Properties

Label 2254.4.a.l.1.4
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 92x^{3} - 28x^{2} + 1593x - 1782 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.52502\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +2.52502 q^{3} +4.00000 q^{4} +15.4206 q^{5} +5.05004 q^{6} +8.00000 q^{8} -20.6243 q^{9} +30.8412 q^{10} +16.2367 q^{11} +10.1001 q^{12} -50.2121 q^{13} +38.9372 q^{15} +16.0000 q^{16} -130.670 q^{17} -41.2486 q^{18} -85.0072 q^{19} +61.6823 q^{20} +32.4733 q^{22} +23.0000 q^{23} +20.2002 q^{24} +112.794 q^{25} -100.424 q^{26} -120.252 q^{27} -65.1081 q^{29} +77.8745 q^{30} +87.4054 q^{31} +32.0000 q^{32} +40.9979 q^{33} -261.341 q^{34} -82.4971 q^{36} -341.524 q^{37} -170.014 q^{38} -126.786 q^{39} +123.365 q^{40} -423.344 q^{41} +487.541 q^{43} +64.9467 q^{44} -318.038 q^{45} +46.0000 q^{46} +102.708 q^{47} +40.4003 q^{48} +225.588 q^{50} -329.945 q^{51} -200.848 q^{52} -565.138 q^{53} -240.504 q^{54} +250.379 q^{55} -214.645 q^{57} -130.216 q^{58} -344.174 q^{59} +155.749 q^{60} -203.883 q^{61} +174.811 q^{62} +64.0000 q^{64} -774.299 q^{65} +81.9958 q^{66} -118.878 q^{67} -522.682 q^{68} +58.0754 q^{69} +449.076 q^{71} -164.994 q^{72} -309.286 q^{73} -683.048 q^{74} +284.807 q^{75} -340.029 q^{76} -253.573 q^{78} +274.745 q^{79} +246.729 q^{80} +253.216 q^{81} -846.688 q^{82} -530.690 q^{83} -2015.01 q^{85} +975.082 q^{86} -164.399 q^{87} +129.893 q^{88} -775.186 q^{89} -636.077 q^{90} +92.0000 q^{92} +220.700 q^{93} +205.417 q^{94} -1310.86 q^{95} +80.8006 q^{96} +1070.49 q^{97} -334.870 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 10 q^{2} - 5 q^{3} + 20 q^{4} - 22 q^{5} - 10 q^{6} + 40 q^{8} + 54 q^{9} - 44 q^{10} + 42 q^{11} - 20 q^{12} - 107 q^{13} + 122 q^{15} + 80 q^{16} - 218 q^{17} + 108 q^{18} - 194 q^{19} - 88 q^{20}+ \cdots - 2616 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 2.52502 0.485940 0.242970 0.970034i \(-0.421878\pi\)
0.242970 + 0.970034i \(0.421878\pi\)
\(4\) 4.00000 0.500000
\(5\) 15.4206 1.37926 0.689629 0.724163i \(-0.257774\pi\)
0.689629 + 0.724163i \(0.257774\pi\)
\(6\) 5.05004 0.343612
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −20.6243 −0.763862
\(10\) 30.8412 0.975283
\(11\) 16.2367 0.445049 0.222525 0.974927i \(-0.428570\pi\)
0.222525 + 0.974927i \(0.428570\pi\)
\(12\) 10.1001 0.242970
\(13\) −50.2121 −1.07126 −0.535628 0.844454i \(-0.679925\pi\)
−0.535628 + 0.844454i \(0.679925\pi\)
\(14\) 0 0
\(15\) 38.9372 0.670237
\(16\) 16.0000 0.250000
\(17\) −130.670 −1.86425 −0.932124 0.362138i \(-0.882047\pi\)
−0.932124 + 0.362138i \(0.882047\pi\)
\(18\) −41.2486 −0.540132
\(19\) −85.0072 −1.02642 −0.513210 0.858263i \(-0.671544\pi\)
−0.513210 + 0.858263i \(0.671544\pi\)
\(20\) 61.6823 0.689629
\(21\) 0 0
\(22\) 32.4733 0.314697
\(23\) 23.0000 0.208514
\(24\) 20.2002 0.171806
\(25\) 112.794 0.902354
\(26\) −100.424 −0.757492
\(27\) −120.252 −0.857131
\(28\) 0 0
\(29\) −65.1081 −0.416906 −0.208453 0.978032i \(-0.566843\pi\)
−0.208453 + 0.978032i \(0.566843\pi\)
\(30\) 77.8745 0.473929
\(31\) 87.4054 0.506403 0.253201 0.967414i \(-0.418517\pi\)
0.253201 + 0.967414i \(0.418517\pi\)
\(32\) 32.0000 0.176777
\(33\) 40.9979 0.216267
\(34\) −261.341 −1.31822
\(35\) 0 0
\(36\) −82.4971 −0.381931
\(37\) −341.524 −1.51747 −0.758733 0.651402i \(-0.774181\pi\)
−0.758733 + 0.651402i \(0.774181\pi\)
\(38\) −170.014 −0.725789
\(39\) −126.786 −0.520566
\(40\) 123.365 0.487641
\(41\) −423.344 −1.61257 −0.806283 0.591530i \(-0.798524\pi\)
−0.806283 + 0.591530i \(0.798524\pi\)
\(42\) 0 0
\(43\) 487.541 1.72905 0.864526 0.502587i \(-0.167619\pi\)
0.864526 + 0.502587i \(0.167619\pi\)
\(44\) 64.9467 0.222525
\(45\) −318.038 −1.05356
\(46\) 46.0000 0.147442
\(47\) 102.708 0.318756 0.159378 0.987218i \(-0.449051\pi\)
0.159378 + 0.987218i \(0.449051\pi\)
\(48\) 40.4003 0.121485
\(49\) 0 0
\(50\) 225.588 0.638060
\(51\) −329.945 −0.905913
\(52\) −200.848 −0.535628
\(53\) −565.138 −1.46467 −0.732336 0.680943i \(-0.761570\pi\)
−0.732336 + 0.680943i \(0.761570\pi\)
\(54\) −240.504 −0.606083
\(55\) 250.379 0.613838
\(56\) 0 0
\(57\) −214.645 −0.498779
\(58\) −130.216 −0.294797
\(59\) −344.174 −0.759452 −0.379726 0.925099i \(-0.623982\pi\)
−0.379726 + 0.925099i \(0.623982\pi\)
\(60\) 155.749 0.335118
\(61\) −203.883 −0.427944 −0.213972 0.976840i \(-0.568640\pi\)
−0.213972 + 0.976840i \(0.568640\pi\)
\(62\) 174.811 0.358081
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −774.299 −1.47754
\(66\) 81.9958 0.152924
\(67\) −118.878 −0.216764 −0.108382 0.994109i \(-0.534567\pi\)
−0.108382 + 0.994109i \(0.534567\pi\)
\(68\) −522.682 −0.932124
\(69\) 58.0754 0.101326
\(70\) 0 0
\(71\) 449.076 0.750642 0.375321 0.926895i \(-0.377532\pi\)
0.375321 + 0.926895i \(0.377532\pi\)
\(72\) −164.994 −0.270066
\(73\) −309.286 −0.495879 −0.247939 0.968776i \(-0.579753\pi\)
−0.247939 + 0.968776i \(0.579753\pi\)
\(74\) −683.048 −1.07301
\(75\) 284.807 0.438490
\(76\) −340.029 −0.513210
\(77\) 0 0
\(78\) −253.573 −0.368096
\(79\) 274.745 0.391281 0.195641 0.980676i \(-0.437321\pi\)
0.195641 + 0.980676i \(0.437321\pi\)
\(80\) 246.729 0.344815
\(81\) 253.216 0.347348
\(82\) −846.688 −1.14026
\(83\) −530.690 −0.701817 −0.350908 0.936410i \(-0.614127\pi\)
−0.350908 + 0.936410i \(0.614127\pi\)
\(84\) 0 0
\(85\) −2015.01 −2.57128
\(86\) 975.082 1.22262
\(87\) −164.399 −0.202591
\(88\) 129.893 0.157349
\(89\) −775.186 −0.923253 −0.461627 0.887074i \(-0.652734\pi\)
−0.461627 + 0.887074i \(0.652734\pi\)
\(90\) −636.077 −0.744982
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 220.700 0.246081
\(94\) 205.417 0.225395
\(95\) −1310.86 −1.41570
\(96\) 80.8006 0.0859029
\(97\) 1070.49 1.12054 0.560269 0.828311i \(-0.310698\pi\)
0.560269 + 0.828311i \(0.310698\pi\)
\(98\) 0 0
\(99\) −334.870 −0.339956
\(100\) 451.177 0.451177
\(101\) −891.235 −0.878031 −0.439016 0.898479i \(-0.644673\pi\)
−0.439016 + 0.898479i \(0.644673\pi\)
\(102\) −659.890 −0.640577
\(103\) 1457.76 1.39454 0.697269 0.716810i \(-0.254398\pi\)
0.697269 + 0.716810i \(0.254398\pi\)
\(104\) −401.696 −0.378746
\(105\) 0 0
\(106\) −1130.28 −1.03568
\(107\) 730.304 0.659824 0.329912 0.944012i \(-0.392981\pi\)
0.329912 + 0.944012i \(0.392981\pi\)
\(108\) −481.009 −0.428566
\(109\) 1655.91 1.45512 0.727558 0.686046i \(-0.240655\pi\)
0.727558 + 0.686046i \(0.240655\pi\)
\(110\) 500.758 0.434049
\(111\) −862.355 −0.737397
\(112\) 0 0
\(113\) 625.622 0.520828 0.260414 0.965497i \(-0.416141\pi\)
0.260414 + 0.965497i \(0.416141\pi\)
\(114\) −429.289 −0.352690
\(115\) 354.673 0.287595
\(116\) −260.432 −0.208453
\(117\) 1035.59 0.818291
\(118\) −688.349 −0.537014
\(119\) 0 0
\(120\) 311.498 0.236965
\(121\) −1067.37 −0.801931
\(122\) −407.767 −0.302602
\(123\) −1068.95 −0.783611
\(124\) 349.622 0.253201
\(125\) −188.220 −0.134680
\(126\) 0 0
\(127\) −530.024 −0.370331 −0.185165 0.982707i \(-0.559282\pi\)
−0.185165 + 0.982707i \(0.559282\pi\)
\(128\) 128.000 0.0883883
\(129\) 1231.05 0.840216
\(130\) −1548.60 −1.04478
\(131\) 1501.76 1.00160 0.500800 0.865563i \(-0.333039\pi\)
0.500800 + 0.865563i \(0.333039\pi\)
\(132\) 163.992 0.108134
\(133\) 0 0
\(134\) −237.755 −0.153276
\(135\) −1854.36 −1.18221
\(136\) −1045.36 −0.659111
\(137\) 593.298 0.369992 0.184996 0.982739i \(-0.440773\pi\)
0.184996 + 0.982739i \(0.440773\pi\)
\(138\) 116.151 0.0716480
\(139\) 2110.17 1.28764 0.643822 0.765175i \(-0.277348\pi\)
0.643822 + 0.765175i \(0.277348\pi\)
\(140\) 0 0
\(141\) 259.340 0.154897
\(142\) 898.153 0.530784
\(143\) −815.277 −0.476761
\(144\) −329.988 −0.190966
\(145\) −1004.00 −0.575021
\(146\) −618.571 −0.350639
\(147\) 0 0
\(148\) −1366.10 −0.758733
\(149\) 2173.54 1.19506 0.597528 0.801848i \(-0.296150\pi\)
0.597528 + 0.801848i \(0.296150\pi\)
\(150\) 569.615 0.310059
\(151\) 2044.01 1.10158 0.550792 0.834643i \(-0.314326\pi\)
0.550792 + 0.834643i \(0.314326\pi\)
\(152\) −680.057 −0.362894
\(153\) 2694.98 1.42403
\(154\) 0 0
\(155\) 1347.84 0.698460
\(156\) −507.146 −0.260283
\(157\) −3307.56 −1.68135 −0.840675 0.541540i \(-0.817841\pi\)
−0.840675 + 0.541540i \(0.817841\pi\)
\(158\) 549.490 0.276677
\(159\) −1426.98 −0.711743
\(160\) 493.458 0.243821
\(161\) 0 0
\(162\) 506.433 0.245612
\(163\) −1902.98 −0.914437 −0.457218 0.889354i \(-0.651154\pi\)
−0.457218 + 0.889354i \(0.651154\pi\)
\(164\) −1693.38 −0.806283
\(165\) 632.211 0.298288
\(166\) −1061.38 −0.496259
\(167\) −511.817 −0.237159 −0.118580 0.992945i \(-0.537834\pi\)
−0.118580 + 0.992945i \(0.537834\pi\)
\(168\) 0 0
\(169\) 324.250 0.147588
\(170\) −4030.03 −1.81817
\(171\) 1753.21 0.784044
\(172\) 1950.16 0.864526
\(173\) 150.429 0.0661091 0.0330546 0.999454i \(-0.489476\pi\)
0.0330546 + 0.999454i \(0.489476\pi\)
\(174\) −328.798 −0.143254
\(175\) 0 0
\(176\) 259.787 0.111262
\(177\) −869.047 −0.369048
\(178\) −1550.37 −0.652838
\(179\) −2821.78 −1.17827 −0.589133 0.808036i \(-0.700530\pi\)
−0.589133 + 0.808036i \(0.700530\pi\)
\(180\) −1272.15 −0.526782
\(181\) 607.565 0.249502 0.124751 0.992188i \(-0.460187\pi\)
0.124751 + 0.992188i \(0.460187\pi\)
\(182\) 0 0
\(183\) −514.809 −0.207955
\(184\) 184.000 0.0737210
\(185\) −5266.50 −2.09298
\(186\) 441.401 0.174006
\(187\) −2121.65 −0.829682
\(188\) 410.833 0.159378
\(189\) 0 0
\(190\) −2621.72 −1.00105
\(191\) 1087.29 0.411904 0.205952 0.978562i \(-0.433971\pi\)
0.205952 + 0.978562i \(0.433971\pi\)
\(192\) 161.601 0.0607425
\(193\) 3217.91 1.20016 0.600078 0.799942i \(-0.295136\pi\)
0.600078 + 0.799942i \(0.295136\pi\)
\(194\) 2140.99 0.792340
\(195\) −1955.12 −0.717995
\(196\) 0 0
\(197\) −3303.35 −1.19469 −0.597345 0.801985i \(-0.703778\pi\)
−0.597345 + 0.801985i \(0.703778\pi\)
\(198\) −669.739 −0.240385
\(199\) 2423.32 0.863240 0.431620 0.902056i \(-0.357942\pi\)
0.431620 + 0.902056i \(0.357942\pi\)
\(200\) 902.354 0.319030
\(201\) −300.168 −0.105335
\(202\) −1782.47 −0.620862
\(203\) 0 0
\(204\) −1319.78 −0.452957
\(205\) −6528.21 −2.22415
\(206\) 2915.52 0.986087
\(207\) −474.358 −0.159276
\(208\) −803.393 −0.267814
\(209\) −1380.23 −0.456807
\(210\) 0 0
\(211\) −2363.30 −0.771072 −0.385536 0.922693i \(-0.625983\pi\)
−0.385536 + 0.922693i \(0.625983\pi\)
\(212\) −2260.55 −0.732336
\(213\) 1133.93 0.364767
\(214\) 1460.61 0.466566
\(215\) 7518.16 2.38481
\(216\) −962.018 −0.303042
\(217\) 0 0
\(218\) 3311.82 1.02892
\(219\) −780.952 −0.240967
\(220\) 1001.52 0.306919
\(221\) 6561.23 1.99709
\(222\) −1724.71 −0.521419
\(223\) 4272.53 1.28300 0.641502 0.767121i \(-0.278312\pi\)
0.641502 + 0.767121i \(0.278312\pi\)
\(224\) 0 0
\(225\) −2326.30 −0.689274
\(226\) 1251.24 0.368281
\(227\) −2313.03 −0.676306 −0.338153 0.941091i \(-0.609802\pi\)
−0.338153 + 0.941091i \(0.609802\pi\)
\(228\) −858.579 −0.249389
\(229\) −6857.40 −1.97882 −0.989410 0.145150i \(-0.953634\pi\)
−0.989410 + 0.145150i \(0.953634\pi\)
\(230\) 709.347 0.203361
\(231\) 0 0
\(232\) −520.865 −0.147398
\(233\) 5132.80 1.44318 0.721590 0.692321i \(-0.243412\pi\)
0.721590 + 0.692321i \(0.243412\pi\)
\(234\) 2071.17 0.578619
\(235\) 1583.82 0.439647
\(236\) −1376.70 −0.379726
\(237\) 693.736 0.190139
\(238\) 0 0
\(239\) −3025.18 −0.818756 −0.409378 0.912365i \(-0.634254\pi\)
−0.409378 + 0.912365i \(0.634254\pi\)
\(240\) 622.996 0.167559
\(241\) 3626.40 0.969282 0.484641 0.874713i \(-0.338950\pi\)
0.484641 + 0.874713i \(0.338950\pi\)
\(242\) −2134.74 −0.567051
\(243\) 3886.19 1.02592
\(244\) −815.533 −0.213972
\(245\) 0 0
\(246\) −2137.90 −0.554096
\(247\) 4268.38 1.09956
\(248\) 699.243 0.179040
\(249\) −1340.00 −0.341041
\(250\) −376.441 −0.0952329
\(251\) −3420.84 −0.860245 −0.430123 0.902771i \(-0.641530\pi\)
−0.430123 + 0.902771i \(0.641530\pi\)
\(252\) 0 0
\(253\) 373.444 0.0927992
\(254\) −1060.05 −0.261863
\(255\) −5087.95 −1.24949
\(256\) 256.000 0.0625000
\(257\) 3976.53 0.965173 0.482586 0.875848i \(-0.339697\pi\)
0.482586 + 0.875848i \(0.339697\pi\)
\(258\) 2462.10 0.594122
\(259\) 0 0
\(260\) −3097.20 −0.738769
\(261\) 1342.81 0.318459
\(262\) 3003.52 0.708238
\(263\) 8125.09 1.90500 0.952499 0.304541i \(-0.0985030\pi\)
0.952499 + 0.304541i \(0.0985030\pi\)
\(264\) 327.983 0.0764620
\(265\) −8714.75 −2.02016
\(266\) 0 0
\(267\) −1957.36 −0.448646
\(268\) −475.511 −0.108382
\(269\) 3052.55 0.691886 0.345943 0.938255i \(-0.387559\pi\)
0.345943 + 0.938255i \(0.387559\pi\)
\(270\) −3708.72 −0.835946
\(271\) 7253.38 1.62587 0.812936 0.582352i \(-0.197868\pi\)
0.812936 + 0.582352i \(0.197868\pi\)
\(272\) −2090.73 −0.466062
\(273\) 0 0
\(274\) 1186.60 0.261624
\(275\) 1831.40 0.401592
\(276\) 232.302 0.0506628
\(277\) 2128.80 0.461758 0.230879 0.972982i \(-0.425840\pi\)
0.230879 + 0.972982i \(0.425840\pi\)
\(278\) 4220.35 0.910502
\(279\) −1802.67 −0.386822
\(280\) 0 0
\(281\) −5832.58 −1.23823 −0.619115 0.785300i \(-0.712508\pi\)
−0.619115 + 0.785300i \(0.712508\pi\)
\(282\) 518.681 0.109528
\(283\) −6614.39 −1.38935 −0.694673 0.719326i \(-0.744451\pi\)
−0.694673 + 0.719326i \(0.744451\pi\)
\(284\) 1796.31 0.375321
\(285\) −3309.95 −0.687945
\(286\) −1630.55 −0.337121
\(287\) 0 0
\(288\) −659.977 −0.135033
\(289\) 12161.8 2.47542
\(290\) −2008.01 −0.406601
\(291\) 2703.02 0.544514
\(292\) −1237.14 −0.247939
\(293\) −8352.00 −1.66529 −0.832643 0.553810i \(-0.813173\pi\)
−0.832643 + 0.553810i \(0.813173\pi\)
\(294\) 0 0
\(295\) −5307.37 −1.04748
\(296\) −2732.19 −0.536505
\(297\) −1952.50 −0.381466
\(298\) 4347.08 0.845032
\(299\) −1154.88 −0.223372
\(300\) 1139.23 0.219245
\(301\) 0 0
\(302\) 4088.02 0.778937
\(303\) −2250.38 −0.426671
\(304\) −1360.11 −0.256605
\(305\) −3144.00 −0.590245
\(306\) 5389.97 1.00694
\(307\) −4736.08 −0.880463 −0.440232 0.897884i \(-0.645104\pi\)
−0.440232 + 0.897884i \(0.645104\pi\)
\(308\) 0 0
\(309\) 3680.87 0.677662
\(310\) 2695.68 0.493886
\(311\) 1024.10 0.186725 0.0933623 0.995632i \(-0.470239\pi\)
0.0933623 + 0.995632i \(0.470239\pi\)
\(312\) −1014.29 −0.184048
\(313\) −9492.18 −1.71415 −0.857076 0.515190i \(-0.827721\pi\)
−0.857076 + 0.515190i \(0.827721\pi\)
\(314\) −6615.12 −1.18889
\(315\) 0 0
\(316\) 1098.98 0.195641
\(317\) −949.926 −0.168306 −0.0841532 0.996453i \(-0.526819\pi\)
−0.0841532 + 0.996453i \(0.526819\pi\)
\(318\) −2853.97 −0.503278
\(319\) −1057.14 −0.185544
\(320\) 986.917 0.172407
\(321\) 1844.03 0.320635
\(322\) 0 0
\(323\) 11107.9 1.91350
\(324\) 1012.87 0.173674
\(325\) −5663.63 −0.966651
\(326\) −3805.97 −0.646605
\(327\) 4181.21 0.707099
\(328\) −3386.75 −0.570128
\(329\) 0 0
\(330\) 1264.42 0.210922
\(331\) −3601.89 −0.598120 −0.299060 0.954234i \(-0.596673\pi\)
−0.299060 + 0.954234i \(0.596673\pi\)
\(332\) −2122.76 −0.350908
\(333\) 7043.69 1.15913
\(334\) −1023.63 −0.167697
\(335\) −1833.16 −0.298974
\(336\) 0 0
\(337\) −2325.88 −0.375961 −0.187980 0.982173i \(-0.560194\pi\)
−0.187980 + 0.982173i \(0.560194\pi\)
\(338\) 648.501 0.104360
\(339\) 1579.71 0.253091
\(340\) −8060.05 −1.28564
\(341\) 1419.17 0.225374
\(342\) 3506.42 0.554403
\(343\) 0 0
\(344\) 3900.33 0.611312
\(345\) 895.557 0.139754
\(346\) 300.857 0.0467462
\(347\) −743.523 −0.115027 −0.0575136 0.998345i \(-0.518317\pi\)
−0.0575136 + 0.998345i \(0.518317\pi\)
\(348\) −657.596 −0.101296
\(349\) −7785.32 −1.19409 −0.597047 0.802206i \(-0.703659\pi\)
−0.597047 + 0.802206i \(0.703659\pi\)
\(350\) 0 0
\(351\) 6038.11 0.918207
\(352\) 519.574 0.0786743
\(353\) −4465.40 −0.673284 −0.336642 0.941633i \(-0.609291\pi\)
−0.336642 + 0.941633i \(0.609291\pi\)
\(354\) −1738.09 −0.260957
\(355\) 6925.02 1.03533
\(356\) −3100.74 −0.461627
\(357\) 0 0
\(358\) −5643.55 −0.833159
\(359\) 1190.89 0.175077 0.0875385 0.996161i \(-0.472100\pi\)
0.0875385 + 0.996161i \(0.472100\pi\)
\(360\) −2544.31 −0.372491
\(361\) 367.219 0.0535383
\(362\) 1215.13 0.176425
\(363\) −2695.13 −0.389691
\(364\) 0 0
\(365\) −4769.36 −0.683945
\(366\) −1029.62 −0.147047
\(367\) 4712.30 0.670245 0.335122 0.942175i \(-0.391222\pi\)
0.335122 + 0.942175i \(0.391222\pi\)
\(368\) 368.000 0.0521286
\(369\) 8731.16 1.23178
\(370\) −10533.0 −1.47996
\(371\) 0 0
\(372\) 882.801 0.123041
\(373\) −2899.46 −0.402489 −0.201245 0.979541i \(-0.564499\pi\)
−0.201245 + 0.979541i \(0.564499\pi\)
\(374\) −4243.31 −0.586674
\(375\) −475.260 −0.0654462
\(376\) 821.667 0.112697
\(377\) 3269.21 0.446612
\(378\) 0 0
\(379\) −8339.00 −1.13020 −0.565100 0.825022i \(-0.691162\pi\)
−0.565100 + 0.825022i \(0.691162\pi\)
\(380\) −5243.44 −0.707849
\(381\) −1338.32 −0.179958
\(382\) 2174.58 0.291260
\(383\) 3573.90 0.476809 0.238405 0.971166i \(-0.423376\pi\)
0.238405 + 0.971166i \(0.423376\pi\)
\(384\) 323.202 0.0429514
\(385\) 0 0
\(386\) 6435.81 0.848638
\(387\) −10055.2 −1.32076
\(388\) 4281.98 0.560269
\(389\) 3082.12 0.401722 0.200861 0.979620i \(-0.435626\pi\)
0.200861 + 0.979620i \(0.435626\pi\)
\(390\) −3910.24 −0.507699
\(391\) −3005.42 −0.388723
\(392\) 0 0
\(393\) 3791.98 0.486717
\(394\) −6606.70 −0.844773
\(395\) 4236.72 0.539678
\(396\) −1339.48 −0.169978
\(397\) 5825.10 0.736406 0.368203 0.929745i \(-0.379973\pi\)
0.368203 + 0.929745i \(0.379973\pi\)
\(398\) 4846.64 0.610403
\(399\) 0 0
\(400\) 1804.71 0.225588
\(401\) −9361.76 −1.16585 −0.582923 0.812528i \(-0.698091\pi\)
−0.582923 + 0.812528i \(0.698091\pi\)
\(402\) −600.337 −0.0744828
\(403\) −4388.81 −0.542486
\(404\) −3564.94 −0.439016
\(405\) 3904.74 0.479082
\(406\) 0 0
\(407\) −5545.22 −0.675347
\(408\) −2639.56 −0.320289
\(409\) 8828.05 1.06728 0.533642 0.845711i \(-0.320823\pi\)
0.533642 + 0.845711i \(0.320823\pi\)
\(410\) −13056.4 −1.57271
\(411\) 1498.09 0.179794
\(412\) 5831.04 0.697269
\(413\) 0 0
\(414\) −948.717 −0.112625
\(415\) −8183.55 −0.967987
\(416\) −1606.79 −0.189373
\(417\) 5328.23 0.625718
\(418\) −2760.47 −0.323012
\(419\) −9440.13 −1.10067 −0.550335 0.834944i \(-0.685500\pi\)
−0.550335 + 0.834944i \(0.685500\pi\)
\(420\) 0 0
\(421\) −8022.19 −0.928687 −0.464344 0.885655i \(-0.653710\pi\)
−0.464344 + 0.885655i \(0.653710\pi\)
\(422\) −4726.60 −0.545230
\(423\) −2118.29 −0.243486
\(424\) −4521.10 −0.517840
\(425\) −14738.9 −1.68221
\(426\) 2267.85 0.257929
\(427\) 0 0
\(428\) 2921.22 0.329912
\(429\) −2058.59 −0.231677
\(430\) 15036.3 1.68632
\(431\) −15910.7 −1.77817 −0.889083 0.457746i \(-0.848657\pi\)
−0.889083 + 0.457746i \(0.848657\pi\)
\(432\) −1924.04 −0.214283
\(433\) −4098.01 −0.454822 −0.227411 0.973799i \(-0.573026\pi\)
−0.227411 + 0.973799i \(0.573026\pi\)
\(434\) 0 0
\(435\) −2535.13 −0.279426
\(436\) 6623.65 0.727558
\(437\) −1955.16 −0.214023
\(438\) −1561.90 −0.170390
\(439\) 8184.15 0.889768 0.444884 0.895588i \(-0.353245\pi\)
0.444884 + 0.895588i \(0.353245\pi\)
\(440\) 2003.03 0.217024
\(441\) 0 0
\(442\) 13122.5 1.41215
\(443\) 10534.5 1.12982 0.564910 0.825152i \(-0.308911\pi\)
0.564910 + 0.825152i \(0.308911\pi\)
\(444\) −3449.42 −0.368699
\(445\) −11953.8 −1.27340
\(446\) 8545.06 0.907221
\(447\) 5488.23 0.580725
\(448\) 0 0
\(449\) −14963.9 −1.57281 −0.786403 0.617714i \(-0.788059\pi\)
−0.786403 + 0.617714i \(0.788059\pi\)
\(450\) −4652.60 −0.487390
\(451\) −6873.70 −0.717671
\(452\) 2502.49 0.260414
\(453\) 5161.16 0.535303
\(454\) −4626.07 −0.478221
\(455\) 0 0
\(456\) −1717.16 −0.176345
\(457\) −8900.42 −0.911038 −0.455519 0.890226i \(-0.650546\pi\)
−0.455519 + 0.890226i \(0.650546\pi\)
\(458\) −13714.8 −1.39924
\(459\) 15713.4 1.59791
\(460\) 1418.69 0.143798
\(461\) −12896.8 −1.30296 −0.651480 0.758666i \(-0.725852\pi\)
−0.651480 + 0.758666i \(0.725852\pi\)
\(462\) 0 0
\(463\) −13810.2 −1.38621 −0.693104 0.720838i \(-0.743757\pi\)
−0.693104 + 0.720838i \(0.743757\pi\)
\(464\) −1041.73 −0.104226
\(465\) 3403.33 0.339410
\(466\) 10265.6 1.02048
\(467\) −15279.1 −1.51399 −0.756995 0.653421i \(-0.773333\pi\)
−0.756995 + 0.653421i \(0.773333\pi\)
\(468\) 4142.35 0.409146
\(469\) 0 0
\(470\) 3167.64 0.310878
\(471\) −8351.65 −0.817035
\(472\) −2753.39 −0.268507
\(473\) 7916.04 0.769514
\(474\) 1387.47 0.134449
\(475\) −9588.32 −0.926194
\(476\) 0 0
\(477\) 11655.6 1.11881
\(478\) −6050.36 −0.578948
\(479\) 15499.2 1.47845 0.739225 0.673458i \(-0.235192\pi\)
0.739225 + 0.673458i \(0.235192\pi\)
\(480\) 1245.99 0.118482
\(481\) 17148.6 1.62559
\(482\) 7252.80 0.685386
\(483\) 0 0
\(484\) −4269.48 −0.400966
\(485\) 16507.6 1.54551
\(486\) 7772.37 0.725436
\(487\) −12482.8 −1.16150 −0.580751 0.814082i \(-0.697241\pi\)
−0.580751 + 0.814082i \(0.697241\pi\)
\(488\) −1631.07 −0.151301
\(489\) −4805.07 −0.444362
\(490\) 0 0
\(491\) 14831.3 1.36319 0.681596 0.731729i \(-0.261286\pi\)
0.681596 + 0.731729i \(0.261286\pi\)
\(492\) −4275.81 −0.391805
\(493\) 8507.70 0.777216
\(494\) 8536.77 0.777505
\(495\) −5163.88 −0.468888
\(496\) 1398.49 0.126601
\(497\) 0 0
\(498\) −2680.00 −0.241152
\(499\) 2865.86 0.257101 0.128551 0.991703i \(-0.458968\pi\)
0.128551 + 0.991703i \(0.458968\pi\)
\(500\) −752.882 −0.0673398
\(501\) −1292.35 −0.115245
\(502\) −6841.68 −0.608285
\(503\) −9737.57 −0.863174 −0.431587 0.902071i \(-0.642046\pi\)
−0.431587 + 0.902071i \(0.642046\pi\)
\(504\) 0 0
\(505\) −13743.4 −1.21103
\(506\) 746.887 0.0656189
\(507\) 818.739 0.0717188
\(508\) −2120.09 −0.185165
\(509\) 14015.6 1.22049 0.610247 0.792211i \(-0.291070\pi\)
0.610247 + 0.792211i \(0.291070\pi\)
\(510\) −10175.9 −0.883522
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 10222.3 0.879777
\(514\) 7953.07 0.682480
\(515\) 22479.5 1.92343
\(516\) 4924.20 0.420108
\(517\) 1667.64 0.141862
\(518\) 0 0
\(519\) 379.835 0.0321251
\(520\) −6194.39 −0.522388
\(521\) 83.3495 0.00700884 0.00350442 0.999994i \(-0.498885\pi\)
0.00350442 + 0.999994i \(0.498885\pi\)
\(522\) 2685.61 0.225184
\(523\) 14731.1 1.23164 0.615818 0.787888i \(-0.288826\pi\)
0.615818 + 0.787888i \(0.288826\pi\)
\(524\) 6007.05 0.500800
\(525\) 0 0
\(526\) 16250.2 1.34704
\(527\) −11421.3 −0.944060
\(528\) 655.967 0.0540668
\(529\) 529.000 0.0434783
\(530\) −17429.5 −1.42847
\(531\) 7098.35 0.580117
\(532\) 0 0
\(533\) 21257.0 1.72747
\(534\) −3914.72 −0.317240
\(535\) 11261.7 0.910068
\(536\) −951.021 −0.0766378
\(537\) −7125.04 −0.572566
\(538\) 6105.11 0.489238
\(539\) 0 0
\(540\) −7417.43 −0.591103
\(541\) −3356.19 −0.266717 −0.133359 0.991068i \(-0.542576\pi\)
−0.133359 + 0.991068i \(0.542576\pi\)
\(542\) 14506.8 1.14967
\(543\) 1534.11 0.121243
\(544\) −4181.45 −0.329556
\(545\) 25535.1 2.00698
\(546\) 0 0
\(547\) −14151.2 −1.10615 −0.553073 0.833133i \(-0.686545\pi\)
−0.553073 + 0.833133i \(0.686545\pi\)
\(548\) 2373.19 0.184996
\(549\) 4204.95 0.326890
\(550\) 3662.81 0.283968
\(551\) 5534.65 0.427920
\(552\) 464.603 0.0358240
\(553\) 0 0
\(554\) 4257.59 0.326512
\(555\) −13298.0 −1.01706
\(556\) 8440.69 0.643822
\(557\) −1801.72 −0.137058 −0.0685292 0.997649i \(-0.521831\pi\)
−0.0685292 + 0.997649i \(0.521831\pi\)
\(558\) −3605.35 −0.273524
\(559\) −24480.4 −1.85226
\(560\) 0 0
\(561\) −5357.21 −0.403176
\(562\) −11665.2 −0.875561
\(563\) 4338.87 0.324799 0.162399 0.986725i \(-0.448077\pi\)
0.162399 + 0.986725i \(0.448077\pi\)
\(564\) 1037.36 0.0774483
\(565\) 9647.45 0.718356
\(566\) −13228.8 −0.982415
\(567\) 0 0
\(568\) 3592.61 0.265392
\(569\) 8654.77 0.637657 0.318829 0.947812i \(-0.396711\pi\)
0.318829 + 0.947812i \(0.396711\pi\)
\(570\) −6619.89 −0.486450
\(571\) −25113.7 −1.84059 −0.920293 0.391230i \(-0.872050\pi\)
−0.920293 + 0.391230i \(0.872050\pi\)
\(572\) −3261.11 −0.238381
\(573\) 2745.43 0.200161
\(574\) 0 0
\(575\) 2594.27 0.188154
\(576\) −1319.95 −0.0954828
\(577\) 6299.88 0.454536 0.227268 0.973832i \(-0.427021\pi\)
0.227268 + 0.973832i \(0.427021\pi\)
\(578\) 24323.5 1.75039
\(579\) 8125.27 0.583204
\(580\) −4016.02 −0.287510
\(581\) 0 0
\(582\) 5406.03 0.385030
\(583\) −9175.96 −0.651851
\(584\) −2474.28 −0.175320
\(585\) 15969.4 1.12864
\(586\) −16704.0 −1.17754
\(587\) −19473.7 −1.36928 −0.684639 0.728882i \(-0.740040\pi\)
−0.684639 + 0.728882i \(0.740040\pi\)
\(588\) 0 0
\(589\) −7430.09 −0.519782
\(590\) −10614.7 −0.740681
\(591\) −8341.02 −0.580547
\(592\) −5464.39 −0.379366
\(593\) 618.222 0.0428117 0.0214058 0.999771i \(-0.493186\pi\)
0.0214058 + 0.999771i \(0.493186\pi\)
\(594\) −3904.99 −0.269737
\(595\) 0 0
\(596\) 8694.16 0.597528
\(597\) 6118.93 0.419483
\(598\) −2309.75 −0.157948
\(599\) −100.330 −0.00684368 −0.00342184 0.999994i \(-0.501089\pi\)
−0.00342184 + 0.999994i \(0.501089\pi\)
\(600\) 2278.46 0.155030
\(601\) 326.619 0.0221682 0.0110841 0.999939i \(-0.496472\pi\)
0.0110841 + 0.999939i \(0.496472\pi\)
\(602\) 0 0
\(603\) 2451.77 0.165578
\(604\) 8176.03 0.550792
\(605\) −16459.5 −1.10607
\(606\) −4500.77 −0.301702
\(607\) 3897.82 0.260639 0.130319 0.991472i \(-0.458400\pi\)
0.130319 + 0.991472i \(0.458400\pi\)
\(608\) −2720.23 −0.181447
\(609\) 0 0
\(610\) −6288.00 −0.417367
\(611\) −5157.20 −0.341469
\(612\) 10779.9 0.712015
\(613\) 21469.4 1.41458 0.707292 0.706922i \(-0.249917\pi\)
0.707292 + 0.706922i \(0.249917\pi\)
\(614\) −9472.16 −0.622582
\(615\) −16483.8 −1.08080
\(616\) 0 0
\(617\) −1312.99 −0.0856712 −0.0428356 0.999082i \(-0.513639\pi\)
−0.0428356 + 0.999082i \(0.513639\pi\)
\(618\) 7361.74 0.479179
\(619\) −24376.6 −1.58284 −0.791420 0.611273i \(-0.790658\pi\)
−0.791420 + 0.611273i \(0.790658\pi\)
\(620\) 5391.37 0.349230
\(621\) −2765.80 −0.178724
\(622\) 2048.20 0.132034
\(623\) 0 0
\(624\) −2028.58 −0.130141
\(625\) −17001.7 −1.08811
\(626\) −18984.4 −1.21209
\(627\) −3485.12 −0.221981
\(628\) −13230.2 −0.840675
\(629\) 44627.1 2.82893
\(630\) 0 0
\(631\) −4304.58 −0.271573 −0.135787 0.990738i \(-0.543356\pi\)
−0.135787 + 0.990738i \(0.543356\pi\)
\(632\) 2197.96 0.138339
\(633\) −5967.37 −0.374695
\(634\) −1899.85 −0.119011
\(635\) −8173.27 −0.510782
\(636\) −5707.93 −0.355871
\(637\) 0 0
\(638\) −2114.28 −0.131199
\(639\) −9261.88 −0.573387
\(640\) 1973.83 0.121910
\(641\) 817.563 0.0503772 0.0251886 0.999683i \(-0.491981\pi\)
0.0251886 + 0.999683i \(0.491981\pi\)
\(642\) 3688.06 0.226723
\(643\) 25946.6 1.59134 0.795672 0.605728i \(-0.207118\pi\)
0.795672 + 0.605728i \(0.207118\pi\)
\(644\) 0 0
\(645\) 18983.5 1.15888
\(646\) 22215.8 1.35305
\(647\) 11020.7 0.669655 0.334827 0.942279i \(-0.391322\pi\)
0.334827 + 0.942279i \(0.391322\pi\)
\(648\) 2025.73 0.122806
\(649\) −5588.25 −0.337994
\(650\) −11327.3 −0.683526
\(651\) 0 0
\(652\) −7611.94 −0.457218
\(653\) 13448.0 0.805914 0.402957 0.915219i \(-0.367982\pi\)
0.402957 + 0.915219i \(0.367982\pi\)
\(654\) 8362.42 0.499995
\(655\) 23158.0 1.38146
\(656\) −6773.50 −0.403142
\(657\) 6378.79 0.378783
\(658\) 0 0
\(659\) −25104.9 −1.48399 −0.741994 0.670407i \(-0.766120\pi\)
−0.741994 + 0.670407i \(0.766120\pi\)
\(660\) 2528.85 0.149144
\(661\) −29107.5 −1.71278 −0.856391 0.516328i \(-0.827299\pi\)
−0.856391 + 0.516328i \(0.827299\pi\)
\(662\) −7203.78 −0.422935
\(663\) 16567.2 0.970464
\(664\) −4245.52 −0.248130
\(665\) 0 0
\(666\) 14087.4 0.819632
\(667\) −1497.49 −0.0869309
\(668\) −2047.27 −0.118580
\(669\) 10788.2 0.623463
\(670\) −3666.32 −0.211407
\(671\) −3310.39 −0.190456
\(672\) 0 0
\(673\) 29743.1 1.70358 0.851791 0.523882i \(-0.175517\pi\)
0.851791 + 0.523882i \(0.175517\pi\)
\(674\) −4651.76 −0.265844
\(675\) −13563.8 −0.773436
\(676\) 1297.00 0.0737939
\(677\) 5690.32 0.323038 0.161519 0.986870i \(-0.448361\pi\)
0.161519 + 0.986870i \(0.448361\pi\)
\(678\) 3159.41 0.178963
\(679\) 0 0
\(680\) −16120.1 −0.909085
\(681\) −5840.45 −0.328644
\(682\) 2838.35 0.159364
\(683\) 7310.12 0.409537 0.204769 0.978810i \(-0.434356\pi\)
0.204769 + 0.978810i \(0.434356\pi\)
\(684\) 7012.85 0.392022
\(685\) 9149.00 0.510314
\(686\) 0 0
\(687\) −17315.1 −0.961588
\(688\) 7800.65 0.432263
\(689\) 28376.7 1.56904
\(690\) 1791.11 0.0988210
\(691\) −13020.6 −0.716825 −0.358412 0.933563i \(-0.616682\pi\)
−0.358412 + 0.933563i \(0.616682\pi\)
\(692\) 601.715 0.0330546
\(693\) 0 0
\(694\) −1487.05 −0.0813365
\(695\) 32540.1 1.77599
\(696\) −1315.19 −0.0716268
\(697\) 55318.5 3.00622
\(698\) −15570.6 −0.844352
\(699\) 12960.4 0.701299
\(700\) 0 0
\(701\) 23471.0 1.26460 0.632301 0.774723i \(-0.282111\pi\)
0.632301 + 0.774723i \(0.282111\pi\)
\(702\) 12076.2 0.649270
\(703\) 29032.0 1.55756
\(704\) 1039.15 0.0556312
\(705\) 3999.18 0.213642
\(706\) −8930.80 −0.476084
\(707\) 0 0
\(708\) −3476.19 −0.184524
\(709\) −2970.92 −0.157370 −0.0786849 0.996900i \(-0.525072\pi\)
−0.0786849 + 0.996900i \(0.525072\pi\)
\(710\) 13850.0 0.732088
\(711\) −5666.41 −0.298885
\(712\) −6201.49 −0.326419
\(713\) 2010.32 0.105592
\(714\) 0 0
\(715\) −12572.0 −0.657577
\(716\) −11287.1 −0.589133
\(717\) −7638.64 −0.397867
\(718\) 2381.77 0.123798
\(719\) 2702.14 0.140157 0.0700783 0.997541i \(-0.477675\pi\)
0.0700783 + 0.997541i \(0.477675\pi\)
\(720\) −5088.61 −0.263391
\(721\) 0 0
\(722\) 734.439 0.0378573
\(723\) 9156.72 0.471013
\(724\) 2430.26 0.124751
\(725\) −7343.81 −0.376196
\(726\) −5390.26 −0.275553
\(727\) 15464.8 0.788938 0.394469 0.918909i \(-0.370929\pi\)
0.394469 + 0.918909i \(0.370929\pi\)
\(728\) 0 0
\(729\) 2975.85 0.151189
\(730\) −9538.72 −0.483622
\(731\) −63707.2 −3.22338
\(732\) −2059.24 −0.103978
\(733\) 7652.95 0.385632 0.192816 0.981235i \(-0.438238\pi\)
0.192816 + 0.981235i \(0.438238\pi\)
\(734\) 9424.59 0.473935
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −1930.18 −0.0964709
\(738\) 17462.3 0.870999
\(739\) −37809.5 −1.88207 −0.941033 0.338315i \(-0.890143\pi\)
−0.941033 + 0.338315i \(0.890143\pi\)
\(740\) −21066.0 −1.04649
\(741\) 10777.8 0.534319
\(742\) 0 0
\(743\) 20288.3 1.00176 0.500878 0.865518i \(-0.333010\pi\)
0.500878 + 0.865518i \(0.333010\pi\)
\(744\) 1765.60 0.0870029
\(745\) 33517.2 1.64829
\(746\) −5798.92 −0.284603
\(747\) 10945.1 0.536091
\(748\) −8486.61 −0.414841
\(749\) 0 0
\(750\) −950.520 −0.0462775
\(751\) 7531.84 0.365966 0.182983 0.983116i \(-0.441425\pi\)
0.182983 + 0.983116i \(0.441425\pi\)
\(752\) 1643.33 0.0796891
\(753\) −8637.69 −0.418028
\(754\) 6538.42 0.315803
\(755\) 31519.8 1.51937
\(756\) 0 0
\(757\) 22633.7 1.08671 0.543354 0.839504i \(-0.317154\pi\)
0.543354 + 0.839504i \(0.317154\pi\)
\(758\) −16678.0 −0.799172
\(759\) 942.952 0.0450948
\(760\) −10486.9 −0.500525
\(761\) −30974.0 −1.47544 −0.737719 0.675108i \(-0.764097\pi\)
−0.737719 + 0.675108i \(0.764097\pi\)
\(762\) −2676.64 −0.127250
\(763\) 0 0
\(764\) 4349.17 0.205952
\(765\) 41558.2 1.96410
\(766\) 7147.81 0.337155
\(767\) 17281.7 0.813567
\(768\) 646.405 0.0303713
\(769\) 3067.29 0.143835 0.0719177 0.997411i \(-0.477088\pi\)
0.0719177 + 0.997411i \(0.477088\pi\)
\(770\) 0 0
\(771\) 10040.8 0.469016
\(772\) 12871.6 0.600078
\(773\) −18054.8 −0.840084 −0.420042 0.907505i \(-0.637985\pi\)
−0.420042 + 0.907505i \(0.637985\pi\)
\(774\) −20110.4 −0.933917
\(775\) 9858.82 0.456954
\(776\) 8563.95 0.396170
\(777\) 0 0
\(778\) 6164.25 0.284060
\(779\) 35987.3 1.65517
\(780\) −7820.48 −0.358997
\(781\) 7291.51 0.334073
\(782\) −6010.84 −0.274868
\(783\) 7829.39 0.357343
\(784\) 0 0
\(785\) −51004.5 −2.31902
\(786\) 7583.95 0.344161
\(787\) 40117.2 1.81706 0.908529 0.417822i \(-0.137206\pi\)
0.908529 + 0.417822i \(0.137206\pi\)
\(788\) −13213.4 −0.597345
\(789\) 20516.0 0.925715
\(790\) 8473.45 0.381610
\(791\) 0 0
\(792\) −2678.96 −0.120193
\(793\) 10237.4 0.458437
\(794\) 11650.2 0.520718
\(795\) −22004.9 −0.981677
\(796\) 9693.28 0.431620
\(797\) 2326.75 0.103410 0.0517049 0.998662i \(-0.483534\pi\)
0.0517049 + 0.998662i \(0.483534\pi\)
\(798\) 0 0
\(799\) −13420.9 −0.594241
\(800\) 3609.41 0.159515
\(801\) 15987.6 0.705238
\(802\) −18723.5 −0.824377
\(803\) −5021.77 −0.220690
\(804\) −1200.67 −0.0526673
\(805\) 0 0
\(806\) −8777.61 −0.383596
\(807\) 7707.75 0.336215
\(808\) −7129.88 −0.310431
\(809\) 24592.8 1.06877 0.534386 0.845241i \(-0.320543\pi\)
0.534386 + 0.845241i \(0.320543\pi\)
\(810\) 7809.49 0.338762
\(811\) −14087.1 −0.609944 −0.304972 0.952361i \(-0.598647\pi\)
−0.304972 + 0.952361i \(0.598647\pi\)
\(812\) 0 0
\(813\) 18314.9 0.790077
\(814\) −11090.4 −0.477542
\(815\) −29345.1 −1.26124
\(816\) −5279.12 −0.226478
\(817\) −41444.5 −1.77473
\(818\) 17656.1 0.754683
\(819\) 0 0
\(820\) −26112.8 −1.11207
\(821\) −42907.0 −1.82395 −0.911976 0.410244i \(-0.865443\pi\)
−0.911976 + 0.410244i \(0.865443\pi\)
\(822\) 2996.18 0.127133
\(823\) −10009.2 −0.423936 −0.211968 0.977277i \(-0.567987\pi\)
−0.211968 + 0.977277i \(0.567987\pi\)
\(824\) 11662.1 0.493044
\(825\) 4624.33 0.195150
\(826\) 0 0
\(827\) 12764.8 0.536730 0.268365 0.963317i \(-0.413517\pi\)
0.268365 + 0.963317i \(0.413517\pi\)
\(828\) −1897.43 −0.0796381
\(829\) −15637.5 −0.655141 −0.327571 0.944827i \(-0.606230\pi\)
−0.327571 + 0.944827i \(0.606230\pi\)
\(830\) −16367.1 −0.684470
\(831\) 5375.25 0.224387
\(832\) −3213.57 −0.133907
\(833\) 0 0
\(834\) 10656.5 0.442450
\(835\) −7892.51 −0.327104
\(836\) −5520.94 −0.228404
\(837\) −10510.7 −0.434053
\(838\) −18880.3 −0.778291
\(839\) 4670.47 0.192184 0.0960920 0.995372i \(-0.469366\pi\)
0.0960920 + 0.995372i \(0.469366\pi\)
\(840\) 0 0
\(841\) −20149.9 −0.826190
\(842\) −16044.4 −0.656681
\(843\) −14727.4 −0.601705
\(844\) −9453.19 −0.385536
\(845\) 5000.13 0.203562
\(846\) −4236.57 −0.172171
\(847\) 0 0
\(848\) −9042.20 −0.366168
\(849\) −16701.5 −0.675139
\(850\) −29477.7 −1.18950
\(851\) −7855.05 −0.316413
\(852\) 4535.71 0.182383
\(853\) −31330.0 −1.25758 −0.628792 0.777574i \(-0.716450\pi\)
−0.628792 + 0.777574i \(0.716450\pi\)
\(854\) 0 0
\(855\) 27035.5 1.08140
\(856\) 5842.43 0.233283
\(857\) −21364.6 −0.851575 −0.425787 0.904823i \(-0.640003\pi\)
−0.425787 + 0.904823i \(0.640003\pi\)
\(858\) −4117.18 −0.163821
\(859\) 26075.6 1.03572 0.517862 0.855464i \(-0.326728\pi\)
0.517862 + 0.855464i \(0.326728\pi\)
\(860\) 30072.6 1.19241
\(861\) 0 0
\(862\) −31821.3 −1.25735
\(863\) 3264.55 0.128768 0.0643839 0.997925i \(-0.479492\pi\)
0.0643839 + 0.997925i \(0.479492\pi\)
\(864\) −3848.07 −0.151521
\(865\) 2319.70 0.0911815
\(866\) −8196.02 −0.321607
\(867\) 30708.7 1.20291
\(868\) 0 0
\(869\) 4460.94 0.174139
\(870\) −5070.26 −0.197584
\(871\) 5969.09 0.232210
\(872\) 13247.3 0.514461
\(873\) −22078.2 −0.855937
\(874\) −3910.33 −0.151337
\(875\) 0 0
\(876\) −3123.81 −0.120484
\(877\) 18208.5 0.701091 0.350546 0.936546i \(-0.385996\pi\)
0.350546 + 0.936546i \(0.385996\pi\)
\(878\) 16368.3 0.629161
\(879\) −21089.0 −0.809229
\(880\) 4006.06 0.153459
\(881\) 27778.9 1.06231 0.531154 0.847275i \(-0.321758\pi\)
0.531154 + 0.847275i \(0.321758\pi\)
\(882\) 0 0
\(883\) 3117.19 0.118801 0.0594007 0.998234i \(-0.481081\pi\)
0.0594007 + 0.998234i \(0.481081\pi\)
\(884\) 26244.9 0.998543
\(885\) −13401.2 −0.509013
\(886\) 21069.1 0.798904
\(887\) 10267.6 0.388671 0.194335 0.980935i \(-0.437745\pi\)
0.194335 + 0.980935i \(0.437745\pi\)
\(888\) −6898.84 −0.260709
\(889\) 0 0
\(890\) −23907.6 −0.900433
\(891\) 4111.39 0.154587
\(892\) 17090.1 0.641502
\(893\) −8730.95 −0.327178
\(894\) 10976.5 0.410635
\(895\) −43513.4 −1.62513
\(896\) 0 0
\(897\) −2916.09 −0.108545
\(898\) −29927.8 −1.11214
\(899\) −5690.80 −0.211122
\(900\) −9305.20 −0.344637
\(901\) 73846.8 2.73051
\(902\) −13747.4 −0.507470
\(903\) 0 0
\(904\) 5004.98 0.184141
\(905\) 9369.00 0.344128
\(906\) 10322.3 0.378517
\(907\) −42982.9 −1.57356 −0.786782 0.617231i \(-0.788255\pi\)
−0.786782 + 0.617231i \(0.788255\pi\)
\(908\) −9252.14 −0.338153
\(909\) 18381.1 0.670695
\(910\) 0 0
\(911\) 41425.0 1.50656 0.753278 0.657702i \(-0.228471\pi\)
0.753278 + 0.657702i \(0.228471\pi\)
\(912\) −3434.32 −0.124695
\(913\) −8616.64 −0.312343
\(914\) −17800.8 −0.644201
\(915\) −7938.66 −0.286824
\(916\) −27429.6 −0.989410
\(917\) 0 0
\(918\) 31426.8 1.12989
\(919\) 40128.8 1.44040 0.720200 0.693766i \(-0.244050\pi\)
0.720200 + 0.693766i \(0.244050\pi\)
\(920\) 2837.39 0.101680
\(921\) −11958.7 −0.427852
\(922\) −25793.6 −0.921332
\(923\) −22549.1 −0.804129
\(924\) 0 0
\(925\) −38521.9 −1.36929
\(926\) −27620.4 −0.980197
\(927\) −30065.3 −1.06523
\(928\) −2083.46 −0.0736992
\(929\) −36983.1 −1.30611 −0.653055 0.757311i \(-0.726513\pi\)
−0.653055 + 0.757311i \(0.726513\pi\)
\(930\) 6806.65 0.239999
\(931\) 0 0
\(932\) 20531.2 0.721590
\(933\) 2585.87 0.0907370
\(934\) −30558.2 −1.07055
\(935\) −32717.1 −1.14435
\(936\) 8284.70 0.289310
\(937\) 41169.1 1.43536 0.717682 0.696371i \(-0.245203\pi\)
0.717682 + 0.696371i \(0.245203\pi\)
\(938\) 0 0
\(939\) −23967.9 −0.832975
\(940\) 6335.29 0.219824
\(941\) 10.1220 0.000350658 0 0.000175329 1.00000i \(-0.499944\pi\)
0.000175329 1.00000i \(0.499944\pi\)
\(942\) −16703.3 −0.577731
\(943\) −9736.91 −0.336243
\(944\) −5506.79 −0.189863
\(945\) 0 0
\(946\) 15832.1 0.544128
\(947\) −1271.29 −0.0436233 −0.0218117 0.999762i \(-0.506943\pi\)
−0.0218117 + 0.999762i \(0.506943\pi\)
\(948\) 2774.94 0.0950696
\(949\) 15529.9 0.531212
\(950\) −19176.6 −0.654918
\(951\) −2398.58 −0.0817869
\(952\) 0 0
\(953\) 16604.4 0.564396 0.282198 0.959356i \(-0.408936\pi\)
0.282198 + 0.959356i \(0.408936\pi\)
\(954\) 23311.1 0.791116
\(955\) 16766.7 0.568122
\(956\) −12100.7 −0.409378
\(957\) −2669.29 −0.0901631
\(958\) 30998.5 1.04542
\(959\) 0 0
\(960\) 2491.98 0.0837796
\(961\) −22151.3 −0.743557
\(962\) 34297.3 1.14947
\(963\) −15062.0 −0.504015
\(964\) 14505.6 0.484641
\(965\) 49622.0 1.65532
\(966\) 0 0
\(967\) −759.098 −0.0252440 −0.0126220 0.999920i \(-0.504018\pi\)
−0.0126220 + 0.999920i \(0.504018\pi\)
\(968\) −8538.96 −0.283525
\(969\) 28047.7 0.929848
\(970\) 33015.3 1.09284
\(971\) 48924.8 1.61696 0.808481 0.588522i \(-0.200290\pi\)
0.808481 + 0.588522i \(0.200290\pi\)
\(972\) 15544.7 0.512961
\(973\) 0 0
\(974\) −24965.7 −0.821305
\(975\) −14300.8 −0.469735
\(976\) −3262.13 −0.106986
\(977\) −53353.5 −1.74711 −0.873556 0.486724i \(-0.838192\pi\)
−0.873556 + 0.486724i \(0.838192\pi\)
\(978\) −9610.14 −0.314211
\(979\) −12586.4 −0.410893
\(980\) 0 0
\(981\) −34152.0 −1.11151
\(982\) 29662.6 0.963922
\(983\) 24632.2 0.799233 0.399617 0.916682i \(-0.369143\pi\)
0.399617 + 0.916682i \(0.369143\pi\)
\(984\) −8551.61 −0.277048
\(985\) −50939.5 −1.64779
\(986\) 17015.4 0.549575
\(987\) 0 0
\(988\) 17073.5 0.549779
\(989\) 11213.4 0.360532
\(990\) −10327.8 −0.331554
\(991\) 42448.6 1.36067 0.680336 0.732901i \(-0.261834\pi\)
0.680336 + 0.732901i \(0.261834\pi\)
\(992\) 2796.97 0.0895202
\(993\) −9094.84 −0.290651
\(994\) 0 0
\(995\) 37369.0 1.19063
\(996\) −5360.01 −0.170520
\(997\) 7135.08 0.226650 0.113325 0.993558i \(-0.463850\pi\)
0.113325 + 0.993558i \(0.463850\pi\)
\(998\) 5731.72 0.181798
\(999\) 41069.0 1.30067
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.l.1.4 5
7.6 odd 2 322.4.a.h.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.a.h.1.2 5 7.6 odd 2
2254.4.a.l.1.4 5 1.1 even 1 trivial