Properties

Label 2254.4.a.bc
Level $2254$
Weight $4$
Character orbit 2254.a
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 398 x^{18} + 65501 x^{16} - 5759932 x^{14} + 291300980 x^{12} - 8455560298 x^{10} + \cdots + 1023755428864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{9}\cdot 5^{2}\cdot 7^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + \beta_1 q^{3} + 4 q^{4} + (\beta_{12} + \beta_1) q^{5} + 2 \beta_1 q^{6} + 8 q^{8} + (\beta_{2} + 13) q^{9} + (2 \beta_{12} + 2 \beta_1) q^{10} + (\beta_{3} + 11) q^{11} + 4 \beta_1 q^{12}+ \cdots + (2 \beta_{10} + 7 \beta_{8} + \cdots + 372) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 40 q^{2} + 80 q^{4} + 160 q^{8} + 256 q^{9} + 216 q^{11} + 468 q^{15} + 320 q^{16} + 512 q^{18} + 432 q^{22} + 460 q^{23} + 788 q^{25} + 800 q^{29} + 936 q^{30} + 640 q^{32} + 1024 q^{36} + 552 q^{37}+ \cdots + 7396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 398 x^{18} + 65501 x^{16} - 5759932 x^{14} + 291300980 x^{12} - 8455560298 x^{10} + \cdots + 1023755428864 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 40 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 15\!\cdots\!31 \nu^{18} + \cdots - 32\!\cdots\!36 ) / 15\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 62\!\cdots\!93 \nu^{18} + \cdots + 43\!\cdots\!28 ) / 50\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 27\!\cdots\!23 \nu^{18} + \cdots - 60\!\cdots\!00 ) / 11\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 47\!\cdots\!41 \nu^{18} + \cdots - 74\!\cdots\!36 ) / 15\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 78\!\cdots\!73 \nu^{18} + \cdots + 11\!\cdots\!72 ) / 22\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 29\!\cdots\!47 \nu^{18} + \cdots - 11\!\cdots\!88 ) / 75\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 48\!\cdots\!67 \nu^{18} + \cdots + 40\!\cdots\!92 ) / 65\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 86\!\cdots\!22 \nu^{18} + \cdots - 72\!\cdots\!84 ) / 11\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 15\!\cdots\!95 \nu^{19} + \cdots - 23\!\cdots\!12 \nu ) / 11\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 12\!\cdots\!19 \nu^{19} + \cdots + 11\!\cdots\!72 \nu ) / 18\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 29\!\cdots\!31 \nu^{19} + \cdots - 64\!\cdots\!52 \nu ) / 41\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 12\!\cdots\!95 \nu^{19} + \cdots - 31\!\cdots\!60 \nu ) / 82\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 14\!\cdots\!75 \nu^{19} + \cdots + 18\!\cdots\!80 \nu ) / 82\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 37\!\cdots\!13 \nu^{19} + \cdots + 56\!\cdots\!84 \nu ) / 16\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 35\!\cdots\!35 \nu^{19} + \cdots + 37\!\cdots\!36 \nu ) / 10\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 99\!\cdots\!53 \nu^{19} + \cdots - 12\!\cdots\!56 \nu ) / 16\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 16\!\cdots\!47 \nu^{19} + \cdots - 20\!\cdots\!56 \nu ) / 16\!\cdots\!08 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 40 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{17} + \beta_{16} + \beta_{14} - \beta_{13} + 3\beta_{12} + 70\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 10\beta_{10} - 7\beta_{8} + 6\beta_{7} - 3\beta_{6} + 2\beta_{5} + 11\beta_{4} - 10\beta_{3} + 97\beta_{2} + 2763 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 16 \beta_{19} - 38 \beta_{18} - 151 \beta_{17} + 106 \beta_{16} + 2 \beta_{15} + 111 \beta_{14} + \cdots + 5470 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 1540 \beta_{10} + 120 \beta_{9} - 982 \beta_{8} + 972 \beta_{7} - 327 \beta_{6} + 323 \beta_{5} + \cdots + 214011 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 2746 \beta_{19} - 5861 \beta_{18} - 16497 \beta_{17} + 9996 \beta_{16} + 320 \beta_{15} + \cdots + 455947 \beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 180420 \beta_{10} + 23712 \beta_{9} - 104493 \beta_{8} + 124773 \beta_{7} - 23661 \beta_{6} + \cdots + 17708482 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 346692 \beta_{19} - 671808 \beta_{18} - 1633971 \beta_{17} + 915081 \beta_{16} + 49491 \beta_{15} + \cdots + 39667441 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 19151226 \beta_{10} + 3247656 \beta_{9} - 10131027 \beta_{8} + 14579223 \beta_{7} - 1122039 \beta_{6} + \cdots + 1531670131 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 38956200 \beta_{19} - 68929893 \beta_{18} - 155810101 \beta_{17} + 83110309 \beta_{16} + \cdots + 3549472489 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 1941902632 \beta_{10} + 383606124 \beta_{9} - 943983031 \beta_{8} + 1619438781 \beta_{7} + \cdots + 136417048980 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 4133127370 \beta_{19} - 6706153730 \beta_{18} - 14625603799 \beta_{17} + 7546784833 \beta_{16} + \cdots + 323480394991 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 192305727682 \beta_{10} + 42041586420 \beta_{9} - 86343948877 \beta_{8} + 174342321267 \beta_{7} + \cdots + 12385457509095 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 424772952880 \beta_{19} - 634274176955 \beta_{18} - 1364317536627 \beta_{17} + \cdots + 29838120025069 \beta_1 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 18800707939788 \beta_{10} + 4418006409012 \beta_{9} - 7829243835999 \beta_{8} + 18375635932833 \beta_{7} + \cdots + 11\!\cdots\!92 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 42838610021250 \beta_{19} - 59066789623134 \beta_{18} - 127025221912521 \beta_{17} + \cdots + 27\!\cdots\!53 \beta_1 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 18\!\cdots\!02 \beta_{10} + 452772962706756 \beta_{9} - 707265194294595 \beta_{8} + \cdots + 10\!\cdots\!77 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 42\!\cdots\!36 \beta_{19} + \cdots + 25\!\cdots\!43 \beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−9.82712
−9.33099
−7.77654
−7.54446
−6.73523
−6.19234
−2.52045
−2.30645
−0.978857
−0.792466
0.792466
0.978857
2.30645
2.52045
6.19234
6.73523
7.54446
7.77654
9.33099
9.82712
2.00000 −9.82712 4.00000 −15.1246 −19.6542 0 8.00000 69.5723 −30.2493
1.2 2.00000 −9.33099 4.00000 −5.33673 −18.6620 0 8.00000 60.0673 −10.6735
1.3 2.00000 −7.77654 4.00000 11.0355 −15.5531 0 8.00000 33.4745 22.0710
1.4 2.00000 −7.54446 4.00000 −16.7547 −15.0889 0 8.00000 29.9188 −33.5094
1.5 2.00000 −6.73523 4.00000 −11.4128 −13.4705 0 8.00000 18.3633 −22.8256
1.6 2.00000 −6.19234 4.00000 15.4237 −12.3847 0 8.00000 11.3451 30.8474
1.7 2.00000 −2.52045 4.00000 1.00052 −5.04090 0 8.00000 −20.6473 2.00104
1.8 2.00000 −2.30645 4.00000 −15.2594 −4.61291 0 8.00000 −21.6803 −30.5187
1.9 2.00000 −0.978857 4.00000 19.5514 −1.95771 0 8.00000 −26.0418 39.1028
1.10 2.00000 −0.792466 4.00000 −0.114160 −1.58493 0 8.00000 −26.3720 −0.228320
1.11 2.00000 0.792466 4.00000 0.114160 1.58493 0 8.00000 −26.3720 0.228320
1.12 2.00000 0.978857 4.00000 −19.5514 1.95771 0 8.00000 −26.0418 −39.1028
1.13 2.00000 2.30645 4.00000 15.2594 4.61291 0 8.00000 −21.6803 30.5187
1.14 2.00000 2.52045 4.00000 −1.00052 5.04090 0 8.00000 −20.6473 −2.00104
1.15 2.00000 6.19234 4.00000 −15.4237 12.3847 0 8.00000 11.3451 −30.8474
1.16 2.00000 6.73523 4.00000 11.4128 13.4705 0 8.00000 18.3633 22.8256
1.17 2.00000 7.54446 4.00000 16.7547 15.0889 0 8.00000 29.9188 33.5094
1.18 2.00000 7.77654 4.00000 −11.0355 15.5531 0 8.00000 33.4745 −22.0710
1.19 2.00000 9.33099 4.00000 5.33673 18.6620 0 8.00000 60.0673 10.6735
1.20 2.00000 9.82712 4.00000 15.1246 19.6542 0 8.00000 69.5723 30.2493
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.20
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(23\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2254.4.a.bc 20
7.b odd 2 1 inner 2254.4.a.bc 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2254.4.a.bc 20 1.a even 1 1 trivial
2254.4.a.bc 20 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{20} - 398 T_{3}^{18} + 65501 T_{3}^{16} - 5759932 T_{3}^{14} + 291300980 T_{3}^{12} + \cdots + 1023755428864 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2254))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{20} \) Copy content Toggle raw display
$3$ \( T^{20} + \cdots + 1023755428864 \) Copy content Toggle raw display
$5$ \( T^{20} + \cdots + 80\!\cdots\!44 \) Copy content Toggle raw display
$7$ \( T^{20} \) Copy content Toggle raw display
$11$ \( (T^{10} + \cdots + 22\!\cdots\!28)^{2} \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 20\!\cdots\!84 \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 69\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 13\!\cdots\!76 \) Copy content Toggle raw display
$23$ \( (T - 23)^{20} \) Copy content Toggle raw display
$29$ \( (T^{10} + \cdots + 72\!\cdots\!96)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( (T^{10} + \cdots + 47\!\cdots\!84)^{2} \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{10} + \cdots + 20\!\cdots\!44)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 21\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( (T^{10} + \cdots - 14\!\cdots\!64)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 85\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 28\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( (T^{10} + \cdots + 23\!\cdots\!08)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} + \cdots - 18\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 83\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( (T^{10} + \cdots + 85\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 41\!\cdots\!84 \) Copy content Toggle raw display
show more
show less