Properties

Label 2254.4.a.n
Level $2254$
Weight $4$
Character orbit 2254.a
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 38x^{4} + 203x^{2} - 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + \beta_{5} q^{3} + 4 q^{4} - \beta_{3} q^{5} + 2 \beta_{5} q^{6} + 8 q^{8} + (\beta_{4} - 9) q^{9} - 2 \beta_{3} q^{10} + ( - \beta_{2} - 14) q^{11} + 4 \beta_{5} q^{12} + ( - 3 \beta_{5} + 3 \beta_{3} - 4 \beta_1) q^{13}+ \cdots + ( - 6 \beta_{4} + 13 \beta_{2} + 102) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} + 24 q^{4} + 48 q^{8} - 52 q^{9} - 84 q^{11} + 52 q^{15} + 96 q^{16} - 104 q^{18} - 168 q^{22} + 138 q^{23} - 286 q^{25} - 22 q^{29} + 104 q^{30} + 192 q^{32} - 208 q^{36} - 180 q^{37} - 414 q^{39}+ \cdots + 600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 38x^{4} + 203x^{2} - 100 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} - 18\nu^{3} - 517\nu ) / 90 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{4} - 54\nu^{2} - 8 ) / 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{5} + 81\nu^{3} - 451\nu ) / 45 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 36\nu^{2} + 113 ) / 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 36\nu^{3} - 149\nu ) / 18 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} + \beta_{3} - \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{4} + \beta_{2} + 26 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -33\beta_{5} + 37\beta_{3} - 17\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -27\beta_{4} + 18\beta_{2} + 355 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -1111\beta_{5} + 1183\beta_{3} - 463\beta_1 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.740283
5.62980
−2.39944
2.39944
−5.62980
−0.740283
2.00000 −5.32887 4.00000 6.69892 −10.6577 0 8.00000 1.39685 13.3978
1.2 2.00000 −3.92350 4.00000 −13.4068 −7.84699 0 8.00000 −11.6062 −26.8137
1.3 2.00000 −3.34803 4.00000 −2.71681 −6.69606 0 8.00000 −15.7907 −5.43361
1.4 2.00000 3.34803 4.00000 2.71681 6.69606 0 8.00000 −15.7907 5.43361
1.5 2.00000 3.92350 4.00000 13.4068 7.84699 0 8.00000 −11.6062 26.8137
1.6 2.00000 5.32887 4.00000 −6.69892 10.6577 0 8.00000 1.39685 −13.3978
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2254.4.a.n 6
7.b odd 2 1 inner 2254.4.a.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2254.4.a.n 6 1.a even 1 1 trivial
2254.4.a.n 6 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 55T_{3}^{4} + 928T_{3}^{2} - 4900 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2254))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 55 T^{4} + \cdots - 4900 \) Copy content Toggle raw display
$5$ \( T^{6} - 232 T^{4} + \cdots - 59536 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( (T^{3} + 42 T^{2} + \cdots - 6424)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 1826365696 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 167032420416 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 13946665216 \) Copy content Toggle raw display
$23$ \( (T - 23)^{6} \) Copy content Toggle raw display
$29$ \( (T^{3} + 11 T^{2} + \cdots - 729928)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 1234556543236 \) Copy content Toggle raw display
$37$ \( (T^{3} + 90 T^{2} + \cdots + 6509592)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 30316916966400 \) Copy content Toggle raw display
$43$ \( (T^{3} + 300 T^{2} + \cdots - 5836864)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 423968113716196 \) Copy content Toggle raw display
$53$ \( (T^{3} + 438 T^{2} + \cdots + 10077416)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 10\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 135511297828624 \) Copy content Toggle raw display
$67$ \( (T^{3} + 46 T^{2} + \cdots - 309969128)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} + 717 T^{2} + \cdots - 85056944)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 12\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( (T^{3} + 1410 T^{2} + \cdots - 1011139928)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 49182056792064 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 52\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
show more
show less