Properties

Label 225.8.a.w.1.2
Level $225$
Weight $8$
Character 225.1
Self dual yes
Analytic conductor $70.287$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,8,Mod(1,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,20,0,96,0,0,100] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2866307339\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.35890\) of defining polynomial
Character \(\chi\) \(=\) 225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+18.7178 q^{2} +222.356 q^{4} -438.197 q^{7} +1766.14 q^{8} -5759.12 q^{11} +3530.42 q^{13} -8202.08 q^{14} +4596.61 q^{16} -23991.9 q^{17} +16590.3 q^{19} -107798. q^{22} -65626.9 q^{23} +66081.7 q^{26} -97435.6 q^{28} -134041. q^{29} +129002. q^{31} -140027. q^{32} -449075. q^{34} -161108. q^{37} +310534. q^{38} +362989. q^{41} -588189. q^{43} -1.28057e6 q^{44} -1.22839e6 q^{46} +343895. q^{47} -631527. q^{49} +785010. q^{52} -1.66139e6 q^{53} -773915. q^{56} -2.50896e6 q^{58} +2.54214e6 q^{59} +2.52337e6 q^{61} +2.41464e6 q^{62} -3.20936e6 q^{64} -1.56618e6 q^{67} -5.33474e6 q^{68} +299354. q^{71} -312494. q^{73} -3.01558e6 q^{74} +3.68895e6 q^{76} +2.52363e6 q^{77} -1.95247e6 q^{79} +6.79435e6 q^{82} -621372. q^{83} -1.10096e7 q^{86} -1.01714e7 q^{88} -5.78298e6 q^{89} -1.54702e6 q^{91} -1.45925e7 q^{92} +6.43696e6 q^{94} -7.20152e6 q^{97} -1.18208e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{2} + 96 q^{4} + 100 q^{7} + 1440 q^{8} - 4544 q^{11} - 3540 q^{13} - 7512 q^{14} + 20352 q^{16} - 27340 q^{17} + 38760 q^{19} - 106240 q^{22} - 124140 q^{23} + 57016 q^{26} - 165440 q^{28} + 72260 q^{29}+ \cdots - 12505340 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 18.7178 1.65444 0.827218 0.561882i \(-0.189922\pi\)
0.827218 + 0.561882i \(0.189922\pi\)
\(3\) 0 0
\(4\) 222.356 1.73716
\(5\) 0 0
\(6\) 0 0
\(7\) −438.197 −0.482865 −0.241433 0.970418i \(-0.577617\pi\)
−0.241433 + 0.970418i \(0.577617\pi\)
\(8\) 1766.14 1.21958
\(9\) 0 0
\(10\) 0 0
\(11\) −5759.12 −1.30461 −0.652306 0.757955i \(-0.726198\pi\)
−0.652306 + 0.757955i \(0.726198\pi\)
\(12\) 0 0
\(13\) 3530.42 0.445682 0.222841 0.974855i \(-0.428467\pi\)
0.222841 + 0.974855i \(0.428467\pi\)
\(14\) −8202.08 −0.798869
\(15\) 0 0
\(16\) 4596.61 0.280555
\(17\) −23991.9 −1.18439 −0.592193 0.805797i \(-0.701738\pi\)
−0.592193 + 0.805797i \(0.701738\pi\)
\(18\) 0 0
\(19\) 16590.3 0.554903 0.277451 0.960740i \(-0.410510\pi\)
0.277451 + 0.960740i \(0.410510\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −107798. −2.15840
\(23\) −65626.9 −1.12469 −0.562347 0.826902i \(-0.690101\pi\)
−0.562347 + 0.826902i \(0.690101\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 66081.7 0.737351
\(27\) 0 0
\(28\) −97435.6 −0.838812
\(29\) −134041. −1.02058 −0.510289 0.860003i \(-0.670461\pi\)
−0.510289 + 0.860003i \(0.670461\pi\)
\(30\) 0 0
\(31\) 129002. 0.777734 0.388867 0.921294i \(-0.372867\pi\)
0.388867 + 0.921294i \(0.372867\pi\)
\(32\) −140027. −0.755417
\(33\) 0 0
\(34\) −449075. −1.95949
\(35\) 0 0
\(36\) 0 0
\(37\) −161108. −0.522890 −0.261445 0.965218i \(-0.584199\pi\)
−0.261445 + 0.965218i \(0.584199\pi\)
\(38\) 310534. 0.918050
\(39\) 0 0
\(40\) 0 0
\(41\) 362989. 0.822526 0.411263 0.911517i \(-0.365088\pi\)
0.411263 + 0.911517i \(0.365088\pi\)
\(42\) 0 0
\(43\) −588189. −1.12818 −0.564089 0.825714i \(-0.690772\pi\)
−0.564089 + 0.825714i \(0.690772\pi\)
\(44\) −1.28057e6 −2.26632
\(45\) 0 0
\(46\) −1.22839e6 −1.86073
\(47\) 343895. 0.483151 0.241576 0.970382i \(-0.422336\pi\)
0.241576 + 0.970382i \(0.422336\pi\)
\(48\) 0 0
\(49\) −631527. −0.766841
\(50\) 0 0
\(51\) 0 0
\(52\) 785010. 0.774219
\(53\) −1.66139e6 −1.53287 −0.766436 0.642320i \(-0.777972\pi\)
−0.766436 + 0.642320i \(0.777972\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −773915. −0.588891
\(57\) 0 0
\(58\) −2.50896e6 −1.68848
\(59\) 2.54214e6 1.61145 0.805726 0.592289i \(-0.201776\pi\)
0.805726 + 0.592289i \(0.201776\pi\)
\(60\) 0 0
\(61\) 2.52337e6 1.42340 0.711699 0.702484i \(-0.247926\pi\)
0.711699 + 0.702484i \(0.247926\pi\)
\(62\) 2.41464e6 1.28671
\(63\) 0 0
\(64\) −3.20936e6 −1.53034
\(65\) 0 0
\(66\) 0 0
\(67\) −1.56618e6 −0.636178 −0.318089 0.948061i \(-0.603041\pi\)
−0.318089 + 0.948061i \(0.603041\pi\)
\(68\) −5.33474e6 −2.05746
\(69\) 0 0
\(70\) 0 0
\(71\) 299354. 0.0992615 0.0496307 0.998768i \(-0.484196\pi\)
0.0496307 + 0.998768i \(0.484196\pi\)
\(72\) 0 0
\(73\) −312494. −0.0940183 −0.0470091 0.998894i \(-0.514969\pi\)
−0.0470091 + 0.998894i \(0.514969\pi\)
\(74\) −3.01558e6 −0.865087
\(75\) 0 0
\(76\) 3.68895e6 0.963952
\(77\) 2.52363e6 0.629952
\(78\) 0 0
\(79\) −1.95247e6 −0.445542 −0.222771 0.974871i \(-0.571510\pi\)
−0.222771 + 0.974871i \(0.571510\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.79435e6 1.36082
\(83\) −621372. −0.119283 −0.0596414 0.998220i \(-0.518996\pi\)
−0.0596414 + 0.998220i \(0.518996\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.10096e7 −1.86650
\(87\) 0 0
\(88\) −1.01714e7 −1.59108
\(89\) −5.78298e6 −0.869534 −0.434767 0.900543i \(-0.643169\pi\)
−0.434767 + 0.900543i \(0.643169\pi\)
\(90\) 0 0
\(91\) −1.54702e6 −0.215204
\(92\) −1.45925e7 −1.95377
\(93\) 0 0
\(94\) 6.43696e6 0.799343
\(95\) 0 0
\(96\) 0 0
\(97\) −7.20152e6 −0.801167 −0.400584 0.916260i \(-0.631193\pi\)
−0.400584 + 0.916260i \(0.631193\pi\)
\(98\) −1.18208e7 −1.26869
\(99\) 0 0
\(100\) 0 0
\(101\) 2.91989e6 0.281995 0.140997 0.990010i \(-0.454969\pi\)
0.140997 + 0.990010i \(0.454969\pi\)
\(102\) 0 0
\(103\) −3.94639e6 −0.355852 −0.177926 0.984044i \(-0.556939\pi\)
−0.177926 + 0.984044i \(0.556939\pi\)
\(104\) 6.23520e6 0.543543
\(105\) 0 0
\(106\) −3.10976e7 −2.53604
\(107\) −3.81991e6 −0.301446 −0.150723 0.988576i \(-0.548160\pi\)
−0.150723 + 0.988576i \(0.548160\pi\)
\(108\) 0 0
\(109\) −8.82259e6 −0.652534 −0.326267 0.945278i \(-0.605791\pi\)
−0.326267 + 0.945278i \(0.605791\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.01422e6 −0.135470
\(113\) 2.12074e7 1.38265 0.691324 0.722545i \(-0.257028\pi\)
0.691324 + 0.722545i \(0.257028\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.98049e7 −1.77290
\(117\) 0 0
\(118\) 4.75832e7 2.66604
\(119\) 1.05132e7 0.571898
\(120\) 0 0
\(121\) 1.36803e7 0.702015
\(122\) 4.72319e7 2.35492
\(123\) 0 0
\(124\) 2.86844e7 1.35105
\(125\) 0 0
\(126\) 0 0
\(127\) 2.55822e7 1.10822 0.554108 0.832445i \(-0.313059\pi\)
0.554108 + 0.832445i \(0.313059\pi\)
\(128\) −4.21487e7 −1.77644
\(129\) 0 0
\(130\) 0 0
\(131\) −1.30640e7 −0.507722 −0.253861 0.967241i \(-0.581701\pi\)
−0.253861 + 0.967241i \(0.581701\pi\)
\(132\) 0 0
\(133\) −7.26982e6 −0.267943
\(134\) −2.93154e7 −1.05252
\(135\) 0 0
\(136\) −4.23729e7 −1.44445
\(137\) 2.14021e7 0.711106 0.355553 0.934656i \(-0.384293\pi\)
0.355553 + 0.934656i \(0.384293\pi\)
\(138\) 0 0
\(139\) 4.00656e7 1.26538 0.632688 0.774406i \(-0.281951\pi\)
0.632688 + 0.774406i \(0.281951\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.60324e6 0.164222
\(143\) −2.03321e7 −0.581442
\(144\) 0 0
\(145\) 0 0
\(146\) −5.84921e6 −0.155547
\(147\) 0 0
\(148\) −3.58233e7 −0.908341
\(149\) 5.96142e7 1.47638 0.738190 0.674593i \(-0.235681\pi\)
0.738190 + 0.674593i \(0.235681\pi\)
\(150\) 0 0
\(151\) −5.21166e6 −0.123185 −0.0615924 0.998101i \(-0.519618\pi\)
−0.0615924 + 0.998101i \(0.519618\pi\)
\(152\) 2.93007e7 0.676746
\(153\) 0 0
\(154\) 4.72367e7 1.04222
\(155\) 0 0
\(156\) 0 0
\(157\) 1.10197e7 0.227259 0.113630 0.993523i \(-0.463752\pi\)
0.113630 + 0.993523i \(0.463752\pi\)
\(158\) −3.65458e7 −0.737120
\(159\) 0 0
\(160\) 0 0
\(161\) 2.87575e7 0.543075
\(162\) 0 0
\(163\) −2.32415e7 −0.420346 −0.210173 0.977664i \(-0.567403\pi\)
−0.210173 + 0.977664i \(0.567403\pi\)
\(164\) 8.07127e7 1.42886
\(165\) 0 0
\(166\) −1.16307e7 −0.197346
\(167\) −5.84152e7 −0.970550 −0.485275 0.874361i \(-0.661281\pi\)
−0.485275 + 0.874361i \(0.661281\pi\)
\(168\) 0 0
\(169\) −5.02846e7 −0.801368
\(170\) 0 0
\(171\) 0 0
\(172\) −1.30787e8 −1.95982
\(173\) 1.18828e6 0.0174485 0.00872427 0.999962i \(-0.497223\pi\)
0.00872427 + 0.999962i \(0.497223\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.64724e7 −0.366015
\(177\) 0 0
\(178\) −1.08245e8 −1.43859
\(179\) −1.28635e8 −1.67638 −0.838191 0.545377i \(-0.816387\pi\)
−0.838191 + 0.545377i \(0.816387\pi\)
\(180\) 0 0
\(181\) 1.40320e8 1.75892 0.879458 0.475976i \(-0.157905\pi\)
0.879458 + 0.475976i \(0.157905\pi\)
\(182\) −2.89568e7 −0.356041
\(183\) 0 0
\(184\) −1.15906e8 −1.37165
\(185\) 0 0
\(186\) 0 0
\(187\) 1.38172e8 1.54516
\(188\) 7.64671e7 0.839309
\(189\) 0 0
\(190\) 0 0
\(191\) 3.81784e7 0.396461 0.198231 0.980155i \(-0.436481\pi\)
0.198231 + 0.980155i \(0.436481\pi\)
\(192\) 0 0
\(193\) 1.35915e8 1.36087 0.680436 0.732807i \(-0.261790\pi\)
0.680436 + 0.732807i \(0.261790\pi\)
\(194\) −1.34797e8 −1.32548
\(195\) 0 0
\(196\) −1.40424e8 −1.33212
\(197\) 6.16154e7 0.574193 0.287096 0.957902i \(-0.407310\pi\)
0.287096 + 0.957902i \(0.407310\pi\)
\(198\) 0 0
\(199\) −1.84377e8 −1.65852 −0.829261 0.558862i \(-0.811238\pi\)
−0.829261 + 0.558862i \(0.811238\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 5.46539e7 0.466542
\(203\) 5.87365e7 0.492801
\(204\) 0 0
\(205\) 0 0
\(206\) −7.38677e7 −0.588734
\(207\) 0 0
\(208\) 1.62280e7 0.125038
\(209\) −9.55455e7 −0.723933
\(210\) 0 0
\(211\) 1.71174e8 1.25444 0.627218 0.778844i \(-0.284194\pi\)
0.627218 + 0.778844i \(0.284194\pi\)
\(212\) −3.69420e8 −2.66284
\(213\) 0 0
\(214\) −7.15003e7 −0.498723
\(215\) 0 0
\(216\) 0 0
\(217\) −5.65283e7 −0.375541
\(218\) −1.65139e8 −1.07958
\(219\) 0 0
\(220\) 0 0
\(221\) −8.47014e7 −0.527859
\(222\) 0 0
\(223\) −2.67014e8 −1.61238 −0.806190 0.591657i \(-0.798474\pi\)
−0.806190 + 0.591657i \(0.798474\pi\)
\(224\) 6.13594e7 0.364765
\(225\) 0 0
\(226\) 3.96955e8 2.28750
\(227\) 378641. 0.00214851 0.00107425 0.999999i \(-0.499658\pi\)
0.00107425 + 0.999999i \(0.499658\pi\)
\(228\) 0 0
\(229\) −2.24429e8 −1.23497 −0.617483 0.786584i \(-0.711848\pi\)
−0.617483 + 0.786584i \(0.711848\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.36735e8 −1.24467
\(233\) 1.55173e8 0.803656 0.401828 0.915715i \(-0.368375\pi\)
0.401828 + 0.915715i \(0.368375\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 5.65260e8 2.79934
\(237\) 0 0
\(238\) 1.96783e8 0.946169
\(239\) −4.07160e7 −0.192918 −0.0964588 0.995337i \(-0.530752\pi\)
−0.0964588 + 0.995337i \(0.530752\pi\)
\(240\) 0 0
\(241\) −3.06501e8 −1.41050 −0.705249 0.708960i \(-0.749165\pi\)
−0.705249 + 0.708960i \(0.749165\pi\)
\(242\) 2.56065e8 1.16144
\(243\) 0 0
\(244\) 5.61086e8 2.47266
\(245\) 0 0
\(246\) 0 0
\(247\) 5.85708e7 0.247310
\(248\) 2.27835e8 0.948506
\(249\) 0 0
\(250\) 0 0
\(251\) 1.30381e8 0.520421 0.260211 0.965552i \(-0.416208\pi\)
0.260211 + 0.965552i \(0.416208\pi\)
\(252\) 0 0
\(253\) 3.77953e8 1.46729
\(254\) 4.78842e8 1.83347
\(255\) 0 0
\(256\) −3.78133e8 −1.40866
\(257\) 3.23514e8 1.18885 0.594426 0.804151i \(-0.297380\pi\)
0.594426 + 0.804151i \(0.297380\pi\)
\(258\) 0 0
\(259\) 7.05969e7 0.252485
\(260\) 0 0
\(261\) 0 0
\(262\) −2.44529e8 −0.839994
\(263\) 2.39895e7 0.0813159 0.0406579 0.999173i \(-0.487055\pi\)
0.0406579 + 0.999173i \(0.487055\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.36075e8 −0.443295
\(267\) 0 0
\(268\) −3.48249e8 −1.10514
\(269\) 1.73612e8 0.543809 0.271905 0.962324i \(-0.412346\pi\)
0.271905 + 0.962324i \(0.412346\pi\)
\(270\) 0 0
\(271\) 5.08478e8 1.55196 0.775978 0.630760i \(-0.217257\pi\)
0.775978 + 0.630760i \(0.217257\pi\)
\(272\) −1.10281e8 −0.332285
\(273\) 0 0
\(274\) 4.00600e8 1.17648
\(275\) 0 0
\(276\) 0 0
\(277\) 6.01050e8 1.69915 0.849575 0.527468i \(-0.176859\pi\)
0.849575 + 0.527468i \(0.176859\pi\)
\(278\) 7.49940e8 2.09348
\(279\) 0 0
\(280\) 0 0
\(281\) 6.36212e8 1.71053 0.855264 0.518193i \(-0.173395\pi\)
0.855264 + 0.518193i \(0.173395\pi\)
\(282\) 0 0
\(283\) −5.46181e7 −0.143247 −0.0716233 0.997432i \(-0.522818\pi\)
−0.0716233 + 0.997432i \(0.522818\pi\)
\(284\) 6.65631e7 0.172433
\(285\) 0 0
\(286\) −3.80572e8 −0.961958
\(287\) −1.59061e8 −0.397169
\(288\) 0 0
\(289\) 1.65271e8 0.402768
\(290\) 0 0
\(291\) 0 0
\(292\) −6.94850e7 −0.163324
\(293\) −1.22481e8 −0.284467 −0.142234 0.989833i \(-0.545428\pi\)
−0.142234 + 0.989833i \(0.545428\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.84538e8 −0.637704
\(297\) 0 0
\(298\) 1.11585e9 2.44257
\(299\) −2.31690e8 −0.501255
\(300\) 0 0
\(301\) 2.57743e8 0.544758
\(302\) −9.75509e7 −0.203801
\(303\) 0 0
\(304\) 7.62591e7 0.155681
\(305\) 0 0
\(306\) 0 0
\(307\) −5.58187e8 −1.10102 −0.550510 0.834829i \(-0.685567\pi\)
−0.550510 + 0.834829i \(0.685567\pi\)
\(308\) 5.61143e8 1.09433
\(309\) 0 0
\(310\) 0 0
\(311\) −8.94564e7 −0.168636 −0.0843180 0.996439i \(-0.526871\pi\)
−0.0843180 + 0.996439i \(0.526871\pi\)
\(312\) 0 0
\(313\) 2.75895e8 0.508556 0.254278 0.967131i \(-0.418162\pi\)
0.254278 + 0.967131i \(0.418162\pi\)
\(314\) 2.06265e8 0.375986
\(315\) 0 0
\(316\) −4.34142e8 −0.773976
\(317\) −4.40449e8 −0.776584 −0.388292 0.921536i \(-0.626935\pi\)
−0.388292 + 0.921536i \(0.626935\pi\)
\(318\) 0 0
\(319\) 7.71960e8 1.33146
\(320\) 0 0
\(321\) 0 0
\(322\) 5.38277e8 0.898483
\(323\) −3.98032e8 −0.657218
\(324\) 0 0
\(325\) 0 0
\(326\) −4.35030e8 −0.695436
\(327\) 0 0
\(328\) 6.41088e8 1.00313
\(329\) −1.50694e8 −0.233297
\(330\) 0 0
\(331\) 1.68079e8 0.254751 0.127376 0.991855i \(-0.459345\pi\)
0.127376 + 0.991855i \(0.459345\pi\)
\(332\) −1.38166e8 −0.207213
\(333\) 0 0
\(334\) −1.09340e9 −1.60571
\(335\) 0 0
\(336\) 0 0
\(337\) −8.38651e8 −1.19365 −0.596824 0.802372i \(-0.703571\pi\)
−0.596824 + 0.802372i \(0.703571\pi\)
\(338\) −9.41218e8 −1.32581
\(339\) 0 0
\(340\) 0 0
\(341\) −7.42939e8 −1.01464
\(342\) 0 0
\(343\) 6.37607e8 0.853146
\(344\) −1.03882e9 −1.37590
\(345\) 0 0
\(346\) 2.22421e7 0.0288675
\(347\) −1.16128e9 −1.49205 −0.746023 0.665921i \(-0.768039\pi\)
−0.746023 + 0.665921i \(0.768039\pi\)
\(348\) 0 0
\(349\) −8.37482e8 −1.05460 −0.527298 0.849680i \(-0.676795\pi\)
−0.527298 + 0.849680i \(0.676795\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 8.06432e8 0.985527
\(353\) 7.61561e8 0.921496 0.460748 0.887531i \(-0.347581\pi\)
0.460748 + 0.887531i \(0.347581\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.28588e9 −1.51052
\(357\) 0 0
\(358\) −2.40776e9 −2.77347
\(359\) −3.19728e8 −0.364712 −0.182356 0.983233i \(-0.558372\pi\)
−0.182356 + 0.983233i \(0.558372\pi\)
\(360\) 0 0
\(361\) −6.18634e8 −0.692083
\(362\) 2.62649e9 2.91001
\(363\) 0 0
\(364\) −3.43989e8 −0.373843
\(365\) 0 0
\(366\) 0 0
\(367\) −1.25415e8 −0.132440 −0.0662199 0.997805i \(-0.521094\pi\)
−0.0662199 + 0.997805i \(0.521094\pi\)
\(368\) −3.01661e8 −0.315538
\(369\) 0 0
\(370\) 0 0
\(371\) 7.28016e8 0.740171
\(372\) 0 0
\(373\) −1.71505e9 −1.71118 −0.855588 0.517657i \(-0.826804\pi\)
−0.855588 + 0.517657i \(0.826804\pi\)
\(374\) 2.58628e9 2.55637
\(375\) 0 0
\(376\) 6.07365e8 0.589240
\(377\) −4.73223e8 −0.454853
\(378\) 0 0
\(379\) −1.07297e8 −0.101239 −0.0506196 0.998718i \(-0.516120\pi\)
−0.0506196 + 0.998718i \(0.516120\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 7.14615e8 0.655919
\(383\) −6.77468e8 −0.616160 −0.308080 0.951361i \(-0.599686\pi\)
−0.308080 + 0.951361i \(0.599686\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.54403e9 2.25148
\(387\) 0 0
\(388\) −1.60130e9 −1.39175
\(389\) −1.94836e9 −1.67821 −0.839104 0.543971i \(-0.816920\pi\)
−0.839104 + 0.543971i \(0.816920\pi\)
\(390\) 0 0
\(391\) 1.57451e9 1.33207
\(392\) −1.11536e9 −0.935222
\(393\) 0 0
\(394\) 1.15331e9 0.949965
\(395\) 0 0
\(396\) 0 0
\(397\) 1.11752e9 0.896369 0.448185 0.893941i \(-0.352071\pi\)
0.448185 + 0.893941i \(0.352071\pi\)
\(398\) −3.45113e9 −2.74392
\(399\) 0 0
\(400\) 0 0
\(401\) −1.61315e9 −1.24931 −0.624655 0.780901i \(-0.714760\pi\)
−0.624655 + 0.780901i \(0.714760\pi\)
\(402\) 0 0
\(403\) 4.55432e8 0.346622
\(404\) 6.49254e8 0.489869
\(405\) 0 0
\(406\) 1.09942e9 0.815308
\(407\) 9.27838e8 0.682169
\(408\) 0 0
\(409\) 1.32866e7 0.00960248 0.00480124 0.999988i \(-0.498472\pi\)
0.00480124 + 0.999988i \(0.498472\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8.77503e8 −0.618170
\(413\) −1.11396e9 −0.778114
\(414\) 0 0
\(415\) 0 0
\(416\) −4.94354e8 −0.336676
\(417\) 0 0
\(418\) −1.78840e9 −1.19770
\(419\) 5.93249e7 0.0393992 0.0196996 0.999806i \(-0.493729\pi\)
0.0196996 + 0.999806i \(0.493729\pi\)
\(420\) 0 0
\(421\) −2.93348e9 −1.91600 −0.958000 0.286769i \(-0.907419\pi\)
−0.958000 + 0.286769i \(0.907419\pi\)
\(422\) 3.20399e9 2.07538
\(423\) 0 0
\(424\) −2.93424e9 −1.86946
\(425\) 0 0
\(426\) 0 0
\(427\) −1.10573e9 −0.687310
\(428\) −8.49380e8 −0.523659
\(429\) 0 0
\(430\) 0 0
\(431\) 1.96307e8 0.118104 0.0590520 0.998255i \(-0.481192\pi\)
0.0590520 + 0.998255i \(0.481192\pi\)
\(432\) 0 0
\(433\) 7.68256e8 0.454777 0.227389 0.973804i \(-0.426981\pi\)
0.227389 + 0.973804i \(0.426981\pi\)
\(434\) −1.05809e9 −0.621308
\(435\) 0 0
\(436\) −1.96175e9 −1.13355
\(437\) −1.08877e9 −0.624095
\(438\) 0 0
\(439\) −1.35112e9 −0.762197 −0.381099 0.924534i \(-0.624454\pi\)
−0.381099 + 0.924534i \(0.624454\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1.58542e9 −0.873308
\(443\) 2.20956e9 1.20752 0.603759 0.797167i \(-0.293669\pi\)
0.603759 + 0.797167i \(0.293669\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −4.99792e9 −2.66758
\(447\) 0 0
\(448\) 1.40633e9 0.738950
\(449\) −3.16264e9 −1.64887 −0.824436 0.565955i \(-0.808507\pi\)
−0.824436 + 0.565955i \(0.808507\pi\)
\(450\) 0 0
\(451\) −2.09050e9 −1.07308
\(452\) 4.71558e9 2.40188
\(453\) 0 0
\(454\) 7.08732e6 0.00355457
\(455\) 0 0
\(456\) 0 0
\(457\) −5.97325e8 −0.292755 −0.146377 0.989229i \(-0.546761\pi\)
−0.146377 + 0.989229i \(0.546761\pi\)
\(458\) −4.20082e9 −2.04317
\(459\) 0 0
\(460\) 0 0
\(461\) 2.01803e9 0.959346 0.479673 0.877447i \(-0.340755\pi\)
0.479673 + 0.877447i \(0.340755\pi\)
\(462\) 0 0
\(463\) −1.32264e8 −0.0619310 −0.0309655 0.999520i \(-0.509858\pi\)
−0.0309655 + 0.999520i \(0.509858\pi\)
\(464\) −6.16136e8 −0.286328
\(465\) 0 0
\(466\) 2.90449e9 1.32960
\(467\) −3.62018e9 −1.64483 −0.822416 0.568887i \(-0.807374\pi\)
−0.822416 + 0.568887i \(0.807374\pi\)
\(468\) 0 0
\(469\) 6.86293e8 0.307188
\(470\) 0 0
\(471\) 0 0
\(472\) 4.48976e9 1.96529
\(473\) 3.38745e9 1.47183
\(474\) 0 0
\(475\) 0 0
\(476\) 2.33766e9 0.993477
\(477\) 0 0
\(478\) −7.62113e8 −0.319170
\(479\) 2.77900e9 1.15535 0.577675 0.816267i \(-0.303960\pi\)
0.577675 + 0.816267i \(0.303960\pi\)
\(480\) 0 0
\(481\) −5.68778e8 −0.233042
\(482\) −5.73703e9 −2.33358
\(483\) 0 0
\(484\) 3.04189e9 1.21951
\(485\) 0 0
\(486\) 0 0
\(487\) −1.86684e9 −0.732414 −0.366207 0.930533i \(-0.619344\pi\)
−0.366207 + 0.930533i \(0.619344\pi\)
\(488\) 4.45661e9 1.73594
\(489\) 0 0
\(490\) 0 0
\(491\) −5.06515e9 −1.93111 −0.965555 0.260198i \(-0.916212\pi\)
−0.965555 + 0.260198i \(0.916212\pi\)
\(492\) 0 0
\(493\) 3.21590e9 1.20876
\(494\) 1.09632e9 0.409158
\(495\) 0 0
\(496\) 5.92973e8 0.218197
\(497\) −1.31176e8 −0.0479299
\(498\) 0 0
\(499\) −5.56606e8 −0.200538 −0.100269 0.994960i \(-0.531970\pi\)
−0.100269 + 0.994960i \(0.531970\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.44044e9 0.861004
\(503\) −7.79533e8 −0.273116 −0.136558 0.990632i \(-0.543604\pi\)
−0.136558 + 0.990632i \(0.543604\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 7.07445e9 2.42754
\(507\) 0 0
\(508\) 5.68835e9 1.92515
\(509\) 1.12351e9 0.377629 0.188814 0.982013i \(-0.439536\pi\)
0.188814 + 0.982013i \(0.439536\pi\)
\(510\) 0 0
\(511\) 1.36934e8 0.0453981
\(512\) −1.68278e9 −0.554094
\(513\) 0 0
\(514\) 6.05547e9 1.96688
\(515\) 0 0
\(516\) 0 0
\(517\) −1.98053e9 −0.630326
\(518\) 1.32142e9 0.417721
\(519\) 0 0
\(520\) 0 0
\(521\) 6.43550e8 0.199366 0.0996828 0.995019i \(-0.468217\pi\)
0.0996828 + 0.995019i \(0.468217\pi\)
\(522\) 0 0
\(523\) −6.30863e9 −1.92832 −0.964159 0.265324i \(-0.914521\pi\)
−0.964159 + 0.265324i \(0.914521\pi\)
\(524\) −2.90486e9 −0.881993
\(525\) 0 0
\(526\) 4.49030e8 0.134532
\(527\) −3.09500e9 −0.921137
\(528\) 0 0
\(529\) 9.02060e8 0.264936
\(530\) 0 0
\(531\) 0 0
\(532\) −1.61649e9 −0.465459
\(533\) 1.28150e9 0.366585
\(534\) 0 0
\(535\) 0 0
\(536\) −2.76608e9 −0.775868
\(537\) 0 0
\(538\) 3.24963e9 0.899697
\(539\) 3.63704e9 1.00043
\(540\) 0 0
\(541\) −3.71277e9 −1.00811 −0.504055 0.863672i \(-0.668159\pi\)
−0.504055 + 0.863672i \(0.668159\pi\)
\(542\) 9.51758e9 2.56761
\(543\) 0 0
\(544\) 3.35951e9 0.894705
\(545\) 0 0
\(546\) 0 0
\(547\) −4.19241e9 −1.09524 −0.547619 0.836728i \(-0.684466\pi\)
−0.547619 + 0.836728i \(0.684466\pi\)
\(548\) 4.75888e9 1.23530
\(549\) 0 0
\(550\) 0 0
\(551\) −2.22379e9 −0.566321
\(552\) 0 0
\(553\) 8.55564e8 0.215137
\(554\) 1.12503e10 2.81113
\(555\) 0 0
\(556\) 8.90883e9 2.19816
\(557\) 2.52750e9 0.619723 0.309861 0.950782i \(-0.399717\pi\)
0.309861 + 0.950782i \(0.399717\pi\)
\(558\) 0 0
\(559\) −2.07656e9 −0.502808
\(560\) 0 0
\(561\) 0 0
\(562\) 1.19085e10 2.82996
\(563\) −4.12649e9 −0.974543 −0.487272 0.873250i \(-0.662008\pi\)
−0.487272 + 0.873250i \(0.662008\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.02233e9 −0.236992
\(567\) 0 0
\(568\) 5.28700e8 0.121057
\(569\) −5.27044e8 −0.119937 −0.0599686 0.998200i \(-0.519100\pi\)
−0.0599686 + 0.998200i \(0.519100\pi\)
\(570\) 0 0
\(571\) −3.18083e9 −0.715014 −0.357507 0.933911i \(-0.616373\pi\)
−0.357507 + 0.933911i \(0.616373\pi\)
\(572\) −4.52097e9 −1.01006
\(573\) 0 0
\(574\) −2.97726e9 −0.657091
\(575\) 0 0
\(576\) 0 0
\(577\) −4.88332e9 −1.05828 −0.529139 0.848535i \(-0.677485\pi\)
−0.529139 + 0.848535i \(0.677485\pi\)
\(578\) 3.09351e9 0.666354
\(579\) 0 0
\(580\) 0 0
\(581\) 2.72283e8 0.0575976
\(582\) 0 0
\(583\) 9.56814e9 1.99981
\(584\) −5.51907e8 −0.114662
\(585\) 0 0
\(586\) −2.29257e9 −0.470632
\(587\) 8.66750e8 0.176873 0.0884363 0.996082i \(-0.471813\pi\)
0.0884363 + 0.996082i \(0.471813\pi\)
\(588\) 0 0
\(589\) 2.14019e9 0.431567
\(590\) 0 0
\(591\) 0 0
\(592\) −7.40549e8 −0.146699
\(593\) −1.43710e9 −0.283007 −0.141503 0.989938i \(-0.545194\pi\)
−0.141503 + 0.989938i \(0.545194\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.32556e10 2.56470
\(597\) 0 0
\(598\) −4.33674e9 −0.829294
\(599\) −7.50069e9 −1.42596 −0.712980 0.701185i \(-0.752655\pi\)
−0.712980 + 0.701185i \(0.752655\pi\)
\(600\) 0 0
\(601\) 5.05436e9 0.949741 0.474870 0.880056i \(-0.342495\pi\)
0.474870 + 0.880056i \(0.342495\pi\)
\(602\) 4.82437e9 0.901266
\(603\) 0 0
\(604\) −1.15884e9 −0.213991
\(605\) 0 0
\(606\) 0 0
\(607\) 9.94598e8 0.180504 0.0902521 0.995919i \(-0.471233\pi\)
0.0902521 + 0.995919i \(0.471233\pi\)
\(608\) −2.32309e9 −0.419183
\(609\) 0 0
\(610\) 0 0
\(611\) 1.21409e9 0.215332
\(612\) 0 0
\(613\) −1.58283e9 −0.277539 −0.138769 0.990325i \(-0.544315\pi\)
−0.138769 + 0.990325i \(0.544315\pi\)
\(614\) −1.04480e10 −1.82157
\(615\) 0 0
\(616\) 4.45707e9 0.768275
\(617\) −8.35079e9 −1.43130 −0.715648 0.698461i \(-0.753868\pi\)
−0.715648 + 0.698461i \(0.753868\pi\)
\(618\) 0 0
\(619\) 1.12049e9 0.189886 0.0949428 0.995483i \(-0.469733\pi\)
0.0949428 + 0.995483i \(0.469733\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.67443e9 −0.278997
\(623\) 2.53408e9 0.419868
\(624\) 0 0
\(625\) 0 0
\(626\) 5.16415e9 0.841372
\(627\) 0 0
\(628\) 2.45030e9 0.394785
\(629\) 3.86528e9 0.619303
\(630\) 0 0
\(631\) 3.72303e9 0.589921 0.294961 0.955509i \(-0.404693\pi\)
0.294961 + 0.955509i \(0.404693\pi\)
\(632\) −3.44832e9 −0.543372
\(633\) 0 0
\(634\) −8.24424e9 −1.28481
\(635\) 0 0
\(636\) 0 0
\(637\) −2.22956e9 −0.341767
\(638\) 1.44494e10 2.20281
\(639\) 0 0
\(640\) 0 0
\(641\) 1.08733e9 0.163065 0.0815323 0.996671i \(-0.474019\pi\)
0.0815323 + 0.996671i \(0.474019\pi\)
\(642\) 0 0
\(643\) −9.30287e9 −1.38000 −0.689999 0.723810i \(-0.742389\pi\)
−0.689999 + 0.723810i \(0.742389\pi\)
\(644\) 6.39440e9 0.943407
\(645\) 0 0
\(646\) −7.45029e9 −1.08733
\(647\) −3.75633e9 −0.545254 −0.272627 0.962120i \(-0.587892\pi\)
−0.272627 + 0.962120i \(0.587892\pi\)
\(648\) 0 0
\(649\) −1.46405e10 −2.10232
\(650\) 0 0
\(651\) 0 0
\(652\) −5.16788e9 −0.730207
\(653\) 6.47262e9 0.909671 0.454835 0.890576i \(-0.349698\pi\)
0.454835 + 0.890576i \(0.349698\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.66852e9 0.230764
\(657\) 0 0
\(658\) −2.82065e9 −0.385975
\(659\) −8.31257e9 −1.13145 −0.565726 0.824593i \(-0.691404\pi\)
−0.565726 + 0.824593i \(0.691404\pi\)
\(660\) 0 0
\(661\) −1.42966e9 −0.192543 −0.0962714 0.995355i \(-0.530692\pi\)
−0.0962714 + 0.995355i \(0.530692\pi\)
\(662\) 3.14608e9 0.421470
\(663\) 0 0
\(664\) −1.09743e9 −0.145475
\(665\) 0 0
\(666\) 0 0
\(667\) 8.79672e9 1.14784
\(668\) −1.29890e10 −1.68600
\(669\) 0 0
\(670\) 0 0
\(671\) −1.45324e10 −1.85698
\(672\) 0 0
\(673\) −7.03224e9 −0.889285 −0.444642 0.895708i \(-0.646669\pi\)
−0.444642 + 0.895708i \(0.646669\pi\)
\(674\) −1.56977e10 −1.97481
\(675\) 0 0
\(676\) −1.11811e10 −1.39210
\(677\) −5.75322e8 −0.0712608 −0.0356304 0.999365i \(-0.511344\pi\)
−0.0356304 + 0.999365i \(0.511344\pi\)
\(678\) 0 0
\(679\) 3.15568e9 0.386856
\(680\) 0 0
\(681\) 0 0
\(682\) −1.39062e10 −1.67866
\(683\) 7.67069e9 0.921217 0.460609 0.887603i \(-0.347631\pi\)
0.460609 + 0.887603i \(0.347631\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.19346e10 1.41148
\(687\) 0 0
\(688\) −2.70368e9 −0.316516
\(689\) −5.86541e9 −0.683173
\(690\) 0 0
\(691\) 3.62855e9 0.418369 0.209185 0.977876i \(-0.432919\pi\)
0.209185 + 0.977876i \(0.432919\pi\)
\(692\) 2.64222e8 0.0303108
\(693\) 0 0
\(694\) −2.17365e10 −2.46849
\(695\) 0 0
\(696\) 0 0
\(697\) −8.70878e9 −0.974188
\(698\) −1.56758e10 −1.74476
\(699\) 0 0
\(700\) 0 0
\(701\) 1.71375e10 1.87904 0.939518 0.342499i \(-0.111273\pi\)
0.939518 + 0.342499i \(0.111273\pi\)
\(702\) 0 0
\(703\) −2.67283e9 −0.290153
\(704\) 1.84831e10 1.99651
\(705\) 0 0
\(706\) 1.42547e10 1.52456
\(707\) −1.27948e9 −0.136166
\(708\) 0 0
\(709\) 1.34055e10 1.41260 0.706302 0.707911i \(-0.250362\pi\)
0.706302 + 0.707911i \(0.250362\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.02135e10 −1.06046
\(713\) −8.46601e9 −0.874712
\(714\) 0 0
\(715\) 0 0
\(716\) −2.86027e10 −2.91214
\(717\) 0 0
\(718\) −5.98460e9 −0.603392
\(719\) 5.99982e9 0.601987 0.300994 0.953626i \(-0.402682\pi\)
0.300994 + 0.953626i \(0.402682\pi\)
\(720\) 0 0
\(721\) 1.72929e9 0.171829
\(722\) −1.15795e10 −1.14501
\(723\) 0 0
\(724\) 3.12010e10 3.05551
\(725\) 0 0
\(726\) 0 0
\(727\) 1.84312e10 1.77903 0.889513 0.456909i \(-0.151044\pi\)
0.889513 + 0.456909i \(0.151044\pi\)
\(728\) −2.73225e9 −0.262458
\(729\) 0 0
\(730\) 0 0
\(731\) 1.41118e10 1.33620
\(732\) 0 0
\(733\) 7.01069e9 0.657502 0.328751 0.944417i \(-0.393372\pi\)
0.328751 + 0.944417i \(0.393372\pi\)
\(734\) −2.34749e9 −0.219113
\(735\) 0 0
\(736\) 9.18953e9 0.849613
\(737\) 9.01980e9 0.829966
\(738\) 0 0
\(739\) 3.58081e9 0.326382 0.163191 0.986595i \(-0.447821\pi\)
0.163191 + 0.986595i \(0.447821\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.36268e10 1.22456
\(743\) −4.23347e9 −0.378648 −0.189324 0.981915i \(-0.560630\pi\)
−0.189324 + 0.981915i \(0.560630\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −3.21019e10 −2.83103
\(747\) 0 0
\(748\) 3.07234e10 2.68419
\(749\) 1.67387e9 0.145558
\(750\) 0 0
\(751\) 3.94072e9 0.339497 0.169749 0.985487i \(-0.445704\pi\)
0.169749 + 0.985487i \(0.445704\pi\)
\(752\) 1.58075e9 0.135550
\(753\) 0 0
\(754\) −8.85769e9 −0.752524
\(755\) 0 0
\(756\) 0 0
\(757\) 8.01225e8 0.0671303 0.0335652 0.999437i \(-0.489314\pi\)
0.0335652 + 0.999437i \(0.489314\pi\)
\(758\) −2.00836e9 −0.167494
\(759\) 0 0
\(760\) 0 0
\(761\) 3.84688e9 0.316419 0.158209 0.987406i \(-0.449428\pi\)
0.158209 + 0.987406i \(0.449428\pi\)
\(762\) 0 0
\(763\) 3.86603e9 0.315086
\(764\) 8.48919e9 0.688715
\(765\) 0 0
\(766\) −1.26807e10 −1.01940
\(767\) 8.97482e9 0.718194
\(768\) 0 0
\(769\) 4.40578e9 0.349366 0.174683 0.984625i \(-0.444110\pi\)
0.174683 + 0.984625i \(0.444110\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.02216e10 2.36405
\(773\) −1.54451e10 −1.20272 −0.601359 0.798979i \(-0.705374\pi\)
−0.601359 + 0.798979i \(0.705374\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.27189e10 −0.977085
\(777\) 0 0
\(778\) −3.64690e10 −2.77649
\(779\) 6.02210e9 0.456422
\(780\) 0 0
\(781\) −1.72401e9 −0.129498
\(782\) 2.94714e10 2.20382
\(783\) 0 0
\(784\) −2.90288e9 −0.215141
\(785\) 0 0
\(786\) 0 0
\(787\) 2.40331e10 1.75751 0.878755 0.477274i \(-0.158375\pi\)
0.878755 + 0.477274i \(0.158375\pi\)
\(788\) 1.37006e10 0.997463
\(789\) 0 0
\(790\) 0 0
\(791\) −9.29299e9 −0.667633
\(792\) 0 0
\(793\) 8.90856e9 0.634383
\(794\) 2.09174e10 1.48299
\(795\) 0 0
\(796\) −4.09973e10 −2.88111
\(797\) 1.37624e10 0.962918 0.481459 0.876469i \(-0.340107\pi\)
0.481459 + 0.876469i \(0.340107\pi\)
\(798\) 0 0
\(799\) −8.25068e9 −0.572237
\(800\) 0 0
\(801\) 0 0
\(802\) −3.01947e10 −2.06690
\(803\) 1.79969e9 0.122657
\(804\) 0 0
\(805\) 0 0
\(806\) 8.52468e9 0.573463
\(807\) 0 0
\(808\) 5.15692e9 0.343914
\(809\) −5.00163e9 −0.332118 −0.166059 0.986116i \(-0.553104\pi\)
−0.166059 + 0.986116i \(0.553104\pi\)
\(810\) 0 0
\(811\) 8.14966e9 0.536496 0.268248 0.963350i \(-0.413555\pi\)
0.268248 + 0.963350i \(0.413555\pi\)
\(812\) 1.30604e10 0.856073
\(813\) 0 0
\(814\) 1.73671e10 1.12860
\(815\) 0 0
\(816\) 0 0
\(817\) −9.75824e9 −0.626029
\(818\) 2.48697e8 0.0158867
\(819\) 0 0
\(820\) 0 0
\(821\) −1.30820e10 −0.825035 −0.412518 0.910950i \(-0.635350\pi\)
−0.412518 + 0.910950i \(0.635350\pi\)
\(822\) 0 0
\(823\) 3.12969e10 1.95705 0.978524 0.206133i \(-0.0660881\pi\)
0.978524 + 0.206133i \(0.0660881\pi\)
\(824\) −6.96985e9 −0.433989
\(825\) 0 0
\(826\) −2.08508e10 −1.28734
\(827\) −1.98645e10 −1.22126 −0.610630 0.791916i \(-0.709084\pi\)
−0.610630 + 0.791916i \(0.709084\pi\)
\(828\) 0 0
\(829\) 1.06183e10 0.647310 0.323655 0.946175i \(-0.395088\pi\)
0.323655 + 0.946175i \(0.395088\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.13304e10 −0.682046
\(833\) 1.51515e10 0.908235
\(834\) 0 0
\(835\) 0 0
\(836\) −2.12451e10 −1.25758
\(837\) 0 0
\(838\) 1.11043e9 0.0651834
\(839\) −4.19640e9 −0.245307 −0.122654 0.992450i \(-0.539140\pi\)
−0.122654 + 0.992450i \(0.539140\pi\)
\(840\) 0 0
\(841\) 7.17225e8 0.0415785
\(842\) −5.49082e10 −3.16990
\(843\) 0 0
\(844\) 3.80615e10 2.17915
\(845\) 0 0
\(846\) 0 0
\(847\) −5.99465e9 −0.338979
\(848\) −7.63676e9 −0.430055
\(849\) 0 0
\(850\) 0 0
\(851\) 1.05730e10 0.588091
\(852\) 0 0
\(853\) −2.52606e10 −1.39355 −0.696775 0.717289i \(-0.745383\pi\)
−0.696775 + 0.717289i \(0.745383\pi\)
\(854\) −2.06969e10 −1.13711
\(855\) 0 0
\(856\) −6.74648e9 −0.367637
\(857\) 1.07248e10 0.582046 0.291023 0.956716i \(-0.406004\pi\)
0.291023 + 0.956716i \(0.406004\pi\)
\(858\) 0 0
\(859\) −3.02643e10 −1.62913 −0.814563 0.580075i \(-0.803023\pi\)
−0.814563 + 0.580075i \(0.803023\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 3.67443e9 0.195396
\(863\) −1.39177e10 −0.737106 −0.368553 0.929607i \(-0.620147\pi\)
−0.368553 + 0.929607i \(0.620147\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.43801e10 0.752399
\(867\) 0 0
\(868\) −1.25694e10 −0.652373
\(869\) 1.12445e10 0.581260
\(870\) 0 0
\(871\) −5.52926e9 −0.283533
\(872\) −1.55819e10 −0.795815
\(873\) 0 0
\(874\) −2.03794e10 −1.03253
\(875\) 0 0
\(876\) 0 0
\(877\) 1.81702e10 0.909622 0.454811 0.890588i \(-0.349707\pi\)
0.454811 + 0.890588i \(0.349707\pi\)
\(878\) −2.52900e10 −1.26101
\(879\) 0 0
\(880\) 0 0
\(881\) 3.14352e10 1.54882 0.774409 0.632685i \(-0.218047\pi\)
0.774409 + 0.632685i \(0.218047\pi\)
\(882\) 0 0
\(883\) 2.11722e10 1.03491 0.517457 0.855709i \(-0.326879\pi\)
0.517457 + 0.855709i \(0.326879\pi\)
\(884\) −1.88339e10 −0.916973
\(885\) 0 0
\(886\) 4.13582e10 1.99776
\(887\) 3.72771e10 1.79353 0.896766 0.442505i \(-0.145910\pi\)
0.896766 + 0.442505i \(0.145910\pi\)
\(888\) 0 0
\(889\) −1.12100e10 −0.535119
\(890\) 0 0
\(891\) 0 0
\(892\) −5.93722e10 −2.80095
\(893\) 5.70532e9 0.268102
\(894\) 0 0
\(895\) 0 0
\(896\) 1.84694e10 0.857780
\(897\) 0 0
\(898\) −5.91976e10 −2.72795
\(899\) −1.72916e10 −0.793738
\(900\) 0 0
\(901\) 3.98599e10 1.81551
\(902\) −3.91295e10 −1.77534
\(903\) 0 0
\(904\) 3.74551e10 1.68625
\(905\) 0 0
\(906\) 0 0
\(907\) −1.00189e10 −0.445854 −0.222927 0.974835i \(-0.571561\pi\)
−0.222927 + 0.974835i \(0.571561\pi\)
\(908\) 8.41930e7 0.00373229
\(909\) 0 0
\(910\) 0 0
\(911\) −3.16088e10 −1.38514 −0.692571 0.721350i \(-0.743522\pi\)
−0.692571 + 0.721350i \(0.743522\pi\)
\(912\) 0 0
\(913\) 3.57855e9 0.155618
\(914\) −1.11806e10 −0.484344
\(915\) 0 0
\(916\) −4.99032e10 −2.14533
\(917\) 5.72460e9 0.245161
\(918\) 0 0
\(919\) 7.18397e8 0.0305324 0.0152662 0.999883i \(-0.495140\pi\)
0.0152662 + 0.999883i \(0.495140\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 3.77732e10 1.58718
\(923\) 1.05685e9 0.0442390
\(924\) 0 0
\(925\) 0 0
\(926\) −2.47569e9 −0.102461
\(927\) 0 0
\(928\) 1.87694e10 0.770962
\(929\) 1.63954e10 0.670915 0.335458 0.942055i \(-0.391109\pi\)
0.335458 + 0.942055i \(0.391109\pi\)
\(930\) 0 0
\(931\) −1.04772e10 −0.425522
\(932\) 3.45036e10 1.39608
\(933\) 0 0
\(934\) −6.77618e10 −2.72127
\(935\) 0 0
\(936\) 0 0
\(937\) 9.79890e9 0.389125 0.194562 0.980890i \(-0.437671\pi\)
0.194562 + 0.980890i \(0.437671\pi\)
\(938\) 1.28459e10 0.508223
\(939\) 0 0
\(940\) 0 0
\(941\) −1.68542e10 −0.659394 −0.329697 0.944087i \(-0.606947\pi\)
−0.329697 + 0.944087i \(0.606947\pi\)
\(942\) 0 0
\(943\) −2.38218e10 −0.925090
\(944\) 1.16852e10 0.452100
\(945\) 0 0
\(946\) 6.34056e10 2.43506
\(947\) 2.47225e10 0.945948 0.472974 0.881076i \(-0.343180\pi\)
0.472974 + 0.881076i \(0.343180\pi\)
\(948\) 0 0
\(949\) −1.10324e9 −0.0419022
\(950\) 0 0
\(951\) 0 0
\(952\) 1.85677e10 0.697474
\(953\) −4.36738e9 −0.163454 −0.0817271 0.996655i \(-0.526044\pi\)
−0.0817271 + 0.996655i \(0.526044\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −9.05343e9 −0.335128
\(957\) 0 0
\(958\) 5.20167e10 1.91145
\(959\) −9.37832e9 −0.343368
\(960\) 0 0
\(961\) −1.08711e10 −0.395130
\(962\) −1.06463e10 −0.385554
\(963\) 0 0
\(964\) −6.81523e10 −2.45025
\(965\) 0 0
\(966\) 0 0
\(967\) 1.00818e10 0.358547 0.179274 0.983799i \(-0.442625\pi\)
0.179274 + 0.983799i \(0.442625\pi\)
\(968\) 2.41612e10 0.856161
\(969\) 0 0
\(970\) 0 0
\(971\) 1.19066e10 0.417369 0.208685 0.977983i \(-0.433082\pi\)
0.208685 + 0.977983i \(0.433082\pi\)
\(972\) 0 0
\(973\) −1.75566e10 −0.611006
\(974\) −3.49432e10 −1.21173
\(975\) 0 0
\(976\) 1.15989e10 0.399341
\(977\) 1.99598e10 0.684741 0.342370 0.939565i \(-0.388770\pi\)
0.342370 + 0.939565i \(0.388770\pi\)
\(978\) 0 0
\(979\) 3.33049e10 1.13441
\(980\) 0 0
\(981\) 0 0
\(982\) −9.48085e10 −3.19490
\(983\) −3.22193e10 −1.08188 −0.540940 0.841061i \(-0.681931\pi\)
−0.540940 + 0.841061i \(0.681931\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 6.01947e10 1.99981
\(987\) 0 0
\(988\) 1.30236e10 0.429616
\(989\) 3.86010e10 1.26885
\(990\) 0 0
\(991\) −1.42552e10 −0.465281 −0.232640 0.972563i \(-0.574737\pi\)
−0.232640 + 0.972563i \(0.574737\pi\)
\(992\) −1.80638e10 −0.587513
\(993\) 0 0
\(994\) −2.45532e9 −0.0792969
\(995\) 0 0
\(996\) 0 0
\(997\) 2.73327e10 0.873475 0.436737 0.899589i \(-0.356134\pi\)
0.436737 + 0.899589i \(0.356134\pi\)
\(998\) −1.04184e10 −0.331776
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.8.a.w.1.2 2
3.2 odd 2 25.8.a.b.1.1 2
5.2 odd 4 225.8.b.m.199.4 4
5.3 odd 4 225.8.b.m.199.1 4
5.4 even 2 45.8.a.h.1.1 2
12.11 even 2 400.8.a.bb.1.1 2
15.2 even 4 25.8.b.c.24.1 4
15.8 even 4 25.8.b.c.24.4 4
15.14 odd 2 5.8.a.b.1.2 2
60.23 odd 4 400.8.c.m.49.2 4
60.47 odd 4 400.8.c.m.49.3 4
60.59 even 2 80.8.a.g.1.2 2
105.104 even 2 245.8.a.c.1.2 2
120.29 odd 2 320.8.a.l.1.2 2
120.59 even 2 320.8.a.u.1.1 2
165.164 even 2 605.8.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.8.a.b.1.2 2 15.14 odd 2
25.8.a.b.1.1 2 3.2 odd 2
25.8.b.c.24.1 4 15.2 even 4
25.8.b.c.24.4 4 15.8 even 4
45.8.a.h.1.1 2 5.4 even 2
80.8.a.g.1.2 2 60.59 even 2
225.8.a.w.1.2 2 1.1 even 1 trivial
225.8.b.m.199.1 4 5.3 odd 4
225.8.b.m.199.4 4 5.2 odd 4
245.8.a.c.1.2 2 105.104 even 2
320.8.a.l.1.2 2 120.29 odd 2
320.8.a.u.1.1 2 120.59 even 2
400.8.a.bb.1.1 2 12.11 even 2
400.8.c.m.49.2 4 60.23 odd 4
400.8.c.m.49.3 4 60.47 odd 4
605.8.a.d.1.1 2 165.164 even 2