Properties

Label 2254.4.a.l.1.1
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 92x^{3} - 28x^{2} + 1593x - 1782 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-7.39309\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -8.39309 q^{3} +4.00000 q^{4} +1.25007 q^{5} -16.7862 q^{6} +8.00000 q^{8} +43.4440 q^{9} +2.50013 q^{10} +34.5209 q^{11} -33.5724 q^{12} +19.9510 q^{13} -10.4919 q^{15} +16.0000 q^{16} -12.2007 q^{17} +86.8880 q^{18} -149.358 q^{19} +5.00026 q^{20} +69.0418 q^{22} +23.0000 q^{23} -67.1447 q^{24} -123.437 q^{25} +39.9019 q^{26} -138.016 q^{27} +38.5535 q^{29} -20.9838 q^{30} -71.0694 q^{31} +32.0000 q^{32} -289.737 q^{33} -24.4014 q^{34} +173.776 q^{36} +82.1755 q^{37} -298.715 q^{38} -167.450 q^{39} +10.0005 q^{40} +217.469 q^{41} -393.106 q^{43} +138.084 q^{44} +54.3078 q^{45} +46.0000 q^{46} +504.758 q^{47} -134.289 q^{48} -246.875 q^{50} +102.402 q^{51} +79.8038 q^{52} -671.499 q^{53} -276.032 q^{54} +43.1534 q^{55} +1253.57 q^{57} +77.1070 q^{58} +16.0190 q^{59} -41.9677 q^{60} +507.596 q^{61} -142.139 q^{62} +64.0000 q^{64} +24.9400 q^{65} -579.474 q^{66} +398.674 q^{67} -48.8028 q^{68} -193.041 q^{69} +93.7266 q^{71} +347.552 q^{72} +15.9904 q^{73} +164.351 q^{74} +1036.02 q^{75} -597.431 q^{76} -334.900 q^{78} +592.216 q^{79} +20.0010 q^{80} -14.6075 q^{81} +434.937 q^{82} -760.409 q^{83} -15.2517 q^{85} -786.212 q^{86} -323.583 q^{87} +276.167 q^{88} +852.993 q^{89} +108.616 q^{90} +92.0000 q^{92} +596.492 q^{93} +1009.52 q^{94} -186.707 q^{95} -268.579 q^{96} +131.784 q^{97} +1499.73 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 10 q^{2} - 5 q^{3} + 20 q^{4} - 22 q^{5} - 10 q^{6} + 40 q^{8} + 54 q^{9} - 44 q^{10} + 42 q^{11} - 20 q^{12} - 107 q^{13} + 122 q^{15} + 80 q^{16} - 218 q^{17} + 108 q^{18} - 194 q^{19} - 88 q^{20}+ \cdots - 2616 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −8.39309 −1.61525 −0.807626 0.589696i \(-0.799248\pi\)
−0.807626 + 0.589696i \(0.799248\pi\)
\(4\) 4.00000 0.500000
\(5\) 1.25007 0.111809 0.0559046 0.998436i \(-0.482196\pi\)
0.0559046 + 0.998436i \(0.482196\pi\)
\(6\) −16.7862 −1.14216
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 43.4440 1.60904
\(10\) 2.50013 0.0790611
\(11\) 34.5209 0.946222 0.473111 0.881003i \(-0.343131\pi\)
0.473111 + 0.881003i \(0.343131\pi\)
\(12\) −33.5724 −0.807626
\(13\) 19.9510 0.425646 0.212823 0.977091i \(-0.431734\pi\)
0.212823 + 0.977091i \(0.431734\pi\)
\(14\) 0 0
\(15\) −10.4919 −0.180600
\(16\) 16.0000 0.250000
\(17\) −12.2007 −0.174065 −0.0870324 0.996205i \(-0.527738\pi\)
−0.0870324 + 0.996205i \(0.527738\pi\)
\(18\) 86.8880 1.13776
\(19\) −149.358 −1.80342 −0.901711 0.432340i \(-0.857688\pi\)
−0.901711 + 0.432340i \(0.857688\pi\)
\(20\) 5.00026 0.0559046
\(21\) 0 0
\(22\) 69.0418 0.669080
\(23\) 23.0000 0.208514
\(24\) −67.1447 −0.571078
\(25\) −123.437 −0.987499
\(26\) 39.9019 0.300977
\(27\) −138.016 −0.983747
\(28\) 0 0
\(29\) 38.5535 0.246869 0.123435 0.992353i \(-0.460609\pi\)
0.123435 + 0.992353i \(0.460609\pi\)
\(30\) −20.9838 −0.127704
\(31\) −71.0694 −0.411756 −0.205878 0.978578i \(-0.566005\pi\)
−0.205878 + 0.978578i \(0.566005\pi\)
\(32\) 32.0000 0.176777
\(33\) −289.737 −1.52839
\(34\) −24.4014 −0.123082
\(35\) 0 0
\(36\) 173.776 0.804518
\(37\) 82.1755 0.365123 0.182562 0.983194i \(-0.441561\pi\)
0.182562 + 0.983194i \(0.441561\pi\)
\(38\) −298.715 −1.27521
\(39\) −167.450 −0.687526
\(40\) 10.0005 0.0395305
\(41\) 217.469 0.828363 0.414182 0.910194i \(-0.364068\pi\)
0.414182 + 0.910194i \(0.364068\pi\)
\(42\) 0 0
\(43\) −393.106 −1.39414 −0.697071 0.717002i \(-0.745514\pi\)
−0.697071 + 0.717002i \(0.745514\pi\)
\(44\) 138.084 0.473111
\(45\) 54.3078 0.179905
\(46\) 46.0000 0.147442
\(47\) 504.758 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(48\) −134.289 −0.403813
\(49\) 0 0
\(50\) −246.875 −0.698267
\(51\) 102.402 0.281159
\(52\) 79.8038 0.212823
\(53\) −671.499 −1.74033 −0.870165 0.492761i \(-0.835988\pi\)
−0.870165 + 0.492761i \(0.835988\pi\)
\(54\) −276.032 −0.695614
\(55\) 43.1534 0.105796
\(56\) 0 0
\(57\) 1253.57 2.91298
\(58\) 77.1070 0.174563
\(59\) 16.0190 0.0353474 0.0176737 0.999844i \(-0.494374\pi\)
0.0176737 + 0.999844i \(0.494374\pi\)
\(60\) −41.9677 −0.0903000
\(61\) 507.596 1.06543 0.532713 0.846296i \(-0.321173\pi\)
0.532713 + 0.846296i \(0.321173\pi\)
\(62\) −142.139 −0.291156
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 24.9400 0.0475912
\(66\) −579.474 −1.08073
\(67\) 398.674 0.726953 0.363476 0.931603i \(-0.381590\pi\)
0.363476 + 0.931603i \(0.381590\pi\)
\(68\) −48.8028 −0.0870324
\(69\) −193.041 −0.336803
\(70\) 0 0
\(71\) 93.7266 0.156666 0.0783331 0.996927i \(-0.475040\pi\)
0.0783331 + 0.996927i \(0.475040\pi\)
\(72\) 347.552 0.568880
\(73\) 15.9904 0.0256374 0.0128187 0.999918i \(-0.495920\pi\)
0.0128187 + 0.999918i \(0.495920\pi\)
\(74\) 164.351 0.258181
\(75\) 1036.02 1.59506
\(76\) −597.431 −0.901711
\(77\) 0 0
\(78\) −334.900 −0.486154
\(79\) 592.216 0.843411 0.421705 0.906733i \(-0.361432\pi\)
0.421705 + 0.906733i \(0.361432\pi\)
\(80\) 20.0010 0.0279523
\(81\) −14.6075 −0.0200377
\(82\) 434.937 0.585741
\(83\) −760.409 −1.00561 −0.502806 0.864399i \(-0.667699\pi\)
−0.502806 + 0.864399i \(0.667699\pi\)
\(84\) 0 0
\(85\) −15.2517 −0.0194621
\(86\) −786.212 −0.985808
\(87\) −323.583 −0.398756
\(88\) 276.167 0.334540
\(89\) 852.993 1.01592 0.507961 0.861380i \(-0.330399\pi\)
0.507961 + 0.861380i \(0.330399\pi\)
\(90\) 108.616 0.127212
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 596.492 0.665090
\(94\) 1009.52 1.10770
\(95\) −186.707 −0.201639
\(96\) −268.579 −0.285539
\(97\) 131.784 0.137945 0.0689726 0.997619i \(-0.478028\pi\)
0.0689726 + 0.997619i \(0.478028\pi\)
\(98\) 0 0
\(99\) 1499.73 1.52251
\(100\) −493.749 −0.493749
\(101\) 521.431 0.513706 0.256853 0.966451i \(-0.417314\pi\)
0.256853 + 0.966451i \(0.417314\pi\)
\(102\) 204.803 0.198809
\(103\) −1437.32 −1.37499 −0.687493 0.726191i \(-0.741289\pi\)
−0.687493 + 0.726191i \(0.741289\pi\)
\(104\) 159.608 0.150489
\(105\) 0 0
\(106\) −1343.00 −1.23060
\(107\) 978.389 0.883967 0.441984 0.897023i \(-0.354275\pi\)
0.441984 + 0.897023i \(0.354275\pi\)
\(108\) −552.064 −0.491874
\(109\) −1783.57 −1.56729 −0.783646 0.621208i \(-0.786642\pi\)
−0.783646 + 0.621208i \(0.786642\pi\)
\(110\) 86.3068 0.0748094
\(111\) −689.706 −0.589766
\(112\) 0 0
\(113\) 1587.95 1.32196 0.660981 0.750403i \(-0.270140\pi\)
0.660981 + 0.750403i \(0.270140\pi\)
\(114\) 2507.15 2.05979
\(115\) 28.7515 0.0233138
\(116\) 154.214 0.123435
\(117\) 866.749 0.684880
\(118\) 32.0380 0.0249944
\(119\) 0 0
\(120\) −83.9353 −0.0638518
\(121\) −139.307 −0.104663
\(122\) 1015.19 0.753370
\(123\) −1825.23 −1.33801
\(124\) −284.278 −0.205878
\(125\) −310.563 −0.222221
\(126\) 0 0
\(127\) −2287.72 −1.59844 −0.799222 0.601036i \(-0.794755\pi\)
−0.799222 + 0.601036i \(0.794755\pi\)
\(128\) 128.000 0.0883883
\(129\) 3299.38 2.25189
\(130\) 49.8800 0.0336521
\(131\) −898.206 −0.599058 −0.299529 0.954087i \(-0.596830\pi\)
−0.299529 + 0.954087i \(0.596830\pi\)
\(132\) −1158.95 −0.764193
\(133\) 0 0
\(134\) 797.349 0.514033
\(135\) −172.529 −0.109992
\(136\) −97.6056 −0.0615412
\(137\) 2301.27 1.43511 0.717557 0.696500i \(-0.245260\pi\)
0.717557 + 0.696500i \(0.245260\pi\)
\(138\) −386.082 −0.238156
\(139\) −778.242 −0.474889 −0.237445 0.971401i \(-0.576310\pi\)
−0.237445 + 0.971401i \(0.576310\pi\)
\(140\) 0 0
\(141\) −4236.48 −2.53032
\(142\) 187.453 0.110780
\(143\) 688.725 0.402756
\(144\) 695.104 0.402259
\(145\) 48.1944 0.0276023
\(146\) 31.9808 0.0181284
\(147\) 0 0
\(148\) 328.702 0.182562
\(149\) −1694.76 −0.931811 −0.465906 0.884834i \(-0.654271\pi\)
−0.465906 + 0.884834i \(0.654271\pi\)
\(150\) 2072.04 1.12788
\(151\) −2385.34 −1.28554 −0.642769 0.766060i \(-0.722214\pi\)
−0.642769 + 0.766060i \(0.722214\pi\)
\(152\) −1194.86 −0.637606
\(153\) −530.047 −0.280077
\(154\) 0 0
\(155\) −88.8414 −0.0460382
\(156\) −669.801 −0.343763
\(157\) −1629.96 −0.828566 −0.414283 0.910148i \(-0.635968\pi\)
−0.414283 + 0.910148i \(0.635968\pi\)
\(158\) 1184.43 0.596381
\(159\) 5635.95 2.81107
\(160\) 40.0021 0.0197653
\(161\) 0 0
\(162\) −29.2150 −0.0141688
\(163\) 1582.27 0.760326 0.380163 0.924920i \(-0.375868\pi\)
0.380163 + 0.924920i \(0.375868\pi\)
\(164\) 869.874 0.414182
\(165\) −362.190 −0.170888
\(166\) −1520.82 −0.711075
\(167\) −126.908 −0.0588048 −0.0294024 0.999568i \(-0.509360\pi\)
−0.0294024 + 0.999568i \(0.509360\pi\)
\(168\) 0 0
\(169\) −1798.96 −0.818825
\(170\) −30.5033 −0.0137618
\(171\) −6488.69 −2.90177
\(172\) −1572.42 −0.697071
\(173\) 2012.99 0.884650 0.442325 0.896855i \(-0.354154\pi\)
0.442325 + 0.896855i \(0.354154\pi\)
\(174\) −647.166 −0.281963
\(175\) 0 0
\(176\) 552.335 0.236556
\(177\) −134.449 −0.0570950
\(178\) 1705.99 0.718365
\(179\) −4013.83 −1.67602 −0.838010 0.545655i \(-0.816281\pi\)
−0.838010 + 0.545655i \(0.816281\pi\)
\(180\) 217.231 0.0899526
\(181\) −151.474 −0.0622042 −0.0311021 0.999516i \(-0.509902\pi\)
−0.0311021 + 0.999516i \(0.509902\pi\)
\(182\) 0 0
\(183\) −4260.30 −1.72093
\(184\) 184.000 0.0737210
\(185\) 102.725 0.0408242
\(186\) 1192.98 0.470290
\(187\) −421.179 −0.164704
\(188\) 2019.03 0.783260
\(189\) 0 0
\(190\) −373.414 −0.142580
\(191\) 378.019 0.143207 0.0716035 0.997433i \(-0.477188\pi\)
0.0716035 + 0.997433i \(0.477188\pi\)
\(192\) −537.158 −0.201906
\(193\) −1548.82 −0.577649 −0.288825 0.957382i \(-0.593264\pi\)
−0.288825 + 0.957382i \(0.593264\pi\)
\(194\) 263.569 0.0975419
\(195\) −209.324 −0.0768717
\(196\) 0 0
\(197\) 1915.98 0.692935 0.346467 0.938062i \(-0.387381\pi\)
0.346467 + 0.938062i \(0.387381\pi\)
\(198\) 2999.45 1.07657
\(199\) −1337.74 −0.476532 −0.238266 0.971200i \(-0.576579\pi\)
−0.238266 + 0.971200i \(0.576579\pi\)
\(200\) −987.499 −0.349134
\(201\) −3346.11 −1.17421
\(202\) 1042.86 0.363245
\(203\) 0 0
\(204\) 409.606 0.140579
\(205\) 271.850 0.0926187
\(206\) −2874.65 −0.972262
\(207\) 999.212 0.335507
\(208\) 319.215 0.106412
\(209\) −5155.96 −1.70644
\(210\) 0 0
\(211\) −1366.24 −0.445764 −0.222882 0.974845i \(-0.571546\pi\)
−0.222882 + 0.974845i \(0.571546\pi\)
\(212\) −2686.00 −0.870165
\(213\) −786.656 −0.253055
\(214\) 1956.78 0.625059
\(215\) −491.409 −0.155878
\(216\) −1104.13 −0.347807
\(217\) 0 0
\(218\) −3567.14 −1.10824
\(219\) −134.209 −0.0414109
\(220\) 172.614 0.0528982
\(221\) −243.416 −0.0740901
\(222\) −1379.41 −0.417028
\(223\) −5804.62 −1.74308 −0.871538 0.490328i \(-0.836877\pi\)
−0.871538 + 0.490328i \(0.836877\pi\)
\(224\) 0 0
\(225\) −5362.61 −1.58892
\(226\) 3175.90 0.934768
\(227\) −5574.98 −1.63006 −0.815031 0.579417i \(-0.803280\pi\)
−0.815031 + 0.579417i \(0.803280\pi\)
\(228\) 5014.29 1.45649
\(229\) 1441.32 0.415919 0.207959 0.978137i \(-0.433318\pi\)
0.207959 + 0.978137i \(0.433318\pi\)
\(230\) 57.5030 0.0164854
\(231\) 0 0
\(232\) 308.428 0.0872815
\(233\) −788.176 −0.221610 −0.110805 0.993842i \(-0.535343\pi\)
−0.110805 + 0.993842i \(0.535343\pi\)
\(234\) 1733.50 0.484284
\(235\) 630.980 0.175152
\(236\) 64.0761 0.0176737
\(237\) −4970.52 −1.36232
\(238\) 0 0
\(239\) −703.348 −0.190359 −0.0951796 0.995460i \(-0.530343\pi\)
−0.0951796 + 0.995460i \(0.530343\pi\)
\(240\) −167.871 −0.0451500
\(241\) −4957.65 −1.32510 −0.662552 0.749016i \(-0.730527\pi\)
−0.662552 + 0.749016i \(0.730527\pi\)
\(242\) −278.613 −0.0740080
\(243\) 3849.03 1.01611
\(244\) 2030.38 0.532713
\(245\) 0 0
\(246\) −3650.47 −0.946119
\(247\) −2979.83 −0.767619
\(248\) −568.555 −0.145578
\(249\) 6382.18 1.62432
\(250\) −621.126 −0.157134
\(251\) 2110.00 0.530606 0.265303 0.964165i \(-0.414528\pi\)
0.265303 + 0.964165i \(0.414528\pi\)
\(252\) 0 0
\(253\) 793.981 0.197301
\(254\) −4575.44 −1.13027
\(255\) 128.009 0.0314361
\(256\) 256.000 0.0625000
\(257\) −3980.20 −0.966063 −0.483031 0.875603i \(-0.660464\pi\)
−0.483031 + 0.875603i \(0.660464\pi\)
\(258\) 6598.75 1.59233
\(259\) 0 0
\(260\) 99.7600 0.0237956
\(261\) 1674.92 0.397222
\(262\) −1796.41 −0.423598
\(263\) 2994.29 0.702037 0.351018 0.936369i \(-0.385835\pi\)
0.351018 + 0.936369i \(0.385835\pi\)
\(264\) −2317.90 −0.540366
\(265\) −839.418 −0.194585
\(266\) 0 0
\(267\) −7159.25 −1.64097
\(268\) 1594.70 0.363476
\(269\) 1578.96 0.357883 0.178942 0.983860i \(-0.442733\pi\)
0.178942 + 0.983860i \(0.442733\pi\)
\(270\) −345.058 −0.0777761
\(271\) 2520.34 0.564944 0.282472 0.959276i \(-0.408846\pi\)
0.282472 + 0.959276i \(0.408846\pi\)
\(272\) −195.211 −0.0435162
\(273\) 0 0
\(274\) 4602.54 1.01478
\(275\) −4261.17 −0.934393
\(276\) −772.164 −0.168402
\(277\) 3071.73 0.666290 0.333145 0.942876i \(-0.391890\pi\)
0.333145 + 0.942876i \(0.391890\pi\)
\(278\) −1556.48 −0.335797
\(279\) −3087.54 −0.662531
\(280\) 0 0
\(281\) 3477.45 0.738246 0.369123 0.929380i \(-0.379658\pi\)
0.369123 + 0.929380i \(0.379658\pi\)
\(282\) −8472.96 −1.78921
\(283\) −4496.56 −0.944497 −0.472248 0.881465i \(-0.656557\pi\)
−0.472248 + 0.881465i \(0.656557\pi\)
\(284\) 374.906 0.0783331
\(285\) 1567.05 0.325698
\(286\) 1377.45 0.284791
\(287\) 0 0
\(288\) 1390.21 0.284440
\(289\) −4764.14 −0.969701
\(290\) 96.3889 0.0195178
\(291\) −1106.08 −0.222816
\(292\) 63.9615 0.0128187
\(293\) −991.604 −0.197714 −0.0988568 0.995102i \(-0.531519\pi\)
−0.0988568 + 0.995102i \(0.531519\pi\)
\(294\) 0 0
\(295\) 20.0248 0.00395217
\(296\) 657.404 0.129091
\(297\) −4764.44 −0.930844
\(298\) −3389.51 −0.658890
\(299\) 458.872 0.0887534
\(300\) 4144.08 0.797529
\(301\) 0 0
\(302\) −4770.68 −0.909012
\(303\) −4376.42 −0.829764
\(304\) −2389.72 −0.450855
\(305\) 634.528 0.119124
\(306\) −1060.09 −0.198044
\(307\) 755.726 0.140494 0.0702468 0.997530i \(-0.477621\pi\)
0.0702468 + 0.997530i \(0.477621\pi\)
\(308\) 0 0
\(309\) 12063.6 2.22095
\(310\) −177.683 −0.0325539
\(311\) −6839.74 −1.24709 −0.623547 0.781786i \(-0.714309\pi\)
−0.623547 + 0.781786i \(0.714309\pi\)
\(312\) −1339.60 −0.243077
\(313\) 1051.93 0.189964 0.0949818 0.995479i \(-0.469721\pi\)
0.0949818 + 0.995479i \(0.469721\pi\)
\(314\) −3259.92 −0.585885
\(315\) 0 0
\(316\) 2368.86 0.421705
\(317\) 8346.10 1.47875 0.739375 0.673294i \(-0.235121\pi\)
0.739375 + 0.673294i \(0.235121\pi\)
\(318\) 11271.9 1.98773
\(319\) 1330.90 0.233593
\(320\) 80.0042 0.0139762
\(321\) −8211.71 −1.42783
\(322\) 0 0
\(323\) 1822.27 0.313912
\(324\) −58.4300 −0.0100189
\(325\) −2462.69 −0.420325
\(326\) 3164.54 0.537631
\(327\) 14969.6 2.53157
\(328\) 1739.75 0.292871
\(329\) 0 0
\(330\) −724.381 −0.120836
\(331\) −9846.13 −1.63502 −0.817511 0.575913i \(-0.804647\pi\)
−0.817511 + 0.575913i \(0.804647\pi\)
\(332\) −3041.64 −0.502806
\(333\) 3570.03 0.587497
\(334\) −253.815 −0.0415813
\(335\) 498.369 0.0812800
\(336\) 0 0
\(337\) 5907.09 0.954836 0.477418 0.878676i \(-0.341573\pi\)
0.477418 + 0.878676i \(0.341573\pi\)
\(338\) −3597.92 −0.578997
\(339\) −13327.8 −2.13530
\(340\) −61.0067 −0.00973103
\(341\) −2453.38 −0.389613
\(342\) −12977.4 −2.05186
\(343\) 0 0
\(344\) −3144.85 −0.492904
\(345\) −241.314 −0.0376577
\(346\) 4025.97 0.625542
\(347\) 10316.5 1.59602 0.798011 0.602643i \(-0.205886\pi\)
0.798011 + 0.602643i \(0.205886\pi\)
\(348\) −1294.33 −0.199378
\(349\) −3529.49 −0.541344 −0.270672 0.962672i \(-0.587246\pi\)
−0.270672 + 0.962672i \(0.587246\pi\)
\(350\) 0 0
\(351\) −2753.55 −0.418728
\(352\) 1104.67 0.167270
\(353\) −9742.65 −1.46898 −0.734489 0.678621i \(-0.762578\pi\)
−0.734489 + 0.678621i \(0.762578\pi\)
\(354\) −268.898 −0.0403723
\(355\) 117.164 0.0175167
\(356\) 3411.97 0.507961
\(357\) 0 0
\(358\) −8027.66 −1.18513
\(359\) 901.912 0.132594 0.0662968 0.997800i \(-0.478882\pi\)
0.0662968 + 0.997800i \(0.478882\pi\)
\(360\) 434.463 0.0636061
\(361\) 15448.7 2.25233
\(362\) −302.948 −0.0439850
\(363\) 1169.21 0.169057
\(364\) 0 0
\(365\) 19.9890 0.00286650
\(366\) −8520.60 −1.21688
\(367\) 4791.96 0.681575 0.340788 0.940140i \(-0.389306\pi\)
0.340788 + 0.940140i \(0.389306\pi\)
\(368\) 368.000 0.0521286
\(369\) 9447.70 1.33287
\(370\) 205.449 0.0288671
\(371\) 0 0
\(372\) 2385.97 0.332545
\(373\) −9960.67 −1.38269 −0.691346 0.722524i \(-0.742982\pi\)
−0.691346 + 0.722524i \(0.742982\pi\)
\(374\) −842.358 −0.116463
\(375\) 2606.58 0.358942
\(376\) 4038.06 0.553849
\(377\) 769.180 0.105079
\(378\) 0 0
\(379\) −13945.2 −1.89002 −0.945008 0.327047i \(-0.893946\pi\)
−0.945008 + 0.327047i \(0.893946\pi\)
\(380\) −746.828 −0.100820
\(381\) 19201.0 2.58189
\(382\) 756.039 0.101263
\(383\) 3973.16 0.530076 0.265038 0.964238i \(-0.414616\pi\)
0.265038 + 0.964238i \(0.414616\pi\)
\(384\) −1074.32 −0.142769
\(385\) 0 0
\(386\) −3097.63 −0.408460
\(387\) −17078.1 −2.24323
\(388\) 527.137 0.0689726
\(389\) −10529.6 −1.37242 −0.686210 0.727404i \(-0.740727\pi\)
−0.686210 + 0.727404i \(0.740727\pi\)
\(390\) −418.648 −0.0543565
\(391\) −280.616 −0.0362950
\(392\) 0 0
\(393\) 7538.73 0.967630
\(394\) 3831.97 0.489979
\(395\) 740.308 0.0943011
\(396\) 5998.90 0.761253
\(397\) −1596.09 −0.201777 −0.100888 0.994898i \(-0.532169\pi\)
−0.100888 + 0.994898i \(0.532169\pi\)
\(398\) −2675.48 −0.336959
\(399\) 0 0
\(400\) −1975.00 −0.246875
\(401\) 5269.53 0.656229 0.328114 0.944638i \(-0.393587\pi\)
0.328114 + 0.944638i \(0.393587\pi\)
\(402\) −6692.22 −0.830293
\(403\) −1417.90 −0.175262
\(404\) 2085.72 0.256853
\(405\) −18.2603 −0.00224040
\(406\) 0 0
\(407\) 2836.77 0.345488
\(408\) 819.212 0.0994045
\(409\) 109.202 0.0132022 0.00660109 0.999978i \(-0.497899\pi\)
0.00660109 + 0.999978i \(0.497899\pi\)
\(410\) 543.700 0.0654913
\(411\) −19314.7 −2.31807
\(412\) −5749.29 −0.687493
\(413\) 0 0
\(414\) 1998.42 0.237240
\(415\) −950.561 −0.112437
\(416\) 638.431 0.0752443
\(417\) 6531.85 0.767065
\(418\) −10311.9 −1.20663
\(419\) 11287.2 1.31602 0.658012 0.753007i \(-0.271398\pi\)
0.658012 + 0.753007i \(0.271398\pi\)
\(420\) 0 0
\(421\) 9146.41 1.05883 0.529416 0.848362i \(-0.322411\pi\)
0.529416 + 0.848362i \(0.322411\pi\)
\(422\) −2732.49 −0.315203
\(423\) 21928.7 2.52059
\(424\) −5371.99 −0.615299
\(425\) 1506.02 0.171889
\(426\) −1573.31 −0.178937
\(427\) 0 0
\(428\) 3913.56 0.441984
\(429\) −5780.54 −0.650552
\(430\) −982.817 −0.110222
\(431\) 6053.67 0.676554 0.338277 0.941047i \(-0.390156\pi\)
0.338277 + 0.941047i \(0.390156\pi\)
\(432\) −2208.25 −0.245937
\(433\) −7890.31 −0.875714 −0.437857 0.899045i \(-0.644262\pi\)
−0.437857 + 0.899045i \(0.644262\pi\)
\(434\) 0 0
\(435\) −404.500 −0.0445846
\(436\) −7134.27 −0.783646
\(437\) −3435.23 −0.376039
\(438\) −268.417 −0.0292819
\(439\) −16943.5 −1.84207 −0.921033 0.389484i \(-0.872653\pi\)
−0.921033 + 0.389484i \(0.872653\pi\)
\(440\) 345.227 0.0374047
\(441\) 0 0
\(442\) −486.831 −0.0523896
\(443\) −7145.24 −0.766322 −0.383161 0.923682i \(-0.625165\pi\)
−0.383161 + 0.923682i \(0.625165\pi\)
\(444\) −2758.83 −0.294883
\(445\) 1066.30 0.113589
\(446\) −11609.2 −1.23254
\(447\) 14224.3 1.50511
\(448\) 0 0
\(449\) −7130.35 −0.749448 −0.374724 0.927136i \(-0.622263\pi\)
−0.374724 + 0.927136i \(0.622263\pi\)
\(450\) −10725.2 −1.12354
\(451\) 7507.21 0.783816
\(452\) 6351.79 0.660981
\(453\) 20020.4 2.07647
\(454\) −11150.0 −1.15263
\(455\) 0 0
\(456\) 10028.6 1.02989
\(457\) −10782.0 −1.10363 −0.551817 0.833965i \(-0.686065\pi\)
−0.551817 + 0.833965i \(0.686065\pi\)
\(458\) 2882.65 0.294099
\(459\) 1683.89 0.171236
\(460\) 115.006 0.0116569
\(461\) −13766.4 −1.39081 −0.695405 0.718618i \(-0.744775\pi\)
−0.695405 + 0.718618i \(0.744775\pi\)
\(462\) 0 0
\(463\) −7453.28 −0.748128 −0.374064 0.927403i \(-0.622036\pi\)
−0.374064 + 0.927403i \(0.622036\pi\)
\(464\) 616.856 0.0617173
\(465\) 745.654 0.0743632
\(466\) −1576.35 −0.156702
\(467\) −4411.82 −0.437162 −0.218581 0.975819i \(-0.570143\pi\)
−0.218581 + 0.975819i \(0.570143\pi\)
\(468\) 3467.00 0.342440
\(469\) 0 0
\(470\) 1261.96 0.123851
\(471\) 13680.4 1.33834
\(472\) 128.152 0.0124972
\(473\) −13570.4 −1.31917
\(474\) −9941.04 −0.963306
\(475\) 18436.3 1.78088
\(476\) 0 0
\(477\) −29172.6 −2.80025
\(478\) −1406.70 −0.134604
\(479\) −9812.08 −0.935961 −0.467981 0.883739i \(-0.655018\pi\)
−0.467981 + 0.883739i \(0.655018\pi\)
\(480\) −335.741 −0.0319259
\(481\) 1639.48 0.155413
\(482\) −9915.30 −0.936990
\(483\) 0 0
\(484\) −557.226 −0.0523316
\(485\) 164.739 0.0154235
\(486\) 7698.06 0.718501
\(487\) −8594.81 −0.799729 −0.399865 0.916574i \(-0.630943\pi\)
−0.399865 + 0.916574i \(0.630943\pi\)
\(488\) 4060.77 0.376685
\(489\) −13280.2 −1.22812
\(490\) 0 0
\(491\) −6523.36 −0.599583 −0.299792 0.954005i \(-0.596917\pi\)
−0.299792 + 0.954005i \(0.596917\pi\)
\(492\) −7300.94 −0.669007
\(493\) −470.380 −0.0429713
\(494\) −5959.66 −0.542789
\(495\) 1874.76 0.170230
\(496\) −1137.11 −0.102939
\(497\) 0 0
\(498\) 12764.4 1.14856
\(499\) −9190.98 −0.824539 −0.412270 0.911062i \(-0.635264\pi\)
−0.412270 + 0.911062i \(0.635264\pi\)
\(500\) −1242.25 −0.111110
\(501\) 1065.15 0.0949846
\(502\) 4220.01 0.375195
\(503\) −6508.34 −0.576924 −0.288462 0.957491i \(-0.593144\pi\)
−0.288462 + 0.957491i \(0.593144\pi\)
\(504\) 0 0
\(505\) 651.822 0.0574371
\(506\) 1587.96 0.139513
\(507\) 15098.8 1.32261
\(508\) −9150.88 −0.799222
\(509\) −6925.71 −0.603098 −0.301549 0.953451i \(-0.597504\pi\)
−0.301549 + 0.953451i \(0.597504\pi\)
\(510\) 256.017 0.0222287
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 20613.7 1.77411
\(514\) −7960.40 −0.683110
\(515\) −1796.75 −0.153736
\(516\) 13197.5 1.12595
\(517\) 17424.7 1.48228
\(518\) 0 0
\(519\) −16895.2 −1.42893
\(520\) 199.520 0.0168260
\(521\) 7987.54 0.671671 0.335835 0.941921i \(-0.390981\pi\)
0.335835 + 0.941921i \(0.390981\pi\)
\(522\) 3349.84 0.280878
\(523\) 15046.6 1.25801 0.629006 0.777400i \(-0.283462\pi\)
0.629006 + 0.777400i \(0.283462\pi\)
\(524\) −3592.83 −0.299529
\(525\) 0 0
\(526\) 5988.58 0.496415
\(527\) 867.096 0.0716723
\(528\) −4635.79 −0.382097
\(529\) 529.000 0.0434783
\(530\) −1678.84 −0.137592
\(531\) 695.930 0.0568753
\(532\) 0 0
\(533\) 4338.71 0.352590
\(534\) −14318.5 −1.16034
\(535\) 1223.05 0.0988357
\(536\) 3189.39 0.257017
\(537\) 33688.4 2.70719
\(538\) 3157.91 0.253062
\(539\) 0 0
\(540\) −690.116 −0.0549960
\(541\) 17694.0 1.40615 0.703074 0.711117i \(-0.251810\pi\)
0.703074 + 0.711117i \(0.251810\pi\)
\(542\) 5040.68 0.399476
\(543\) 1271.33 0.100475
\(544\) −390.422 −0.0307706
\(545\) −2229.58 −0.175238
\(546\) 0 0
\(547\) −14053.9 −1.09854 −0.549270 0.835645i \(-0.685094\pi\)
−0.549270 + 0.835645i \(0.685094\pi\)
\(548\) 9205.07 0.717557
\(549\) 22052.0 1.71431
\(550\) −8522.34 −0.660716
\(551\) −5758.27 −0.445209
\(552\) −1544.33 −0.119078
\(553\) 0 0
\(554\) 6143.46 0.471138
\(555\) −862.178 −0.0659413
\(556\) −3112.97 −0.237445
\(557\) −9700.89 −0.737953 −0.368977 0.929439i \(-0.620292\pi\)
−0.368977 + 0.929439i \(0.620292\pi\)
\(558\) −6175.08 −0.468480
\(559\) −7842.85 −0.593412
\(560\) 0 0
\(561\) 3534.99 0.266038
\(562\) 6954.90 0.522019
\(563\) −16195.9 −1.21239 −0.606194 0.795317i \(-0.707305\pi\)
−0.606194 + 0.795317i \(0.707305\pi\)
\(564\) −16945.9 −1.26516
\(565\) 1985.04 0.147808
\(566\) −8993.12 −0.667860
\(567\) 0 0
\(568\) 749.813 0.0553899
\(569\) 10736.0 0.790993 0.395496 0.918468i \(-0.370573\pi\)
0.395496 + 0.918468i \(0.370573\pi\)
\(570\) 3134.10 0.230303
\(571\) −2527.76 −0.185260 −0.0926302 0.995701i \(-0.529527\pi\)
−0.0926302 + 0.995701i \(0.529527\pi\)
\(572\) 2754.90 0.201378
\(573\) −3172.75 −0.231315
\(574\) 0 0
\(575\) −2839.06 −0.205908
\(576\) 2780.42 0.201130
\(577\) −17209.1 −1.24164 −0.620819 0.783954i \(-0.713200\pi\)
−0.620819 + 0.783954i \(0.713200\pi\)
\(578\) −9528.29 −0.685682
\(579\) 12999.4 0.933048
\(580\) 192.778 0.0138011
\(581\) 0 0
\(582\) −2212.16 −0.157555
\(583\) −23180.8 −1.64674
\(584\) 127.923 0.00906420
\(585\) 1083.49 0.0765760
\(586\) −1983.21 −0.139805
\(587\) −23203.8 −1.63156 −0.815778 0.578365i \(-0.803691\pi\)
−0.815778 + 0.578365i \(0.803691\pi\)
\(588\) 0 0
\(589\) 10614.8 0.742570
\(590\) 40.0497 0.00279461
\(591\) −16081.0 −1.11926
\(592\) 1314.81 0.0912809
\(593\) −24829.9 −1.71946 −0.859731 0.510748i \(-0.829369\pi\)
−0.859731 + 0.510748i \(0.829369\pi\)
\(594\) −9528.87 −0.658206
\(595\) 0 0
\(596\) −6779.03 −0.465906
\(597\) 11227.8 0.769719
\(598\) 917.744 0.0627581
\(599\) 10861.6 0.740888 0.370444 0.928855i \(-0.379206\pi\)
0.370444 + 0.928855i \(0.379206\pi\)
\(600\) 8288.17 0.563938
\(601\) −8744.86 −0.593528 −0.296764 0.954951i \(-0.595907\pi\)
−0.296764 + 0.954951i \(0.595907\pi\)
\(602\) 0 0
\(603\) 17320.0 1.16969
\(604\) −9541.36 −0.642769
\(605\) −174.142 −0.0117023
\(606\) −8752.83 −0.586732
\(607\) 18776.5 1.25555 0.627773 0.778397i \(-0.283967\pi\)
0.627773 + 0.778397i \(0.283967\pi\)
\(608\) −4779.45 −0.318803
\(609\) 0 0
\(610\) 1269.06 0.0842337
\(611\) 10070.4 0.666784
\(612\) −2120.19 −0.140038
\(613\) −13936.3 −0.918243 −0.459121 0.888374i \(-0.651836\pi\)
−0.459121 + 0.888374i \(0.651836\pi\)
\(614\) 1511.45 0.0993440
\(615\) −2281.66 −0.149602
\(616\) 0 0
\(617\) −20181.9 −1.31685 −0.658423 0.752648i \(-0.728776\pi\)
−0.658423 + 0.752648i \(0.728776\pi\)
\(618\) 24127.2 1.57045
\(619\) 2085.40 0.135411 0.0677056 0.997705i \(-0.478432\pi\)
0.0677056 + 0.997705i \(0.478432\pi\)
\(620\) −355.366 −0.0230191
\(621\) −3174.37 −0.205125
\(622\) −13679.5 −0.881828
\(623\) 0 0
\(624\) −2679.20 −0.171881
\(625\) 15041.4 0.962652
\(626\) 2103.86 0.134325
\(627\) 43274.5 2.75633
\(628\) −6519.84 −0.414283
\(629\) −1002.60 −0.0635552
\(630\) 0 0
\(631\) −8948.77 −0.564572 −0.282286 0.959330i \(-0.591093\pi\)
−0.282286 + 0.959330i \(0.591093\pi\)
\(632\) 4737.72 0.298191
\(633\) 11467.0 0.720021
\(634\) 16692.2 1.04563
\(635\) −2859.80 −0.178721
\(636\) 22543.8 1.40553
\(637\) 0 0
\(638\) 2661.81 0.165175
\(639\) 4071.86 0.252082
\(640\) 160.008 0.00988264
\(641\) 30471.3 1.87760 0.938802 0.344457i \(-0.111937\pi\)
0.938802 + 0.344457i \(0.111937\pi\)
\(642\) −16423.4 −1.00963
\(643\) −13214.1 −0.810441 −0.405220 0.914219i \(-0.632805\pi\)
−0.405220 + 0.914219i \(0.632805\pi\)
\(644\) 0 0
\(645\) 4124.44 0.251782
\(646\) 3644.54 0.221970
\(647\) 4347.80 0.264188 0.132094 0.991237i \(-0.457830\pi\)
0.132094 + 0.991237i \(0.457830\pi\)
\(648\) −116.860 −0.00708441
\(649\) 552.991 0.0334465
\(650\) −4925.39 −0.297215
\(651\) 0 0
\(652\) 6329.09 0.380163
\(653\) 20836.5 1.24869 0.624344 0.781149i \(-0.285366\pi\)
0.624344 + 0.781149i \(0.285366\pi\)
\(654\) 29939.3 1.79009
\(655\) −1122.82 −0.0669803
\(656\) 3479.50 0.207091
\(657\) 694.686 0.0412516
\(658\) 0 0
\(659\) 17281.8 1.02155 0.510775 0.859714i \(-0.329358\pi\)
0.510775 + 0.859714i \(0.329358\pi\)
\(660\) −1448.76 −0.0854439
\(661\) 30113.8 1.77200 0.885998 0.463689i \(-0.153474\pi\)
0.885998 + 0.463689i \(0.153474\pi\)
\(662\) −19692.3 −1.15613
\(663\) 2043.01 0.119674
\(664\) −6083.27 −0.355537
\(665\) 0 0
\(666\) 7140.06 0.415423
\(667\) 886.731 0.0514758
\(668\) −507.630 −0.0294024
\(669\) 48718.7 2.81551
\(670\) 996.738 0.0574737
\(671\) 17522.7 1.00813
\(672\) 0 0
\(673\) 15778.7 0.903748 0.451874 0.892082i \(-0.350756\pi\)
0.451874 + 0.892082i \(0.350756\pi\)
\(674\) 11814.2 0.675171
\(675\) 17036.3 0.971449
\(676\) −7195.84 −0.409413
\(677\) −13864.5 −0.787084 −0.393542 0.919307i \(-0.628750\pi\)
−0.393542 + 0.919307i \(0.628750\pi\)
\(678\) −26655.6 −1.50989
\(679\) 0 0
\(680\) −122.013 −0.00688088
\(681\) 46791.3 2.63296
\(682\) −4906.76 −0.275498
\(683\) −9949.71 −0.557416 −0.278708 0.960376i \(-0.589906\pi\)
−0.278708 + 0.960376i \(0.589906\pi\)
\(684\) −25954.8 −1.45089
\(685\) 2876.74 0.160459
\(686\) 0 0
\(687\) −12097.2 −0.671813
\(688\) −6289.70 −0.348536
\(689\) −13397.0 −0.740765
\(690\) −482.628 −0.0266280
\(691\) 23364.5 1.28629 0.643146 0.765744i \(-0.277629\pi\)
0.643146 + 0.765744i \(0.277629\pi\)
\(692\) 8051.94 0.442325
\(693\) 0 0
\(694\) 20633.0 1.12856
\(695\) −972.853 −0.0530970
\(696\) −2588.67 −0.140982
\(697\) −2653.27 −0.144189
\(698\) −7058.98 −0.382788
\(699\) 6615.23 0.357956
\(700\) 0 0
\(701\) 24204.5 1.30413 0.652063 0.758165i \(-0.273904\pi\)
0.652063 + 0.758165i \(0.273904\pi\)
\(702\) −5507.10 −0.296086
\(703\) −12273.5 −0.658471
\(704\) 2209.34 0.118278
\(705\) −5295.87 −0.282914
\(706\) −19485.3 −1.03872
\(707\) 0 0
\(708\) −537.796 −0.0285475
\(709\) −24636.4 −1.30499 −0.652497 0.757791i \(-0.726279\pi\)
−0.652497 + 0.757791i \(0.726279\pi\)
\(710\) 234.329 0.0123862
\(711\) 25728.2 1.35708
\(712\) 6823.94 0.359183
\(713\) −1634.60 −0.0858571
\(714\) 0 0
\(715\) 860.952 0.0450319
\(716\) −16055.3 −0.838010
\(717\) 5903.27 0.307478
\(718\) 1803.82 0.0937579
\(719\) 23300.2 1.20856 0.604278 0.796774i \(-0.293462\pi\)
0.604278 + 0.796774i \(0.293462\pi\)
\(720\) 868.925 0.0449763
\(721\) 0 0
\(722\) 30897.4 1.59264
\(723\) 41610.0 2.14038
\(724\) −605.896 −0.0311021
\(725\) −4758.94 −0.243783
\(726\) 2338.43 0.119542
\(727\) 7216.97 0.368174 0.184087 0.982910i \(-0.441067\pi\)
0.184087 + 0.982910i \(0.441067\pi\)
\(728\) 0 0
\(729\) −31910.9 −1.62124
\(730\) 39.9780 0.00202692
\(731\) 4796.17 0.242671
\(732\) −17041.2 −0.860465
\(733\) 33652.3 1.69574 0.847868 0.530207i \(-0.177886\pi\)
0.847868 + 0.530207i \(0.177886\pi\)
\(734\) 9583.91 0.481946
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 13762.6 0.687859
\(738\) 18895.4 0.942479
\(739\) 4892.42 0.243533 0.121766 0.992559i \(-0.461144\pi\)
0.121766 + 0.992559i \(0.461144\pi\)
\(740\) 410.899 0.0204121
\(741\) 25010.0 1.23990
\(742\) 0 0
\(743\) 37793.4 1.86609 0.933046 0.359757i \(-0.117141\pi\)
0.933046 + 0.359757i \(0.117141\pi\)
\(744\) 4771.94 0.235145
\(745\) −2118.56 −0.104185
\(746\) −19921.3 −0.977710
\(747\) −33035.2 −1.61807
\(748\) −1684.72 −0.0823520
\(749\) 0 0
\(750\) 5213.17 0.253811
\(751\) −16410.3 −0.797363 −0.398681 0.917090i \(-0.630532\pi\)
−0.398681 + 0.917090i \(0.630532\pi\)
\(752\) 8076.12 0.391630
\(753\) −17709.4 −0.857063
\(754\) 1538.36 0.0743021
\(755\) −2981.83 −0.143735
\(756\) 0 0
\(757\) 556.810 0.0267340 0.0133670 0.999911i \(-0.495745\pi\)
0.0133670 + 0.999911i \(0.495745\pi\)
\(758\) −27890.4 −1.33644
\(759\) −6663.96 −0.318691
\(760\) −1493.66 −0.0712902
\(761\) 28693.1 1.36678 0.683392 0.730051i \(-0.260504\pi\)
0.683392 + 0.730051i \(0.260504\pi\)
\(762\) 38402.1 1.82567
\(763\) 0 0
\(764\) 1512.08 0.0716035
\(765\) −662.593 −0.0313152
\(766\) 7946.32 0.374820
\(767\) 319.595 0.0150455
\(768\) −2148.63 −0.100953
\(769\) 7724.86 0.362244 0.181122 0.983461i \(-0.442027\pi\)
0.181122 + 0.983461i \(0.442027\pi\)
\(770\) 0 0
\(771\) 33406.2 1.56043
\(772\) −6195.27 −0.288825
\(773\) 13661.3 0.635657 0.317829 0.948148i \(-0.397046\pi\)
0.317829 + 0.948148i \(0.397046\pi\)
\(774\) −34156.2 −1.58620
\(775\) 8772.62 0.406609
\(776\) 1054.27 0.0487710
\(777\) 0 0
\(778\) −21059.2 −0.970447
\(779\) −32480.6 −1.49389
\(780\) −837.295 −0.0384359
\(781\) 3235.53 0.148241
\(782\) −561.232 −0.0256645
\(783\) −5321.00 −0.242857
\(784\) 0 0
\(785\) −2037.56 −0.0926414
\(786\) 15077.5 0.684218
\(787\) 15229.2 0.689789 0.344895 0.938641i \(-0.387915\pi\)
0.344895 + 0.938641i \(0.387915\pi\)
\(788\) 7663.93 0.346467
\(789\) −25131.3 −1.13397
\(790\) 1480.62 0.0666810
\(791\) 0 0
\(792\) 11997.8 0.538287
\(793\) 10127.0 0.453495
\(794\) −3192.18 −0.142678
\(795\) 7045.31 0.314304
\(796\) −5350.96 −0.238266
\(797\) 39301.5 1.74671 0.873357 0.487081i \(-0.161938\pi\)
0.873357 + 0.487081i \(0.161938\pi\)
\(798\) 0 0
\(799\) −6158.39 −0.272676
\(800\) −3949.99 −0.174567
\(801\) 37057.4 1.63466
\(802\) 10539.1 0.464024
\(803\) 552.002 0.0242587
\(804\) −13384.4 −0.587105
\(805\) 0 0
\(806\) −2835.81 −0.123929
\(807\) −13252.3 −0.578072
\(808\) 4171.45 0.181622
\(809\) −17700.5 −0.769242 −0.384621 0.923075i \(-0.625668\pi\)
−0.384621 + 0.923075i \(0.625668\pi\)
\(810\) −36.5207 −0.00158420
\(811\) −40258.2 −1.74310 −0.871552 0.490302i \(-0.836886\pi\)
−0.871552 + 0.490302i \(0.836886\pi\)
\(812\) 0 0
\(813\) −21153.5 −0.912527
\(814\) 5673.55 0.244297
\(815\) 1977.94 0.0850114
\(816\) 1638.42 0.0702896
\(817\) 58713.4 2.51423
\(818\) 218.404 0.00933534
\(819\) 0 0
\(820\) 1087.40 0.0463093
\(821\) −8530.30 −0.362618 −0.181309 0.983426i \(-0.558033\pi\)
−0.181309 + 0.983426i \(0.558033\pi\)
\(822\) −38629.5 −1.63912
\(823\) 2167.02 0.0917831 0.0458915 0.998946i \(-0.485387\pi\)
0.0458915 + 0.998946i \(0.485387\pi\)
\(824\) −11498.6 −0.486131
\(825\) 35764.4 1.50928
\(826\) 0 0
\(827\) 963.326 0.0405056 0.0202528 0.999795i \(-0.493553\pi\)
0.0202528 + 0.999795i \(0.493553\pi\)
\(828\) 3996.85 0.167754
\(829\) 24689.1 1.03436 0.517182 0.855876i \(-0.326981\pi\)
0.517182 + 0.855876i \(0.326981\pi\)
\(830\) −1901.12 −0.0795047
\(831\) −25781.3 −1.07623
\(832\) 1276.86 0.0532058
\(833\) 0 0
\(834\) 13063.7 0.542397
\(835\) −158.643 −0.00657492
\(836\) −20623.9 −0.853219
\(837\) 9808.71 0.405064
\(838\) 22574.3 0.930569
\(839\) 19791.5 0.814398 0.407199 0.913340i \(-0.366506\pi\)
0.407199 + 0.913340i \(0.366506\pi\)
\(840\) 0 0
\(841\) −22902.6 −0.939056
\(842\) 18292.8 0.748708
\(843\) −29186.5 −1.19245
\(844\) −5464.98 −0.222882
\(845\) −2248.82 −0.0915523
\(846\) 43857.4 1.78233
\(847\) 0 0
\(848\) −10744.0 −0.435082
\(849\) 37740.0 1.52560
\(850\) 3012.04 0.121544
\(851\) 1890.04 0.0761335
\(852\) −3146.62 −0.126528
\(853\) 40827.7 1.63882 0.819410 0.573208i \(-0.194301\pi\)
0.819410 + 0.573208i \(0.194301\pi\)
\(854\) 0 0
\(855\) −8111.29 −0.324445
\(856\) 7827.12 0.312530
\(857\) −18564.8 −0.739978 −0.369989 0.929036i \(-0.620638\pi\)
−0.369989 + 0.929036i \(0.620638\pi\)
\(858\) −11561.1 −0.460010
\(859\) −36746.1 −1.45956 −0.729779 0.683683i \(-0.760377\pi\)
−0.729779 + 0.683683i \(0.760377\pi\)
\(860\) −1965.63 −0.0779390
\(861\) 0 0
\(862\) 12107.3 0.478396
\(863\) 19545.9 0.770974 0.385487 0.922713i \(-0.374034\pi\)
0.385487 + 0.922713i \(0.374034\pi\)
\(864\) −4416.51 −0.173904
\(865\) 2516.36 0.0989121
\(866\) −15780.6 −0.619223
\(867\) 39985.9 1.56631
\(868\) 0 0
\(869\) 20443.8 0.798054
\(870\) −809.001 −0.0315261
\(871\) 7953.94 0.309425
\(872\) −14268.5 −0.554121
\(873\) 5725.24 0.221959
\(874\) −6870.45 −0.265900
\(875\) 0 0
\(876\) −536.835 −0.0207054
\(877\) 42195.4 1.62467 0.812336 0.583190i \(-0.198196\pi\)
0.812336 + 0.583190i \(0.198196\pi\)
\(878\) −33886.9 −1.30254
\(879\) 8322.62 0.319357
\(880\) 690.454 0.0264491
\(881\) −17683.6 −0.676248 −0.338124 0.941101i \(-0.609792\pi\)
−0.338124 + 0.941101i \(0.609792\pi\)
\(882\) 0 0
\(883\) 8463.26 0.322550 0.161275 0.986910i \(-0.448439\pi\)
0.161275 + 0.986910i \(0.448439\pi\)
\(884\) −973.662 −0.0370450
\(885\) −168.070 −0.00638375
\(886\) −14290.5 −0.541871
\(887\) 14341.0 0.542867 0.271434 0.962457i \(-0.412502\pi\)
0.271434 + 0.962457i \(0.412502\pi\)
\(888\) −5517.65 −0.208514
\(889\) 0 0
\(890\) 2132.59 0.0803199
\(891\) −504.264 −0.0189601
\(892\) −23218.5 −0.871538
\(893\) −75389.4 −2.82510
\(894\) 28448.5 1.06427
\(895\) −5017.55 −0.187395
\(896\) 0 0
\(897\) −3851.36 −0.143359
\(898\) −14260.7 −0.529940
\(899\) −2739.98 −0.101650
\(900\) −21450.4 −0.794461
\(901\) 8192.75 0.302930
\(902\) 15014.4 0.554241
\(903\) 0 0
\(904\) 12703.6 0.467384
\(905\) −189.352 −0.00695501
\(906\) 40040.7 1.46828
\(907\) −24548.4 −0.898696 −0.449348 0.893357i \(-0.648344\pi\)
−0.449348 + 0.893357i \(0.648344\pi\)
\(908\) −22299.9 −0.815031
\(909\) 22653.0 0.826571
\(910\) 0 0
\(911\) −1013.37 −0.0368543 −0.0184272 0.999830i \(-0.505866\pi\)
−0.0184272 + 0.999830i \(0.505866\pi\)
\(912\) 20057.2 0.728245
\(913\) −26250.0 −0.951532
\(914\) −21564.0 −0.780387
\(915\) −5325.65 −0.192416
\(916\) 5765.30 0.207959
\(917\) 0 0
\(918\) 3367.78 0.121082
\(919\) −35469.5 −1.27316 −0.636578 0.771212i \(-0.719651\pi\)
−0.636578 + 0.771212i \(0.719651\pi\)
\(920\) 230.012 0.00824269
\(921\) −6342.87 −0.226933
\(922\) −27532.7 −0.983451
\(923\) 1869.94 0.0666844
\(924\) 0 0
\(925\) −10143.5 −0.360559
\(926\) −14906.6 −0.529006
\(927\) −62443.0 −2.21240
\(928\) 1233.71 0.0436407
\(929\) 44668.7 1.57754 0.788770 0.614689i \(-0.210718\pi\)
0.788770 + 0.614689i \(0.210718\pi\)
\(930\) 1491.31 0.0525827
\(931\) 0 0
\(932\) −3152.70 −0.110805
\(933\) 57406.6 2.01437
\(934\) −8823.63 −0.309120
\(935\) −526.501 −0.0184154
\(936\) 6933.99 0.242142
\(937\) −29296.9 −1.02144 −0.510719 0.859748i \(-0.670621\pi\)
−0.510719 + 0.859748i \(0.670621\pi\)
\(938\) 0 0
\(939\) −8828.95 −0.306839
\(940\) 2523.92 0.0875758
\(941\) −32731.8 −1.13393 −0.566965 0.823742i \(-0.691882\pi\)
−0.566965 + 0.823742i \(0.691882\pi\)
\(942\) 27360.8 0.946351
\(943\) 5001.78 0.172726
\(944\) 256.304 0.00883686
\(945\) 0 0
\(946\) −27140.8 −0.932793
\(947\) −43440.7 −1.49064 −0.745319 0.666709i \(-0.767703\pi\)
−0.745319 + 0.666709i \(0.767703\pi\)
\(948\) −19882.1 −0.681160
\(949\) 319.023 0.0109125
\(950\) 36872.6 1.25927
\(951\) −70049.6 −2.38855
\(952\) 0 0
\(953\) 32198.3 1.09445 0.547223 0.836987i \(-0.315685\pi\)
0.547223 + 0.836987i \(0.315685\pi\)
\(954\) −58345.2 −1.98008
\(955\) 472.549 0.0160119
\(956\) −2813.39 −0.0951796
\(957\) −11170.4 −0.377312
\(958\) −19624.2 −0.661825
\(959\) 0 0
\(960\) −671.483 −0.0225750
\(961\) −24740.1 −0.830457
\(962\) 3278.96 0.109894
\(963\) 42505.1 1.42234
\(964\) −19830.6 −0.662552
\(965\) −1936.12 −0.0645865
\(966\) 0 0
\(967\) 9822.55 0.326651 0.163326 0.986572i \(-0.447778\pi\)
0.163326 + 0.986572i \(0.447778\pi\)
\(968\) −1114.45 −0.0370040
\(969\) −15294.5 −0.507047
\(970\) 329.478 0.0109061
\(971\) −39113.0 −1.29268 −0.646342 0.763048i \(-0.723702\pi\)
−0.646342 + 0.763048i \(0.723702\pi\)
\(972\) 15396.1 0.508057
\(973\) 0 0
\(974\) −17189.6 −0.565494
\(975\) 20669.6 0.678931
\(976\) 8121.53 0.266356
\(977\) 12293.0 0.402546 0.201273 0.979535i \(-0.435492\pi\)
0.201273 + 0.979535i \(0.435492\pi\)
\(978\) −26560.3 −0.868410
\(979\) 29446.1 0.961288
\(980\) 0 0
\(981\) −77485.3 −2.52183
\(982\) −13046.7 −0.423969
\(983\) −11332.8 −0.367711 −0.183855 0.982953i \(-0.558858\pi\)
−0.183855 + 0.982953i \(0.558858\pi\)
\(984\) −14601.9 −0.473060
\(985\) 2395.10 0.0774765
\(986\) −940.759 −0.0303853
\(987\) 0 0
\(988\) −11919.3 −0.383810
\(989\) −9041.44 −0.290699
\(990\) 3749.51 0.120371
\(991\) −3870.67 −0.124072 −0.0620362 0.998074i \(-0.519759\pi\)
−0.0620362 + 0.998074i \(0.519759\pi\)
\(992\) −2274.22 −0.0727889
\(993\) 82639.5 2.64097
\(994\) 0 0
\(995\) −1672.26 −0.0532807
\(996\) 25528.7 0.812158
\(997\) −50890.5 −1.61657 −0.808284 0.588792i \(-0.799604\pi\)
−0.808284 + 0.588792i \(0.799604\pi\)
\(998\) −18382.0 −0.583037
\(999\) −11341.5 −0.359189
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.l.1.1 5
7.6 odd 2 322.4.a.h.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.a.h.1.5 5 7.6 odd 2
2254.4.a.l.1.1 5 1.1 even 1 trivial