Properties

Label 2254.4.a.g.1.1
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.27492\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -4.27492 q^{3} +4.00000 q^{4} +16.5498 q^{5} -8.54983 q^{6} +8.00000 q^{8} -8.72508 q^{9} +33.0997 q^{10} -69.6495 q^{11} -17.0997 q^{12} +47.3746 q^{13} -70.7492 q^{15} +16.0000 q^{16} +49.8488 q^{17} -17.4502 q^{18} -90.7974 q^{19} +66.1993 q^{20} -139.299 q^{22} +23.0000 q^{23} -34.1993 q^{24} +148.897 q^{25} +94.7492 q^{26} +152.722 q^{27} -15.8762 q^{29} -141.498 q^{30} -55.9244 q^{31} +32.0000 q^{32} +297.746 q^{33} +99.6977 q^{34} -34.9003 q^{36} -9.90364 q^{37} -181.595 q^{38} -202.522 q^{39} +132.399 q^{40} -146.571 q^{41} -15.2026 q^{43} -278.598 q^{44} -144.399 q^{45} +46.0000 q^{46} +511.169 q^{47} -68.3987 q^{48} +297.794 q^{50} -213.100 q^{51} +189.498 q^{52} -291.897 q^{53} +305.444 q^{54} -1152.69 q^{55} +388.151 q^{57} -31.7525 q^{58} -536.640 q^{59} -282.997 q^{60} -479.945 q^{61} -111.849 q^{62} +64.0000 q^{64} +784.042 q^{65} +595.492 q^{66} -924.234 q^{67} +199.395 q^{68} -98.3231 q^{69} +235.815 q^{71} -69.8007 q^{72} -813.127 q^{73} -19.8073 q^{74} -636.522 q^{75} -363.189 q^{76} -405.045 q^{78} -1036.14 q^{79} +264.797 q^{80} -417.296 q^{81} -293.141 q^{82} +328.846 q^{83} +824.990 q^{85} -30.4053 q^{86} +67.8696 q^{87} -557.196 q^{88} +1580.83 q^{89} -288.797 q^{90} +92.0000 q^{92} +239.072 q^{93} +1022.34 q^{94} -1502.68 q^{95} -136.797 q^{96} -344.460 q^{97} +607.698 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - q^{3} + 8 q^{4} + 18 q^{5} - 2 q^{6} + 16 q^{8} - 25 q^{9} + 36 q^{10} - 94 q^{11} - 4 q^{12} + 57 q^{13} - 66 q^{15} + 32 q^{16} - 6 q^{17} - 50 q^{18} + 60 q^{19} + 72 q^{20} - 188 q^{22}+ \cdots + 1004 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −4.27492 −0.822708 −0.411354 0.911476i \(-0.634944\pi\)
−0.411354 + 0.911476i \(0.634944\pi\)
\(4\) 4.00000 0.500000
\(5\) 16.5498 1.48026 0.740131 0.672463i \(-0.234763\pi\)
0.740131 + 0.672463i \(0.234763\pi\)
\(6\) −8.54983 −0.581743
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −8.72508 −0.323151
\(10\) 33.0997 1.04670
\(11\) −69.6495 −1.90910 −0.954551 0.298049i \(-0.903664\pi\)
−0.954551 + 0.298049i \(0.903664\pi\)
\(12\) −17.0997 −0.411354
\(13\) 47.3746 1.01072 0.505359 0.862909i \(-0.331360\pi\)
0.505359 + 0.862909i \(0.331360\pi\)
\(14\) 0 0
\(15\) −70.7492 −1.21782
\(16\) 16.0000 0.250000
\(17\) 49.8488 0.711184 0.355592 0.934641i \(-0.384279\pi\)
0.355592 + 0.934641i \(0.384279\pi\)
\(18\) −17.4502 −0.228502
\(19\) −90.7974 −1.09633 −0.548167 0.836369i \(-0.684674\pi\)
−0.548167 + 0.836369i \(0.684674\pi\)
\(20\) 66.1993 0.740131
\(21\) 0 0
\(22\) −139.299 −1.34994
\(23\) 23.0000 0.208514
\(24\) −34.1993 −0.290871
\(25\) 148.897 1.19118
\(26\) 94.7492 0.714686
\(27\) 152.722 1.08857
\(28\) 0 0
\(29\) −15.8762 −0.101660 −0.0508301 0.998707i \(-0.516187\pi\)
−0.0508301 + 0.998707i \(0.516187\pi\)
\(30\) −141.498 −0.861132
\(31\) −55.9244 −0.324010 −0.162005 0.986790i \(-0.551796\pi\)
−0.162005 + 0.986790i \(0.551796\pi\)
\(32\) 32.0000 0.176777
\(33\) 297.746 1.57063
\(34\) 99.6977 0.502883
\(35\) 0 0
\(36\) −34.9003 −0.161576
\(37\) −9.90364 −0.0440040 −0.0220020 0.999758i \(-0.507004\pi\)
−0.0220020 + 0.999758i \(0.507004\pi\)
\(38\) −181.595 −0.775225
\(39\) −202.522 −0.831527
\(40\) 132.399 0.523352
\(41\) −146.571 −0.558304 −0.279152 0.960247i \(-0.590053\pi\)
−0.279152 + 0.960247i \(0.590053\pi\)
\(42\) 0 0
\(43\) −15.2026 −0.0539159 −0.0269579 0.999637i \(-0.508582\pi\)
−0.0269579 + 0.999637i \(0.508582\pi\)
\(44\) −278.598 −0.954551
\(45\) −144.399 −0.478349
\(46\) 46.0000 0.147442
\(47\) 511.169 1.58642 0.793209 0.608950i \(-0.208409\pi\)
0.793209 + 0.608950i \(0.208409\pi\)
\(48\) −68.3987 −0.205677
\(49\) 0 0
\(50\) 297.794 0.842289
\(51\) −213.100 −0.585097
\(52\) 189.498 0.505359
\(53\) −291.897 −0.756512 −0.378256 0.925701i \(-0.623476\pi\)
−0.378256 + 0.925701i \(0.623476\pi\)
\(54\) 305.444 0.769733
\(55\) −1152.69 −2.82597
\(56\) 0 0
\(57\) 388.151 0.901963
\(58\) −31.7525 −0.0718846
\(59\) −536.640 −1.18414 −0.592072 0.805885i \(-0.701690\pi\)
−0.592072 + 0.805885i \(0.701690\pi\)
\(60\) −282.997 −0.608912
\(61\) −479.945 −1.00739 −0.503694 0.863882i \(-0.668026\pi\)
−0.503694 + 0.863882i \(0.668026\pi\)
\(62\) −111.849 −0.229110
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 784.042 1.49613
\(66\) 595.492 1.11061
\(67\) −924.234 −1.68527 −0.842636 0.538484i \(-0.818997\pi\)
−0.842636 + 0.538484i \(0.818997\pi\)
\(68\) 199.395 0.355592
\(69\) −98.3231 −0.171547
\(70\) 0 0
\(71\) 235.815 0.394170 0.197085 0.980386i \(-0.436853\pi\)
0.197085 + 0.980386i \(0.436853\pi\)
\(72\) −69.8007 −0.114251
\(73\) −813.127 −1.30369 −0.651845 0.758352i \(-0.726005\pi\)
−0.651845 + 0.758352i \(0.726005\pi\)
\(74\) −19.8073 −0.0311155
\(75\) −636.522 −0.979990
\(76\) −363.189 −0.548167
\(77\) 0 0
\(78\) −405.045 −0.587978
\(79\) −1036.14 −1.47563 −0.737814 0.675004i \(-0.764142\pi\)
−0.737814 + 0.675004i \(0.764142\pi\)
\(80\) 264.797 0.370066
\(81\) −417.296 −0.572422
\(82\) −293.141 −0.394781
\(83\) 328.846 0.434885 0.217443 0.976073i \(-0.430228\pi\)
0.217443 + 0.976073i \(0.430228\pi\)
\(84\) 0 0
\(85\) 824.990 1.05274
\(86\) −30.4053 −0.0381243
\(87\) 67.8696 0.0836366
\(88\) −557.196 −0.674969
\(89\) 1580.83 1.88279 0.941393 0.337313i \(-0.109518\pi\)
0.941393 + 0.337313i \(0.109518\pi\)
\(90\) −288.797 −0.338243
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 239.072 0.266566
\(94\) 1022.34 1.12177
\(95\) −1502.68 −1.62286
\(96\) −136.797 −0.145436
\(97\) −344.460 −0.360563 −0.180282 0.983615i \(-0.557701\pi\)
−0.180282 + 0.983615i \(0.557701\pi\)
\(98\) 0 0
\(99\) 607.698 0.616928
\(100\) 595.588 0.595588
\(101\) −1264.25 −1.24552 −0.622759 0.782414i \(-0.713988\pi\)
−0.622759 + 0.782414i \(0.713988\pi\)
\(102\) −426.199 −0.413726
\(103\) 33.5815 0.0321250 0.0160625 0.999871i \(-0.494887\pi\)
0.0160625 + 0.999871i \(0.494887\pi\)
\(104\) 378.997 0.357343
\(105\) 0 0
\(106\) −583.794 −0.534935
\(107\) −1283.82 −1.15992 −0.579962 0.814644i \(-0.696932\pi\)
−0.579962 + 0.814644i \(0.696932\pi\)
\(108\) 610.887 0.544284
\(109\) 92.4336 0.0812251 0.0406125 0.999175i \(-0.487069\pi\)
0.0406125 + 0.999175i \(0.487069\pi\)
\(110\) −2305.38 −1.99826
\(111\) 42.3373 0.0362025
\(112\) 0 0
\(113\) −408.061 −0.339710 −0.169855 0.985469i \(-0.554330\pi\)
−0.169855 + 0.985469i \(0.554330\pi\)
\(114\) 776.302 0.637784
\(115\) 380.646 0.308656
\(116\) −63.5050 −0.0508301
\(117\) −413.347 −0.326615
\(118\) −1073.28 −0.837317
\(119\) 0 0
\(120\) −565.993 −0.430566
\(121\) 3520.05 2.64467
\(122\) −959.890 −0.712331
\(123\) 626.577 0.459322
\(124\) −223.698 −0.162005
\(125\) 395.492 0.282991
\(126\) 0 0
\(127\) 2065.05 1.44286 0.721432 0.692485i \(-0.243484\pi\)
0.721432 + 0.692485i \(0.243484\pi\)
\(128\) 128.000 0.0883883
\(129\) 64.9901 0.0443570
\(130\) 1568.08 1.05792
\(131\) 1428.10 0.952469 0.476234 0.879318i \(-0.342001\pi\)
0.476234 + 0.879318i \(0.342001\pi\)
\(132\) 1190.98 0.785317
\(133\) 0 0
\(134\) −1848.47 −1.19167
\(135\) 2527.52 1.61137
\(136\) 398.791 0.251441
\(137\) 880.145 0.548875 0.274437 0.961605i \(-0.411508\pi\)
0.274437 + 0.961605i \(0.411508\pi\)
\(138\) −196.646 −0.121302
\(139\) −1232.30 −0.751961 −0.375981 0.926628i \(-0.622694\pi\)
−0.375981 + 0.926628i \(0.622694\pi\)
\(140\) 0 0
\(141\) −2185.20 −1.30516
\(142\) 471.630 0.278720
\(143\) −3299.62 −1.92956
\(144\) −139.601 −0.0807878
\(145\) −262.749 −0.150484
\(146\) −1626.25 −0.921848
\(147\) 0 0
\(148\) −39.6146 −0.0220020
\(149\) −447.827 −0.246224 −0.123112 0.992393i \(-0.539287\pi\)
−0.123112 + 0.992393i \(0.539287\pi\)
\(150\) −1273.04 −0.692958
\(151\) −1461.73 −0.787773 −0.393886 0.919159i \(-0.628870\pi\)
−0.393886 + 0.919159i \(0.628870\pi\)
\(152\) −726.379 −0.387613
\(153\) −434.935 −0.229820
\(154\) 0 0
\(155\) −925.540 −0.479620
\(156\) −810.090 −0.415763
\(157\) 1034.17 0.525707 0.262853 0.964836i \(-0.415336\pi\)
0.262853 + 0.964836i \(0.415336\pi\)
\(158\) −2072.28 −1.04343
\(159\) 1247.84 0.622389
\(160\) 529.595 0.261676
\(161\) 0 0
\(162\) −834.591 −0.404764
\(163\) −3843.27 −1.84680 −0.923398 0.383843i \(-0.874600\pi\)
−0.923398 + 0.383843i \(0.874600\pi\)
\(164\) −586.282 −0.279152
\(165\) 4927.64 2.32495
\(166\) 657.691 0.307510
\(167\) −3832.24 −1.77573 −0.887866 0.460102i \(-0.847813\pi\)
−0.887866 + 0.460102i \(0.847813\pi\)
\(168\) 0 0
\(169\) 47.3514 0.0215528
\(170\) 1649.98 0.744398
\(171\) 792.214 0.354282
\(172\) −60.8106 −0.0269579
\(173\) 1042.76 0.458265 0.229132 0.973395i \(-0.426411\pi\)
0.229132 + 0.973395i \(0.426411\pi\)
\(174\) 135.739 0.0591400
\(175\) 0 0
\(176\) −1114.39 −0.477275
\(177\) 2294.09 0.974205
\(178\) 3161.66 1.33133
\(179\) 1505.07 0.628457 0.314229 0.949347i \(-0.398254\pi\)
0.314229 + 0.949347i \(0.398254\pi\)
\(180\) −577.595 −0.239174
\(181\) 1145.17 0.470274 0.235137 0.971962i \(-0.424446\pi\)
0.235137 + 0.971962i \(0.424446\pi\)
\(182\) 0 0
\(183\) 2051.73 0.828787
\(184\) 184.000 0.0737210
\(185\) −163.904 −0.0651375
\(186\) 478.145 0.188491
\(187\) −3471.95 −1.35772
\(188\) 2044.67 0.793209
\(189\) 0 0
\(190\) −3005.36 −1.14754
\(191\) −259.038 −0.0981327 −0.0490664 0.998796i \(-0.515625\pi\)
−0.0490664 + 0.998796i \(0.515625\pi\)
\(192\) −273.595 −0.102839
\(193\) 1886.95 0.703761 0.351881 0.936045i \(-0.385542\pi\)
0.351881 + 0.936045i \(0.385542\pi\)
\(194\) −688.920 −0.254957
\(195\) −3351.71 −1.23088
\(196\) 0 0
\(197\) −3761.16 −1.36026 −0.680130 0.733092i \(-0.738077\pi\)
−0.680130 + 0.733092i \(0.738077\pi\)
\(198\) 1215.40 0.436234
\(199\) −1799.92 −0.641170 −0.320585 0.947220i \(-0.603880\pi\)
−0.320585 + 0.947220i \(0.603880\pi\)
\(200\) 1191.18 0.421144
\(201\) 3951.02 1.38649
\(202\) −2528.50 −0.880714
\(203\) 0 0
\(204\) −852.399 −0.292548
\(205\) −2425.72 −0.826437
\(206\) 67.1629 0.0227158
\(207\) −200.677 −0.0673817
\(208\) 757.993 0.252680
\(209\) 6323.99 2.09301
\(210\) 0 0
\(211\) −5736.90 −1.87177 −0.935887 0.352300i \(-0.885400\pi\)
−0.935887 + 0.352300i \(0.885400\pi\)
\(212\) −1167.59 −0.378256
\(213\) −1008.09 −0.324287
\(214\) −2567.64 −0.820190
\(215\) −251.601 −0.0798096
\(216\) 1221.77 0.384867
\(217\) 0 0
\(218\) 184.867 0.0574348
\(219\) 3476.05 1.07256
\(220\) −4610.75 −1.41299
\(221\) 2361.57 0.718807
\(222\) 84.6745 0.0255990
\(223\) −4840.19 −1.45347 −0.726734 0.686919i \(-0.758963\pi\)
−0.726734 + 0.686919i \(0.758963\pi\)
\(224\) 0 0
\(225\) −1299.14 −0.384930
\(226\) −816.123 −0.240211
\(227\) −2402.95 −0.702596 −0.351298 0.936264i \(-0.614260\pi\)
−0.351298 + 0.936264i \(0.614260\pi\)
\(228\) 1552.60 0.450981
\(229\) 3738.48 1.07880 0.539400 0.842049i \(-0.318651\pi\)
0.539400 + 0.842049i \(0.318651\pi\)
\(230\) 761.292 0.218253
\(231\) 0 0
\(232\) −127.010 −0.0359423
\(233\) −1892.45 −0.532097 −0.266049 0.963960i \(-0.585718\pi\)
−0.266049 + 0.963960i \(0.585718\pi\)
\(234\) −826.694 −0.230952
\(235\) 8459.76 2.34831
\(236\) −2146.56 −0.592072
\(237\) 4429.40 1.21401
\(238\) 0 0
\(239\) 2127.34 0.575757 0.287879 0.957667i \(-0.407050\pi\)
0.287879 + 0.957667i \(0.407050\pi\)
\(240\) −1131.99 −0.304456
\(241\) 6777.26 1.81146 0.905730 0.423856i \(-0.139324\pi\)
0.905730 + 0.423856i \(0.139324\pi\)
\(242\) 7040.11 1.87006
\(243\) −2339.58 −0.617631
\(244\) −1919.78 −0.503694
\(245\) 0 0
\(246\) 1253.15 0.324789
\(247\) −4301.49 −1.10809
\(248\) −447.395 −0.114555
\(249\) −1405.79 −0.357784
\(250\) 790.983 0.200105
\(251\) −94.3137 −0.0237173 −0.0118586 0.999930i \(-0.503775\pi\)
−0.0118586 + 0.999930i \(0.503775\pi\)
\(252\) 0 0
\(253\) −1601.94 −0.398075
\(254\) 4130.10 1.02026
\(255\) −3526.76 −0.866096
\(256\) 256.000 0.0625000
\(257\) 2564.12 0.622357 0.311178 0.950352i \(-0.399276\pi\)
0.311178 + 0.950352i \(0.399276\pi\)
\(258\) 129.980 0.0313652
\(259\) 0 0
\(260\) 3136.17 0.748065
\(261\) 138.522 0.0328516
\(262\) 2856.19 0.673497
\(263\) −5576.13 −1.30737 −0.653686 0.756766i \(-0.726778\pi\)
−0.653686 + 0.756766i \(0.726778\pi\)
\(264\) 2381.97 0.555303
\(265\) −4830.85 −1.11984
\(266\) 0 0
\(267\) −6757.93 −1.54898
\(268\) −3696.94 −0.842636
\(269\) −5025.71 −1.13912 −0.569560 0.821950i \(-0.692886\pi\)
−0.569560 + 0.821950i \(0.692886\pi\)
\(270\) 5055.04 1.13941
\(271\) −3210.70 −0.719690 −0.359845 0.933012i \(-0.617170\pi\)
−0.359845 + 0.933012i \(0.617170\pi\)
\(272\) 797.581 0.177796
\(273\) 0 0
\(274\) 1760.29 0.388113
\(275\) −10370.6 −2.27408
\(276\) −393.292 −0.0857733
\(277\) −5020.87 −1.08908 −0.544539 0.838736i \(-0.683295\pi\)
−0.544539 + 0.838736i \(0.683295\pi\)
\(278\) −2464.61 −0.531717
\(279\) 487.945 0.104704
\(280\) 0 0
\(281\) 5733.10 1.21711 0.608555 0.793512i \(-0.291749\pi\)
0.608555 + 0.793512i \(0.291749\pi\)
\(282\) −4370.41 −0.922886
\(283\) 3103.76 0.651941 0.325970 0.945380i \(-0.394309\pi\)
0.325970 + 0.945380i \(0.394309\pi\)
\(284\) 943.259 0.197085
\(285\) 6423.84 1.33514
\(286\) −6599.23 −1.36441
\(287\) 0 0
\(288\) −279.203 −0.0571256
\(289\) −2428.09 −0.494218
\(290\) −525.498 −0.106408
\(291\) 1472.54 0.296638
\(292\) −3252.51 −0.651845
\(293\) −5521.17 −1.10085 −0.550427 0.834883i \(-0.685535\pi\)
−0.550427 + 0.834883i \(0.685535\pi\)
\(294\) 0 0
\(295\) −8881.30 −1.75284
\(296\) −79.2291 −0.0155578
\(297\) −10637.0 −2.07819
\(298\) −895.654 −0.174107
\(299\) 1089.62 0.210749
\(300\) −2546.09 −0.489995
\(301\) 0 0
\(302\) −2923.45 −0.557039
\(303\) 5404.55 1.02470
\(304\) −1452.76 −0.274083
\(305\) −7943.01 −1.49120
\(306\) −869.871 −0.162507
\(307\) 8965.97 1.66682 0.833412 0.552653i \(-0.186384\pi\)
0.833412 + 0.552653i \(0.186384\pi\)
\(308\) 0 0
\(309\) −143.558 −0.0264295
\(310\) −1851.08 −0.339143
\(311\) 4581.45 0.835339 0.417670 0.908599i \(-0.362847\pi\)
0.417670 + 0.908599i \(0.362847\pi\)
\(312\) −1620.18 −0.293989
\(313\) 5708.68 1.03091 0.515453 0.856918i \(-0.327624\pi\)
0.515453 + 0.856918i \(0.327624\pi\)
\(314\) 2068.35 0.371731
\(315\) 0 0
\(316\) −4144.55 −0.737814
\(317\) −9254.54 −1.63971 −0.819853 0.572574i \(-0.805945\pi\)
−0.819853 + 0.572574i \(0.805945\pi\)
\(318\) 2495.67 0.440095
\(319\) 1105.77 0.194080
\(320\) 1059.19 0.185033
\(321\) 5488.23 0.954278
\(322\) 0 0
\(323\) −4526.14 −0.779694
\(324\) −1669.18 −0.286211
\(325\) 7053.93 1.20394
\(326\) −7686.53 −1.30588
\(327\) −395.146 −0.0668245
\(328\) −1172.56 −0.197390
\(329\) 0 0
\(330\) 9855.29 1.64399
\(331\) −5003.49 −0.830865 −0.415433 0.909624i \(-0.636370\pi\)
−0.415433 + 0.909624i \(0.636370\pi\)
\(332\) 1315.38 0.217443
\(333\) 86.4101 0.0142200
\(334\) −7664.47 −1.25563
\(335\) −15295.9 −2.49464
\(336\) 0 0
\(337\) 3428.92 0.554259 0.277129 0.960833i \(-0.410617\pi\)
0.277129 + 0.960833i \(0.410617\pi\)
\(338\) 94.7028 0.0152401
\(339\) 1744.43 0.279482
\(340\) 3299.96 0.526369
\(341\) 3895.11 0.618569
\(342\) 1584.43 0.250515
\(343\) 0 0
\(344\) −121.621 −0.0190621
\(345\) −1627.23 −0.253934
\(346\) 2085.52 0.324042
\(347\) −6784.50 −1.04960 −0.524799 0.851226i \(-0.675860\pi\)
−0.524799 + 0.851226i \(0.675860\pi\)
\(348\) 271.478 0.0418183
\(349\) 1140.34 0.174903 0.0874513 0.996169i \(-0.472128\pi\)
0.0874513 + 0.996169i \(0.472128\pi\)
\(350\) 0 0
\(351\) 7235.13 1.10024
\(352\) −2228.78 −0.337485
\(353\) 11.2017 0.00168898 0.000844488 1.00000i \(-0.499731\pi\)
0.000844488 1.00000i \(0.499731\pi\)
\(354\) 4588.18 0.688867
\(355\) 3902.70 0.583475
\(356\) 6323.33 0.941393
\(357\) 0 0
\(358\) 3010.13 0.444387
\(359\) 8360.60 1.22912 0.614562 0.788869i \(-0.289333\pi\)
0.614562 + 0.788869i \(0.289333\pi\)
\(360\) −1155.19 −0.169122
\(361\) 1385.16 0.201948
\(362\) 2290.34 0.332534
\(363\) −15047.9 −2.17579
\(364\) 0 0
\(365\) −13457.1 −1.92980
\(366\) 4103.45 0.586041
\(367\) −8589.92 −1.22177 −0.610886 0.791719i \(-0.709186\pi\)
−0.610886 + 0.791719i \(0.709186\pi\)
\(368\) 368.000 0.0521286
\(369\) 1278.84 0.180417
\(370\) −327.807 −0.0460592
\(371\) 0 0
\(372\) 956.289 0.133283
\(373\) 6524.79 0.905740 0.452870 0.891577i \(-0.350400\pi\)
0.452870 + 0.891577i \(0.350400\pi\)
\(374\) −6943.89 −0.960054
\(375\) −1690.69 −0.232819
\(376\) 4089.35 0.560883
\(377\) −752.130 −0.102750
\(378\) 0 0
\(379\) 5457.54 0.739670 0.369835 0.929097i \(-0.379414\pi\)
0.369835 + 0.929097i \(0.379414\pi\)
\(380\) −6010.72 −0.811431
\(381\) −8827.93 −1.18706
\(382\) −518.076 −0.0693903
\(383\) 13629.3 1.81834 0.909172 0.416421i \(-0.136716\pi\)
0.909172 + 0.416421i \(0.136716\pi\)
\(384\) −547.189 −0.0727178
\(385\) 0 0
\(386\) 3773.91 0.497634
\(387\) 132.644 0.0174230
\(388\) −1377.84 −0.180282
\(389\) −282.051 −0.0367624 −0.0183812 0.999831i \(-0.505851\pi\)
−0.0183812 + 0.999831i \(0.505851\pi\)
\(390\) −6703.43 −0.870362
\(391\) 1146.52 0.148292
\(392\) 0 0
\(393\) −6105.00 −0.783604
\(394\) −7522.31 −0.961849
\(395\) −17147.9 −2.18432
\(396\) 2430.79 0.308464
\(397\) −9681.76 −1.22396 −0.611982 0.790872i \(-0.709627\pi\)
−0.611982 + 0.790872i \(0.709627\pi\)
\(398\) −3599.84 −0.453376
\(399\) 0 0
\(400\) 2382.35 0.297794
\(401\) −8285.22 −1.03178 −0.515891 0.856654i \(-0.672539\pi\)
−0.515891 + 0.856654i \(0.672539\pi\)
\(402\) 7902.05 0.980394
\(403\) −2649.40 −0.327483
\(404\) −5056.99 −0.622759
\(405\) −6906.17 −0.847335
\(406\) 0 0
\(407\) 689.784 0.0840081
\(408\) −1704.80 −0.206863
\(409\) 10448.7 1.26322 0.631609 0.775287i \(-0.282395\pi\)
0.631609 + 0.775287i \(0.282395\pi\)
\(410\) −4851.44 −0.584379
\(411\) −3762.55 −0.451564
\(412\) 134.326 0.0160625
\(413\) 0 0
\(414\) −401.354 −0.0476460
\(415\) 5442.34 0.643744
\(416\) 1515.99 0.178672
\(417\) 5267.99 0.618645
\(418\) 12648.0 1.47998
\(419\) −4158.98 −0.484915 −0.242457 0.970162i \(-0.577953\pi\)
−0.242457 + 0.970162i \(0.577953\pi\)
\(420\) 0 0
\(421\) −8981.73 −1.03977 −0.519884 0.854237i \(-0.674025\pi\)
−0.519884 + 0.854237i \(0.674025\pi\)
\(422\) −11473.8 −1.32354
\(423\) −4459.99 −0.512653
\(424\) −2335.18 −0.267467
\(425\) 7422.34 0.847145
\(426\) −2016.18 −0.229305
\(427\) 0 0
\(428\) −5135.29 −0.579962
\(429\) 14105.6 1.58747
\(430\) −503.203 −0.0564339
\(431\) 4982.65 0.556858 0.278429 0.960457i \(-0.410186\pi\)
0.278429 + 0.960457i \(0.410186\pi\)
\(432\) 2443.55 0.272142
\(433\) −8314.43 −0.922785 −0.461392 0.887196i \(-0.652650\pi\)
−0.461392 + 0.887196i \(0.652650\pi\)
\(434\) 0 0
\(435\) 1123.23 0.123804
\(436\) 369.734 0.0406125
\(437\) −2088.34 −0.228601
\(438\) 6952.10 0.758412
\(439\) −10101.7 −1.09824 −0.549122 0.835742i \(-0.685038\pi\)
−0.549122 + 0.835742i \(0.685038\pi\)
\(440\) −9221.50 −0.999131
\(441\) 0 0
\(442\) 4723.14 0.508273
\(443\) −13940.3 −1.49509 −0.747544 0.664212i \(-0.768767\pi\)
−0.747544 + 0.664212i \(0.768767\pi\)
\(444\) 169.349 0.0181012
\(445\) 26162.5 2.78702
\(446\) −9680.39 −1.02776
\(447\) 1914.42 0.202571
\(448\) 0 0
\(449\) −16667.7 −1.75188 −0.875942 0.482416i \(-0.839759\pi\)
−0.875942 + 0.482416i \(0.839759\pi\)
\(450\) −2598.28 −0.272187
\(451\) 10208.6 1.06586
\(452\) −1632.25 −0.169855
\(453\) 6248.76 0.648107
\(454\) −4805.90 −0.496810
\(455\) 0 0
\(456\) 3105.21 0.318892
\(457\) 4095.33 0.419194 0.209597 0.977788i \(-0.432785\pi\)
0.209597 + 0.977788i \(0.432785\pi\)
\(458\) 7476.95 0.762827
\(459\) 7613.00 0.774171
\(460\) 1522.58 0.154328
\(461\) 3128.82 0.316103 0.158052 0.987431i \(-0.449479\pi\)
0.158052 + 0.987431i \(0.449479\pi\)
\(462\) 0 0
\(463\) −3612.65 −0.362622 −0.181311 0.983426i \(-0.558034\pi\)
−0.181311 + 0.983426i \(0.558034\pi\)
\(464\) −254.020 −0.0254150
\(465\) 3956.61 0.394588
\(466\) −3784.91 −0.376250
\(467\) 11625.8 1.15199 0.575996 0.817453i \(-0.304614\pi\)
0.575996 + 0.817453i \(0.304614\pi\)
\(468\) −1653.39 −0.163308
\(469\) 0 0
\(470\) 16919.5 1.66051
\(471\) −4421.00 −0.432503
\(472\) −4293.12 −0.418658
\(473\) 1058.86 0.102931
\(474\) 8858.81 0.858436
\(475\) −13519.5 −1.30593
\(476\) 0 0
\(477\) 2546.83 0.244468
\(478\) 4254.67 0.407122
\(479\) −11893.7 −1.13453 −0.567264 0.823536i \(-0.691998\pi\)
−0.567264 + 0.823536i \(0.691998\pi\)
\(480\) −2263.97 −0.215283
\(481\) −469.181 −0.0444757
\(482\) 13554.5 1.28090
\(483\) 0 0
\(484\) 14080.2 1.32233
\(485\) −5700.76 −0.533728
\(486\) −4679.17 −0.436731
\(487\) 12344.8 1.14866 0.574329 0.818624i \(-0.305263\pi\)
0.574329 + 0.818624i \(0.305263\pi\)
\(488\) −3839.56 −0.356166
\(489\) 16429.6 1.51937
\(490\) 0 0
\(491\) 16721.7 1.53694 0.768471 0.639884i \(-0.221018\pi\)
0.768471 + 0.639884i \(0.221018\pi\)
\(492\) 2506.31 0.229661
\(493\) −791.412 −0.0722990
\(494\) −8602.97 −0.783535
\(495\) 10057.3 0.913216
\(496\) −894.791 −0.0810026
\(497\) 0 0
\(498\) −2811.57 −0.252991
\(499\) −16623.2 −1.49130 −0.745650 0.666338i \(-0.767861\pi\)
−0.745650 + 0.666338i \(0.767861\pi\)
\(500\) 1581.97 0.141495
\(501\) 16382.5 1.46091
\(502\) −188.627 −0.0167706
\(503\) −7775.55 −0.689254 −0.344627 0.938740i \(-0.611995\pi\)
−0.344627 + 0.938740i \(0.611995\pi\)
\(504\) 0 0
\(505\) −20923.1 −1.84369
\(506\) −3203.88 −0.281482
\(507\) −202.423 −0.0177316
\(508\) 8260.21 0.721432
\(509\) −20295.0 −1.76731 −0.883654 0.468140i \(-0.844924\pi\)
−0.883654 + 0.468140i \(0.844924\pi\)
\(510\) −7053.53 −0.612423
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −13866.7 −1.19343
\(514\) 5128.25 0.440073
\(515\) 555.768 0.0475535
\(516\) 259.960 0.0221785
\(517\) −35602.6 −3.02863
\(518\) 0 0
\(519\) −4457.72 −0.377018
\(520\) 6272.33 0.528961
\(521\) 3576.53 0.300750 0.150375 0.988629i \(-0.451952\pi\)
0.150375 + 0.988629i \(0.451952\pi\)
\(522\) 277.043 0.0232296
\(523\) −270.391 −0.0226068 −0.0113034 0.999936i \(-0.503598\pi\)
−0.0113034 + 0.999936i \(0.503598\pi\)
\(524\) 5712.39 0.476234
\(525\) 0 0
\(526\) −11152.3 −0.924452
\(527\) −2787.77 −0.230431
\(528\) 4763.93 0.392658
\(529\) 529.000 0.0434783
\(530\) −9661.69 −0.791844
\(531\) 4682.22 0.382658
\(532\) 0 0
\(533\) −6943.72 −0.564289
\(534\) −13515.9 −1.09530
\(535\) −21247.0 −1.71699
\(536\) −7393.87 −0.595833
\(537\) −6434.03 −0.517037
\(538\) −10051.4 −0.805479
\(539\) 0 0
\(540\) 10110.1 0.805683
\(541\) 14438.1 1.14740 0.573701 0.819065i \(-0.305507\pi\)
0.573701 + 0.819065i \(0.305507\pi\)
\(542\) −6421.40 −0.508898
\(543\) −4895.50 −0.386899
\(544\) 1595.16 0.125721
\(545\) 1529.76 0.120234
\(546\) 0 0
\(547\) 21656.6 1.69281 0.846407 0.532537i \(-0.178761\pi\)
0.846407 + 0.532537i \(0.178761\pi\)
\(548\) 3520.58 0.274437
\(549\) 4187.56 0.325539
\(550\) −20741.2 −1.60801
\(551\) 1441.52 0.111453
\(552\) −786.585 −0.0606509
\(553\) 0 0
\(554\) −10041.7 −0.770094
\(555\) 700.675 0.0535891
\(556\) −4929.21 −0.375981
\(557\) 5635.65 0.428708 0.214354 0.976756i \(-0.431235\pi\)
0.214354 + 0.976756i \(0.431235\pi\)
\(558\) 975.890 0.0740372
\(559\) −720.219 −0.0544938
\(560\) 0 0
\(561\) 14842.3 1.11701
\(562\) 11466.2 0.860627
\(563\) 18250.2 1.36617 0.683084 0.730340i \(-0.260638\pi\)
0.683084 + 0.730340i \(0.260638\pi\)
\(564\) −8740.81 −0.652579
\(565\) −6753.35 −0.502859
\(566\) 6207.51 0.460992
\(567\) 0 0
\(568\) 1886.52 0.139360
\(569\) 116.360 0.00857302 0.00428651 0.999991i \(-0.498636\pi\)
0.00428651 + 0.999991i \(0.498636\pi\)
\(570\) 12847.7 0.944088
\(571\) 2142.29 0.157009 0.0785045 0.996914i \(-0.474986\pi\)
0.0785045 + 0.996914i \(0.474986\pi\)
\(572\) −13198.5 −0.964782
\(573\) 1107.37 0.0807346
\(574\) 0 0
\(575\) 3424.63 0.248377
\(576\) −558.405 −0.0403939
\(577\) 5115.43 0.369078 0.184539 0.982825i \(-0.440921\pi\)
0.184539 + 0.982825i \(0.440921\pi\)
\(578\) −4856.19 −0.349465
\(579\) −8066.57 −0.578990
\(580\) −1051.00 −0.0752418
\(581\) 0 0
\(582\) 2945.08 0.209755
\(583\) 20330.5 1.44426
\(584\) −6505.02 −0.460924
\(585\) −6840.83 −0.483476
\(586\) −11042.3 −0.778422
\(587\) 10411.5 0.732075 0.366037 0.930600i \(-0.380714\pi\)
0.366037 + 0.930600i \(0.380714\pi\)
\(588\) 0 0
\(589\) 5077.79 0.355224
\(590\) −17762.6 −1.23945
\(591\) 16078.6 1.11910
\(592\) −158.458 −0.0110010
\(593\) 1707.70 0.118258 0.0591288 0.998250i \(-0.481168\pi\)
0.0591288 + 0.998250i \(0.481168\pi\)
\(594\) −21274.0 −1.46950
\(595\) 0 0
\(596\) −1791.31 −0.123112
\(597\) 7694.50 0.527496
\(598\) 2179.23 0.149022
\(599\) −5529.49 −0.377177 −0.188588 0.982056i \(-0.560391\pi\)
−0.188588 + 0.982056i \(0.560391\pi\)
\(600\) −5092.18 −0.346479
\(601\) 3976.19 0.269870 0.134935 0.990854i \(-0.456917\pi\)
0.134935 + 0.990854i \(0.456917\pi\)
\(602\) 0 0
\(603\) 8064.02 0.544598
\(604\) −5846.91 −0.393886
\(605\) 58256.3 3.91480
\(606\) 10809.1 0.724571
\(607\) −25927.8 −1.73374 −0.866868 0.498538i \(-0.833870\pi\)
−0.866868 + 0.498538i \(0.833870\pi\)
\(608\) −2905.52 −0.193806
\(609\) 0 0
\(610\) −15886.0 −1.05444
\(611\) 24216.4 1.60342
\(612\) −1739.74 −0.114910
\(613\) 6153.62 0.405453 0.202726 0.979235i \(-0.435020\pi\)
0.202726 + 0.979235i \(0.435020\pi\)
\(614\) 17931.9 1.17862
\(615\) 10369.7 0.679917
\(616\) 0 0
\(617\) 25144.4 1.64064 0.820320 0.571904i \(-0.193795\pi\)
0.820320 + 0.571904i \(0.193795\pi\)
\(618\) −287.116 −0.0186885
\(619\) −25006.2 −1.62372 −0.811860 0.583852i \(-0.801545\pi\)
−0.811860 + 0.583852i \(0.801545\pi\)
\(620\) −3702.16 −0.239810
\(621\) 3512.60 0.226982
\(622\) 9162.91 0.590674
\(623\) 0 0
\(624\) −3240.36 −0.207882
\(625\) −12066.8 −0.772276
\(626\) 11417.4 0.728961
\(627\) −27034.5 −1.72194
\(628\) 4136.69 0.262853
\(629\) −493.685 −0.0312949
\(630\) 0 0
\(631\) 5044.71 0.318267 0.159134 0.987257i \(-0.449130\pi\)
0.159134 + 0.987257i \(0.449130\pi\)
\(632\) −8289.10 −0.521713
\(633\) 24524.8 1.53992
\(634\) −18509.1 −1.15945
\(635\) 34176.3 2.13582
\(636\) 4991.34 0.311194
\(637\) 0 0
\(638\) 2211.54 0.137235
\(639\) −2057.50 −0.127377
\(640\) 2118.38 0.130838
\(641\) −1661.99 −0.102410 −0.0512049 0.998688i \(-0.516306\pi\)
−0.0512049 + 0.998688i \(0.516306\pi\)
\(642\) 10976.5 0.674777
\(643\) −24928.8 −1.52892 −0.764462 0.644669i \(-0.776995\pi\)
−0.764462 + 0.644669i \(0.776995\pi\)
\(644\) 0 0
\(645\) 1075.57 0.0656600
\(646\) −9052.29 −0.551327
\(647\) 18562.3 1.12791 0.563955 0.825806i \(-0.309279\pi\)
0.563955 + 0.825806i \(0.309279\pi\)
\(648\) −3338.37 −0.202382
\(649\) 37376.7 2.26065
\(650\) 14107.9 0.851317
\(651\) 0 0
\(652\) −15373.1 −0.923398
\(653\) 14415.0 0.863861 0.431931 0.901907i \(-0.357833\pi\)
0.431931 + 0.901907i \(0.357833\pi\)
\(654\) −790.292 −0.0472521
\(655\) 23634.8 1.40990
\(656\) −2345.13 −0.139576
\(657\) 7094.60 0.421289
\(658\) 0 0
\(659\) −20501.3 −1.21186 −0.605931 0.795518i \(-0.707199\pi\)
−0.605931 + 0.795518i \(0.707199\pi\)
\(660\) 19710.6 1.16247
\(661\) 24331.7 1.43176 0.715881 0.698223i \(-0.246026\pi\)
0.715881 + 0.698223i \(0.246026\pi\)
\(662\) −10007.0 −0.587511
\(663\) −10095.5 −0.591368
\(664\) 2630.76 0.153755
\(665\) 0 0
\(666\) 172.820 0.0100550
\(667\) −365.154 −0.0211976
\(668\) −15328.9 −0.887866
\(669\) 20691.4 1.19578
\(670\) −30591.8 −1.76398
\(671\) 33427.9 1.92321
\(672\) 0 0
\(673\) −11878.1 −0.680337 −0.340169 0.940364i \(-0.610484\pi\)
−0.340169 + 0.940364i \(0.610484\pi\)
\(674\) 6857.84 0.391920
\(675\) 22739.8 1.29668
\(676\) 189.406 0.0107764
\(677\) 12375.0 0.702526 0.351263 0.936277i \(-0.385752\pi\)
0.351263 + 0.936277i \(0.385752\pi\)
\(678\) 3488.86 0.197624
\(679\) 0 0
\(680\) 6599.92 0.372199
\(681\) 10272.4 0.578032
\(682\) 7790.22 0.437394
\(683\) 31113.7 1.74309 0.871545 0.490315i \(-0.163118\pi\)
0.871545 + 0.490315i \(0.163118\pi\)
\(684\) 3168.86 0.177141
\(685\) 14566.2 0.812478
\(686\) 0 0
\(687\) −15981.7 −0.887538
\(688\) −243.242 −0.0134790
\(689\) −13828.5 −0.764621
\(690\) −3254.46 −0.179558
\(691\) 29283.7 1.61216 0.806081 0.591805i \(-0.201585\pi\)
0.806081 + 0.591805i \(0.201585\pi\)
\(692\) 4171.05 0.229132
\(693\) 0 0
\(694\) −13569.0 −0.742178
\(695\) −20394.4 −1.11310
\(696\) 542.957 0.0295700
\(697\) −7306.38 −0.397057
\(698\) 2280.68 0.123675
\(699\) 8090.08 0.437761
\(700\) 0 0
\(701\) −35863.5 −1.93231 −0.966154 0.257968i \(-0.916947\pi\)
−0.966154 + 0.257968i \(0.916947\pi\)
\(702\) 14470.3 0.777984
\(703\) 899.224 0.0482431
\(704\) −4457.57 −0.238638
\(705\) −36164.8 −1.93198
\(706\) 22.4035 0.00119429
\(707\) 0 0
\(708\) 9176.36 0.487103
\(709\) 19457.1 1.03064 0.515322 0.856997i \(-0.327672\pi\)
0.515322 + 0.856997i \(0.327672\pi\)
\(710\) 7805.39 0.412579
\(711\) 9040.39 0.476851
\(712\) 12646.7 0.665665
\(713\) −1286.26 −0.0675608
\(714\) 0 0
\(715\) −54608.1 −2.85626
\(716\) 6020.26 0.314229
\(717\) −9094.19 −0.473680
\(718\) 16721.2 0.869122
\(719\) 31205.7 1.61860 0.809302 0.587393i \(-0.199846\pi\)
0.809302 + 0.587393i \(0.199846\pi\)
\(720\) −2310.38 −0.119587
\(721\) 0 0
\(722\) 2770.32 0.142799
\(723\) −28972.2 −1.49030
\(724\) 4580.67 0.235137
\(725\) −2363.93 −0.121095
\(726\) −30095.9 −1.53852
\(727\) 12061.2 0.615303 0.307651 0.951499i \(-0.400457\pi\)
0.307651 + 0.951499i \(0.400457\pi\)
\(728\) 0 0
\(729\) 21268.5 1.08055
\(730\) −26914.2 −1.36458
\(731\) −757.834 −0.0383441
\(732\) 8206.90 0.414393
\(733\) 7873.46 0.396744 0.198372 0.980127i \(-0.436435\pi\)
0.198372 + 0.980127i \(0.436435\pi\)
\(734\) −17179.8 −0.863923
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 64372.5 3.21735
\(738\) 2557.68 0.127574
\(739\) 37979.9 1.89055 0.945273 0.326281i \(-0.105796\pi\)
0.945273 + 0.326281i \(0.105796\pi\)
\(740\) −655.615 −0.0325687
\(741\) 18388.5 0.911631
\(742\) 0 0
\(743\) 27163.4 1.34122 0.670611 0.741809i \(-0.266032\pi\)
0.670611 + 0.741809i \(0.266032\pi\)
\(744\) 1912.58 0.0942453
\(745\) −7411.47 −0.364477
\(746\) 13049.6 0.640455
\(747\) −2869.20 −0.140534
\(748\) −13887.8 −0.678861
\(749\) 0 0
\(750\) −3381.39 −0.164628
\(751\) 37879.2 1.84052 0.920261 0.391305i \(-0.127976\pi\)
0.920261 + 0.391305i \(0.127976\pi\)
\(752\) 8178.70 0.396604
\(753\) 403.183 0.0195124
\(754\) −1504.26 −0.0726551
\(755\) −24191.3 −1.16611
\(756\) 0 0
\(757\) 20608.1 0.989450 0.494725 0.869049i \(-0.335269\pi\)
0.494725 + 0.869049i \(0.335269\pi\)
\(758\) 10915.1 0.523026
\(759\) 6848.15 0.327500
\(760\) −12021.4 −0.573768
\(761\) −16681.7 −0.794629 −0.397315 0.917682i \(-0.630058\pi\)
−0.397315 + 0.917682i \(0.630058\pi\)
\(762\) −17655.9 −0.839376
\(763\) 0 0
\(764\) −1036.15 −0.0490664
\(765\) −7198.11 −0.340194
\(766\) 27258.6 1.28576
\(767\) −25423.1 −1.19684
\(768\) −1094.38 −0.0514193
\(769\) −1227.39 −0.0575561 −0.0287780 0.999586i \(-0.509162\pi\)
−0.0287780 + 0.999586i \(0.509162\pi\)
\(770\) 0 0
\(771\) −10961.4 −0.512018
\(772\) 7547.82 0.351881
\(773\) −28842.7 −1.34204 −0.671021 0.741438i \(-0.734144\pi\)
−0.671021 + 0.741438i \(0.734144\pi\)
\(774\) 265.289 0.0123199
\(775\) −8326.98 −0.385953
\(776\) −2755.68 −0.127478
\(777\) 0 0
\(778\) −564.102 −0.0259949
\(779\) 13308.2 0.612088
\(780\) −13406.9 −0.615439
\(781\) −16424.4 −0.752510
\(782\) 2293.05 0.104858
\(783\) −2424.65 −0.110664
\(784\) 0 0
\(785\) 17115.4 0.778184
\(786\) −12210.0 −0.554092
\(787\) −35236.0 −1.59597 −0.797984 0.602678i \(-0.794100\pi\)
−0.797984 + 0.602678i \(0.794100\pi\)
\(788\) −15044.6 −0.680130
\(789\) 23837.5 1.07559
\(790\) −34295.8 −1.54455
\(791\) 0 0
\(792\) 4861.58 0.218117
\(793\) −22737.2 −1.01819
\(794\) −19363.5 −0.865473
\(795\) 20651.5 0.921298
\(796\) −7199.67 −0.320585
\(797\) 7775.38 0.345569 0.172784 0.984960i \(-0.444724\pi\)
0.172784 + 0.984960i \(0.444724\pi\)
\(798\) 0 0
\(799\) 25481.2 1.12823
\(800\) 4764.70 0.210572
\(801\) −13792.9 −0.608424
\(802\) −16570.4 −0.729580
\(803\) 56633.9 2.48888
\(804\) 15804.1 0.693243
\(805\) 0 0
\(806\) −5298.79 −0.231566
\(807\) 21484.5 0.937163
\(808\) −10114.0 −0.440357
\(809\) 22756.3 0.988962 0.494481 0.869188i \(-0.335358\pi\)
0.494481 + 0.869188i \(0.335358\pi\)
\(810\) −13812.3 −0.599156
\(811\) 29622.7 1.28260 0.641302 0.767288i \(-0.278394\pi\)
0.641302 + 0.767288i \(0.278394\pi\)
\(812\) 0 0
\(813\) 13725.5 0.592095
\(814\) 1379.57 0.0594027
\(815\) −63605.4 −2.73374
\(816\) −3409.59 −0.146274
\(817\) 1380.36 0.0591098
\(818\) 20897.4 0.893230
\(819\) 0 0
\(820\) −9702.88 −0.413219
\(821\) 18489.2 0.785967 0.392983 0.919546i \(-0.371443\pi\)
0.392983 + 0.919546i \(0.371443\pi\)
\(822\) −7525.09 −0.319304
\(823\) −29486.2 −1.24887 −0.624437 0.781075i \(-0.714672\pi\)
−0.624437 + 0.781075i \(0.714672\pi\)
\(824\) 268.652 0.0113579
\(825\) 44333.5 1.87090
\(826\) 0 0
\(827\) 33231.6 1.39731 0.698656 0.715458i \(-0.253782\pi\)
0.698656 + 0.715458i \(0.253782\pi\)
\(828\) −802.708 −0.0336908
\(829\) −12663.3 −0.530535 −0.265267 0.964175i \(-0.585460\pi\)
−0.265267 + 0.964175i \(0.585460\pi\)
\(830\) 10884.7 0.455196
\(831\) 21463.8 0.895993
\(832\) 3031.97 0.126340
\(833\) 0 0
\(834\) 10536.0 0.437448
\(835\) −63422.9 −2.62855
\(836\) 25296.0 1.04651
\(837\) −8540.88 −0.352707
\(838\) −8317.95 −0.342886
\(839\) 42098.8 1.73231 0.866156 0.499773i \(-0.166583\pi\)
0.866156 + 0.499773i \(0.166583\pi\)
\(840\) 0 0
\(841\) −24136.9 −0.989665
\(842\) −17963.5 −0.735228
\(843\) −24508.5 −1.00133
\(844\) −22947.6 −0.935887
\(845\) 783.658 0.0319037
\(846\) −8919.98 −0.362500
\(847\) 0 0
\(848\) −4670.35 −0.189128
\(849\) −13268.3 −0.536357
\(850\) 14844.7 0.599022
\(851\) −227.784 −0.00917547
\(852\) −4032.36 −0.162143
\(853\) 37986.2 1.52476 0.762382 0.647127i \(-0.224030\pi\)
0.762382 + 0.647127i \(0.224030\pi\)
\(854\) 0 0
\(855\) 13111.0 0.524430
\(856\) −10270.6 −0.410095
\(857\) −9153.59 −0.364855 −0.182427 0.983219i \(-0.558395\pi\)
−0.182427 + 0.983219i \(0.558395\pi\)
\(858\) 28211.2 1.12251
\(859\) −6963.50 −0.276591 −0.138296 0.990391i \(-0.544162\pi\)
−0.138296 + 0.990391i \(0.544162\pi\)
\(860\) −1006.41 −0.0399048
\(861\) 0 0
\(862\) 9965.30 0.393758
\(863\) 11060.7 0.436280 0.218140 0.975917i \(-0.430001\pi\)
0.218140 + 0.975917i \(0.430001\pi\)
\(864\) 4887.10 0.192433
\(865\) 17257.5 0.678352
\(866\) −16628.9 −0.652507
\(867\) 10379.9 0.406597
\(868\) 0 0
\(869\) 72166.5 2.81712
\(870\) 2246.46 0.0875427
\(871\) −43785.2 −1.70334
\(872\) 739.469 0.0287174
\(873\) 3005.44 0.116516
\(874\) −4176.68 −0.161646
\(875\) 0 0
\(876\) 13904.2 0.536278
\(877\) 39829.6 1.53358 0.766791 0.641897i \(-0.221852\pi\)
0.766791 + 0.641897i \(0.221852\pi\)
\(878\) −20203.5 −0.776576
\(879\) 23602.6 0.905682
\(880\) −18443.0 −0.706493
\(881\) −27464.3 −1.05028 −0.525139 0.851016i \(-0.675987\pi\)
−0.525139 + 0.851016i \(0.675987\pi\)
\(882\) 0 0
\(883\) −42891.2 −1.63466 −0.817329 0.576171i \(-0.804546\pi\)
−0.817329 + 0.576171i \(0.804546\pi\)
\(884\) 9446.27 0.359403
\(885\) 37966.8 1.44208
\(886\) −27880.6 −1.05719
\(887\) 10250.3 0.388018 0.194009 0.981000i \(-0.437851\pi\)
0.194009 + 0.981000i \(0.437851\pi\)
\(888\) 338.698 0.0127995
\(889\) 0 0
\(890\) 52325.0 1.97072
\(891\) 29064.4 1.09281
\(892\) −19360.8 −0.726734
\(893\) −46412.8 −1.73924
\(894\) 3828.85 0.143239
\(895\) 24908.6 0.930282
\(896\) 0 0
\(897\) −4658.02 −0.173385
\(898\) −33335.3 −1.23877
\(899\) 887.870 0.0329389
\(900\) −5196.56 −0.192465
\(901\) −14550.7 −0.538019
\(902\) 20417.1 0.753677
\(903\) 0 0
\(904\) −3264.49 −0.120105
\(905\) 18952.3 0.696129
\(906\) 12497.5 0.458281
\(907\) −19908.4 −0.728828 −0.364414 0.931237i \(-0.618731\pi\)
−0.364414 + 0.931237i \(0.618731\pi\)
\(908\) −9611.79 −0.351298
\(909\) 11030.7 0.402491
\(910\) 0 0
\(911\) 1504.75 0.0547250 0.0273625 0.999626i \(-0.491289\pi\)
0.0273625 + 0.999626i \(0.491289\pi\)
\(912\) 6210.42 0.225491
\(913\) −22903.9 −0.830240
\(914\) 8190.66 0.296415
\(915\) 33955.7 1.22682
\(916\) 14953.9 0.539400
\(917\) 0 0
\(918\) 15226.0 0.547422
\(919\) 55073.1 1.97682 0.988408 0.151819i \(-0.0485132\pi\)
0.988408 + 0.151819i \(0.0485132\pi\)
\(920\) 3045.17 0.109126
\(921\) −38328.8 −1.37131
\(922\) 6257.64 0.223519
\(923\) 11171.6 0.398395
\(924\) 0 0
\(925\) −1474.62 −0.0524165
\(926\) −7225.30 −0.256413
\(927\) −293.001 −0.0103812
\(928\) −508.040 −0.0179711
\(929\) −22894.5 −0.808551 −0.404276 0.914637i \(-0.632476\pi\)
−0.404276 + 0.914637i \(0.632476\pi\)
\(930\) 7913.21 0.279016
\(931\) 0 0
\(932\) −7569.81 −0.266049
\(933\) −19585.3 −0.687240
\(934\) 23251.7 0.814581
\(935\) −57460.1 −2.00978
\(936\) −3306.78 −0.115476
\(937\) −14976.1 −0.522144 −0.261072 0.965319i \(-0.584076\pi\)
−0.261072 + 0.965319i \(0.584076\pi\)
\(938\) 0 0
\(939\) −24404.1 −0.848135
\(940\) 33839.0 1.17416
\(941\) −127.874 −0.00442992 −0.00221496 0.999998i \(-0.500705\pi\)
−0.00221496 + 0.999998i \(0.500705\pi\)
\(942\) −8842.01 −0.305826
\(943\) −3371.12 −0.116415
\(944\) −8586.23 −0.296036
\(945\) 0 0
\(946\) 2117.71 0.0727831
\(947\) −25726.5 −0.882788 −0.441394 0.897314i \(-0.645516\pi\)
−0.441394 + 0.897314i \(0.645516\pi\)
\(948\) 17717.6 0.607006
\(949\) −38521.6 −1.31766
\(950\) −27038.9 −0.923430
\(951\) 39562.4 1.34900
\(952\) 0 0
\(953\) −35350.8 −1.20160 −0.600799 0.799400i \(-0.705151\pi\)
−0.600799 + 0.799400i \(0.705151\pi\)
\(954\) 5093.65 0.172865
\(955\) −4287.04 −0.145262
\(956\) 8509.35 0.287879
\(957\) −4727.09 −0.159671
\(958\) −23787.5 −0.802232
\(959\) 0 0
\(960\) −4527.95 −0.152228
\(961\) −26663.5 −0.895017
\(962\) −938.362 −0.0314491
\(963\) 11201.5 0.374831
\(964\) 27109.0 0.905730
\(965\) 31228.8 1.04175
\(966\) 0 0
\(967\) −12332.0 −0.410105 −0.205052 0.978751i \(-0.565736\pi\)
−0.205052 + 0.978751i \(0.565736\pi\)
\(968\) 28160.4 0.935031
\(969\) 19348.9 0.641461
\(970\) −11401.5 −0.377403
\(971\) −25110.0 −0.829884 −0.414942 0.909848i \(-0.636198\pi\)
−0.414942 + 0.909848i \(0.636198\pi\)
\(972\) −9358.33 −0.308816
\(973\) 0 0
\(974\) 24689.6 0.812224
\(975\) −30155.0 −0.990495
\(976\) −7679.12 −0.251847
\(977\) 16058.7 0.525860 0.262930 0.964815i \(-0.415311\pi\)
0.262930 + 0.964815i \(0.415311\pi\)
\(978\) 32859.3 1.07436
\(979\) −110104. −3.59443
\(980\) 0 0
\(981\) −806.491 −0.0262480
\(982\) 33443.4 1.08678
\(983\) 19727.7 0.640098 0.320049 0.947401i \(-0.396301\pi\)
0.320049 + 0.947401i \(0.396301\pi\)
\(984\) 5012.62 0.162395
\(985\) −62246.5 −2.01354
\(986\) −1582.82 −0.0511231
\(987\) 0 0
\(988\) −17205.9 −0.554043
\(989\) −349.661 −0.0112422
\(990\) 20114.6 0.645741
\(991\) −27848.5 −0.892670 −0.446335 0.894866i \(-0.647271\pi\)
−0.446335 + 0.894866i \(0.647271\pi\)
\(992\) −1789.58 −0.0572775
\(993\) 21389.5 0.683560
\(994\) 0 0
\(995\) −29788.4 −0.949100
\(996\) −5623.15 −0.178892
\(997\) 17190.5 0.546066 0.273033 0.962005i \(-0.411973\pi\)
0.273033 + 0.962005i \(0.411973\pi\)
\(998\) −33246.5 −1.05451
\(999\) −1512.50 −0.0479013
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.g.1.1 2
7.6 odd 2 322.4.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.a.c.1.2 2 7.6 odd 2
2254.4.a.g.1.1 2 1.1 even 1 trivial