Properties

Label 2254.4.a.e
Level $2254$
Weight $4$
Character orbit 2254.a
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (3 \beta + 2) q^{3} + 4 q^{4} + ( - 3 \beta - 8) q^{5} + ( - 6 \beta - 4) q^{6} - 8 q^{8} + (12 \beta - 5) q^{9} + (6 \beta + 16) q^{10} + (12 \beta + 30) q^{11} + (12 \beta + 8) q^{12} + ( - 2 \beta - 36) q^{13}+ \cdots + (300 \beta + 138) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 4 q^{3} + 8 q^{4} - 16 q^{5} - 8 q^{6} - 16 q^{8} - 10 q^{9} + 32 q^{10} + 60 q^{11} + 16 q^{12} - 72 q^{13} - 68 q^{15} + 32 q^{16} - 12 q^{17} + 20 q^{18} + 28 q^{19} - 64 q^{20} - 120 q^{22}+ \cdots + 276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.00000 −2.24264 4.00000 −3.75736 4.48528 0 −8.00000 −21.9706 7.51472
1.2 −2.00000 6.24264 4.00000 −12.2426 −12.4853 0 −8.00000 11.9706 24.4853
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2254.4.a.e 2
7.b odd 2 1 322.4.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
322.4.a.a 2 7.b odd 2 1
2254.4.a.e 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 4T_{3} - 14 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2254))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$5$ \( T^{2} + 16T + 46 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 60T + 612 \) Copy content Toggle raw display
$13$ \( T^{2} + 72T + 1288 \) Copy content Toggle raw display
$17$ \( T^{2} + 12T - 6926 \) Copy content Toggle raw display
$19$ \( T^{2} - 28T - 604 \) Copy content Toggle raw display
$23$ \( (T - 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 160T + 5752 \) Copy content Toggle raw display
$31$ \( T^{2} + 160T - 12418 \) Copy content Toggle raw display
$37$ \( T^{2} - 284T + 17852 \) Copy content Toggle raw display
$41$ \( T^{2} + 492T + 4068 \) Copy content Toggle raw display
$43$ \( T^{2} - 272T - 58336 \) Copy content Toggle raw display
$47$ \( T^{2} + 352T - 101122 \) Copy content Toggle raw display
$53$ \( T^{2} - 428T + 5468 \) Copy content Toggle raw display
$59$ \( T^{2} + 884T + 46306 \) Copy content Toggle raw display
$61$ \( T^{2} + 576T + 20286 \) Copy content Toggle raw display
$67$ \( T^{2} - 532T + 33764 \) Copy content Toggle raw display
$71$ \( T^{2} - 688T - 192136 \) Copy content Toggle raw display
$73$ \( T^{2} + 12T - 434276 \) Copy content Toggle raw display
$79$ \( T^{2} + 748T - 519076 \) Copy content Toggle raw display
$83$ \( T^{2} - 100T - 307972 \) Copy content Toggle raw display
$89$ \( T^{2} + 676 T - 1347806 \) Copy content Toggle raw display
$97$ \( T^{2} - 124T - 116206 \) Copy content Toggle raw display
show more
show less