(474\) 10086.4 0.977393
\(475\) −2360.00 −0.227967
\(476\) 0 0
\(477\) 393.983 0.0378181
\(478\) −14223.9 −1.36106
\(479\) −10120.4 −0.965368 −0.482684 0.875795i \(-0.660338\pi\)
−0.482684 + 0.875795i \(0.660338\pi\)
\(480\) −1142.33 −0.108625
\(481\) −5509.79 −0.522297
\(482\) −7731.48 −0.730621
\(483\) 0 0
\(484\) −4932.77 −0.463258
\(485\) 7426.73 0.695321
\(486\) 783.118 0.0730925
\(487\) −14066.3 −1.30884 −0.654419 0.756132i \(-0.727087\pi\)
−0.654419 + 0.756132i \(0.727087\pi\)
\(488\) −7505.08 −0.696187
\(489\) −393.210 −0.0363631
\(490\) 0 0
\(491\) −2489.53 −0.228821 −0.114410 0.993434i \(-0.536498\pi\)
−0.114410 + 0.993434i \(0.536498\pi\)
\(492\) −7936.56 −0.727251
\(493\) −17575.2 −1.60558
\(494\) 778.448 0.0708988
\(495\) −92.5422 −0.00840295
\(496\) 3267.23 0.295772
\(497\) 0 0
\(498\) −15144.4 −1.36273
\(499\) 19174.5 1.72018 0.860089 0.510144i \(-0.170408\pi\)
0.860089 + 0.510144i \(0.170408\pi\)
\(500\) −5496.45 −0.491617
\(501\) 6082.97 0.542449
\(502\) −8859.30 −0.787669
\(503\) −648.963 −0.0575265 −0.0287633 0.999586i \(-0.509157\pi\)
−0.0287633 + 0.999586i \(0.509157\pi\)
\(504\) 0 0
\(505\) −7628.97 −0.672247
\(506\) −454.928 −0.0399684
\(507\) 10777.0 0.944028
\(508\) −9927.60 −0.867059
\(509\) 19322.6 1.68263 0.841314 0.540547i \(-0.181783\pi\)
0.841314 + 0.540547i \(0.181783\pi\)
\(510\) 5234.82 0.454513
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 4018.60 0.345859
\(514\) −15289.4 −1.31203
\(515\) 2648.65 0.226628
\(516\) 7805.43 0.665920
\(517\) 3034.41 0.258130
\(518\) 0 0
\(519\) 14772.9 1.24944
\(520\) 708.187 0.0597232
\(521\) 1453.09 0.122190 0.0610949 0.998132i \(-0.480541\pi\)
0.0610949 + 0.998132i \(0.480541\pi\)
\(522\) 669.653 0.0561492
\(523\) −18332.1 −1.53271 −0.766356 0.642416i \(-0.777932\pi\)
−0.766356 + 0.642416i \(0.777932\pi\)
\(524\) 6484.24 0.540583
\(525\) 0 0
\(526\) −8539.04 −0.707832
\(527\) −14972.4 −1.23759
\(528\) 843.218 0.0695007
\(529\) 529.000 0.0434783
\(530\) 3778.87 0.309705
\(531\) −549.185 −0.0448825
\(532\) 0 0
\(533\) 4920.28 0.399852
\(534\) −5229.52 −0.423789
\(535\) 8353.17 0.675026
\(536\) −3396.24 −0.273685
\(537\) 13926.2 1.11911
\(538\) 9462.72 0.758302
\(539\) 0 0
\(540\) 3655.89 0.291342
\(541\) 8385.46 0.666394 0.333197 0.942857i \(-0.391873\pi\)
0.333197 + 0.942857i \(0.391873\pi\)
\(542\) −14628.9 −1.15935
\(543\) 6778.34 0.535703
\(544\) −2346.29 −0.184920
\(545\) 2932.10 0.230454
\(546\) 0 0
\(547\) −3200.32 −0.250157 −0.125079 0.992147i \(-0.539918\pi\)
−0.125079 + 0.992147i \(0.539918\pi\)
\(548\) −2639.81 −0.205779
\(549\) −1310.44 −0.101873
\(550\) 1584.82 0.122867
\(551\) 7060.18 0.545869
\(552\) −980.512 −0.0756039
\(553\) 0 0
\(554\) 5323.44 0.408251
\(555\) 14884.1 1.13837
\(556\) 2423.59 0.184862
\(557\) 12067.9 0.918011 0.459005 0.888433i \(-0.348206\pi\)
0.459005 + 0.888433i \(0.348206\pi\)
\(558\) 570.479 0.0432801
\(559\) −4838.99 −0.366132
\(560\) 0 0
\(561\) −3864.13 −0.290809
\(562\) 7443.61 0.558701
\(563\) 14391.3 1.07730 0.538651 0.842529i \(-0.318934\pi\)
0.538651 + 0.842529i \(0.318934\pi\)
\(564\) 6540.10 0.488276
\(565\) 12100.9 0.901039
\(566\) 3410.68 0.253289
\(567\) 0 0
\(568\) −3109.44 −0.229699
\(569\) 10147.2 0.747613 0.373806 0.927507i \(-0.378052\pi\)
0.373806 + 0.927507i \(0.378052\pi\)
\(570\) −2102.89 −0.154527
\(571\) 11056.1 0.810300 0.405150 0.914250i \(-0.367219\pi\)
0.405150 + 0.914250i \(0.367219\pi\)
\(572\) −522.755 −0.0382124
\(573\) 12116.6 0.883380
\(574\) 0 0
\(575\) −1842.86 −0.133657
\(576\) 89.3985 0.00646690
\(577\) −11079.2 −0.799366 −0.399683 0.916653i \(-0.630880\pi\)
−0.399683 + 0.916653i \(0.630880\pi\)
\(578\) 926.107 0.0666453
\(579\) 17370.8 1.24681
\(580\) 6422.94 0.459825
\(581\) 0 0
\(582\) −11815.7 −0.841538
\(583\) −2789.41 −0.198157
\(584\) 4632.06 0.328212
\(585\) 123.654 0.00873925
\(586\) 10352.4 0.729782
\(587\) 18879.1 1.32747 0.663733 0.747970i \(-0.268971\pi\)
0.663733 + 0.747970i \(0.268971\pi\)
\(588\) 0 0
\(589\) 6014.59 0.420758
\(590\) −5267.48 −0.367557
\(591\) 27648.1 1.92435
\(592\) −6671.17 −0.463148
\(593\) −10355.3 −0.717098 −0.358549 0.933511i \(-0.616728\pi\)
−0.358549 + 0.933511i \(0.616728\pi\)
\(594\) −2698.63 −0.186408
\(595\) 0 0
\(596\) −1957.14 −0.134509
\(597\) −7764.90 −0.532322
\(598\) 607.870 0.0415680
\(599\) −20615.2 −1.40620 −0.703099 0.711092i \(-0.748201\pi\)
−0.703099 + 0.711092i \(0.748201\pi\)
\(600\) 3415.78 0.232415
\(601\) −27765.0 −1.88445 −0.942227 0.334974i \(-0.891272\pi\)
−0.942227 + 0.334974i \(0.891272\pi\)
\(602\) 0 0
\(603\) −593.005 −0.0400482
\(604\) −7789.50 −0.524752
\(605\) −8261.06 −0.555140
\(606\) 12137.4 0.813612
\(607\) 27363.1 1.82971 0.914854 0.403784i \(-0.132305\pi\)
0.914854 + 0.403784i \(0.132305\pi\)
\(608\) 942.533 0.0628697
\(609\) 0 0
\(610\) −12569.0 −0.834268
\(611\) −4054.55 −0.268460
\(612\) −409.677 −0.0270592
\(613\) −11183.1 −0.736834 −0.368417 0.929661i \(-0.620100\pi\)
−0.368417 + 0.929661i \(0.620100\pi\)
\(614\) −13576.1 −0.892324
\(615\) −13291.6 −0.871494
\(616\) 0 0
\(617\) 22190.9 1.44793 0.723963 0.689839i \(-0.242319\pi\)
0.723963 + 0.689839i \(0.242319\pi\)
\(618\) −4213.91 −0.274285
\(619\) −3415.66 −0.221788 −0.110894 0.993832i \(-0.535371\pi\)
−0.110894 + 0.993832i \(0.535371\pi\)
\(620\) 5471.72 0.354435
\(621\) 3138.02 0.202777
\(622\) −5875.33 −0.378745
\(623\) 0 0
\(624\) −1126.70 −0.0722822
\(625\) 810.494 0.0518716
\(626\) 20182.2 1.28857
\(627\) 1552.27 0.0988701
\(628\) −7967.16 −0.506249
\(629\) 30571.3 1.93793
\(630\) 0 0
\(631\) 18787.6 1.18530 0.592648 0.805461i \(-0.298082\pi\)
0.592648 + 0.805461i \(0.298082\pi\)
\(632\) −7571.14 −0.476525
\(633\) −10715.0 −0.672801
\(634\) 6852.42 0.429250
\(635\) −16626.1 −1.03903
\(636\) −6012.05 −0.374832
\(637\) 0 0
\(638\) −4741.16 −0.294207
\(639\) −542.928 −0.0336117
\(640\) 857.462 0.0529596
\(641\) 23874.5 1.47112 0.735558 0.677461i \(-0.236920\pi\)
0.735558 + 0.677461i \(0.236920\pi\)
\(642\) −13289.6 −0.816975
\(643\) 9322.40 0.571757 0.285878 0.958266i \(-0.407715\pi\)
0.285878 + 0.958266i \(0.407715\pi\)
\(644\) 0 0
\(645\) 13072.0 0.797998
\(646\) −4319.25 −0.263063
\(647\) −12616.8 −0.766642 −0.383321 0.923615i \(-0.625220\pi\)
−0.383321 + 0.923615i \(0.625220\pi\)
\(648\) −6118.11 −0.370898
\(649\) 3888.24 0.235172
\(650\) −2117.62 −0.127785
\(651\) 0 0
\(652\) 295.155 0.0177288
\(653\) −7286.61 −0.436672 −0.218336 0.975874i \(-0.570063\pi\)
−0.218336 + 0.975874i \(0.570063\pi\)
\(654\) −4664.86 −0.278915
\(655\) 10859.4 0.647802
\(656\) 5957.40 0.354569
\(657\) 808.787 0.0480271
\(658\) 0 0
\(659\) −12927.3 −0.764150 −0.382075 0.924131i \(-0.624790\pi\)
−0.382075 + 0.924131i \(0.624790\pi\)
\(660\) 1412.16 0.0832854
\(661\) −2743.70 −0.161449 −0.0807244 0.996736i \(-0.525723\pi\)
−0.0807244 + 0.996736i \(0.525723\pi\)
\(662\) 3451.48 0.202637
\(663\) 5163.21 0.302447
\(664\) 11367.8 0.664393
\(665\) 0 0
\(666\) −1164.83 −0.0677721
\(667\) 5513.12 0.320043
\(668\) −4566.05 −0.264470
\(669\) −3845.09 −0.222212
\(670\) −5687.78 −0.327968
\(671\) 9277.92 0.533785
\(672\) 0 0
\(673\) −29779.0 −1.70564 −0.852820 0.522205i \(-0.825110\pi\)
−0.852820 + 0.522205i \(0.825110\pi\)
\(674\) 22339.3 1.27668
\(675\) −10931.9 −0.623359
\(676\) −8089.50 −0.460258
\(677\) 22937.6 1.30216 0.651081 0.759008i \(-0.274316\pi\)
0.651081 + 0.759008i \(0.274316\pi\)
\(678\) −19252.0 −1.09052
\(679\) 0 0
\(680\) −3929.40 −0.221597
\(681\) 12444.7 0.700265
\(682\) −4039.00 −0.226776
\(683\) −2224.80 −0.124640 −0.0623202 0.998056i \(-0.519850\pi\)
−0.0623202 + 0.998056i \(0.519850\pi\)
\(684\) 164.572 0.00919968
\(685\) −4420.97 −0.246593
\(686\) 0 0
\(687\) 667.006 0.0370420
\(688\) −5858.98 −0.324668
\(689\) 3727.18 0.206087
\(690\) −1642.09 −0.0905991
\(691\) 25465.8 1.40198 0.700988 0.713173i \(-0.252742\pi\)
0.700988 + 0.713173i \(0.252742\pi\)
\(692\) −11089.0 −0.609160
\(693\) 0 0
\(694\) 9048.43 0.494919
\(695\) 4058.87 0.221527
\(696\) −10218.7 −0.556520
\(697\) −27300.4 −1.48361
\(698\) 1750.94 0.0949487
\(699\) −26889.2 −1.45500
\(700\) 0 0
\(701\) −16844.7 −0.907581 −0.453791 0.891108i \(-0.649929\pi\)
−0.453791 + 0.891108i \(0.649929\pi\)
\(702\) 3605.88 0.193868
\(703\) −12280.9 −0.658864
\(704\) −632.943 −0.0338849
\(705\) 10952.9 0.585120
\(706\) 8215.39 0.437946
\(707\) 0 0
\(708\) 8380.38 0.444850
\(709\) 6076.32 0.321863 0.160932 0.986966i \(-0.448550\pi\)
0.160932 + 0.986966i \(0.448550\pi\)
\(710\) −5207.47 −0.275258
\(711\) −1321.97 −0.0697296
\(712\) 3925.43 0.206617
\(713\) 4696.64 0.246691
\(714\) 0 0
\(715\) −875.473 −0.0457914
\(716\) −10453.4 −0.545618
\(717\) 37898.7 1.97399
\(718\) 10243.9 0.532450
\(719\) −23769.1 −1.23288 −0.616438 0.787403i \(-0.711425\pi\)
−0.616438 + 0.787403i \(0.711425\pi\)
\(720\) 149.718 0.00774954
\(721\) 0 0
\(722\) −11982.9 −0.617670
\(723\) 20600.0 1.05964
\(724\) −5088.02 −0.261180
\(725\) −19205.9 −0.983847
\(726\) 13143.0 0.671879
\(727\) 15689.1 0.800381 0.400190 0.916432i \(-0.368944\pi\)
0.400190 + 0.916432i \(0.368944\pi\)
\(728\) 0 0
\(729\) 18562.1 0.943050
\(730\) 7757.45 0.393310
\(731\) 26849.3 1.35849
\(732\) 19996.8 1.00970
\(733\) 10814.2 0.544928 0.272464 0.962166i \(-0.412161\pi\)
0.272464 + 0.962166i \(0.412161\pi\)
\(734\) 8882.94 0.446697
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 4198.49 0.209842
\(738\) 1040.20 0.0518839
\(739\) 223.806 0.0111405 0.00557024 0.999984i \(-0.498227\pi\)
0.00557024 + 0.999984i \(0.498227\pi\)
\(740\) −11172.4 −0.555008
\(741\) −2074.12 −0.102827
\(742\) 0 0
\(743\) 14170.6 0.699688 0.349844 0.936808i \(-0.386235\pi\)
0.349844 + 0.936808i \(0.386235\pi\)
\(744\) −8705.31 −0.428968
\(745\) −3277.68 −0.161188
\(746\) 18336.4 0.899923
\(747\) 1984.89 0.0972202
\(748\) 2900.53 0.141783
\(749\) 0 0
\(750\) 14644.9 0.713010
\(751\) 5964.24 0.289798 0.144899 0.989446i \(-0.453714\pi\)
0.144899 + 0.989446i \(0.453714\pi\)
\(752\) −4909.18 −0.238058
\(753\) 23605.0 1.14238
\(754\) 6335.09 0.305982
\(755\) −13045.3 −0.628831
\(756\) 0 0
\(757\) 25138.8 1.20698 0.603490 0.797370i \(-0.293776\pi\)
0.603490 + 0.797370i \(0.293776\pi\)
\(758\) −839.328 −0.0402187
\(759\) 1212.13 0.0579676
\(760\) 1578.49 0.0753392
\(761\) 34711.2 1.65346 0.826728 0.562601i \(-0.190199\pi\)
0.826728 + 0.562601i \(0.190199\pi\)
\(762\) 26451.5 1.25753
\(763\) 0 0
\(764\) −9095.03 −0.430689
\(765\) −686.099 −0.0324261
\(766\) −17270.5 −0.814632
\(767\) −5195.43 −0.244584
\(768\) −1364.19 −0.0640963
\(769\) 36718.2 1.72184 0.860918 0.508744i \(-0.169890\pi\)
0.860918 + 0.508744i \(0.169890\pi\)
\(770\) 0 0
\(771\) 40737.5 1.90289
\(772\) −13039.0 −0.607881
\(773\) 25383.2 1.18107 0.590536 0.807011i \(-0.298916\pi\)
0.590536 + 0.807011i \(0.298916\pi\)
\(774\) −1023.01 −0.0475084
\(775\) −16361.6 −0.758354
\(776\) 8869.17 0.410289
\(777\) 0 0
\(778\) −12513.6 −0.576649
\(779\) 10966.9 0.504403
\(780\) −1886.92 −0.0866186
\(781\) 3843.94 0.176117
\(782\) −3372.79 −0.154234
\(783\) 32703.8 1.49264
\(784\) 0 0
\(785\) −13342.8 −0.606658
\(786\) −17276.8 −0.784026
\(787\) 29565.1 1.33911 0.669557 0.742761i \(-0.266484\pi\)
0.669557 + 0.742761i \(0.266484\pi\)
\(788\) −20753.5 −0.938213
\(789\) 22751.7 1.02659
\(790\) −12679.6 −0.571039
\(791\) 0 0
\(792\) −110.516 −0.00495835
\(793\) −12397.1 −0.555148
\(794\) −10509.1 −0.469715
\(795\) −10068.6 −0.449176
\(796\) 5828.55 0.259532
\(797\) 28774.6 1.27886 0.639428 0.768851i \(-0.279171\pi\)
0.639428 + 0.768851i \(0.279171\pi\)
\(798\) 0 0
\(799\) 22496.8 0.996095
\(800\) −2563.98 −0.113313
\(801\) 685.405 0.0302342
\(802\) −17476.6 −0.769478
\(803\) −5726.23 −0.251649
\(804\) 9049.06 0.396935
\(805\) 0 0
\(806\) 5396.88 0.235852
\(807\) −25212.8 −1.09979
\(808\) −9110.69 −0.396674
\(809\) 21598.9 0.938660 0.469330 0.883023i \(-0.344495\pi\)
0.469330 + 0.883023i \(0.344495\pi\)
\(810\) −10246.2 −0.444462
\(811\) 5808.33 0.251490 0.125745 0.992063i \(-0.459868\pi\)
0.125745 + 0.992063i \(0.459868\pi\)
\(812\) 0 0
\(813\) 38977.8 1.68144
\(814\) 8247.02 0.355108
\(815\) 494.304 0.0212451
\(816\) 6251.54 0.268196
\(817\) −10785.7 −0.461865
\(818\) 6935.86 0.296463
\(819\) 0 0
\(820\) 9977.04 0.424894
\(821\) −8886.00 −0.377739 −0.188869 0.982002i \(-0.560482\pi\)
−0.188869 + 0.982002i \(0.560482\pi\)
\(822\) 7033.60 0.298449
\(823\) 34957.8 1.48062 0.740312 0.672264i \(-0.234678\pi\)
0.740312 + 0.672264i \(0.234678\pi\)
\(824\) 3163.08 0.133727
\(825\) −4222.65 −0.178199
\(826\) 0 0
\(827\) 18908.6 0.795062 0.397531 0.917589i \(-0.369867\pi\)
0.397531 + 0.917589i \(0.369867\pi\)
\(828\) 128.510 0.00539377
\(829\) −6825.53 −0.285960 −0.142980 0.989726i \(-0.545668\pi\)
−0.142980 + 0.989726i \(0.545668\pi\)
\(830\) 19038.0 0.796168
\(831\) −14184.0 −0.592101
\(832\) 845.733 0.0352410
\(833\) 0 0
\(834\) −6457.51 −0.268112
\(835\) −7646.89 −0.316924
\(836\) −1165.18 −0.0482039
\(837\) 27860.4 1.15053
\(838\) −30955.9 −1.27608
\(839\) −47053.9 −1.93621 −0.968106 0.250543i \(-0.919391\pi\)
−0.968106 + 0.250543i \(0.919391\pi\)
\(840\) 0 0
\(841\) 33067.5 1.35583
\(842\) −26382.0 −1.07979
\(843\) −19833.0 −0.810303
\(844\) 8042.98 0.328022
\(845\) −13547.7 −0.551546
\(846\) −857.175 −0.0348348
\(847\) 0 0
\(848\) 4512.81 0.182748
\(849\) −9087.53 −0.367354
\(850\) 11749.7 0.474131
\(851\) −9589.81 −0.386292
\(852\) 8284.90 0.333141
\(853\) −24509.5 −0.983810 −0.491905 0.870649i \(-0.663699\pi\)
−0.491905 + 0.870649i \(0.663699\pi\)
\(854\) 0 0
\(855\) 275.614 0.0110243
\(856\) 9975.54 0.398314
\(857\) −4904.91 −0.195506 −0.0977529 0.995211i \(-0.531165\pi\)
−0.0977529 + 0.995211i \(0.531165\pi\)
\(858\) 1392.85 0.0554207
\(859\) −41550.9 −1.65040 −0.825202 0.564838i \(-0.808939\pi\)
−0.825202 + 0.564838i \(0.808939\pi\)
\(860\) −9812.20 −0.389062
\(861\) 0 0
\(862\) −23737.6 −0.937944
\(863\) −4023.40 −0.158700 −0.0793501 0.996847i \(-0.525284\pi\)
−0.0793501 + 0.996847i \(0.525284\pi\)
\(864\) 4365.95 0.171913
\(865\) −18571.0 −0.729980
\(866\) −9330.64 −0.366129
\(867\) −2467.55 −0.0966580
\(868\) 0 0
\(869\) 9359.58 0.365365
\(870\) −17113.5 −0.666899
\(871\) −5609.98 −0.218240
\(872\) 3501.58 0.135984
\(873\) 1548.61 0.0600374
\(874\) 1354.89 0.0524369
\(875\) 0 0
\(876\) −12341.8 −0.476018
\(877\) −19824.6 −0.763317 −0.381659 0.924303i \(-0.624647\pi\)
−0.381659 + 0.924303i \(0.624647\pi\)
\(878\) −24955.1 −0.959219
\(879\) −27583.2 −1.05843
\(880\) −1060.01 −0.0406056
\(881\) 25971.7 0.993200 0.496600 0.867979i \(-0.334582\pi\)
0.496600 + 0.867979i \(0.334582\pi\)
\(882\) 0 0
\(883\) 33396.8 1.27281 0.636405 0.771355i \(-0.280421\pi\)
0.636405 + 0.771355i \(0.280421\pi\)
\(884\) −3875.65 −0.147457
\(885\) 14034.9 0.533081
\(886\) −4042.69 −0.153292
\(887\) 760.454 0.0287864 0.0143932 0.999896i \(-0.495418\pi\)
0.0143932 + 0.999896i \(0.495418\pi\)
\(888\) 17774.9 0.671719
\(889\) 0 0
\(890\) 6574.03 0.247598
\(891\) 7563.31 0.284378
\(892\) 2886.24 0.108339
\(893\) −9037.23 −0.338656
\(894\) 5214.66 0.195083
\(895\) −17506.7 −0.653836
\(896\) 0 0
\(897\) −1619.63 −0.0602875
\(898\) 8740.75 0.324814
\(899\) 48947.3 1.81589
\(900\) −447.688 −0.0165810
\(901\) −20680.4 −0.764666
\(902\) −7364.65 −0.271858
\(903\) 0 0
\(904\) 14451.1 0.531678
\(905\) −8521.05 −0.312983
\(906\) 20754.6 0.761067
\(907\) −11224.2 −0.410908 −0.205454 0.978667i \(-0.565867\pi\)
−0.205454 + 0.978667i \(0.565867\pi\)
\(908\) −9341.31 −0.341412
\(909\) −1590.78 −0.0580451
\(910\) 0 0
\(911\) 12752.3 0.463778 0.231889 0.972742i \(-0.425509\pi\)
0.231889 + 0.972742i \(0.425509\pi\)
\(912\) −2511.32 −0.0911820
\(913\) −14053.1 −0.509408
\(914\) 11466.3 0.414957
\(915\) 33489.3 1.20997
\(916\) −500.673 −0.0180597
\(917\) 0 0
\(918\) −20007.4 −0.719327
\(919\) 3343.46 0.120012 0.0600058 0.998198i \(-0.480888\pi\)
0.0600058 + 0.998198i \(0.480888\pi\)
\(920\) 1232.60 0.0441714
\(921\) 36172.6 1.29417
\(922\) 7229.10 0.258219
\(923\) −5136.24 −0.183165
\(924\) 0 0
\(925\) 33407.8 1.18750
\(926\) −18559.0 −0.658623
\(927\) 552.294 0.0195682
\(928\) 7670.42 0.271330
\(929\) −18180.7 −0.642078 −0.321039 0.947066i \(-0.604032\pi\)
−0.321039 + 0.947066i \(0.604032\pi\)
\(930\) −14579.0 −0.514049
\(931\) 0 0
\(932\) 20183.8 0.709381
\(933\) 15654.4 0.549307
\(934\) −15923.3 −0.557843
\(935\) 4857.60 0.169904
\(936\) 147.670 0.00515679
\(937\) 4103.46 0.143067 0.0715336 0.997438i \(-0.477211\pi\)
0.0715336 + 0.997438i \(0.477211\pi\)
\(938\) 0 0
\(939\) −53774.2 −1.86886
\(940\) −8221.55 −0.285274
\(941\) −12273.6 −0.425194 −0.212597 0.977140i \(-0.568192\pi\)
−0.212597 + 0.977140i \(0.568192\pi\)
\(942\) 21228.0 0.734230
\(943\) 8563.77 0.295731
\(944\) −6290.55 −0.216885
\(945\) 0 0
\(946\) 7242.97 0.248932
\(947\) −24222.4 −0.831176 −0.415588 0.909553i \(-0.636424\pi\)
−0.415588 + 0.909553i \(0.636424\pi\)
\(948\) 20172.8 0.691121
\(949\) 7651.34 0.261721
\(950\) −4720.00 −0.161197
\(951\) −18257.8 −0.622556
\(952\) 0 0
\(953\) 32057.0 1.08964 0.544821 0.838552i \(-0.316597\pi\)
0.544821 + 0.838552i \(0.316597\pi\)
\(954\) 787.966 0.0267415
\(955\) −15231.7 −0.516112
\(956\) −28447.9 −0.962416
\(957\) 12632.5 0.426699
\(958\) −20240.7 −0.682618
\(959\) 0 0
\(960\) −2284.65 −0.0768091
\(961\) 11907.3 0.399696
\(962\) −11019.6 −0.369320
\(963\) 1741.79 0.0582850
\(964\) −15463.0 −0.516627
\(965\) −21836.8 −0.728448
\(966\) 0 0
\(967\) −7061.63 −0.234836 −0.117418 0.993083i \(-0.537462\pi\)
−0.117418 + 0.993083i \(0.537462\pi\)
\(968\) −9865.54 −0.327573
\(969\) 11508.4 0.381529
\(970\) 14853.5 0.491666
\(971\) −22006.0 −0.727298 −0.363649 0.931536i \(-0.618469\pi\)
−0.363649 + 0.931536i \(0.618469\pi\)
\(972\) 1566.24 0.0516842
\(973\) 0 0
\(974\) −28132.6 −0.925489
\(975\) 5642.26 0.185330
\(976\) −15010.2 −0.492278
\(977\) 14370.1 0.470562 0.235281 0.971927i \(-0.424399\pi\)
0.235281 + 0.971927i \(0.424399\pi\)
\(978\) −786.420 −0.0257126
\(979\) −4852.68 −0.158419
\(980\) 0 0
\(981\) 611.398 0.0198985
\(982\) −4979.06 −0.161801
\(983\) −23459.4 −0.761180 −0.380590 0.924744i \(-0.624279\pi\)
−0.380590 + 0.924744i \(0.624279\pi\)
\(984\) −15873.1 −0.514244
\(985\) −34756.5 −1.12430
\(986\) −35150.5 −1.13531
\(987\) 0 0
\(988\) 1556.90 0.0501331
\(989\) −8422.28 −0.270792
\(990\) −185.084 −0.00594179
\(991\) −18287.2 −0.586189 −0.293094 0.956084i \(-0.594685\pi\)
−0.293094 + 0.956084i \(0.594685\pi\)
\(992\) 6534.45 0.209142
\(993\) −9196.24 −0.293891
\(994\) 0 0
\(995\) 9761.25 0.311008
\(996\) −30288.8 −0.963592
\(997\) 38741.1 1.23063 0.615317 0.788280i \(-0.289028\pi\)
0.615317 + 0.788280i \(0.289028\pi\)
\(998\) 38349.0 1.21635
\(999\) −56886.7 −1.80162
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.n.1.1 6
7.6 odd 2 inner 2254.4.a.n.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2254.4.a.n.1.1 6 1.1 even 1 trivial
2254.4.a.n.1.6 yes 6 7.6 odd 2 inner