Properties

Label 2254.4.a.b.1.1
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +9.00000 q^{3} +4.00000 q^{4} +20.0000 q^{5} +18.0000 q^{6} +8.00000 q^{8} +54.0000 q^{9} +40.0000 q^{10} -52.0000 q^{11} +36.0000 q^{12} -43.0000 q^{13} +180.000 q^{15} +16.0000 q^{16} +50.0000 q^{17} +108.000 q^{18} +74.0000 q^{19} +80.0000 q^{20} -104.000 q^{22} -23.0000 q^{23} +72.0000 q^{24} +275.000 q^{25} -86.0000 q^{26} +243.000 q^{27} -7.00000 q^{29} +360.000 q^{30} +273.000 q^{31} +32.0000 q^{32} -468.000 q^{33} +100.000 q^{34} +216.000 q^{36} -4.00000 q^{37} +148.000 q^{38} -387.000 q^{39} +160.000 q^{40} -123.000 q^{41} -152.000 q^{43} -208.000 q^{44} +1080.00 q^{45} -46.0000 q^{46} -75.0000 q^{47} +144.000 q^{48} +550.000 q^{50} +450.000 q^{51} -172.000 q^{52} +86.0000 q^{53} +486.000 q^{54} -1040.00 q^{55} +666.000 q^{57} -14.0000 q^{58} +444.000 q^{59} +720.000 q^{60} -262.000 q^{61} +546.000 q^{62} +64.0000 q^{64} -860.000 q^{65} -936.000 q^{66} +764.000 q^{67} +200.000 q^{68} -207.000 q^{69} -21.0000 q^{71} +432.000 q^{72} -681.000 q^{73} -8.00000 q^{74} +2475.00 q^{75} +296.000 q^{76} -774.000 q^{78} +426.000 q^{79} +320.000 q^{80} +729.000 q^{81} -246.000 q^{82} -902.000 q^{83} +1000.00 q^{85} -304.000 q^{86} -63.0000 q^{87} -416.000 q^{88} +1272.00 q^{89} +2160.00 q^{90} -92.0000 q^{92} +2457.00 q^{93} -150.000 q^{94} +1480.00 q^{95} +288.000 q^{96} +342.000 q^{97} -2808.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 9.00000 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 4.00000 0.500000
\(5\) 20.0000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 18.0000 1.22474
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 54.0000 2.00000
\(10\) 40.0000 1.26491
\(11\) −52.0000 −1.42533 −0.712663 0.701506i \(-0.752511\pi\)
−0.712663 + 0.701506i \(0.752511\pi\)
\(12\) 36.0000 0.866025
\(13\) −43.0000 −0.917389 −0.458694 0.888594i \(-0.651683\pi\)
−0.458694 + 0.888594i \(0.651683\pi\)
\(14\) 0 0
\(15\) 180.000 3.09839
\(16\) 16.0000 0.250000
\(17\) 50.0000 0.713340 0.356670 0.934230i \(-0.383912\pi\)
0.356670 + 0.934230i \(0.383912\pi\)
\(18\) 108.000 1.41421
\(19\) 74.0000 0.893514 0.446757 0.894655i \(-0.352579\pi\)
0.446757 + 0.894655i \(0.352579\pi\)
\(20\) 80.0000 0.894427
\(21\) 0 0
\(22\) −104.000 −1.00786
\(23\) −23.0000 −0.208514
\(24\) 72.0000 0.612372
\(25\) 275.000 2.20000
\(26\) −86.0000 −0.648692
\(27\) 243.000 1.73205
\(28\) 0 0
\(29\) −7.00000 −0.0448230 −0.0224115 0.999749i \(-0.507134\pi\)
−0.0224115 + 0.999749i \(0.507134\pi\)
\(30\) 360.000 2.19089
\(31\) 273.000 1.58169 0.790843 0.612019i \(-0.209643\pi\)
0.790843 + 0.612019i \(0.209643\pi\)
\(32\) 32.0000 0.176777
\(33\) −468.000 −2.46874
\(34\) 100.000 0.504408
\(35\) 0 0
\(36\) 216.000 1.00000
\(37\) −4.00000 −0.0177729 −0.00888643 0.999961i \(-0.502829\pi\)
−0.00888643 + 0.999961i \(0.502829\pi\)
\(38\) 148.000 0.631810
\(39\) −387.000 −1.58896
\(40\) 160.000 0.632456
\(41\) −123.000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) −152.000 −0.539065 −0.269532 0.962991i \(-0.586869\pi\)
−0.269532 + 0.962991i \(0.586869\pi\)
\(44\) −208.000 −0.712663
\(45\) 1080.00 3.57771
\(46\) −46.0000 −0.147442
\(47\) −75.0000 −0.232763 −0.116382 0.993205i \(-0.537130\pi\)
−0.116382 + 0.993205i \(0.537130\pi\)
\(48\) 144.000 0.433013
\(49\) 0 0
\(50\) 550.000 1.55563
\(51\) 450.000 1.23554
\(52\) −172.000 −0.458694
\(53\) 86.0000 0.222887 0.111443 0.993771i \(-0.464453\pi\)
0.111443 + 0.993771i \(0.464453\pi\)
\(54\) 486.000 1.22474
\(55\) −1040.00 −2.54970
\(56\) 0 0
\(57\) 666.000 1.54761
\(58\) −14.0000 −0.0316947
\(59\) 444.000 0.979727 0.489863 0.871799i \(-0.337047\pi\)
0.489863 + 0.871799i \(0.337047\pi\)
\(60\) 720.000 1.54919
\(61\) −262.000 −0.549929 −0.274964 0.961454i \(-0.588666\pi\)
−0.274964 + 0.961454i \(0.588666\pi\)
\(62\) 546.000 1.11842
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −860.000 −1.64107
\(66\) −936.000 −1.74566
\(67\) 764.000 1.39310 0.696548 0.717510i \(-0.254718\pi\)
0.696548 + 0.717510i \(0.254718\pi\)
\(68\) 200.000 0.356670
\(69\) −207.000 −0.361158
\(70\) 0 0
\(71\) −21.0000 −0.0351020 −0.0175510 0.999846i \(-0.505587\pi\)
−0.0175510 + 0.999846i \(0.505587\pi\)
\(72\) 432.000 0.707107
\(73\) −681.000 −1.09185 −0.545925 0.837834i \(-0.683822\pi\)
−0.545925 + 0.837834i \(0.683822\pi\)
\(74\) −8.00000 −0.0125673
\(75\) 2475.00 3.81051
\(76\) 296.000 0.446757
\(77\) 0 0
\(78\) −774.000 −1.12357
\(79\) 426.000 0.606693 0.303346 0.952880i \(-0.401896\pi\)
0.303346 + 0.952880i \(0.401896\pi\)
\(80\) 320.000 0.447214
\(81\) 729.000 1.00000
\(82\) −246.000 −0.331295
\(83\) −902.000 −1.19286 −0.596430 0.802665i \(-0.703415\pi\)
−0.596430 + 0.802665i \(0.703415\pi\)
\(84\) 0 0
\(85\) 1000.00 1.27606
\(86\) −304.000 −0.381176
\(87\) −63.0000 −0.0776357
\(88\) −416.000 −0.503929
\(89\) 1272.00 1.51496 0.757482 0.652856i \(-0.226430\pi\)
0.757482 + 0.652856i \(0.226430\pi\)
\(90\) 2160.00 2.52982
\(91\) 0 0
\(92\) −92.0000 −0.104257
\(93\) 2457.00 2.73956
\(94\) −150.000 −0.164588
\(95\) 1480.00 1.59837
\(96\) 288.000 0.306186
\(97\) 342.000 0.357988 0.178994 0.983850i \(-0.442716\pi\)
0.178994 + 0.983850i \(0.442716\pi\)
\(98\) 0 0
\(99\) −2808.00 −2.85065
\(100\) 1100.00 1.10000
\(101\) 1426.00 1.40487 0.702437 0.711746i \(-0.252095\pi\)
0.702437 + 0.711746i \(0.252095\pi\)
\(102\) 900.000 0.873660
\(103\) 1190.00 1.13839 0.569195 0.822203i \(-0.307255\pi\)
0.569195 + 0.822203i \(0.307255\pi\)
\(104\) −344.000 −0.324346
\(105\) 0 0
\(106\) 172.000 0.157605
\(107\) −1210.00 −1.09323 −0.546613 0.837386i \(-0.684083\pi\)
−0.546613 + 0.837386i \(0.684083\pi\)
\(108\) 972.000 0.866025
\(109\) −1680.00 −1.47628 −0.738141 0.674646i \(-0.764296\pi\)
−0.738141 + 0.674646i \(0.764296\pi\)
\(110\) −2080.00 −1.80291
\(111\) −36.0000 −0.0307835
\(112\) 0 0
\(113\) 1030.00 0.857471 0.428736 0.903430i \(-0.358959\pi\)
0.428736 + 0.903430i \(0.358959\pi\)
\(114\) 1332.00 1.09433
\(115\) −460.000 −0.373002
\(116\) −28.0000 −0.0224115
\(117\) −2322.00 −1.83478
\(118\) 888.000 0.692771
\(119\) 0 0
\(120\) 1440.00 1.09545
\(121\) 1373.00 1.03156
\(122\) −524.000 −0.388858
\(123\) −1107.00 −0.811503
\(124\) 1092.00 0.790843
\(125\) 3000.00 2.14663
\(126\) 0 0
\(127\) −2279.00 −1.59235 −0.796175 0.605066i \(-0.793147\pi\)
−0.796175 + 0.605066i \(0.793147\pi\)
\(128\) 128.000 0.0883883
\(129\) −1368.00 −0.933687
\(130\) −1720.00 −1.16042
\(131\) −987.000 −0.658279 −0.329140 0.944281i \(-0.606759\pi\)
−0.329140 + 0.944281i \(0.606759\pi\)
\(132\) −1872.00 −1.23437
\(133\) 0 0
\(134\) 1528.00 0.985068
\(135\) 4860.00 3.09839
\(136\) 400.000 0.252204
\(137\) −1644.00 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) −414.000 −0.255377
\(139\) −2189.00 −1.33575 −0.667873 0.744276i \(-0.732795\pi\)
−0.667873 + 0.744276i \(0.732795\pi\)
\(140\) 0 0
\(141\) −675.000 −0.403158
\(142\) −42.0000 −0.0248209
\(143\) 2236.00 1.30758
\(144\) 864.000 0.500000
\(145\) −140.000 −0.0801818
\(146\) −1362.00 −0.772054
\(147\) 0 0
\(148\) −16.0000 −0.00888643
\(149\) −946.000 −0.520130 −0.260065 0.965591i \(-0.583744\pi\)
−0.260065 + 0.965591i \(0.583744\pi\)
\(150\) 4950.00 2.69444
\(151\) −365.000 −0.196710 −0.0983552 0.995151i \(-0.531358\pi\)
−0.0983552 + 0.995151i \(0.531358\pi\)
\(152\) 592.000 0.315905
\(153\) 2700.00 1.42668
\(154\) 0 0
\(155\) 5460.00 2.82940
\(156\) −1548.00 −0.794482
\(157\) 108.000 0.0549002 0.0274501 0.999623i \(-0.491261\pi\)
0.0274501 + 0.999623i \(0.491261\pi\)
\(158\) 852.000 0.428997
\(159\) 774.000 0.386052
\(160\) 640.000 0.316228
\(161\) 0 0
\(162\) 1458.00 0.707107
\(163\) −1415.00 −0.679947 −0.339973 0.940435i \(-0.610418\pi\)
−0.339973 + 0.940435i \(0.610418\pi\)
\(164\) −492.000 −0.234261
\(165\) −9360.00 −4.41621
\(166\) −1804.00 −0.843479
\(167\) −1756.00 −0.813673 −0.406836 0.913501i \(-0.633368\pi\)
−0.406836 + 0.913501i \(0.633368\pi\)
\(168\) 0 0
\(169\) −348.000 −0.158398
\(170\) 2000.00 0.902312
\(171\) 3996.00 1.78703
\(172\) −608.000 −0.269532
\(173\) −2358.00 −1.03627 −0.518137 0.855298i \(-0.673374\pi\)
−0.518137 + 0.855298i \(0.673374\pi\)
\(174\) −126.000 −0.0548968
\(175\) 0 0
\(176\) −832.000 −0.356332
\(177\) 3996.00 1.69694
\(178\) 2544.00 1.07124
\(179\) 1073.00 0.448043 0.224022 0.974584i \(-0.428081\pi\)
0.224022 + 0.974584i \(0.428081\pi\)
\(180\) 4320.00 1.78885
\(181\) −2868.00 −1.17777 −0.588886 0.808216i \(-0.700433\pi\)
−0.588886 + 0.808216i \(0.700433\pi\)
\(182\) 0 0
\(183\) −2358.00 −0.952505
\(184\) −184.000 −0.0737210
\(185\) −80.0000 −0.0317931
\(186\) 4914.00 1.93716
\(187\) −2600.00 −1.01674
\(188\) −300.000 −0.116382
\(189\) 0 0
\(190\) 2960.00 1.13022
\(191\) 332.000 0.125773 0.0628866 0.998021i \(-0.479969\pi\)
0.0628866 + 0.998021i \(0.479969\pi\)
\(192\) 576.000 0.216506
\(193\) −2143.00 −0.799257 −0.399628 0.916677i \(-0.630861\pi\)
−0.399628 + 0.916677i \(0.630861\pi\)
\(194\) 684.000 0.253136
\(195\) −7740.00 −2.84243
\(196\) 0 0
\(197\) −2739.00 −0.990587 −0.495294 0.868726i \(-0.664940\pi\)
−0.495294 + 0.868726i \(0.664940\pi\)
\(198\) −5616.00 −2.01572
\(199\) −752.000 −0.267879 −0.133939 0.990990i \(-0.542763\pi\)
−0.133939 + 0.990990i \(0.542763\pi\)
\(200\) 2200.00 0.777817
\(201\) 6876.00 2.41291
\(202\) 2852.00 0.993396
\(203\) 0 0
\(204\) 1800.00 0.617771
\(205\) −2460.00 −0.838116
\(206\) 2380.00 0.804963
\(207\) −1242.00 −0.417029
\(208\) −688.000 −0.229347
\(209\) −3848.00 −1.27355
\(210\) 0 0
\(211\) −1016.00 −0.331490 −0.165745 0.986169i \(-0.553003\pi\)
−0.165745 + 0.986169i \(0.553003\pi\)
\(212\) 344.000 0.111443
\(213\) −189.000 −0.0607984
\(214\) −2420.00 −0.773027
\(215\) −3040.00 −0.964308
\(216\) 1944.00 0.612372
\(217\) 0 0
\(218\) −3360.00 −1.04389
\(219\) −6129.00 −1.89114
\(220\) −4160.00 −1.27485
\(221\) −2150.00 −0.654410
\(222\) −72.0000 −0.0217672
\(223\) 1120.00 0.336326 0.168163 0.985759i \(-0.446216\pi\)
0.168163 + 0.985759i \(0.446216\pi\)
\(224\) 0 0
\(225\) 14850.0 4.40000
\(226\) 2060.00 0.606324
\(227\) −2706.00 −0.791205 −0.395602 0.918422i \(-0.629464\pi\)
−0.395602 + 0.918422i \(0.629464\pi\)
\(228\) 2664.00 0.773806
\(229\) −6140.00 −1.77180 −0.885901 0.463875i \(-0.846459\pi\)
−0.885901 + 0.463875i \(0.846459\pi\)
\(230\) −920.000 −0.263752
\(231\) 0 0
\(232\) −56.0000 −0.0158473
\(233\) 6567.00 1.84643 0.923216 0.384282i \(-0.125551\pi\)
0.923216 + 0.384282i \(0.125551\pi\)
\(234\) −4644.00 −1.29738
\(235\) −1500.00 −0.416380
\(236\) 1776.00 0.489863
\(237\) 3834.00 1.05082
\(238\) 0 0
\(239\) −729.000 −0.197302 −0.0986508 0.995122i \(-0.531453\pi\)
−0.0986508 + 0.995122i \(0.531453\pi\)
\(240\) 2880.00 0.774597
\(241\) 2912.00 0.778334 0.389167 0.921167i \(-0.372763\pi\)
0.389167 + 0.921167i \(0.372763\pi\)
\(242\) 2746.00 0.729420
\(243\) 0 0
\(244\) −1048.00 −0.274964
\(245\) 0 0
\(246\) −2214.00 −0.573819
\(247\) −3182.00 −0.819700
\(248\) 2184.00 0.559210
\(249\) −8118.00 −2.06609
\(250\) 6000.00 1.51789
\(251\) −398.000 −0.100086 −0.0500429 0.998747i \(-0.515936\pi\)
−0.0500429 + 0.998747i \(0.515936\pi\)
\(252\) 0 0
\(253\) 1196.00 0.297201
\(254\) −4558.00 −1.12596
\(255\) 9000.00 2.21020
\(256\) 256.000 0.0625000
\(257\) −8131.00 −1.97353 −0.986766 0.162149i \(-0.948157\pi\)
−0.986766 + 0.162149i \(0.948157\pi\)
\(258\) −2736.00 −0.660217
\(259\) 0 0
\(260\) −3440.00 −0.820537
\(261\) −378.000 −0.0896460
\(262\) −1974.00 −0.465474
\(263\) −1978.00 −0.463759 −0.231880 0.972744i \(-0.574488\pi\)
−0.231880 + 0.972744i \(0.574488\pi\)
\(264\) −3744.00 −0.872831
\(265\) 1720.00 0.398712
\(266\) 0 0
\(267\) 11448.0 2.62399
\(268\) 3056.00 0.696548
\(269\) 8459.00 1.91730 0.958651 0.284584i \(-0.0918554\pi\)
0.958651 + 0.284584i \(0.0918554\pi\)
\(270\) 9720.00 2.19089
\(271\) 7240.00 1.62287 0.811437 0.584440i \(-0.198686\pi\)
0.811437 + 0.584440i \(0.198686\pi\)
\(272\) 800.000 0.178335
\(273\) 0 0
\(274\) −3288.00 −0.724947
\(275\) −14300.0 −3.13572
\(276\) −828.000 −0.180579
\(277\) −1319.00 −0.286105 −0.143052 0.989715i \(-0.545692\pi\)
−0.143052 + 0.989715i \(0.545692\pi\)
\(278\) −4378.00 −0.944514
\(279\) 14742.0 3.16337
\(280\) 0 0
\(281\) 1770.00 0.375763 0.187881 0.982192i \(-0.439838\pi\)
0.187881 + 0.982192i \(0.439838\pi\)
\(282\) −1350.00 −0.285076
\(283\) −4144.00 −0.870443 −0.435221 0.900324i \(-0.643330\pi\)
−0.435221 + 0.900324i \(0.643330\pi\)
\(284\) −84.0000 −0.0175510
\(285\) 13320.0 2.76845
\(286\) 4472.00 0.924598
\(287\) 0 0
\(288\) 1728.00 0.353553
\(289\) −2413.00 −0.491146
\(290\) −280.000 −0.0566971
\(291\) 3078.00 0.620053
\(292\) −2724.00 −0.545925
\(293\) 6812.00 1.35823 0.679115 0.734032i \(-0.262364\pi\)
0.679115 + 0.734032i \(0.262364\pi\)
\(294\) 0 0
\(295\) 8880.00 1.75259
\(296\) −32.0000 −0.00628366
\(297\) −12636.0 −2.46874
\(298\) −1892.00 −0.367787
\(299\) 989.000 0.191289
\(300\) 9900.00 1.90526
\(301\) 0 0
\(302\) −730.000 −0.139095
\(303\) 12834.0 2.43331
\(304\) 1184.00 0.223378
\(305\) −5240.00 −0.983743
\(306\) 5400.00 1.00882
\(307\) 5692.00 1.05817 0.529087 0.848567i \(-0.322534\pi\)
0.529087 + 0.848567i \(0.322534\pi\)
\(308\) 0 0
\(309\) 10710.0 1.97175
\(310\) 10920.0 2.00069
\(311\) −5267.00 −0.960335 −0.480167 0.877177i \(-0.659424\pi\)
−0.480167 + 0.877177i \(0.659424\pi\)
\(312\) −3096.00 −0.561784
\(313\) −6340.00 −1.14491 −0.572457 0.819935i \(-0.694010\pi\)
−0.572457 + 0.819935i \(0.694010\pi\)
\(314\) 216.000 0.0388203
\(315\) 0 0
\(316\) 1704.00 0.303346
\(317\) −8794.00 −1.55811 −0.779054 0.626957i \(-0.784300\pi\)
−0.779054 + 0.626957i \(0.784300\pi\)
\(318\) 1548.00 0.272980
\(319\) 364.000 0.0638874
\(320\) 1280.00 0.223607
\(321\) −10890.0 −1.89352
\(322\) 0 0
\(323\) 3700.00 0.637379
\(324\) 2916.00 0.500000
\(325\) −11825.0 −2.01826
\(326\) −2830.00 −0.480795
\(327\) −15120.0 −2.55700
\(328\) −984.000 −0.165647
\(329\) 0 0
\(330\) −18720.0 −3.12273
\(331\) 8225.00 1.36582 0.682911 0.730502i \(-0.260714\pi\)
0.682911 + 0.730502i \(0.260714\pi\)
\(332\) −3608.00 −0.596430
\(333\) −216.000 −0.0355457
\(334\) −3512.00 −0.575354
\(335\) 15280.0 2.49205
\(336\) 0 0
\(337\) −2576.00 −0.416391 −0.208195 0.978087i \(-0.566759\pi\)
−0.208195 + 0.978087i \(0.566759\pi\)
\(338\) −696.000 −0.112004
\(339\) 9270.00 1.48518
\(340\) 4000.00 0.638031
\(341\) −14196.0 −2.25442
\(342\) 7992.00 1.26362
\(343\) 0 0
\(344\) −1216.00 −0.190588
\(345\) −4140.00 −0.646058
\(346\) −4716.00 −0.732756
\(347\) 596.000 0.0922045 0.0461022 0.998937i \(-0.485320\pi\)
0.0461022 + 0.998937i \(0.485320\pi\)
\(348\) −252.000 −0.0388179
\(349\) 9271.00 1.42196 0.710982 0.703210i \(-0.248251\pi\)
0.710982 + 0.703210i \(0.248251\pi\)
\(350\) 0 0
\(351\) −10449.0 −1.58896
\(352\) −1664.00 −0.251964
\(353\) −8141.00 −1.22748 −0.613742 0.789507i \(-0.710336\pi\)
−0.613742 + 0.789507i \(0.710336\pi\)
\(354\) 7992.00 1.19992
\(355\) −420.000 −0.0627924
\(356\) 5088.00 0.757482
\(357\) 0 0
\(358\) 2146.00 0.316815
\(359\) −2130.00 −0.313140 −0.156570 0.987667i \(-0.550044\pi\)
−0.156570 + 0.987667i \(0.550044\pi\)
\(360\) 8640.00 1.26491
\(361\) −1383.00 −0.201633
\(362\) −5736.00 −0.832811
\(363\) 12357.0 1.78671
\(364\) 0 0
\(365\) −13620.0 −1.95316
\(366\) −4716.00 −0.673523
\(367\) 2574.00 0.366108 0.183054 0.983103i \(-0.441402\pi\)
0.183054 + 0.983103i \(0.441402\pi\)
\(368\) −368.000 −0.0521286
\(369\) −6642.00 −0.937043
\(370\) −160.000 −0.0224811
\(371\) 0 0
\(372\) 9828.00 1.36978
\(373\) −4504.00 −0.625223 −0.312612 0.949881i \(-0.601204\pi\)
−0.312612 + 0.949881i \(0.601204\pi\)
\(374\) −5200.00 −0.718945
\(375\) 27000.0 3.71806
\(376\) −600.000 −0.0822942
\(377\) 301.000 0.0411201
\(378\) 0 0
\(379\) 2740.00 0.371357 0.185679 0.982611i \(-0.440552\pi\)
0.185679 + 0.982611i \(0.440552\pi\)
\(380\) 5920.00 0.799183
\(381\) −20511.0 −2.75803
\(382\) 664.000 0.0889351
\(383\) −6948.00 −0.926961 −0.463481 0.886107i \(-0.653400\pi\)
−0.463481 + 0.886107i \(0.653400\pi\)
\(384\) 1152.00 0.153093
\(385\) 0 0
\(386\) −4286.00 −0.565160
\(387\) −8208.00 −1.07813
\(388\) 1368.00 0.178994
\(389\) −1404.00 −0.182996 −0.0914982 0.995805i \(-0.529166\pi\)
−0.0914982 + 0.995805i \(0.529166\pi\)
\(390\) −15480.0 −2.00990
\(391\) −1150.00 −0.148742
\(392\) 0 0
\(393\) −8883.00 −1.14017
\(394\) −5478.00 −0.700451
\(395\) 8520.00 1.08529
\(396\) −11232.0 −1.42533
\(397\) 8641.00 1.09239 0.546196 0.837658i \(-0.316076\pi\)
0.546196 + 0.837658i \(0.316076\pi\)
\(398\) −1504.00 −0.189419
\(399\) 0 0
\(400\) 4400.00 0.550000
\(401\) −1140.00 −0.141967 −0.0709836 0.997477i \(-0.522614\pi\)
−0.0709836 + 0.997477i \(0.522614\pi\)
\(402\) 13752.0 1.70619
\(403\) −11739.0 −1.45102
\(404\) 5704.00 0.702437
\(405\) 14580.0 1.78885
\(406\) 0 0
\(407\) 208.000 0.0253321
\(408\) 3600.00 0.436830
\(409\) −12529.0 −1.51472 −0.757358 0.652999i \(-0.773510\pi\)
−0.757358 + 0.652999i \(0.773510\pi\)
\(410\) −4920.00 −0.592638
\(411\) −14796.0 −1.77575
\(412\) 4760.00 0.569195
\(413\) 0 0
\(414\) −2484.00 −0.294884
\(415\) −18040.0 −2.13385
\(416\) −1376.00 −0.162173
\(417\) −19701.0 −2.31358
\(418\) −7696.00 −0.900535
\(419\) −3252.00 −0.379166 −0.189583 0.981865i \(-0.560714\pi\)
−0.189583 + 0.981865i \(0.560714\pi\)
\(420\) 0 0
\(421\) 2206.00 0.255377 0.127689 0.991814i \(-0.459244\pi\)
0.127689 + 0.991814i \(0.459244\pi\)
\(422\) −2032.00 −0.234399
\(423\) −4050.00 −0.465527
\(424\) 688.000 0.0788024
\(425\) 13750.0 1.56935
\(426\) −378.000 −0.0429910
\(427\) 0 0
\(428\) −4840.00 −0.546613
\(429\) 20124.0 2.26479
\(430\) −6080.00 −0.681869
\(431\) 14316.0 1.59995 0.799974 0.600035i \(-0.204847\pi\)
0.799974 + 0.600035i \(0.204847\pi\)
\(432\) 3888.00 0.433013
\(433\) −7828.00 −0.868798 −0.434399 0.900720i \(-0.643039\pi\)
−0.434399 + 0.900720i \(0.643039\pi\)
\(434\) 0 0
\(435\) −1260.00 −0.138879
\(436\) −6720.00 −0.738141
\(437\) −1702.00 −0.186311
\(438\) −12258.0 −1.33724
\(439\) 16039.0 1.74374 0.871868 0.489742i \(-0.162909\pi\)
0.871868 + 0.489742i \(0.162909\pi\)
\(440\) −8320.00 −0.901456
\(441\) 0 0
\(442\) −4300.00 −0.462738
\(443\) 11747.0 1.25986 0.629929 0.776653i \(-0.283084\pi\)
0.629929 + 0.776653i \(0.283084\pi\)
\(444\) −144.000 −0.0153918
\(445\) 25440.0 2.71005
\(446\) 2240.00 0.237819
\(447\) −8514.00 −0.900891
\(448\) 0 0
\(449\) −2890.00 −0.303758 −0.151879 0.988399i \(-0.548532\pi\)
−0.151879 + 0.988399i \(0.548532\pi\)
\(450\) 29700.0 3.11127
\(451\) 6396.00 0.667796
\(452\) 4120.00 0.428736
\(453\) −3285.00 −0.340713
\(454\) −5412.00 −0.559466
\(455\) 0 0
\(456\) 5328.00 0.547163
\(457\) −13126.0 −1.34356 −0.671782 0.740749i \(-0.734471\pi\)
−0.671782 + 0.740749i \(0.734471\pi\)
\(458\) −12280.0 −1.25285
\(459\) 12150.0 1.23554
\(460\) −1840.00 −0.186501
\(461\) −14481.0 −1.46301 −0.731505 0.681836i \(-0.761182\pi\)
−0.731505 + 0.681836i \(0.761182\pi\)
\(462\) 0 0
\(463\) 5272.00 0.529181 0.264590 0.964361i \(-0.414763\pi\)
0.264590 + 0.964361i \(0.414763\pi\)
\(464\) −112.000 −0.0112058
\(465\) 49140.0 4.90067
\(466\) 13134.0 1.30562
\(467\) 13466.0 1.33433 0.667165 0.744910i \(-0.267508\pi\)
0.667165 + 0.744910i \(0.267508\pi\)
\(468\) −9288.00 −0.917389
\(469\) 0 0
\(470\) −3000.00 −0.294425
\(471\) 972.000 0.0950900
\(472\) 3552.00 0.346386
\(473\) 7904.00 0.768343
\(474\) 7668.00 0.743044
\(475\) 20350.0 1.96573
\(476\) 0 0
\(477\) 4644.00 0.445774
\(478\) −1458.00 −0.139513
\(479\) 4526.00 0.431729 0.215865 0.976423i \(-0.430743\pi\)
0.215865 + 0.976423i \(0.430743\pi\)
\(480\) 5760.00 0.547723
\(481\) 172.000 0.0163046
\(482\) 5824.00 0.550365
\(483\) 0 0
\(484\) 5492.00 0.515778
\(485\) 6840.00 0.640388
\(486\) 0 0
\(487\) −8795.00 −0.818356 −0.409178 0.912455i \(-0.634185\pi\)
−0.409178 + 0.912455i \(0.634185\pi\)
\(488\) −2096.00 −0.194429
\(489\) −12735.0 −1.17770
\(490\) 0 0
\(491\) −1275.00 −0.117189 −0.0585946 0.998282i \(-0.518662\pi\)
−0.0585946 + 0.998282i \(0.518662\pi\)
\(492\) −4428.00 −0.405751
\(493\) −350.000 −0.0319741
\(494\) −6364.00 −0.579615
\(495\) −56160.0 −5.09940
\(496\) 4368.00 0.395421
\(497\) 0 0
\(498\) −16236.0 −1.46095
\(499\) −9533.00 −0.855222 −0.427611 0.903963i \(-0.640645\pi\)
−0.427611 + 0.903963i \(0.640645\pi\)
\(500\) 12000.0 1.07331
\(501\) −15804.0 −1.40932
\(502\) −796.000 −0.0707714
\(503\) 13398.0 1.18765 0.593824 0.804595i \(-0.297617\pi\)
0.593824 + 0.804595i \(0.297617\pi\)
\(504\) 0 0
\(505\) 28520.0 2.51312
\(506\) 2392.00 0.210153
\(507\) −3132.00 −0.274353
\(508\) −9116.00 −0.796175
\(509\) 8031.00 0.699347 0.349674 0.936872i \(-0.386292\pi\)
0.349674 + 0.936872i \(0.386292\pi\)
\(510\) 18000.0 1.56285
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 17982.0 1.54761
\(514\) −16262.0 −1.39550
\(515\) 23800.0 2.03641
\(516\) −5472.00 −0.466844
\(517\) 3900.00 0.331764
\(518\) 0 0
\(519\) −21222.0 −1.79488
\(520\) −6880.00 −0.580208
\(521\) 21184.0 1.78136 0.890679 0.454632i \(-0.150229\pi\)
0.890679 + 0.454632i \(0.150229\pi\)
\(522\) −756.000 −0.0633893
\(523\) 21706.0 1.81479 0.907397 0.420275i \(-0.138066\pi\)
0.907397 + 0.420275i \(0.138066\pi\)
\(524\) −3948.00 −0.329140
\(525\) 0 0
\(526\) −3956.00 −0.327927
\(527\) 13650.0 1.12828
\(528\) −7488.00 −0.617184
\(529\) 529.000 0.0434783
\(530\) 3440.00 0.281932
\(531\) 23976.0 1.95945
\(532\) 0 0
\(533\) 5289.00 0.429816
\(534\) 22896.0 1.85544
\(535\) −24200.0 −1.95562
\(536\) 6112.00 0.492534
\(537\) 9657.00 0.776034
\(538\) 16918.0 1.35574
\(539\) 0 0
\(540\) 19440.0 1.54919
\(541\) 5781.00 0.459417 0.229709 0.973259i \(-0.426223\pi\)
0.229709 + 0.973259i \(0.426223\pi\)
\(542\) 14480.0 1.14754
\(543\) −25812.0 −2.03996
\(544\) 1600.00 0.126102
\(545\) −33600.0 −2.64085
\(546\) 0 0
\(547\) 7809.00 0.610400 0.305200 0.952288i \(-0.401277\pi\)
0.305200 + 0.952288i \(0.401277\pi\)
\(548\) −6576.00 −0.512615
\(549\) −14148.0 −1.09986
\(550\) −28600.0 −2.21729
\(551\) −518.000 −0.0400500
\(552\) −1656.00 −0.127688
\(553\) 0 0
\(554\) −2638.00 −0.202307
\(555\) −720.000 −0.0550672
\(556\) −8756.00 −0.667873
\(557\) −20240.0 −1.53967 −0.769835 0.638243i \(-0.779662\pi\)
−0.769835 + 0.638243i \(0.779662\pi\)
\(558\) 29484.0 2.23684
\(559\) 6536.00 0.494532
\(560\) 0 0
\(561\) −23400.0 −1.76105
\(562\) 3540.00 0.265704
\(563\) −7612.00 −0.569818 −0.284909 0.958555i \(-0.591963\pi\)
−0.284909 + 0.958555i \(0.591963\pi\)
\(564\) −2700.00 −0.201579
\(565\) 20600.0 1.53389
\(566\) −8288.00 −0.615496
\(567\) 0 0
\(568\) −168.000 −0.0124104
\(569\) 19484.0 1.43552 0.717761 0.696290i \(-0.245167\pi\)
0.717761 + 0.696290i \(0.245167\pi\)
\(570\) 26640.0 1.95759
\(571\) 6614.00 0.484741 0.242371 0.970184i \(-0.422075\pi\)
0.242371 + 0.970184i \(0.422075\pi\)
\(572\) 8944.00 0.653789
\(573\) 2988.00 0.217846
\(574\) 0 0
\(575\) −6325.00 −0.458732
\(576\) 3456.00 0.250000
\(577\) 639.000 0.0461038 0.0230519 0.999734i \(-0.492662\pi\)
0.0230519 + 0.999734i \(0.492662\pi\)
\(578\) −4826.00 −0.347293
\(579\) −19287.0 −1.38435
\(580\) −560.000 −0.0400909
\(581\) 0 0
\(582\) 6156.00 0.438444
\(583\) −4472.00 −0.317687
\(584\) −5448.00 −0.386027
\(585\) −46440.0 −3.28215
\(586\) 13624.0 0.960413
\(587\) 829.000 0.0582904 0.0291452 0.999575i \(-0.490721\pi\)
0.0291452 + 0.999575i \(0.490721\pi\)
\(588\) 0 0
\(589\) 20202.0 1.41326
\(590\) 17760.0 1.23927
\(591\) −24651.0 −1.71575
\(592\) −64.0000 −0.00444322
\(593\) 20610.0 1.42724 0.713618 0.700535i \(-0.247055\pi\)
0.713618 + 0.700535i \(0.247055\pi\)
\(594\) −25272.0 −1.74566
\(595\) 0 0
\(596\) −3784.00 −0.260065
\(597\) −6768.00 −0.463980
\(598\) 1978.00 0.135262
\(599\) −17240.0 −1.17597 −0.587986 0.808871i \(-0.700079\pi\)
−0.587986 + 0.808871i \(0.700079\pi\)
\(600\) 19800.0 1.34722
\(601\) 8459.00 0.574126 0.287063 0.957912i \(-0.407321\pi\)
0.287063 + 0.957912i \(0.407321\pi\)
\(602\) 0 0
\(603\) 41256.0 2.78619
\(604\) −1460.00 −0.0983552
\(605\) 27460.0 1.84530
\(606\) 25668.0 1.72061
\(607\) −17840.0 −1.19292 −0.596461 0.802642i \(-0.703427\pi\)
−0.596461 + 0.802642i \(0.703427\pi\)
\(608\) 2368.00 0.157952
\(609\) 0 0
\(610\) −10480.0 −0.695611
\(611\) 3225.00 0.213534
\(612\) 10800.0 0.713340
\(613\) 2534.00 0.166961 0.0834807 0.996509i \(-0.473396\pi\)
0.0834807 + 0.996509i \(0.473396\pi\)
\(614\) 11384.0 0.748242
\(615\) −22140.0 −1.45166
\(616\) 0 0
\(617\) −5610.00 −0.366046 −0.183023 0.983109i \(-0.558588\pi\)
−0.183023 + 0.983109i \(0.558588\pi\)
\(618\) 21420.0 1.39424
\(619\) 11948.0 0.775817 0.387908 0.921698i \(-0.373198\pi\)
0.387908 + 0.921698i \(0.373198\pi\)
\(620\) 21840.0 1.41470
\(621\) −5589.00 −0.361158
\(622\) −10534.0 −0.679059
\(623\) 0 0
\(624\) −6192.00 −0.397241
\(625\) 25625.0 1.64000
\(626\) −12680.0 −0.809576
\(627\) −34632.0 −2.20585
\(628\) 432.000 0.0274501
\(629\) −200.000 −0.0126781
\(630\) 0 0
\(631\) −7840.00 −0.494620 −0.247310 0.968936i \(-0.579547\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(632\) 3408.00 0.214498
\(633\) −9144.00 −0.574157
\(634\) −17588.0 −1.10175
\(635\) −45580.0 −2.84848
\(636\) 3096.00 0.193026
\(637\) 0 0
\(638\) 728.000 0.0451752
\(639\) −1134.00 −0.0702040
\(640\) 2560.00 0.158114
\(641\) −2320.00 −0.142956 −0.0714778 0.997442i \(-0.522771\pi\)
−0.0714778 + 0.997442i \(0.522771\pi\)
\(642\) −21780.0 −1.33892
\(643\) −1864.00 −0.114322 −0.0571610 0.998365i \(-0.518205\pi\)
−0.0571610 + 0.998365i \(0.518205\pi\)
\(644\) 0 0
\(645\) −27360.0 −1.67023
\(646\) 7400.00 0.450695
\(647\) −11939.0 −0.725457 −0.362728 0.931895i \(-0.618155\pi\)
−0.362728 + 0.931895i \(0.618155\pi\)
\(648\) 5832.00 0.353553
\(649\) −23088.0 −1.39643
\(650\) −23650.0 −1.42712
\(651\) 0 0
\(652\) −5660.00 −0.339973
\(653\) 10503.0 0.629424 0.314712 0.949187i \(-0.398092\pi\)
0.314712 + 0.949187i \(0.398092\pi\)
\(654\) −30240.0 −1.80807
\(655\) −19740.0 −1.17757
\(656\) −1968.00 −0.117130
\(657\) −36774.0 −2.18370
\(658\) 0 0
\(659\) 10950.0 0.647271 0.323635 0.946182i \(-0.395095\pi\)
0.323635 + 0.946182i \(0.395095\pi\)
\(660\) −37440.0 −2.20811
\(661\) 3210.00 0.188887 0.0944437 0.995530i \(-0.469893\pi\)
0.0944437 + 0.995530i \(0.469893\pi\)
\(662\) 16450.0 0.965782
\(663\) −19350.0 −1.13347
\(664\) −7216.00 −0.421740
\(665\) 0 0
\(666\) −432.000 −0.0251346
\(667\) 161.000 0.00934624
\(668\) −7024.00 −0.406836
\(669\) 10080.0 0.582534
\(670\) 30560.0 1.76214
\(671\) 13624.0 0.783828
\(672\) 0 0
\(673\) −13517.0 −0.774208 −0.387104 0.922036i \(-0.626525\pi\)
−0.387104 + 0.922036i \(0.626525\pi\)
\(674\) −5152.00 −0.294433
\(675\) 66825.0 3.81051
\(676\) −1392.00 −0.0791989
\(677\) 7494.00 0.425433 0.212716 0.977114i \(-0.431769\pi\)
0.212716 + 0.977114i \(0.431769\pi\)
\(678\) 18540.0 1.05018
\(679\) 0 0
\(680\) 8000.00 0.451156
\(681\) −24354.0 −1.37041
\(682\) −28392.0 −1.59411
\(683\) 17865.0 1.00086 0.500428 0.865778i \(-0.333176\pi\)
0.500428 + 0.865778i \(0.333176\pi\)
\(684\) 15984.0 0.893514
\(685\) −32880.0 −1.83399
\(686\) 0 0
\(687\) −55260.0 −3.06885
\(688\) −2432.00 −0.134766
\(689\) −3698.00 −0.204474
\(690\) −8280.00 −0.456832
\(691\) −22364.0 −1.23121 −0.615605 0.788055i \(-0.711088\pi\)
−0.615605 + 0.788055i \(0.711088\pi\)
\(692\) −9432.00 −0.518137
\(693\) 0 0
\(694\) 1192.00 0.0651984
\(695\) −43780.0 −2.38945
\(696\) −504.000 −0.0274484
\(697\) −6150.00 −0.334215
\(698\) 18542.0 1.00548
\(699\) 59103.0 3.19811
\(700\) 0 0
\(701\) 7842.00 0.422522 0.211261 0.977430i \(-0.432243\pi\)
0.211261 + 0.977430i \(0.432243\pi\)
\(702\) −20898.0 −1.12357
\(703\) −296.000 −0.0158803
\(704\) −3328.00 −0.178166
\(705\) −13500.0 −0.721191
\(706\) −16282.0 −0.867962
\(707\) 0 0
\(708\) 15984.0 0.848468
\(709\) 11234.0 0.595066 0.297533 0.954712i \(-0.403836\pi\)
0.297533 + 0.954712i \(0.403836\pi\)
\(710\) −840.000 −0.0444009
\(711\) 23004.0 1.21339
\(712\) 10176.0 0.535620
\(713\) −6279.00 −0.329804
\(714\) 0 0
\(715\) 44720.0 2.33907
\(716\) 4292.00 0.224022
\(717\) −6561.00 −0.341736
\(718\) −4260.00 −0.221423
\(719\) 17568.0 0.911232 0.455616 0.890176i \(-0.349419\pi\)
0.455616 + 0.890176i \(0.349419\pi\)
\(720\) 17280.0 0.894427
\(721\) 0 0
\(722\) −2766.00 −0.142576
\(723\) 26208.0 1.34811
\(724\) −11472.0 −0.588886
\(725\) −1925.00 −0.0986106
\(726\) 24714.0 1.26339
\(727\) 35664.0 1.81940 0.909701 0.415265i \(-0.136311\pi\)
0.909701 + 0.415265i \(0.136311\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) −27240.0 −1.38109
\(731\) −7600.00 −0.384536
\(732\) −9432.00 −0.476252
\(733\) 27914.0 1.40659 0.703293 0.710900i \(-0.251712\pi\)
0.703293 + 0.710900i \(0.251712\pi\)
\(734\) 5148.00 0.258878
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −39728.0 −1.98562
\(738\) −13284.0 −0.662589
\(739\) 39529.0 1.96766 0.983828 0.179116i \(-0.0573237\pi\)
0.983828 + 0.179116i \(0.0573237\pi\)
\(740\) −320.000 −0.0158965
\(741\) −28638.0 −1.41976
\(742\) 0 0
\(743\) 10062.0 0.496822 0.248411 0.968655i \(-0.420092\pi\)
0.248411 + 0.968655i \(0.420092\pi\)
\(744\) 19656.0 0.968581
\(745\) −18920.0 −0.930436
\(746\) −9008.00 −0.442100
\(747\) −48708.0 −2.38572
\(748\) −10400.0 −0.508371
\(749\) 0 0
\(750\) 54000.0 2.62907
\(751\) 25644.0 1.24602 0.623011 0.782213i \(-0.285909\pi\)
0.623011 + 0.782213i \(0.285909\pi\)
\(752\) −1200.00 −0.0581908
\(753\) −3582.00 −0.173354
\(754\) 602.000 0.0290763
\(755\) −7300.00 −0.351886
\(756\) 0 0
\(757\) 37368.0 1.79414 0.897069 0.441890i \(-0.145692\pi\)
0.897069 + 0.441890i \(0.145692\pi\)
\(758\) 5480.00 0.262589
\(759\) 10764.0 0.514767
\(760\) 11840.0 0.565108
\(761\) −105.000 −0.00500164 −0.00250082 0.999997i \(-0.500796\pi\)
−0.00250082 + 0.999997i \(0.500796\pi\)
\(762\) −41022.0 −1.95022
\(763\) 0 0
\(764\) 1328.00 0.0628866
\(765\) 54000.0 2.55212
\(766\) −13896.0 −0.655461
\(767\) −19092.0 −0.898790
\(768\) 2304.00 0.108253
\(769\) 15464.0 0.725157 0.362579 0.931953i \(-0.381896\pi\)
0.362579 + 0.931953i \(0.381896\pi\)
\(770\) 0 0
\(771\) −73179.0 −3.41826
\(772\) −8572.00 −0.399628
\(773\) −35168.0 −1.63636 −0.818179 0.574963i \(-0.805016\pi\)
−0.818179 + 0.574963i \(0.805016\pi\)
\(774\) −16416.0 −0.762353
\(775\) 75075.0 3.47971
\(776\) 2736.00 0.126568
\(777\) 0 0
\(778\) −2808.00 −0.129398
\(779\) −9102.00 −0.418630
\(780\) −30960.0 −1.42121
\(781\) 1092.00 0.0500318
\(782\) −2300.00 −0.105176
\(783\) −1701.00 −0.0776357
\(784\) 0 0
\(785\) 2160.00 0.0982085
\(786\) −17766.0 −0.806224
\(787\) 21216.0 0.960951 0.480476 0.877008i \(-0.340464\pi\)
0.480476 + 0.877008i \(0.340464\pi\)
\(788\) −10956.0 −0.495294
\(789\) −17802.0 −0.803255
\(790\) 17040.0 0.767413
\(791\) 0 0
\(792\) −22464.0 −1.00786
\(793\) 11266.0 0.504499
\(794\) 17282.0 0.772437
\(795\) 15480.0 0.690590
\(796\) −3008.00 −0.133939
\(797\) −9506.00 −0.422484 −0.211242 0.977434i \(-0.567751\pi\)
−0.211242 + 0.977434i \(0.567751\pi\)
\(798\) 0 0
\(799\) −3750.00 −0.166039
\(800\) 8800.00 0.388909
\(801\) 68688.0 3.02993
\(802\) −2280.00 −0.100386
\(803\) 35412.0 1.55624
\(804\) 27504.0 1.20646
\(805\) 0 0
\(806\) −23478.0 −1.02603
\(807\) 76131.0 3.32087
\(808\) 11408.0 0.496698
\(809\) −20550.0 −0.893077 −0.446539 0.894764i \(-0.647343\pi\)
−0.446539 + 0.894764i \(0.647343\pi\)
\(810\) 29160.0 1.26491
\(811\) 5161.00 0.223461 0.111731 0.993739i \(-0.464361\pi\)
0.111731 + 0.993739i \(0.464361\pi\)
\(812\) 0 0
\(813\) 65160.0 2.81090
\(814\) 416.000 0.0179125
\(815\) −28300.0 −1.21633
\(816\) 7200.00 0.308885
\(817\) −11248.0 −0.481662
\(818\) −25058.0 −1.07107
\(819\) 0 0
\(820\) −9840.00 −0.419058
\(821\) 7866.00 0.334379 0.167190 0.985925i \(-0.446531\pi\)
0.167190 + 0.985925i \(0.446531\pi\)
\(822\) −29592.0 −1.25564
\(823\) −22317.0 −0.945227 −0.472613 0.881270i \(-0.656689\pi\)
−0.472613 + 0.881270i \(0.656689\pi\)
\(824\) 9520.00 0.402482
\(825\) −128700. −5.43122
\(826\) 0 0
\(827\) −26196.0 −1.10148 −0.550740 0.834677i \(-0.685654\pi\)
−0.550740 + 0.834677i \(0.685654\pi\)
\(828\) −4968.00 −0.208514
\(829\) −5886.00 −0.246597 −0.123299 0.992370i \(-0.539347\pi\)
−0.123299 + 0.992370i \(0.539347\pi\)
\(830\) −36080.0 −1.50886
\(831\) −11871.0 −0.495548
\(832\) −2752.00 −0.114674
\(833\) 0 0
\(834\) −39402.0 −1.63595
\(835\) −35120.0 −1.45554
\(836\) −15392.0 −0.636774
\(837\) 66339.0 2.73956
\(838\) −6504.00 −0.268111
\(839\) −32394.0 −1.33297 −0.666487 0.745517i \(-0.732203\pi\)
−0.666487 + 0.745517i \(0.732203\pi\)
\(840\) 0 0
\(841\) −24340.0 −0.997991
\(842\) 4412.00 0.180579
\(843\) 15930.0 0.650840
\(844\) −4064.00 −0.165745
\(845\) −6960.00 −0.283351
\(846\) −8100.00 −0.329177
\(847\) 0 0
\(848\) 1376.00 0.0557217
\(849\) −37296.0 −1.50765
\(850\) 27500.0 1.10970
\(851\) 92.0000 0.00370590
\(852\) −756.000 −0.0303992
\(853\) 31286.0 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(854\) 0 0
\(855\) 79920.0 3.19673
\(856\) −9680.00 −0.386514
\(857\) 2913.00 0.116110 0.0580550 0.998313i \(-0.481510\pi\)
0.0580550 + 0.998313i \(0.481510\pi\)
\(858\) 40248.0 1.60145
\(859\) −15451.0 −0.613715 −0.306858 0.951755i \(-0.599278\pi\)
−0.306858 + 0.951755i \(0.599278\pi\)
\(860\) −12160.0 −0.482154
\(861\) 0 0
\(862\) 28632.0 1.13133
\(863\) −20627.0 −0.813617 −0.406808 0.913514i \(-0.633358\pi\)
−0.406808 + 0.913514i \(0.633358\pi\)
\(864\) 7776.00 0.306186
\(865\) −47160.0 −1.85374
\(866\) −15656.0 −0.614333
\(867\) −21717.0 −0.850690
\(868\) 0 0
\(869\) −22152.0 −0.864735
\(870\) −2520.00 −0.0982023
\(871\) −32852.0 −1.27801
\(872\) −13440.0 −0.521945
\(873\) 18468.0 0.715976
\(874\) −3404.00 −0.131741
\(875\) 0 0
\(876\) −24516.0 −0.945569
\(877\) −6966.00 −0.268216 −0.134108 0.990967i \(-0.542817\pi\)
−0.134108 + 0.990967i \(0.542817\pi\)
\(878\) 32078.0 1.23301
\(879\) 61308.0 2.35252
\(880\) −16640.0 −0.637425
\(881\) 37590.0 1.43750 0.718751 0.695268i \(-0.244714\pi\)
0.718751 + 0.695268i \(0.244714\pi\)
\(882\) 0 0
\(883\) 27876.0 1.06240 0.531202 0.847245i \(-0.321741\pi\)
0.531202 + 0.847245i \(0.321741\pi\)
\(884\) −8600.00 −0.327205
\(885\) 79920.0 3.03557
\(886\) 23494.0 0.890854
\(887\) −9471.00 −0.358518 −0.179259 0.983802i \(-0.557370\pi\)
−0.179259 + 0.983802i \(0.557370\pi\)
\(888\) −288.000 −0.0108836
\(889\) 0 0
\(890\) 50880.0 1.91629
\(891\) −37908.0 −1.42533
\(892\) 4480.00 0.168163
\(893\) −5550.00 −0.207977
\(894\) −17028.0 −0.637026
\(895\) 21460.0 0.801485
\(896\) 0 0
\(897\) 8901.00 0.331322
\(898\) −5780.00 −0.214790
\(899\) −1911.00 −0.0708959
\(900\) 59400.0 2.20000
\(901\) 4300.00 0.158994
\(902\) 12792.0 0.472203
\(903\) 0 0
\(904\) 8240.00 0.303162
\(905\) −57360.0 −2.10686
\(906\) −6570.00 −0.240920
\(907\) 28366.0 1.03845 0.519227 0.854636i \(-0.326220\pi\)
0.519227 + 0.854636i \(0.326220\pi\)
\(908\) −10824.0 −0.395602
\(909\) 77004.0 2.80975
\(910\) 0 0
\(911\) −7210.00 −0.262215 −0.131108 0.991368i \(-0.541853\pi\)
−0.131108 + 0.991368i \(0.541853\pi\)
\(912\) 10656.0 0.386903
\(913\) 46904.0 1.70021
\(914\) −26252.0 −0.950043
\(915\) −47160.0 −1.70389
\(916\) −24560.0 −0.885901
\(917\) 0 0
\(918\) 24300.0 0.873660
\(919\) 17198.0 0.617312 0.308656 0.951174i \(-0.400121\pi\)
0.308656 + 0.951174i \(0.400121\pi\)
\(920\) −3680.00 −0.131876
\(921\) 51228.0 1.83281
\(922\) −28962.0 −1.03450
\(923\) 903.000 0.0322022
\(924\) 0 0
\(925\) −1100.00 −0.0391003
\(926\) 10544.0 0.374187
\(927\) 64260.0 2.27678
\(928\) −224.000 −0.00792366
\(929\) 51033.0 1.80230 0.901151 0.433505i \(-0.142724\pi\)
0.901151 + 0.433505i \(0.142724\pi\)
\(930\) 98280.0 3.46530
\(931\) 0 0
\(932\) 26268.0 0.923216
\(933\) −47403.0 −1.66335
\(934\) 26932.0 0.943514
\(935\) −52000.0 −1.81880
\(936\) −18576.0 −0.648692
\(937\) −33328.0 −1.16198 −0.580992 0.813910i \(-0.697335\pi\)
−0.580992 + 0.813910i \(0.697335\pi\)
\(938\) 0 0
\(939\) −57060.0 −1.98305
\(940\) −6000.00 −0.208190
\(941\) 20166.0 0.698611 0.349305 0.937009i \(-0.386418\pi\)
0.349305 + 0.937009i \(0.386418\pi\)
\(942\) 1944.00 0.0672388
\(943\) 2829.00 0.0976934
\(944\) 7104.00 0.244932
\(945\) 0 0
\(946\) 15808.0 0.543301
\(947\) −28629.0 −0.982384 −0.491192 0.871051i \(-0.663439\pi\)
−0.491192 + 0.871051i \(0.663439\pi\)
\(948\) 15336.0 0.525412
\(949\) 29283.0 1.00165
\(950\) 40700.0 1.38998
\(951\) −79146.0 −2.69872
\(952\) 0 0
\(953\) 38146.0 1.29661 0.648305 0.761380i \(-0.275478\pi\)
0.648305 + 0.761380i \(0.275478\pi\)
\(954\) 9288.00 0.315210
\(955\) 6640.00 0.224990
\(956\) −2916.00 −0.0986508
\(957\) 3276.00 0.110656
\(958\) 9052.00 0.305279
\(959\) 0 0
\(960\) 11520.0 0.387298
\(961\) 44738.0 1.50173
\(962\) 344.000 0.0115291
\(963\) −65340.0 −2.18645
\(964\) 11648.0 0.389167
\(965\) −42860.0 −1.42975
\(966\) 0 0
\(967\) 44621.0 1.48388 0.741941 0.670465i \(-0.233905\pi\)
0.741941 + 0.670465i \(0.233905\pi\)
\(968\) 10984.0 0.364710
\(969\) 33300.0 1.10397
\(970\) 13680.0 0.452823
\(971\) −5950.00 −0.196647 −0.0983237 0.995154i \(-0.531348\pi\)
−0.0983237 + 0.995154i \(0.531348\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −17590.0 −0.578665
\(975\) −106425. −3.49572
\(976\) −4192.00 −0.137482
\(977\) 40836.0 1.33722 0.668608 0.743615i \(-0.266891\pi\)
0.668608 + 0.743615i \(0.266891\pi\)
\(978\) −25470.0 −0.832762
\(979\) −66144.0 −2.15932
\(980\) 0 0
\(981\) −90720.0 −2.95257
\(982\) −2550.00 −0.0828653
\(983\) −26874.0 −0.871971 −0.435985 0.899954i \(-0.643600\pi\)
−0.435985 + 0.899954i \(0.643600\pi\)
\(984\) −8856.00 −0.286910
\(985\) −54780.0 −1.77202
\(986\) −700.000 −0.0226091
\(987\) 0 0
\(988\) −12728.0 −0.409850
\(989\) 3496.00 0.112403
\(990\) −112320. −3.60582
\(991\) 21472.0 0.688275 0.344138 0.938919i \(-0.388171\pi\)
0.344138 + 0.938919i \(0.388171\pi\)
\(992\) 8736.00 0.279605
\(993\) 74025.0 2.36567
\(994\) 0 0
\(995\) −15040.0 −0.479196
\(996\) −32472.0 −1.03305
\(997\) −6286.00 −0.199679 −0.0998393 0.995004i \(-0.531833\pi\)
−0.0998393 + 0.995004i \(0.531833\pi\)
\(998\) −19066.0 −0.604733
\(999\) −972.000 −0.0307835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.b.1.1 1
7.6 odd 2 46.4.a.b.1.1 1
21.20 even 2 414.4.a.b.1.1 1
28.27 even 2 368.4.a.e.1.1 1
35.13 even 4 1150.4.b.a.599.1 2
35.27 even 4 1150.4.b.a.599.2 2
35.34 odd 2 1150.4.a.d.1.1 1
56.13 odd 2 1472.4.a.j.1.1 1
56.27 even 2 1472.4.a.a.1.1 1
161.160 even 2 1058.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.4.a.b.1.1 1 7.6 odd 2
368.4.a.e.1.1 1 28.27 even 2
414.4.a.b.1.1 1 21.20 even 2
1058.4.a.b.1.1 1 161.160 even 2
1150.4.a.d.1.1 1 35.34 odd 2
1150.4.b.a.599.1 2 35.13 even 4
1150.4.b.a.599.2 2 35.27 even 4
1472.4.a.a.1.1 1 56.27 even 2
1472.4.a.j.1.1 1 56.13 odd 2
2254.4.a.b.1.1 1 1.1 even 1 trivial