Properties

Label 225.6.a.r
Level $225$
Weight $6$
Character orbit 225.a
Self dual yes
Analytic conductor $36.086$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,6,Mod(1,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.0863594579\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{145})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 3) q^{2} + ( - 5 \beta + 13) q^{4} + (20 \beta - 50) q^{7} + (9 \beta + 123) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 3) q^{2} + ( - 5 \beta + 13) q^{4} + (20 \beta - 50) q^{7} + (9 \beta + 123) q^{8} + ( - 20 \beta - 390) q^{11} + ( - 80 \beta + 100) q^{13} + (90 \beta - 870) q^{14} + (55 \beta - 371) q^{16} + (32 \beta + 954) q^{17} + (320 \beta - 916) q^{19} + (350 \beta - 450) q^{22} + (504 \beta - 912) q^{23} + ( - 260 \beta + 3180) q^{26} + (410 \beta - 4250) q^{28} + (1280 \beta - 1290) q^{29} + ( - 440 \beta - 2692) q^{31} + (193 \beta - 7029) q^{32} + ( - 890 \beta + 1710) q^{34} + ( - 1440 \beta + 7000) q^{37} + (1556 \beta - 14268) q^{38} + ( - 1360 \beta + 480) q^{41} + ( - 1280 \beta - 12200) q^{43} + (1790 \beta - 1470) q^{44} + (1920 \beta - 20880) q^{46} + ( - 184 \beta + 9552) q^{47} + ( - 1600 \beta + 93) q^{49} + ( - 1140 \beta + 15700) q^{52} + (608 \beta + 24426) q^{53} + (2190 \beta + 330) q^{56} + (3850 \beta - 49950) q^{58} + ( - 980 \beta - 31110) q^{59} + ( - 5440 \beta - 21838) q^{61} + (1812 \beta + 7764) q^{62} + (5655 \beta - 16163) q^{64} + (8120 \beta - 7100) q^{67} + ( - 4514 \beta + 6642) q^{68} + ( - 1480 \beta - 31860) q^{71} + ( - 4640 \beta - 46550) q^{73} + ( - 9880 \beta + 72840) q^{74} + (7140 \beta - 69508) q^{76} + ( - 7200 \beta + 5100) q^{77} + (2680 \beta - 24484) q^{79} + ( - 3200 \beta + 50400) q^{82} + ( - 10728 \beta - 23316) q^{83} + (9640 \beta + 9480) q^{86} + ( - 6150 \beta - 54450) q^{88} + ( - 8400 \beta + 47700) q^{89} + (4400 \beta - 62600) q^{91} + (8592 \beta - 102576) q^{92} + ( - 9920 \beta + 35280) q^{94} + ( - 2880 \beta - 3650) q^{97} + ( - 3293 \beta + 57879) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} + 21 q^{4} - 80 q^{7} + 255 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{2} + 21 q^{4} - 80 q^{7} + 255 q^{8} - 800 q^{11} + 120 q^{13} - 1650 q^{14} - 687 q^{16} + 1940 q^{17} - 1512 q^{19} - 550 q^{22} - 1320 q^{23} + 6100 q^{26} - 8090 q^{28} - 1300 q^{29} - 5824 q^{31} - 13865 q^{32} + 2530 q^{34} + 12560 q^{37} - 26980 q^{38} - 400 q^{41} - 25680 q^{43} - 1150 q^{44} - 39840 q^{46} + 18920 q^{47} - 1414 q^{49} + 30260 q^{52} + 49460 q^{53} + 2850 q^{56} - 96050 q^{58} - 63200 q^{59} - 49116 q^{61} + 17340 q^{62} - 26671 q^{64} - 6080 q^{67} + 8770 q^{68} - 65200 q^{71} - 97740 q^{73} + 135800 q^{74} - 131876 q^{76} + 3000 q^{77} - 46288 q^{79} + 97600 q^{82} - 57360 q^{83} + 28600 q^{86} - 115050 q^{88} + 87000 q^{89} - 120800 q^{91} - 196560 q^{92} + 60640 q^{94} - 10180 q^{97} + 112465 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.52080
−5.52080
−3.52080 0 −19.6040 0 0 80.4159 181.687 0 0
1.2 8.52080 0 40.6040 0 0 −160.416 73.3128 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 225.6.a.r 2
3.b odd 2 1 225.6.a.k 2
5.b even 2 1 45.6.a.d 2
5.c odd 4 2 225.6.b.j 4
15.d odd 2 1 45.6.a.f yes 2
15.e even 4 2 225.6.b.k 4
20.d odd 2 1 720.6.a.y 2
60.h even 2 1 720.6.a.be 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.6.a.d 2 5.b even 2 1
45.6.a.f yes 2 15.d odd 2 1
225.6.a.k 2 3.b odd 2 1
225.6.a.r 2 1.a even 1 1 trivial
225.6.b.j 4 5.c odd 4 2
225.6.b.k 4 15.e even 4 2
720.6.a.y 2 20.d odd 2 1
720.6.a.be 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(225))\):

\( T_{2}^{2} - 5T_{2} - 30 \) Copy content Toggle raw display
\( T_{7}^{2} + 80T_{7} - 12900 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5T - 30 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 80T - 12900 \) Copy content Toggle raw display
$11$ \( T^{2} + 800T + 145500 \) Copy content Toggle raw display
$13$ \( T^{2} - 120T - 228400 \) Copy content Toggle raw display
$17$ \( T^{2} - 1940 T + 903780 \) Copy content Toggle raw display
$19$ \( T^{2} + 1512 T - 3140464 \) Copy content Toggle raw display
$23$ \( T^{2} + 1320 T - 8772480 \) Copy content Toggle raw display
$29$ \( T^{2} + 1300 T - 58969500 \) Copy content Toggle raw display
$31$ \( T^{2} + 5824 T + 1461744 \) Copy content Toggle raw display
$37$ \( T^{2} - 12560 T - 35729600 \) Copy content Toggle raw display
$41$ \( T^{2} + 400 T - 67008000 \) Copy content Toggle raw display
$43$ \( T^{2} + 25680 T + 105473600 \) Copy content Toggle raw display
$47$ \( T^{2} - 18920 T + 88264320 \) Copy content Toggle raw display
$53$ \( T^{2} - 49460 T + 598172580 \) Copy content Toggle raw display
$59$ \( T^{2} + 63200 T + 963745500 \) Copy content Toggle raw display
$61$ \( T^{2} + 49116 T - 469672636 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 2380880400 \) Copy content Toggle raw display
$71$ \( T^{2} + 65200 T + 983358000 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1607828900 \) Copy content Toggle raw display
$79$ \( T^{2} + 46288 T + 275282736 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 3349469520 \) Copy content Toggle raw display
$89$ \( T^{2} - 87000 T - 665550000 \) Copy content Toggle raw display
$97$ \( T^{2} + 10180 T - 274763900 \) Copy content Toggle raw display
show more
show less