Newspace parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.k (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.2754297513\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 8.0.303595776.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 3^{2} \) |
Twist minimal: | no (minimal twist has level 9) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{7} + 32\nu^{5} + 16\nu^{3} + 45\nu ) / 432 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{6} - 16\nu^{4} - 32\nu^{2} - 51 ) / 48 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -5\nu^{6} - 16\nu^{4} - 80\nu^{2} - 225 ) / 144 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{7} + 8\nu^{5} + 40\nu^{3} + 165\nu ) / 72 \)
|
\(\beta_{5}\) | \(=\) |
\( ( \nu^{7} + 13\nu ) / 48 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -\nu^{6} - 5\nu^{4} - 7\nu^{2} - 27 ) / 9 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{7} + 2\nu^{5} + 10\nu^{3} - 3\nu ) / 18 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{7} + 2\beta_{5} + \beta_{4} ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{6} - 7\beta_{3} - \beta_{2} - 6 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 4\beta_{7} - 11\beta_{5} + 2\beta_{4} - 9\beta_1 ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -5\beta_{6} + 13\beta_{3} - 5\beta_{2} ) / 3 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -\beta_{7} - \beta_{5} - 2\beta_{4} + 45\beta_1 ) / 3 \)
|
\(\nu^{6}\) | \(=\) |
\( ( -16\beta_{6} - 16\beta_{3} + 32\beta_{2} - 39 ) / 3 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 13\beta_{7} + 118\beta_{5} - 13\beta_{4} ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(\beta_{3}\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
−3.78651 | + | 2.18614i | −3.78651 | + | 3.55842i | 5.55842 | − | 9.62747i | 0 | 6.55842 | − | 21.7518i | −10.4935 | + | 6.05842i | 13.6277i | 1.67527 | − | 26.9480i | 0 | ||||||||||||||||||||||||||||||
49.2 | −1.18843 | + | 0.686141i | −1.18843 | + | 5.05842i | −3.05842 | + | 5.29734i | 0 | −2.05842 | − | 6.82701i | −4.43132 | + | 2.55842i | − | 19.3723i | −24.1753 | − | 12.0232i | 0 | ||||||||||||||||||||||||||||||
49.3 | 1.18843 | − | 0.686141i | 1.18843 | − | 5.05842i | −3.05842 | + | 5.29734i | 0 | −2.05842 | − | 6.82701i | 4.43132 | − | 2.55842i | 19.3723i | −24.1753 | − | 12.0232i | 0 | |||||||||||||||||||||||||||||||
49.4 | 3.78651 | − | 2.18614i | 3.78651 | − | 3.55842i | 5.55842 | − | 9.62747i | 0 | 6.55842 | − | 21.7518i | 10.4935 | − | 6.05842i | − | 13.6277i | 1.67527 | − | 26.9480i | 0 | ||||||||||||||||||||||||||||||
124.1 | −3.78651 | − | 2.18614i | −3.78651 | − | 3.55842i | 5.55842 | + | 9.62747i | 0 | 6.55842 | + | 21.7518i | −10.4935 | − | 6.05842i | − | 13.6277i | 1.67527 | + | 26.9480i | 0 | ||||||||||||||||||||||||||||||
124.2 | −1.18843 | − | 0.686141i | −1.18843 | − | 5.05842i | −3.05842 | − | 5.29734i | 0 | −2.05842 | + | 6.82701i | −4.43132 | − | 2.55842i | 19.3723i | −24.1753 | + | 12.0232i | 0 | |||||||||||||||||||||||||||||||
124.3 | 1.18843 | + | 0.686141i | 1.18843 | + | 5.05842i | −3.05842 | − | 5.29734i | 0 | −2.05842 | + | 6.82701i | 4.43132 | + | 2.55842i | − | 19.3723i | −24.1753 | + | 12.0232i | 0 | ||||||||||||||||||||||||||||||
124.4 | 3.78651 | + | 2.18614i | 3.78651 | + | 3.55842i | 5.55842 | + | 9.62747i | 0 | 6.55842 | + | 21.7518i | 10.4935 | + | 6.05842i | 13.6277i | 1.67527 | + | 26.9480i | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
45.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 225.4.k.b | 8 | |
5.b | even | 2 | 1 | inner | 225.4.k.b | 8 | |
5.c | odd | 4 | 1 | 9.4.c.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 225.4.e.b | 4 | ||
9.c | even | 3 | 1 | inner | 225.4.k.b | 8 | |
15.e | even | 4 | 1 | 27.4.c.a | 4 | ||
20.e | even | 4 | 1 | 144.4.i.c | 4 | ||
45.j | even | 6 | 1 | inner | 225.4.k.b | 8 | |
45.k | odd | 12 | 1 | 9.4.c.a | ✓ | 4 | |
45.k | odd | 12 | 1 | 81.4.a.d | 2 | ||
45.k | odd | 12 | 1 | 225.4.e.b | 4 | ||
45.k | odd | 12 | 1 | 2025.4.a.g | 2 | ||
45.l | even | 12 | 1 | 27.4.c.a | 4 | ||
45.l | even | 12 | 1 | 81.4.a.a | 2 | ||
45.l | even | 12 | 1 | 2025.4.a.n | 2 | ||
60.l | odd | 4 | 1 | 432.4.i.c | 4 | ||
180.v | odd | 12 | 1 | 432.4.i.c | 4 | ||
180.v | odd | 12 | 1 | 1296.4.a.i | 2 | ||
180.x | even | 12 | 1 | 144.4.i.c | 4 | ||
180.x | even | 12 | 1 | 1296.4.a.u | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
9.4.c.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
9.4.c.a | ✓ | 4 | 45.k | odd | 12 | 1 | |
27.4.c.a | 4 | 15.e | even | 4 | 1 | ||
27.4.c.a | 4 | 45.l | even | 12 | 1 | ||
81.4.a.a | 2 | 45.l | even | 12 | 1 | ||
81.4.a.d | 2 | 45.k | odd | 12 | 1 | ||
144.4.i.c | 4 | 20.e | even | 4 | 1 | ||
144.4.i.c | 4 | 180.x | even | 12 | 1 | ||
225.4.e.b | 4 | 5.c | odd | 4 | 1 | ||
225.4.e.b | 4 | 45.k | odd | 12 | 1 | ||
225.4.k.b | 8 | 1.a | even | 1 | 1 | trivial | |
225.4.k.b | 8 | 5.b | even | 2 | 1 | inner | |
225.4.k.b | 8 | 9.c | even | 3 | 1 | inner | |
225.4.k.b | 8 | 45.j | even | 6 | 1 | inner | |
432.4.i.c | 4 | 60.l | odd | 4 | 1 | ||
432.4.i.c | 4 | 180.v | odd | 12 | 1 | ||
1296.4.a.i | 2 | 180.v | odd | 12 | 1 | ||
1296.4.a.u | 2 | 180.x | even | 12 | 1 | ||
2025.4.a.g | 2 | 45.k | odd | 12 | 1 | ||
2025.4.a.n | 2 | 45.l | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - 21T_{2}^{6} + 405T_{2}^{4} - 756T_{2}^{2} + 1296 \)
acting on \(S_{4}^{\mathrm{new}}(225, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} - 21 T^{6} + 405 T^{4} + \cdots + 1296 \)
$3$
\( T^{8} + 45 T^{6} + 1296 T^{4} + \cdots + 531441 \)
$5$
\( T^{8} \)
$7$
\( T^{8} - 173 T^{6} + \cdots + 14776336 \)
$11$
\( (T^{4} + 66 T^{3} + 3795 T^{2} + \cdots + 314721)^{2} \)
$13$
\( T^{8} - 3773 T^{6} + \cdots + 11117396444176 \)
$17$
\( (T^{4} + 6237 T^{2} + 3175524)^{2} \)
$19$
\( (T^{2} - 77 T - 4532)^{4} \)
$23$
\( T^{8} - 6501 T^{6} + \cdots + 53618068974096 \)
$29$
\( (T^{4} + 51 T^{3} + 1959 T^{2} + \cdots + 412164)^{2} \)
$31$
\( (T^{4} + 43 T^{3} + 1461 T^{2} + \cdots + 150544)^{2} \)
$37$
\( (T^{4} + 49364 T^{2} + \cdots + 549058624)^{2} \)
$41$
\( (T^{4} + 132 T^{3} + 92301 T^{2} + \cdots + 5606565129)^{2} \)
$43$
\( T^{8} - 4466 T^{6} + \cdots + 7216320515041 \)
$47$
\( T^{8} - 216237 T^{6} + \cdots + 66\!\cdots\!76 \)
$53$
\( (T^{4} + 434484 T^{2} + \cdots + 46562734656)^{2} \)
$59$
\( (T^{4} - 798 T^{3} + 630195 T^{2} + \cdots + 43678881)^{2} \)
$61$
\( (T^{4} + 439 T^{3} + 235497 T^{2} + \cdots + 1829786176)^{2} \)
$67$
\( T^{8} - 559946 T^{6} + \cdots + 18\!\cdots\!01 \)
$71$
\( (T^{2} - 1368 T + 296784)^{4} \)
$73$
\( (T^{4} + 1077821 T^{2} + \cdots + 189571418404)^{2} \)
$79$
\( (T^{4} + 803 T^{3} + \cdots + 392522298256)^{2} \)
$83$
\( T^{8} - 519393 T^{6} + \cdots + 25\!\cdots\!36 \)
$89$
\( (T^{2} - 396 T - 3564)^{4} \)
$97$
\( T^{8} - 442514 T^{6} + \cdots + 60\!\cdots\!61 \)
show more
show less