Properties

Label 225.4.u
Level $225$
Weight $4$
Character orbit 225.u
Rep. character $\chi_{225}(4,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $704$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.u (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 225 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(225, [\chi])\).

Total New Old
Modular forms 736 736 0
Cusp forms 704 704 0
Eisenstein series 32 32 0

Trace form

\( 704 q - 5 q^{2} - 10 q^{3} - 347 q^{4} + 12 q^{5} + 10 q^{6} - 20 q^{8} - 38 q^{9} + O(q^{10}) \) \( 704 q - 5 q^{2} - 10 q^{3} - 347 q^{4} + 12 q^{5} + 10 q^{6} - 20 q^{8} - 38 q^{9} - 91 q^{11} + 150 q^{12} - 5 q^{13} + 61 q^{14} - 363 q^{15} + 1293 q^{16} - 20 q^{17} - 12 q^{19} + q^{20} - 135 q^{21} - 5 q^{22} - 5 q^{23} - 250 q^{24} + 284 q^{25} - 2496 q^{26} - 340 q^{27} - 660 q^{28} + 345 q^{29} + 56 q^{30} + 33 q^{31} + 790 q^{33} - 19 q^{34} - 736 q^{35} - 852 q^{36} - 20 q^{37} - 3015 q^{38} + 500 q^{39} - 49 q^{40} - 659 q^{41} - 1790 q^{42} - 1996 q^{44} - 1083 q^{45} + 20 q^{46} - 955 q^{47} - 6225 q^{48} + 14888 q^{49} - 563 q^{50} + 204 q^{51} - 45 q^{52} - 20 q^{53} - 17 q^{54} - 50 q^{55} - 590 q^{56} - 5 q^{58} + 915 q^{59} - 2153 q^{60} - 3 q^{61} + 4900 q^{62} + 2385 q^{63} + 9156 q^{64} + 456 q^{65} - 3514 q^{66} + 1525 q^{67} - 476 q^{69} + 1254 q^{70} + 2432 q^{71} - 5090 q^{72} - 20 q^{73} - 3830 q^{74} - 4343 q^{75} + 152 q^{76} - 715 q^{77} - 1330 q^{78} - 255 q^{79} + 4778 q^{80} + 786 q^{81} - 145 q^{83} - 5595 q^{84} + 699 q^{85} - 4551 q^{86} - 6260 q^{87} - 5 q^{88} + 116 q^{89} + 3097 q^{90} - 2070 q^{91} + 12395 q^{92} - 2455 q^{94} + 1687 q^{95} - 5225 q^{96} - 5 q^{97} - 3370 q^{98} - 30 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(225, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
225.4.u.a \(704\) \(13.275\) None \(-5\) \(-10\) \(12\) \(0\)