Properties

Label 2254.4.a.h
Level $2254$
Weight $4$
Character orbit 2254.a
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.15384.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 33x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - \beta_1 + 1) q^{3} + 4 q^{4} + ( - \beta_{2} - 2 \beta_1 - 3) q^{5} + (2 \beta_1 - 2) q^{6} - 8 q^{8} + (3 \beta_{2} - \beta_1 - 3) q^{9} + (2 \beta_{2} + 4 \beta_1 + 6) q^{10} + (4 \beta_1 + 2) q^{11}+ \cdots + ( - 18 \beta_{2} + 18 \beta_1 - 134) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 3 q^{3} + 12 q^{4} - 8 q^{5} - 6 q^{6} - 24 q^{8} - 12 q^{9} + 16 q^{10} + 6 q^{11} + 12 q^{12} - 13 q^{13} + 116 q^{15} + 48 q^{16} - 20 q^{17} + 24 q^{18} + 12 q^{19} - 32 q^{20} - 12 q^{22}+ \cdots - 384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 33x - 14 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 23 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + \beta _1 + 23 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.94597
−0.426595
−5.51937
−2.00000 −4.94597 4.00000 −17.0281 9.89194 0 −8.00000 −2.53740 34.0563
1.2 −2.00000 1.42659 4.00000 5.31700 −2.85319 0 −8.00000 −24.9648 −10.6340
1.3 −2.00000 6.51937 4.00000 3.71113 −13.0387 0 −8.00000 15.5022 −7.42226
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2254.4.a.h 3
7.b odd 2 1 322.4.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.4.a.d 3 7.b odd 2 1
2254.4.a.h 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 3T_{3}^{2} - 30T_{3} + 46 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2254))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 3 T^{2} + \cdots + 46 \) Copy content Toggle raw display
$5$ \( T^{3} + 8 T^{2} + \cdots + 336 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 152 \) Copy content Toggle raw display
$13$ \( T^{3} + 13 T^{2} + \cdots - 8232 \) Copy content Toggle raw display
$17$ \( T^{3} + 20 T^{2} + \cdots + 768 \) Copy content Toggle raw display
$19$ \( T^{3} - 12 T^{2} + \cdots - 360288 \) Copy content Toggle raw display
$23$ \( (T + 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 67 T^{2} + \cdots - 6059928 \) Copy content Toggle raw display
$31$ \( T^{3} + 41 T^{2} + \cdots - 2541894 \) Copy content Toggle raw display
$37$ \( T^{3} + 36 T^{2} + \cdots + 2187072 \) Copy content Toggle raw display
$41$ \( T^{3} + 273 T^{2} + \cdots - 749772 \) Copy content Toggle raw display
$43$ \( T^{3} - 564 T^{2} + \cdots - 2697984 \) Copy content Toggle raw display
$47$ \( T^{3} + 1145 T^{2} + \cdots + 34776282 \) Copy content Toggle raw display
$53$ \( T^{3} - 632 T^{2} + \cdots + 5164272 \) Copy content Toggle raw display
$59$ \( T^{3} - 128 T^{2} + \cdots + 120101304 \) Copy content Toggle raw display
$61$ \( T^{3} + 266 T^{2} + \cdots - 9837212 \) Copy content Toggle raw display
$67$ \( T^{3} - 1128 T^{2} + \cdots - 36525328 \) Copy content Toggle raw display
$71$ \( T^{3} - 1075 T^{2} + \cdots - 31062456 \) Copy content Toggle raw display
$73$ \( T^{3} + 59 T^{2} + \cdots + 205303924 \) Copy content Toggle raw display
$79$ \( T^{3} + 744 T^{2} + \cdots - 97811888 \) Copy content Toggle raw display
$83$ \( T^{3} + 2708 T^{2} + \cdots + 489525568 \) Copy content Toggle raw display
$89$ \( T^{3} + 448 T^{2} + \cdots + 76009752 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 1411462508 \) Copy content Toggle raw display
show more
show less