Properties

Label 2254.4.a.g.1.2
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.27492\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.27492 q^{3} +4.00000 q^{4} +1.45017 q^{5} +6.54983 q^{6} +8.00000 q^{8} -16.2749 q^{9} +2.90033 q^{10} -24.3505 q^{11} +13.0997 q^{12} +9.62541 q^{13} +4.74917 q^{15} +16.0000 q^{16} -55.8488 q^{17} -32.5498 q^{18} +150.797 q^{19} +5.80066 q^{20} -48.7010 q^{22} +23.0000 q^{23} +26.1993 q^{24} -122.897 q^{25} +19.2508 q^{26} -141.722 q^{27} -129.124 q^{29} +9.49834 q^{30} -3.07558 q^{31} +32.0000 q^{32} -79.7459 q^{33} -111.698 q^{34} -65.0997 q^{36} -342.096 q^{37} +301.595 q^{38} +31.5224 q^{39} +11.6013 q^{40} +253.571 q^{41} -256.797 q^{43} -97.4020 q^{44} -23.6013 q^{45} +46.0000 q^{46} -70.1686 q^{47} +52.3987 q^{48} -245.794 q^{50} -182.900 q^{51} +38.5017 q^{52} -20.1030 q^{53} -283.444 q^{54} -35.3123 q^{55} +493.849 q^{57} -258.248 q^{58} +414.640 q^{59} +18.9967 q^{60} -42.0548 q^{61} -6.15116 q^{62} +64.0000 q^{64} +13.9584 q^{65} -159.492 q^{66} +510.234 q^{67} -223.395 q^{68} +75.3231 q^{69} -692.815 q^{71} -130.199 q^{72} -1001.87 q^{73} -684.193 q^{74} -402.478 q^{75} +603.189 q^{76} +63.0449 q^{78} +66.1379 q^{79} +23.2026 q^{80} -24.7043 q^{81} +507.141 q^{82} -78.8455 q^{83} -80.9901 q^{85} -513.595 q^{86} -422.870 q^{87} -194.804 q^{88} -34.8323 q^{89} -47.2026 q^{90} +92.0000 q^{92} -10.0723 q^{93} -140.337 q^{94} +218.681 q^{95} +104.797 q^{96} -1265.54 q^{97} +396.302 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - q^{3} + 8 q^{4} + 18 q^{5} - 2 q^{6} + 16 q^{8} - 25 q^{9} + 36 q^{10} - 94 q^{11} - 4 q^{12} + 57 q^{13} - 66 q^{15} + 32 q^{16} - 6 q^{17} - 50 q^{18} + 60 q^{19} + 72 q^{20} - 188 q^{22}+ \cdots + 1004 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.27492 0.630258 0.315129 0.949049i \(-0.397952\pi\)
0.315129 + 0.949049i \(0.397952\pi\)
\(4\) 4.00000 0.500000
\(5\) 1.45017 0.129707 0.0648534 0.997895i \(-0.479342\pi\)
0.0648534 + 0.997895i \(0.479342\pi\)
\(6\) 6.54983 0.445660
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −16.2749 −0.602775
\(10\) 2.90033 0.0917165
\(11\) −24.3505 −0.667450 −0.333725 0.942670i \(-0.608306\pi\)
−0.333725 + 0.942670i \(0.608306\pi\)
\(12\) 13.0997 0.315129
\(13\) 9.62541 0.205355 0.102677 0.994715i \(-0.467259\pi\)
0.102677 + 0.994715i \(0.467259\pi\)
\(14\) 0 0
\(15\) 4.74917 0.0817487
\(16\) 16.0000 0.250000
\(17\) −55.8488 −0.796784 −0.398392 0.917215i \(-0.630432\pi\)
−0.398392 + 0.917215i \(0.630432\pi\)
\(18\) −32.5498 −0.426226
\(19\) 150.797 1.82080 0.910402 0.413724i \(-0.135772\pi\)
0.910402 + 0.413724i \(0.135772\pi\)
\(20\) 5.80066 0.0648534
\(21\) 0 0
\(22\) −48.7010 −0.471958
\(23\) 23.0000 0.208514
\(24\) 26.1993 0.222830
\(25\) −122.897 −0.983176
\(26\) 19.2508 0.145208
\(27\) −141.722 −1.01016
\(28\) 0 0
\(29\) −129.124 −0.826817 −0.413408 0.910546i \(-0.635662\pi\)
−0.413408 + 0.910546i \(0.635662\pi\)
\(30\) 9.49834 0.0578051
\(31\) −3.07558 −0.0178190 −0.00890952 0.999960i \(-0.502836\pi\)
−0.00890952 + 0.999960i \(0.502836\pi\)
\(32\) 32.0000 0.176777
\(33\) −79.7459 −0.420666
\(34\) −111.698 −0.563412
\(35\) 0 0
\(36\) −65.0997 −0.301387
\(37\) −342.096 −1.52001 −0.760004 0.649918i \(-0.774803\pi\)
−0.760004 + 0.649918i \(0.774803\pi\)
\(38\) 301.595 1.28750
\(39\) 31.5224 0.129426
\(40\) 11.6013 0.0458583
\(41\) 253.571 0.965880 0.482940 0.875653i \(-0.339569\pi\)
0.482940 + 0.875653i \(0.339569\pi\)
\(42\) 0 0
\(43\) −256.797 −0.910726 −0.455363 0.890306i \(-0.650491\pi\)
−0.455363 + 0.890306i \(0.650491\pi\)
\(44\) −97.4020 −0.333725
\(45\) −23.6013 −0.0781839
\(46\) 46.0000 0.147442
\(47\) −70.1686 −0.217769 −0.108885 0.994054i \(-0.534728\pi\)
−0.108885 + 0.994054i \(0.534728\pi\)
\(48\) 52.3987 0.157565
\(49\) 0 0
\(50\) −245.794 −0.695211
\(51\) −182.900 −0.502180
\(52\) 38.5017 0.102677
\(53\) −20.1030 −0.0521011 −0.0260505 0.999661i \(-0.508293\pi\)
−0.0260505 + 0.999661i \(0.508293\pi\)
\(54\) −283.444 −0.714292
\(55\) −35.3123 −0.0865728
\(56\) 0 0
\(57\) 493.849 1.14758
\(58\) −258.248 −0.584648
\(59\) 414.640 0.914940 0.457470 0.889225i \(-0.348756\pi\)
0.457470 + 0.889225i \(0.348756\pi\)
\(60\) 18.9967 0.0408744
\(61\) −42.0548 −0.0882716 −0.0441358 0.999026i \(-0.514053\pi\)
−0.0441358 + 0.999026i \(0.514053\pi\)
\(62\) −6.15116 −0.0126000
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 13.9584 0.0266359
\(66\) −159.492 −0.297456
\(67\) 510.234 0.930374 0.465187 0.885213i \(-0.345987\pi\)
0.465187 + 0.885213i \(0.345987\pi\)
\(68\) −223.395 −0.398392
\(69\) 75.3231 0.131418
\(70\) 0 0
\(71\) −692.815 −1.15806 −0.579028 0.815308i \(-0.696568\pi\)
−0.579028 + 0.815308i \(0.696568\pi\)
\(72\) −130.199 −0.213113
\(73\) −1001.87 −1.60631 −0.803153 0.595773i \(-0.796846\pi\)
−0.803153 + 0.595773i \(0.796846\pi\)
\(74\) −684.193 −1.07481
\(75\) −402.478 −0.619655
\(76\) 603.189 0.910402
\(77\) 0 0
\(78\) 63.0449 0.0915183
\(79\) 66.1379 0.0941911 0.0470955 0.998890i \(-0.485003\pi\)
0.0470955 + 0.998890i \(0.485003\pi\)
\(80\) 23.2026 0.0324267
\(81\) −24.7043 −0.0338879
\(82\) 507.141 0.682980
\(83\) −78.8455 −0.104270 −0.0521351 0.998640i \(-0.516603\pi\)
−0.0521351 + 0.998640i \(0.516603\pi\)
\(84\) 0 0
\(85\) −80.9901 −0.103348
\(86\) −513.595 −0.643981
\(87\) −422.870 −0.521108
\(88\) −194.804 −0.235979
\(89\) −34.8323 −0.0414856 −0.0207428 0.999785i \(-0.506603\pi\)
−0.0207428 + 0.999785i \(0.506603\pi\)
\(90\) −47.2026 −0.0552844
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −10.0723 −0.0112306
\(94\) −140.337 −0.153986
\(95\) 218.681 0.236171
\(96\) 104.797 0.111415
\(97\) −1265.54 −1.32470 −0.662351 0.749194i \(-0.730441\pi\)
−0.662351 + 0.749194i \(0.730441\pi\)
\(98\) 0 0
\(99\) 396.302 0.402322
\(100\) −491.588 −0.491588
\(101\) −1037.75 −1.02238 −0.511189 0.859468i \(-0.670795\pi\)
−0.511189 + 0.859468i \(0.670795\pi\)
\(102\) −365.801 −0.355095
\(103\) −1657.58 −1.58569 −0.792846 0.609422i \(-0.791402\pi\)
−0.792846 + 0.609422i \(0.791402\pi\)
\(104\) 77.0033 0.0726038
\(105\) 0 0
\(106\) −40.2060 −0.0368410
\(107\) 1237.82 1.11836 0.559181 0.829045i \(-0.311116\pi\)
0.559181 + 0.829045i \(0.311116\pi\)
\(108\) −566.887 −0.505081
\(109\) −1402.43 −1.23237 −0.616187 0.787600i \(-0.711323\pi\)
−0.616187 + 0.787600i \(0.711323\pi\)
\(110\) −70.6245 −0.0612162
\(111\) −1120.34 −0.957997
\(112\) 0 0
\(113\) −1449.94 −1.20707 −0.603534 0.797337i \(-0.706241\pi\)
−0.603534 + 0.797337i \(0.706241\pi\)
\(114\) 987.698 0.811459
\(115\) 33.3538 0.0270457
\(116\) −516.495 −0.413408
\(117\) −156.653 −0.123783
\(118\) 829.279 0.646960
\(119\) 0 0
\(120\) 37.9934 0.0289025
\(121\) −738.053 −0.554510
\(122\) −84.1096 −0.0624174
\(123\) 830.423 0.608754
\(124\) −12.3023 −0.00890952
\(125\) −359.492 −0.257231
\(126\) 0 0
\(127\) 3.94760 0.00275821 0.00137911 0.999999i \(-0.499561\pi\)
0.00137911 + 0.999999i \(0.499561\pi\)
\(128\) 128.000 0.0883883
\(129\) −840.990 −0.573993
\(130\) 27.9169 0.0188344
\(131\) −1101.10 −0.734376 −0.367188 0.930147i \(-0.619680\pi\)
−0.367188 + 0.930147i \(0.619680\pi\)
\(132\) −318.983 −0.210333
\(133\) 0 0
\(134\) 1020.47 0.657874
\(135\) −205.520 −0.131025
\(136\) −446.791 −0.281706
\(137\) 381.855 0.238132 0.119066 0.992886i \(-0.462010\pi\)
0.119066 + 0.992886i \(0.462010\pi\)
\(138\) 150.646 0.0929265
\(139\) 753.303 0.459672 0.229836 0.973229i \(-0.426181\pi\)
0.229836 + 0.973229i \(0.426181\pi\)
\(140\) 0 0
\(141\) −229.796 −0.137251
\(142\) −1385.63 −0.818869
\(143\) −234.384 −0.137064
\(144\) −260.399 −0.150694
\(145\) −187.251 −0.107244
\(146\) −2003.75 −1.13583
\(147\) 0 0
\(148\) −1368.39 −0.760004
\(149\) −2924.17 −1.60777 −0.803884 0.594785i \(-0.797237\pi\)
−0.803884 + 0.594785i \(0.797237\pi\)
\(150\) −804.955 −0.438162
\(151\) 2924.73 1.57623 0.788116 0.615527i \(-0.211057\pi\)
0.788116 + 0.615527i \(0.211057\pi\)
\(152\) 1206.38 0.643752
\(153\) 908.935 0.480281
\(154\) 0 0
\(155\) −4.46010 −0.00231125
\(156\) 126.090 0.0647132
\(157\) −1442.17 −0.733108 −0.366554 0.930397i \(-0.619462\pi\)
−0.366554 + 0.930397i \(0.619462\pi\)
\(158\) 132.276 0.0666032
\(159\) −65.8356 −0.0328371
\(160\) 46.4053 0.0229291
\(161\) 0 0
\(162\) −49.4086 −0.0239624
\(163\) 1464.27 0.703621 0.351811 0.936071i \(-0.385566\pi\)
0.351811 + 0.936071i \(0.385566\pi\)
\(164\) 1014.28 0.482940
\(165\) −115.645 −0.0545632
\(166\) −157.691 −0.0737301
\(167\) 1996.24 0.924990 0.462495 0.886622i \(-0.346954\pi\)
0.462495 + 0.886622i \(0.346954\pi\)
\(168\) 0 0
\(169\) −2104.35 −0.957829
\(170\) −161.980 −0.0730783
\(171\) −2454.21 −1.09753
\(172\) −1027.19 −0.455363
\(173\) 2175.24 0.955955 0.477978 0.878372i \(-0.341370\pi\)
0.477978 + 0.878372i \(0.341370\pi\)
\(174\) −845.739 −0.368479
\(175\) 0 0
\(176\) −389.608 −0.166863
\(177\) 1357.91 0.576649
\(178\) −69.6646 −0.0293347
\(179\) 651.934 0.272223 0.136111 0.990694i \(-0.456540\pi\)
0.136111 + 0.990694i \(0.456540\pi\)
\(180\) −94.4053 −0.0390920
\(181\) 2760.83 1.13376 0.566881 0.823799i \(-0.308150\pi\)
0.566881 + 0.823799i \(0.308150\pi\)
\(182\) 0 0
\(183\) −137.726 −0.0556339
\(184\) 184.000 0.0737210
\(185\) −496.096 −0.197155
\(186\) −20.1445 −0.00794123
\(187\) 1359.95 0.531814
\(188\) −280.675 −0.108885
\(189\) 0 0
\(190\) 437.362 0.166998
\(191\) 813.038 0.308007 0.154004 0.988070i \(-0.450783\pi\)
0.154004 + 0.988070i \(0.450783\pi\)
\(192\) 209.595 0.0787823
\(193\) 4552.05 1.69774 0.848869 0.528603i \(-0.177284\pi\)
0.848869 + 0.528603i \(0.177284\pi\)
\(194\) −2531.08 −0.936706
\(195\) 45.7127 0.0167875
\(196\) 0 0
\(197\) −1971.84 −0.713138 −0.356569 0.934269i \(-0.616053\pi\)
−0.356569 + 0.934269i \(0.616053\pi\)
\(198\) 792.605 0.284485
\(199\) 1053.92 0.375429 0.187714 0.982224i \(-0.439892\pi\)
0.187714 + 0.982224i \(0.439892\pi\)
\(200\) −983.176 −0.347605
\(201\) 1670.98 0.586376
\(202\) −2075.50 −0.722931
\(203\) 0 0
\(204\) −731.601 −0.251090
\(205\) 367.719 0.125281
\(206\) −3315.16 −1.12125
\(207\) −374.323 −0.125687
\(208\) 154.007 0.0513386
\(209\) −3671.99 −1.21530
\(210\) 0 0
\(211\) 3624.90 1.18269 0.591347 0.806418i \(-0.298597\pi\)
0.591347 + 0.806418i \(0.298597\pi\)
\(212\) −80.4119 −0.0260505
\(213\) −2268.91 −0.729874
\(214\) 2475.64 0.790802
\(215\) −372.399 −0.118127
\(216\) −1133.77 −0.357146
\(217\) 0 0
\(218\) −2804.87 −0.871420
\(219\) −3281.05 −1.01239
\(220\) −141.249 −0.0432864
\(221\) −537.568 −0.163623
\(222\) −2240.67 −0.677406
\(223\) −4175.81 −1.25396 −0.626979 0.779036i \(-0.715709\pi\)
−0.626979 + 0.779036i \(0.715709\pi\)
\(224\) 0 0
\(225\) 2000.14 0.592634
\(226\) −2899.88 −0.853526
\(227\) −2267.05 −0.662861 −0.331431 0.943480i \(-0.607531\pi\)
−0.331431 + 0.943480i \(0.607531\pi\)
\(228\) 1975.40 0.573788
\(229\) 1473.52 0.425211 0.212605 0.977138i \(-0.431805\pi\)
0.212605 + 0.977138i \(0.431805\pi\)
\(230\) 66.7076 0.0191242
\(231\) 0 0
\(232\) −1032.99 −0.292324
\(233\) −4406.55 −1.23898 −0.619490 0.785004i \(-0.712661\pi\)
−0.619490 + 0.785004i \(0.712661\pi\)
\(234\) −313.306 −0.0875275
\(235\) −101.756 −0.0282461
\(236\) 1658.56 0.457470
\(237\) 216.596 0.0593647
\(238\) 0 0
\(239\) −5928.34 −1.60449 −0.802243 0.596997i \(-0.796360\pi\)
−0.802243 + 0.596997i \(0.796360\pi\)
\(240\) 75.9868 0.0204372
\(241\) 3062.74 0.818624 0.409312 0.912394i \(-0.365769\pi\)
0.409312 + 0.912394i \(0.365769\pi\)
\(242\) −1476.11 −0.392098
\(243\) 3745.58 0.988804
\(244\) −168.219 −0.0441358
\(245\) 0 0
\(246\) 1660.85 0.430454
\(247\) 1451.49 0.373911
\(248\) −24.6046 −0.00629998
\(249\) −258.213 −0.0657171
\(250\) −718.983 −0.181890
\(251\) −5907.69 −1.48562 −0.742808 0.669504i \(-0.766507\pi\)
−0.742808 + 0.669504i \(0.766507\pi\)
\(252\) 0 0
\(253\) −560.061 −0.139173
\(254\) 7.89520 0.00195035
\(255\) −265.236 −0.0651361
\(256\) 256.000 0.0625000
\(257\) 2450.88 0.594869 0.297435 0.954742i \(-0.403869\pi\)
0.297435 + 0.954742i \(0.403869\pi\)
\(258\) −1681.98 −0.405874
\(259\) 0 0
\(260\) 55.8338 0.0133179
\(261\) 2101.48 0.498384
\(262\) −2202.19 −0.519283
\(263\) 5522.13 1.29471 0.647356 0.762188i \(-0.275875\pi\)
0.647356 + 0.762188i \(0.275875\pi\)
\(264\) −637.967 −0.148728
\(265\) −29.1526 −0.00675786
\(266\) 0 0
\(267\) −114.073 −0.0261466
\(268\) 2040.94 0.465187
\(269\) 568.714 0.128904 0.0644518 0.997921i \(-0.479470\pi\)
0.0644518 + 0.997921i \(0.479470\pi\)
\(270\) −411.040 −0.0926485
\(271\) 6090.70 1.36525 0.682626 0.730767i \(-0.260838\pi\)
0.682626 + 0.730767i \(0.260838\pi\)
\(272\) −893.581 −0.199196
\(273\) 0 0
\(274\) 763.711 0.168385
\(275\) 2992.60 0.656221
\(276\) 301.292 0.0657090
\(277\) −4228.13 −0.917126 −0.458563 0.888662i \(-0.651636\pi\)
−0.458563 + 0.888662i \(0.651636\pi\)
\(278\) 1506.61 0.325037
\(279\) 50.0548 0.0107409
\(280\) 0 0
\(281\) −8083.10 −1.71600 −0.858002 0.513646i \(-0.828294\pi\)
−0.858002 + 0.513646i \(0.828294\pi\)
\(282\) −459.593 −0.0970509
\(283\) 8328.24 1.74934 0.874669 0.484721i \(-0.161079\pi\)
0.874669 + 0.484721i \(0.161079\pi\)
\(284\) −2771.26 −0.579028
\(285\) 716.163 0.148848
\(286\) −468.767 −0.0969188
\(287\) 0 0
\(288\) −520.797 −0.106557
\(289\) −1793.91 −0.365135
\(290\) −374.502 −0.0758327
\(291\) −4144.54 −0.834904
\(292\) −4007.49 −0.803153
\(293\) 6045.17 1.20533 0.602667 0.797993i \(-0.294105\pi\)
0.602667 + 0.797993i \(0.294105\pi\)
\(294\) 0 0
\(295\) 601.296 0.118674
\(296\) −2736.77 −0.537404
\(297\) 3451.00 0.674233
\(298\) −5848.35 −1.13686
\(299\) 221.385 0.0428194
\(300\) −1609.91 −0.309827
\(301\) 0 0
\(302\) 5849.45 1.11456
\(303\) −3398.55 −0.644362
\(304\) 2412.76 0.455201
\(305\) −60.9864 −0.0114494
\(306\) 1817.87 0.339610
\(307\) −7839.97 −1.45749 −0.728747 0.684783i \(-0.759897\pi\)
−0.728747 + 0.684783i \(0.759897\pi\)
\(308\) 0 0
\(309\) −5428.44 −0.999396
\(310\) −8.92020 −0.00163430
\(311\) −6388.45 −1.16481 −0.582405 0.812899i \(-0.697888\pi\)
−0.582405 + 0.812899i \(0.697888\pi\)
\(312\) 252.179 0.0457591
\(313\) 8381.32 1.51355 0.756774 0.653677i \(-0.226775\pi\)
0.756774 + 0.653677i \(0.226775\pi\)
\(314\) −2884.35 −0.518385
\(315\) 0 0
\(316\) 264.552 0.0470955
\(317\) 5150.54 0.912565 0.456283 0.889835i \(-0.349181\pi\)
0.456283 + 0.889835i \(0.349181\pi\)
\(318\) −131.671 −0.0232194
\(319\) 3144.23 0.551859
\(320\) 92.8106 0.0162133
\(321\) 4053.77 0.704857
\(322\) 0 0
\(323\) −8421.86 −1.45079
\(324\) −98.8172 −0.0169440
\(325\) −1182.93 −0.201900
\(326\) 2928.53 0.497535
\(327\) −4592.85 −0.776714
\(328\) 2028.56 0.341490
\(329\) 0 0
\(330\) −231.289 −0.0385820
\(331\) −1447.51 −0.240370 −0.120185 0.992751i \(-0.538349\pi\)
−0.120185 + 0.992751i \(0.538349\pi\)
\(332\) −315.382 −0.0521351
\(333\) 5567.59 0.916222
\(334\) 3992.47 0.654067
\(335\) 739.924 0.120676
\(336\) 0 0
\(337\) −8514.92 −1.37637 −0.688186 0.725535i \(-0.741593\pi\)
−0.688186 + 0.725535i \(0.741593\pi\)
\(338\) −4208.70 −0.677288
\(339\) −4748.43 −0.760765
\(340\) −323.960 −0.0516742
\(341\) 74.8919 0.0118933
\(342\) −4908.43 −0.776074
\(343\) 0 0
\(344\) −2054.38 −0.321990
\(345\) 109.231 0.0170458
\(346\) 4350.48 0.675962
\(347\) −6331.50 −0.979519 −0.489759 0.871858i \(-0.662915\pi\)
−0.489759 + 0.871858i \(0.662915\pi\)
\(348\) −1691.48 −0.260554
\(349\) −6613.34 −1.01434 −0.507169 0.861847i \(-0.669308\pi\)
−0.507169 + 0.861847i \(0.669308\pi\)
\(350\) 0 0
\(351\) −1364.13 −0.207441
\(352\) −779.216 −0.117990
\(353\) 2449.80 0.369376 0.184688 0.982797i \(-0.440873\pi\)
0.184688 + 0.982797i \(0.440873\pi\)
\(354\) 2715.82 0.407752
\(355\) −1004.70 −0.150208
\(356\) −139.329 −0.0207428
\(357\) 0 0
\(358\) 1303.87 0.192491
\(359\) −5606.60 −0.824248 −0.412124 0.911128i \(-0.635213\pi\)
−0.412124 + 0.911128i \(0.635213\pi\)
\(360\) −188.811 −0.0276422
\(361\) 15880.8 2.31533
\(362\) 5521.66 0.801691
\(363\) −2417.06 −0.349485
\(364\) 0 0
\(365\) −1452.88 −0.208349
\(366\) −275.452 −0.0393391
\(367\) 8049.92 1.14497 0.572483 0.819917i \(-0.305980\pi\)
0.572483 + 0.819917i \(0.305980\pi\)
\(368\) 368.000 0.0521286
\(369\) −4126.84 −0.582208
\(370\) −992.193 −0.139410
\(371\) 0 0
\(372\) −40.2891 −0.00561530
\(373\) −3108.79 −0.431548 −0.215774 0.976443i \(-0.569227\pi\)
−0.215774 + 0.976443i \(0.569227\pi\)
\(374\) 2719.89 0.376049
\(375\) −1177.31 −0.162122
\(376\) −561.349 −0.0769930
\(377\) −1242.87 −0.169791
\(378\) 0 0
\(379\) 142.458 0.0193076 0.00965381 0.999953i \(-0.496927\pi\)
0.00965381 + 0.999953i \(0.496927\pi\)
\(380\) 874.725 0.118085
\(381\) 12.9281 0.00173838
\(382\) 1626.08 0.217794
\(383\) 6562.68 0.875554 0.437777 0.899084i \(-0.355766\pi\)
0.437777 + 0.899084i \(0.355766\pi\)
\(384\) 419.189 0.0557075
\(385\) 0 0
\(386\) 9104.09 1.20048
\(387\) 4179.36 0.548963
\(388\) −5062.16 −0.662351
\(389\) −9507.95 −1.23926 −0.619630 0.784894i \(-0.712717\pi\)
−0.619630 + 0.784894i \(0.712717\pi\)
\(390\) 91.4255 0.0118705
\(391\) −1284.52 −0.166141
\(392\) 0 0
\(393\) −3606.00 −0.462847
\(394\) −3943.69 −0.504264
\(395\) 95.9109 0.0122172
\(396\) 1585.21 0.201161
\(397\) −3317.24 −0.419365 −0.209682 0.977770i \(-0.567243\pi\)
−0.209682 + 0.977770i \(0.567243\pi\)
\(398\) 2107.84 0.265468
\(399\) 0 0
\(400\) −1966.35 −0.245794
\(401\) 7841.22 0.976489 0.488244 0.872707i \(-0.337637\pi\)
0.488244 + 0.872707i \(0.337637\pi\)
\(402\) 3341.95 0.414630
\(403\) −29.6037 −0.00365922
\(404\) −4151.01 −0.511189
\(405\) −35.8253 −0.00439549
\(406\) 0 0
\(407\) 8330.22 1.01453
\(408\) −1463.20 −0.177547
\(409\) −12419.7 −1.50151 −0.750753 0.660583i \(-0.770309\pi\)
−0.750753 + 0.660583i \(0.770309\pi\)
\(410\) 735.439 0.0885871
\(411\) 1250.55 0.150085
\(412\) −6630.33 −0.792846
\(413\) 0 0
\(414\) −748.646 −0.0888743
\(415\) −114.339 −0.0135245
\(416\) 308.013 0.0363019
\(417\) 2467.01 0.289712
\(418\) −7343.98 −0.859344
\(419\) −6439.02 −0.750756 −0.375378 0.926872i \(-0.622487\pi\)
−0.375378 + 0.926872i \(0.622487\pi\)
\(420\) 0 0
\(421\) 1995.73 0.231035 0.115518 0.993305i \(-0.463147\pi\)
0.115518 + 0.993305i \(0.463147\pi\)
\(422\) 7249.79 0.836290
\(423\) 1141.99 0.131266
\(424\) −160.824 −0.0184205
\(425\) 6863.66 0.783379
\(426\) −4537.82 −0.516099
\(427\) 0 0
\(428\) 4951.29 0.559181
\(429\) −767.587 −0.0863857
\(430\) −744.797 −0.0835286
\(431\) 9633.35 1.07662 0.538309 0.842748i \(-0.319063\pi\)
0.538309 + 0.842748i \(0.319063\pi\)
\(432\) −2267.55 −0.252540
\(433\) −10609.6 −1.17751 −0.588757 0.808310i \(-0.700383\pi\)
−0.588757 + 0.808310i \(0.700383\pi\)
\(434\) 0 0
\(435\) −613.231 −0.0675912
\(436\) −5609.73 −0.616187
\(437\) 3468.34 0.379664
\(438\) −6562.10 −0.715866
\(439\) −5715.27 −0.621356 −0.310678 0.950515i \(-0.600556\pi\)
−0.310678 + 0.950515i \(0.600556\pi\)
\(440\) −282.498 −0.0306081
\(441\) 0 0
\(442\) −1075.14 −0.115699
\(443\) −8164.69 −0.875657 −0.437828 0.899059i \(-0.644252\pi\)
−0.437828 + 0.899059i \(0.644252\pi\)
\(444\) −4481.35 −0.478999
\(445\) −50.5126 −0.00538096
\(446\) −8351.61 −0.886683
\(447\) −9576.42 −1.01331
\(448\) 0 0
\(449\) 4139.67 0.435107 0.217554 0.976048i \(-0.430192\pi\)
0.217554 + 0.976048i \(0.430192\pi\)
\(450\) 4000.28 0.419055
\(451\) −6174.57 −0.644677
\(452\) −5799.75 −0.603534
\(453\) 9578.24 0.993432
\(454\) −4534.10 −0.468714
\(455\) 0 0
\(456\) 3950.79 0.405730
\(457\) 11418.7 1.16880 0.584401 0.811465i \(-0.301329\pi\)
0.584401 + 0.811465i \(0.301329\pi\)
\(458\) 2947.05 0.300669
\(459\) 7915.00 0.804881
\(460\) 133.415 0.0135229
\(461\) 2502.18 0.252794 0.126397 0.991980i \(-0.459659\pi\)
0.126397 + 0.991980i \(0.459659\pi\)
\(462\) 0 0
\(463\) 9916.65 0.995391 0.497695 0.867352i \(-0.334180\pi\)
0.497695 + 0.867352i \(0.334180\pi\)
\(464\) −2065.98 −0.206704
\(465\) −14.6065 −0.00145668
\(466\) −8813.09 −0.876092
\(467\) 15914.2 1.57691 0.788457 0.615089i \(-0.210880\pi\)
0.788457 + 0.615089i \(0.210880\pi\)
\(468\) −626.611 −0.0618913
\(469\) 0 0
\(470\) −203.512 −0.0199730
\(471\) −4723.00 −0.462047
\(472\) 3317.12 0.323480
\(473\) 6253.14 0.607864
\(474\) 433.192 0.0419772
\(475\) −18532.5 −1.79017
\(476\) 0 0
\(477\) 327.174 0.0314052
\(478\) −11856.7 −1.13454
\(479\) −5914.27 −0.564154 −0.282077 0.959392i \(-0.591023\pi\)
−0.282077 + 0.959392i \(0.591023\pi\)
\(480\) 151.974 0.0144513
\(481\) −3292.82 −0.312141
\(482\) 6125.48 0.578855
\(483\) 0 0
\(484\) −2952.21 −0.277255
\(485\) −1835.24 −0.171823
\(486\) 7491.17 0.699190
\(487\) 6116.19 0.569099 0.284549 0.958661i \(-0.408156\pi\)
0.284549 + 0.958661i \(0.408156\pi\)
\(488\) −336.438 −0.0312087
\(489\) 4795.35 0.443463
\(490\) 0 0
\(491\) −1284.68 −0.118079 −0.0590394 0.998256i \(-0.518804\pi\)
−0.0590394 + 0.998256i \(0.518804\pi\)
\(492\) 3321.69 0.304377
\(493\) 7211.41 0.658794
\(494\) 2902.97 0.264395
\(495\) 574.704 0.0521839
\(496\) −49.2093 −0.00445476
\(497\) 0 0
\(498\) −516.425 −0.0464690
\(499\) 14278.2 1.28093 0.640463 0.767989i \(-0.278743\pi\)
0.640463 + 0.767989i \(0.278743\pi\)
\(500\) −1437.97 −0.128616
\(501\) 6537.51 0.582983
\(502\) −11815.4 −1.05049
\(503\) 1329.55 0.117856 0.0589281 0.998262i \(-0.481232\pi\)
0.0589281 + 0.998262i \(0.481232\pi\)
\(504\) 0 0
\(505\) −1504.91 −0.132609
\(506\) −1120.12 −0.0984101
\(507\) −6891.58 −0.603680
\(508\) 15.7904 0.00137911
\(509\) 13566.0 1.18134 0.590670 0.806913i \(-0.298863\pi\)
0.590670 + 0.806913i \(0.298863\pi\)
\(510\) −530.472 −0.0460582
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −21371.3 −1.83931
\(514\) 4901.75 0.420636
\(515\) −2403.77 −0.205675
\(516\) −3363.96 −0.286996
\(517\) 1708.64 0.145350
\(518\) 0 0
\(519\) 7123.72 0.602499
\(520\) 111.668 0.00941720
\(521\) 1749.47 0.147113 0.0735563 0.997291i \(-0.476565\pi\)
0.0735563 + 0.997291i \(0.476565\pi\)
\(522\) 4202.96 0.352411
\(523\) 14240.4 1.19061 0.595305 0.803500i \(-0.297031\pi\)
0.595305 + 0.803500i \(0.297031\pi\)
\(524\) −4404.39 −0.367188
\(525\) 0 0
\(526\) 11044.3 0.915499
\(527\) 171.768 0.0141979
\(528\) −1275.93 −0.105166
\(529\) 529.000 0.0434783
\(530\) −58.3053 −0.00477853
\(531\) −6748.22 −0.551503
\(532\) 0 0
\(533\) 2440.72 0.198348
\(534\) −228.146 −0.0184884
\(535\) 1795.05 0.145059
\(536\) 4081.87 0.328937
\(537\) 2135.03 0.171571
\(538\) 1137.43 0.0911486
\(539\) 0 0
\(540\) −822.080 −0.0655124
\(541\) −11435.1 −0.908753 −0.454376 0.890810i \(-0.650138\pi\)
−0.454376 + 0.890810i \(0.650138\pi\)
\(542\) 12181.4 0.965380
\(543\) 9041.50 0.714563
\(544\) −1787.16 −0.140853
\(545\) −2033.76 −0.159847
\(546\) 0 0
\(547\) 13676.4 1.06903 0.534517 0.845158i \(-0.320494\pi\)
0.534517 + 0.845158i \(0.320494\pi\)
\(548\) 1527.42 0.119066
\(549\) 684.438 0.0532079
\(550\) 5985.21 0.464018
\(551\) −19471.5 −1.50547
\(552\) 602.585 0.0464632
\(553\) 0 0
\(554\) −8456.27 −0.648506
\(555\) −1624.67 −0.124259
\(556\) 3013.21 0.229836
\(557\) 5590.35 0.425262 0.212631 0.977133i \(-0.431797\pi\)
0.212631 + 0.977133i \(0.431797\pi\)
\(558\) 100.110 0.00759494
\(559\) −2471.78 −0.187022
\(560\) 0 0
\(561\) 4453.71 0.335180
\(562\) −16166.2 −1.21340
\(563\) 18355.8 1.37408 0.687040 0.726620i \(-0.258910\pi\)
0.687040 + 0.726620i \(0.258910\pi\)
\(564\) −919.186 −0.0686254
\(565\) −2102.65 −0.156565
\(566\) 16656.5 1.23697
\(567\) 0 0
\(568\) −5542.52 −0.409435
\(569\) −21808.4 −1.60677 −0.803387 0.595458i \(-0.796971\pi\)
−0.803387 + 0.595458i \(0.796971\pi\)
\(570\) 1432.33 0.105252
\(571\) 10537.7 0.772311 0.386155 0.922434i \(-0.373803\pi\)
0.386155 + 0.922434i \(0.373803\pi\)
\(572\) −937.534 −0.0685320
\(573\) 2662.63 0.194124
\(574\) 0 0
\(575\) −2826.63 −0.205006
\(576\) −1041.59 −0.0753468
\(577\) −8270.43 −0.596711 −0.298356 0.954455i \(-0.596438\pi\)
−0.298356 + 0.954455i \(0.596438\pi\)
\(578\) −3587.81 −0.258189
\(579\) 14907.6 1.07001
\(580\) −749.003 −0.0536218
\(581\) 0 0
\(582\) −8289.08 −0.590366
\(583\) 489.518 0.0347749
\(584\) −8014.98 −0.567915
\(585\) −227.173 −0.0160554
\(586\) 12090.3 0.852300
\(587\) 6251.52 0.439570 0.219785 0.975548i \(-0.429464\pi\)
0.219785 + 0.975548i \(0.429464\pi\)
\(588\) 0 0
\(589\) −463.789 −0.0324450
\(590\) 1202.59 0.0839151
\(591\) −6457.63 −0.449461
\(592\) −5473.54 −0.380002
\(593\) −16683.7 −1.15534 −0.577671 0.816270i \(-0.696038\pi\)
−0.577671 + 0.816270i \(0.696038\pi\)
\(594\) 6901.99 0.476754
\(595\) 0 0
\(596\) −11696.7 −0.803884
\(597\) 3451.50 0.236617
\(598\) 442.769 0.0302779
\(599\) 4617.49 0.314967 0.157484 0.987522i \(-0.449662\pi\)
0.157484 + 0.987522i \(0.449662\pi\)
\(600\) −3219.82 −0.219081
\(601\) −22063.2 −1.49746 −0.748732 0.662872i \(-0.769337\pi\)
−0.748732 + 0.662872i \(0.769337\pi\)
\(602\) 0 0
\(603\) −8304.02 −0.560806
\(604\) 11698.9 0.788116
\(605\) −1070.30 −0.0719237
\(606\) −6797.11 −0.455633
\(607\) −228.182 −0.0152580 −0.00762901 0.999971i \(-0.502428\pi\)
−0.00762901 + 0.999971i \(0.502428\pi\)
\(608\) 4825.52 0.321876
\(609\) 0 0
\(610\) −121.973 −0.00809596
\(611\) −675.402 −0.0447199
\(612\) 3635.74 0.240141
\(613\) 21872.4 1.44114 0.720569 0.693384i \(-0.243881\pi\)
0.720569 + 0.693384i \(0.243881\pi\)
\(614\) −15679.9 −1.03060
\(615\) 1204.25 0.0789595
\(616\) 0 0
\(617\) 15631.6 1.01994 0.509971 0.860191i \(-0.329656\pi\)
0.509971 + 0.860191i \(0.329656\pi\)
\(618\) −10856.9 −0.706679
\(619\) 44.1753 0.00286843 0.00143421 0.999999i \(-0.499543\pi\)
0.00143421 + 0.999999i \(0.499543\pi\)
\(620\) −17.8404 −0.00115563
\(621\) −3259.60 −0.210633
\(622\) −12776.9 −0.823645
\(623\) 0 0
\(624\) 504.359 0.0323566
\(625\) 14840.8 0.949812
\(626\) 16762.6 1.07024
\(627\) −12025.5 −0.765950
\(628\) −5768.69 −0.366554
\(629\) 19105.7 1.21112
\(630\) 0 0
\(631\) −12440.7 −0.784876 −0.392438 0.919778i \(-0.628368\pi\)
−0.392438 + 0.919778i \(0.628368\pi\)
\(632\) 529.103 0.0333016
\(633\) 11871.2 0.745402
\(634\) 10301.1 0.645281
\(635\) 5.72467 0.000357759 0
\(636\) −263.342 −0.0164186
\(637\) 0 0
\(638\) 6288.46 0.390223
\(639\) 11275.5 0.698047
\(640\) 185.621 0.0114646
\(641\) −23632.0 −1.45618 −0.728088 0.685484i \(-0.759591\pi\)
−0.728088 + 0.685484i \(0.759591\pi\)
\(642\) 8107.53 0.498409
\(643\) 16232.8 0.995585 0.497792 0.867296i \(-0.334144\pi\)
0.497792 + 0.867296i \(0.334144\pi\)
\(644\) 0 0
\(645\) −1219.57 −0.0744507
\(646\) −16843.7 −1.02586
\(647\) −10225.3 −0.621324 −0.310662 0.950520i \(-0.600551\pi\)
−0.310662 + 0.950520i \(0.600551\pi\)
\(648\) −197.634 −0.0119812
\(649\) −10096.7 −0.610677
\(650\) −2365.87 −0.142765
\(651\) 0 0
\(652\) 5857.07 0.351811
\(653\) −13678.0 −0.819694 −0.409847 0.912154i \(-0.634418\pi\)
−0.409847 + 0.912154i \(0.634418\pi\)
\(654\) −9185.71 −0.549220
\(655\) −1596.77 −0.0952536
\(656\) 4057.13 0.241470
\(657\) 16305.4 0.968241
\(658\) 0 0
\(659\) −18598.7 −1.09940 −0.549699 0.835363i \(-0.685258\pi\)
−0.549699 + 0.835363i \(0.685258\pi\)
\(660\) −462.579 −0.0272816
\(661\) 12146.3 0.714729 0.357364 0.933965i \(-0.383675\pi\)
0.357364 + 0.933965i \(0.383675\pi\)
\(662\) −2895.03 −0.169967
\(663\) −1760.49 −0.103125
\(664\) −630.764 −0.0368651
\(665\) 0 0
\(666\) 11135.2 0.647867
\(667\) −2969.85 −0.172403
\(668\) 7984.94 0.462495
\(669\) −13675.4 −0.790317
\(670\) 1479.85 0.0853306
\(671\) 1024.06 0.0589169
\(672\) 0 0
\(673\) −18740.9 −1.07342 −0.536708 0.843768i \(-0.680332\pi\)
−0.536708 + 0.843768i \(0.680332\pi\)
\(674\) −17029.8 −0.973242
\(675\) 17417.2 0.993167
\(676\) −8417.41 −0.478915
\(677\) −9897.01 −0.561851 −0.280925 0.959730i \(-0.590641\pi\)
−0.280925 + 0.959730i \(0.590641\pi\)
\(678\) −9496.86 −0.537942
\(679\) 0 0
\(680\) −647.921 −0.0365391
\(681\) −7424.41 −0.417774
\(682\) 149.784 0.00840985
\(683\) −6884.66 −0.385702 −0.192851 0.981228i \(-0.561773\pi\)
−0.192851 + 0.981228i \(0.561773\pi\)
\(684\) −9816.86 −0.548767
\(685\) 553.754 0.0308874
\(686\) 0 0
\(687\) 4825.67 0.267993
\(688\) −4108.76 −0.227682
\(689\) −193.500 −0.0106992
\(690\) 218.462 0.0120532
\(691\) 14078.3 0.775057 0.387529 0.921858i \(-0.373329\pi\)
0.387529 + 0.921858i \(0.373329\pi\)
\(692\) 8700.95 0.477978
\(693\) 0 0
\(694\) −12663.0 −0.692624
\(695\) 1092.41 0.0596225
\(696\) −3382.96 −0.184239
\(697\) −14161.6 −0.769598
\(698\) −13226.7 −0.717245
\(699\) −14431.1 −0.780878
\(700\) 0 0
\(701\) 1417.54 0.0763763 0.0381882 0.999271i \(-0.487841\pi\)
0.0381882 + 0.999271i \(0.487841\pi\)
\(702\) −2728.26 −0.146683
\(703\) −51587.2 −2.76764
\(704\) −1558.43 −0.0834313
\(705\) −333.243 −0.0178023
\(706\) 4899.60 0.261188
\(707\) 0 0
\(708\) 5431.64 0.288324
\(709\) 13220.9 0.700313 0.350157 0.936691i \(-0.386128\pi\)
0.350157 + 0.936691i \(0.386128\pi\)
\(710\) −2009.39 −0.106213
\(711\) −1076.39 −0.0567760
\(712\) −278.658 −0.0146674
\(713\) −70.7383 −0.00371553
\(714\) 0 0
\(715\) −339.895 −0.0177781
\(716\) 2607.74 0.136111
\(717\) −19414.8 −1.01124
\(718\) −11213.2 −0.582831
\(719\) 31598.3 1.63897 0.819484 0.573102i \(-0.194260\pi\)
0.819484 + 0.573102i \(0.194260\pi\)
\(720\) −377.621 −0.0195460
\(721\) 0 0
\(722\) 31761.7 1.63718
\(723\) 10030.2 0.515945
\(724\) 11043.3 0.566881
\(725\) 15868.9 0.812906
\(726\) −4834.13 −0.247123
\(727\) 16092.8 0.820975 0.410488 0.911866i \(-0.365358\pi\)
0.410488 + 0.911866i \(0.365358\pi\)
\(728\) 0 0
\(729\) 12933.5 0.657089
\(730\) −2905.76 −0.147325
\(731\) 14341.8 0.725652
\(732\) −550.904 −0.0278169
\(733\) 22882.5 1.15305 0.576525 0.817079i \(-0.304408\pi\)
0.576525 + 0.817079i \(0.304408\pi\)
\(734\) 16099.8 0.809613
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −12424.5 −0.620978
\(738\) −8253.68 −0.411683
\(739\) 12333.1 0.613912 0.306956 0.951724i \(-0.400690\pi\)
0.306956 + 0.951724i \(0.400690\pi\)
\(740\) −1984.39 −0.0985776
\(741\) 4753.50 0.235660
\(742\) 0 0
\(743\) −20823.4 −1.02818 −0.514088 0.857737i \(-0.671870\pi\)
−0.514088 + 0.857737i \(0.671870\pi\)
\(744\) −80.5781 −0.00397062
\(745\) −4240.53 −0.208538
\(746\) −6217.59 −0.305150
\(747\) 1283.20 0.0628514
\(748\) 5439.79 0.265907
\(749\) 0 0
\(750\) −2354.61 −0.114638
\(751\) 2968.78 0.144251 0.0721254 0.997396i \(-0.477022\pi\)
0.0721254 + 0.997396i \(0.477022\pi\)
\(752\) −1122.70 −0.0544423
\(753\) −19347.2 −0.936322
\(754\) −2485.74 −0.120060
\(755\) 4241.34 0.204448
\(756\) 0 0
\(757\) −25476.1 −1.22318 −0.611588 0.791176i \(-0.709469\pi\)
−0.611588 + 0.791176i \(0.709469\pi\)
\(758\) 284.917 0.0136526
\(759\) −1834.15 −0.0877149
\(760\) 1749.45 0.0834989
\(761\) 26646.7 1.26931 0.634654 0.772796i \(-0.281142\pi\)
0.634654 + 0.772796i \(0.281142\pi\)
\(762\) 25.8561 0.00122922
\(763\) 0 0
\(764\) 3252.15 0.154004
\(765\) 1318.11 0.0622957
\(766\) 13125.4 0.619110
\(767\) 3991.08 0.187887
\(768\) 838.379 0.0393911
\(769\) −8988.61 −0.421506 −0.210753 0.977539i \(-0.567591\pi\)
−0.210753 + 0.977539i \(0.567591\pi\)
\(770\) 0 0
\(771\) 8026.42 0.374921
\(772\) 18208.2 0.848869
\(773\) 1658.67 0.0771773 0.0385887 0.999255i \(-0.487714\pi\)
0.0385887 + 0.999255i \(0.487714\pi\)
\(774\) 8358.71 0.388175
\(775\) 377.980 0.0175193
\(776\) −10124.3 −0.468353
\(777\) 0 0
\(778\) −19015.9 −0.876289
\(779\) 38237.8 1.75868
\(780\) 182.851 0.00839374
\(781\) 16870.4 0.772945
\(782\) −2569.05 −0.117479
\(783\) 18299.6 0.835218
\(784\) 0 0
\(785\) −2091.39 −0.0950890
\(786\) −7212.00 −0.327282
\(787\) −1458.02 −0.0660392 −0.0330196 0.999455i \(-0.510512\pi\)
−0.0330196 + 0.999455i \(0.510512\pi\)
\(788\) −7887.38 −0.356569
\(789\) 18084.5 0.816002
\(790\) 191.822 0.00863888
\(791\) 0 0
\(792\) 3170.42 0.142242
\(793\) −404.795 −0.0181270
\(794\) −6634.49 −0.296536
\(795\) −95.4725 −0.00425920
\(796\) 4215.67 0.187714
\(797\) 10538.6 0.468378 0.234189 0.972191i \(-0.424757\pi\)
0.234189 + 0.972191i \(0.424757\pi\)
\(798\) 0 0
\(799\) 3918.84 0.173515
\(800\) −3932.70 −0.173803
\(801\) 566.893 0.0250064
\(802\) 15682.4 0.690482
\(803\) 24396.1 1.07213
\(804\) 6683.90 0.293188
\(805\) 0 0
\(806\) −59.2075 −0.00258746
\(807\) 1862.49 0.0812426
\(808\) −8302.02 −0.361465
\(809\) −10372.3 −0.450769 −0.225384 0.974270i \(-0.572364\pi\)
−0.225384 + 0.974270i \(0.572364\pi\)
\(810\) −71.6507 −0.00310808
\(811\) 14500.3 0.627837 0.313919 0.949450i \(-0.398358\pi\)
0.313919 + 0.949450i \(0.398358\pi\)
\(812\) 0 0
\(813\) 19946.5 0.860462
\(814\) 16660.4 0.717381
\(815\) 2123.43 0.0912644
\(816\) −2926.41 −0.125545
\(817\) −38724.4 −1.65825
\(818\) −24839.4 −1.06172
\(819\) 0 0
\(820\) 1470.88 0.0626406
\(821\) 31142.8 1.32386 0.661930 0.749565i \(-0.269737\pi\)
0.661930 + 0.749565i \(0.269737\pi\)
\(822\) 2501.09 0.106126
\(823\) −11026.8 −0.467037 −0.233518 0.972352i \(-0.575024\pi\)
−0.233518 + 0.972352i \(0.575024\pi\)
\(824\) −13260.7 −0.560627
\(825\) 9800.53 0.413589
\(826\) 0 0
\(827\) −10587.6 −0.445185 −0.222592 0.974912i \(-0.571452\pi\)
−0.222592 + 0.974912i \(0.571452\pi\)
\(828\) −1497.29 −0.0628436
\(829\) −13342.7 −0.559002 −0.279501 0.960145i \(-0.590169\pi\)
−0.279501 + 0.960145i \(0.590169\pi\)
\(830\) −228.678 −0.00956329
\(831\) −13846.8 −0.578026
\(832\) 616.026 0.0256693
\(833\) 0 0
\(834\) 4934.01 0.204857
\(835\) 2894.87 0.119977
\(836\) −14688.0 −0.607648
\(837\) 435.877 0.0180001
\(838\) −12878.0 −0.530865
\(839\) 1269.25 0.0522280 0.0261140 0.999659i \(-0.491687\pi\)
0.0261140 + 0.999659i \(0.491687\pi\)
\(840\) 0 0
\(841\) −7716.06 −0.316374
\(842\) 3991.46 0.163367
\(843\) −26471.5 −1.08153
\(844\) 14499.6 0.591347
\(845\) −3051.66 −0.124237
\(846\) 2283.98 0.0928189
\(847\) 0 0
\(848\) −321.648 −0.0130253
\(849\) 27274.3 1.10253
\(850\) 13727.3 0.553933
\(851\) −7868.22 −0.316944
\(852\) −9075.64 −0.364937
\(853\) 45943.8 1.84418 0.922089 0.386977i \(-0.126481\pi\)
0.922089 + 0.386977i \(0.126481\pi\)
\(854\) 0 0
\(855\) −3559.02 −0.142358
\(856\) 9902.58 0.395401
\(857\) 16704.6 0.665832 0.332916 0.942956i \(-0.391967\pi\)
0.332916 + 0.942956i \(0.391967\pi\)
\(858\) −1535.17 −0.0610839
\(859\) −9613.50 −0.381849 −0.190924 0.981605i \(-0.561149\pi\)
−0.190924 + 0.981605i \(0.561149\pi\)
\(860\) −1489.59 −0.0590637
\(861\) 0 0
\(862\) 19266.7 0.761283
\(863\) 29112.3 1.14831 0.574157 0.818745i \(-0.305330\pi\)
0.574157 + 0.818745i \(0.305330\pi\)
\(864\) −4535.10 −0.178573
\(865\) 3154.45 0.123994
\(866\) −21219.1 −0.832628
\(867\) −5874.90 −0.230129
\(868\) 0 0
\(869\) −1610.49 −0.0628679
\(870\) −1226.46 −0.0477942
\(871\) 4911.22 0.191056
\(872\) −11219.5 −0.435710
\(873\) 20596.6 0.798497
\(874\) 6936.68 0.268463
\(875\) 0 0
\(876\) −13124.2 −0.506194
\(877\) 16002.4 0.616147 0.308074 0.951362i \(-0.400316\pi\)
0.308074 + 0.951362i \(0.400316\pi\)
\(878\) −11430.5 −0.439365
\(879\) 19797.4 0.759671
\(880\) −564.996 −0.0216432
\(881\) 24886.3 0.951691 0.475846 0.879529i \(-0.342142\pi\)
0.475846 + 0.879529i \(0.342142\pi\)
\(882\) 0 0
\(883\) −5564.81 −0.212085 −0.106042 0.994362i \(-0.533818\pi\)
−0.106042 + 0.994362i \(0.533818\pi\)
\(884\) −2150.27 −0.0818117
\(885\) 1969.19 0.0747952
\(886\) −16329.4 −0.619183
\(887\) −31281.3 −1.18413 −0.592065 0.805890i \(-0.701687\pi\)
−0.592065 + 0.805890i \(0.701687\pi\)
\(888\) −8962.70 −0.338703
\(889\) 0 0
\(890\) −101.025 −0.00380491
\(891\) 601.562 0.0226185
\(892\) −16703.2 −0.626979
\(893\) −10581.2 −0.396515
\(894\) −19152.8 −0.716518
\(895\) 945.413 0.0353091
\(896\) 0 0
\(897\) 725.016 0.0269873
\(898\) 8279.34 0.307667
\(899\) 397.130 0.0147331
\(900\) 8000.56 0.296317
\(901\) 1122.73 0.0415133
\(902\) −12349.1 −0.455855
\(903\) 0 0
\(904\) −11599.5 −0.426763
\(905\) 4003.66 0.147057
\(906\) 19156.5 0.702463
\(907\) 22174.4 0.811784 0.405892 0.913921i \(-0.366961\pi\)
0.405892 + 0.913921i \(0.366961\pi\)
\(908\) −9068.21 −0.331431
\(909\) 16889.3 0.616264
\(910\) 0 0
\(911\) −44322.7 −1.61194 −0.805970 0.591956i \(-0.798356\pi\)
−0.805970 + 0.591956i \(0.798356\pi\)
\(912\) 7901.58 0.286894
\(913\) 1919.93 0.0695951
\(914\) 22837.3 0.826468
\(915\) −199.725 −0.00721609
\(916\) 5894.10 0.212605
\(917\) 0 0
\(918\) 15830.0 0.569137
\(919\) 19890.9 0.713971 0.356986 0.934110i \(-0.383804\pi\)
0.356986 + 0.934110i \(0.383804\pi\)
\(920\) 266.830 0.00956211
\(921\) −25675.2 −0.918597
\(922\) 5004.36 0.178753
\(923\) −6668.63 −0.237812
\(924\) 0 0
\(925\) 42042.6 1.49444
\(926\) 19833.3 0.703848
\(927\) 26977.0 0.955815
\(928\) −4131.96 −0.146162
\(929\) −34030.5 −1.20183 −0.600917 0.799311i \(-0.705198\pi\)
−0.600917 + 0.799311i \(0.705198\pi\)
\(930\) −29.2129 −0.00103003
\(931\) 0 0
\(932\) −17626.2 −0.619490
\(933\) −20921.7 −0.734131
\(934\) 31828.3 1.11505
\(935\) 1972.15 0.0689798
\(936\) −1253.22 −0.0437637
\(937\) 17488.1 0.609725 0.304863 0.952396i \(-0.401389\pi\)
0.304863 + 0.952396i \(0.401389\pi\)
\(938\) 0 0
\(939\) 27448.1 0.953925
\(940\) −407.024 −0.0141231
\(941\) −6832.13 −0.236685 −0.118343 0.992973i \(-0.537758\pi\)
−0.118343 + 0.992973i \(0.537758\pi\)
\(942\) −9445.99 −0.326717
\(943\) 5832.12 0.201400
\(944\) 6634.23 0.228735
\(945\) 0 0
\(946\) 12506.3 0.429825
\(947\) −12310.5 −0.422425 −0.211213 0.977440i \(-0.567741\pi\)
−0.211213 + 0.977440i \(0.567741\pi\)
\(948\) 866.385 0.0296824
\(949\) −9643.44 −0.329862
\(950\) −37065.1 −1.26584
\(951\) 16867.6 0.575152
\(952\) 0 0
\(953\) 31238.8 1.06183 0.530914 0.847425i \(-0.321849\pi\)
0.530914 + 0.847425i \(0.321849\pi\)
\(954\) 654.349 0.0222068
\(955\) 1179.04 0.0399506
\(956\) −23713.3 −0.802243
\(957\) 10297.1 0.347813
\(958\) −11828.5 −0.398917
\(959\) 0 0
\(960\) 303.947 0.0102186
\(961\) −29781.5 −0.999682
\(962\) −6585.64 −0.220717
\(963\) −20145.5 −0.674121
\(964\) 12251.0 0.409312
\(965\) 6601.22 0.220208
\(966\) 0 0
\(967\) 41989.0 1.39636 0.698178 0.715924i \(-0.253994\pi\)
0.698178 + 0.715924i \(0.253994\pi\)
\(968\) −5904.43 −0.196049
\(969\) −27580.9 −0.914371
\(970\) −3670.48 −0.121497
\(971\) 22454.0 0.742103 0.371052 0.928612i \(-0.378997\pi\)
0.371052 + 0.928612i \(0.378997\pi\)
\(972\) 14982.3 0.494402
\(973\) 0 0
\(974\) 12232.4 0.402414
\(975\) −3874.01 −0.127249
\(976\) −672.877 −0.0220679
\(977\) 2197.25 0.0719512 0.0359756 0.999353i \(-0.488546\pi\)
0.0359756 + 0.999353i \(0.488546\pi\)
\(978\) 9590.71 0.313576
\(979\) 848.183 0.0276895
\(980\) 0 0
\(981\) 22824.5 0.742844
\(982\) −2569.36 −0.0834943
\(983\) 35114.3 1.13934 0.569670 0.821873i \(-0.307071\pi\)
0.569670 + 0.821873i \(0.307071\pi\)
\(984\) 6643.38 0.215227
\(985\) −2859.50 −0.0924988
\(986\) 14422.8 0.465838
\(987\) 0 0
\(988\) 5805.95 0.186955
\(989\) −5906.34 −0.189900
\(990\) 1149.41 0.0368996
\(991\) −33767.5 −1.08240 −0.541201 0.840893i \(-0.682030\pi\)
−0.541201 + 0.840893i \(0.682030\pi\)
\(992\) −98.4185 −0.00314999
\(993\) −4740.49 −0.151495
\(994\) 0 0
\(995\) 1528.36 0.0486956
\(996\) −1032.85 −0.0328585
\(997\) −34616.5 −1.09961 −0.549807 0.835292i \(-0.685299\pi\)
−0.549807 + 0.835292i \(0.685299\pi\)
\(998\) 28556.5 0.905751
\(999\) 48482.5 1.53545
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.g.1.2 2
7.6 odd 2 322.4.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.a.c.1.1 2 7.6 odd 2
2254.4.a.g.1.2 2 1.1 even 1 trivial