Properties

Label 225.4.e.f.76.6
Level $225$
Weight $4$
Character 225.76
Analytic conductor $13.275$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 76.6
Character \(\chi\) \(=\) 225.76
Dual form 225.4.e.f.151.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.238017 - 0.412258i) q^{2} +(3.09012 - 4.17746i) q^{3} +(3.88670 - 6.73195i) q^{4} +(-2.45769 - 0.279619i) q^{6} +(-6.34045 - 10.9820i) q^{7} -7.50869 q^{8} +(-7.90234 - 25.8177i) q^{9} +O(q^{10})\) \(q+(-0.238017 - 0.412258i) q^{2} +(3.09012 - 4.17746i) q^{3} +(3.88670 - 6.73195i) q^{4} +(-2.45769 - 0.279619i) q^{6} +(-6.34045 - 10.9820i) q^{7} -7.50869 q^{8} +(-7.90234 - 25.8177i) q^{9} +(0.794994 + 1.37697i) q^{11} +(-16.1121 - 37.0390i) q^{12} +(-5.36718 + 9.29622i) q^{13} +(-3.01828 + 5.22781i) q^{14} +(-29.3064 - 50.7601i) q^{16} -69.7787 q^{17} +(-8.76266 + 9.40287i) q^{18} +98.5661 q^{19} +(-65.4695 - 7.44864i) q^{21} +(0.378445 - 0.655486i) q^{22} +(15.7777 - 27.3278i) q^{23} +(-23.2027 + 31.3672i) q^{24} +5.10993 q^{26} +(-132.272 - 46.7680i) q^{27} -98.5736 q^{28} +(150.627 + 260.893i) q^{29} +(58.6364 - 101.561i) q^{31} +(-43.9856 + 76.1853i) q^{32} +(8.20886 + 0.933944i) q^{33} +(16.6086 + 28.7669i) q^{34} +(-204.517 - 47.1473i) q^{36} -169.562 q^{37} +(-23.4605 - 40.6347i) q^{38} +(22.2494 + 51.1476i) q^{39} +(-70.9376 + 122.868i) q^{41} +(12.5121 + 28.7633i) q^{42} +(-150.121 - 260.018i) q^{43} +12.3596 q^{44} -15.0215 q^{46} +(-243.712 - 422.122i) q^{47} +(-302.608 - 34.4286i) q^{48} +(91.0974 - 157.785i) q^{49} +(-215.625 + 291.498i) q^{51} +(41.7212 + 72.2632i) q^{52} +459.166 q^{53} +(12.2024 + 65.6616i) q^{54} +(47.6084 + 82.4602i) q^{56} +(304.581 - 411.756i) q^{57} +(71.7037 - 124.194i) q^{58} +(250.099 - 433.185i) q^{59} +(-290.915 - 503.880i) q^{61} -55.8259 q^{62} +(-233.425 + 250.479i) q^{63} -427.024 q^{64} +(-1.56883 - 3.60647i) q^{66} +(-250.468 + 433.823i) q^{67} +(-271.209 + 469.747i) q^{68} +(-65.4059 - 150.357i) q^{69} +1066.69 q^{71} +(59.3362 + 193.857i) q^{72} +435.288 q^{73} +(40.3588 + 69.9034i) q^{74} +(383.096 - 663.542i) q^{76} +(10.0812 - 17.4612i) q^{77} +(15.7903 - 21.3465i) q^{78} +(-187.644 - 325.009i) q^{79} +(-604.106 + 408.040i) q^{81} +67.5375 q^{82} +(646.617 + 1119.97i) q^{83} +(-304.604 + 411.787i) q^{84} +(-71.4630 + 123.778i) q^{86} +(1555.33 + 176.954i) q^{87} +(-5.96936 - 10.3392i) q^{88} -403.296 q^{89} +136.121 q^{91} +(-122.646 - 212.430i) q^{92} +(-243.074 - 558.787i) q^{93} +(-116.016 + 200.945i) q^{94} +(182.340 + 419.170i) q^{96} +(790.735 + 1369.59i) q^{97} -86.7311 q^{98} +(29.2679 - 31.4062i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + q^{3} - 48 q^{4} - 13 q^{6} - 6 q^{7} - 90 q^{8} - 61 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{2} + q^{3} - 48 q^{4} - 13 q^{6} - 6 q^{7} - 90 q^{8} - 61 q^{9} - 29 q^{11} + 77 q^{12} - 24 q^{13} + 69 q^{14} - 192 q^{16} - 158 q^{17} - 125 q^{18} - 150 q^{19} - 60 q^{21} + 18 q^{22} + 318 q^{23} + 342 q^{24} - 308 q^{26} + 394 q^{27} + 192 q^{28} - 106 q^{29} - 60 q^{31} + 914 q^{32} + 80 q^{33} + 108 q^{34} + 1303 q^{36} - 168 q^{37} + 640 q^{38} - 410 q^{39} + 353 q^{41} - 1521 q^{42} + 426 q^{43} + 1142 q^{44} + 540 q^{46} + 1210 q^{47} - 2680 q^{48} - 666 q^{49} - 1369 q^{51} + 75 q^{52} - 896 q^{53} - 2128 q^{54} + 570 q^{56} - 1544 q^{57} - 594 q^{58} - 482 q^{59} - 402 q^{61} - 5088 q^{62} + 1038 q^{63} + 1950 q^{64} + 2041 q^{66} + 201 q^{67} + 3437 q^{68} + 2856 q^{69} - 1888 q^{71} + 5493 q^{72} - 906 q^{73} - 10 q^{74} + 462 q^{76} + 2652 q^{77} + 4589 q^{78} - 258 q^{79} + 3071 q^{81} + 1746 q^{82} + 3012 q^{83} - 2703 q^{84} - 1952 q^{86} - 2708 q^{87} + 216 q^{88} - 1476 q^{89} - 1236 q^{91} + 5232 q^{92} - 3024 q^{93} - 63 q^{94} - 10424 q^{96} + 318 q^{97} - 15022 q^{98} - 1697 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.238017 0.412258i −0.0841519 0.145755i 0.820878 0.571104i \(-0.193485\pi\)
−0.905030 + 0.425349i \(0.860151\pi\)
\(3\) 3.09012 4.17746i 0.594694 0.803953i
\(4\) 3.88670 6.73195i 0.485837 0.841494i
\(5\) 0 0
\(6\) −2.45769 0.279619i −0.167225 0.0190256i
\(7\) −6.34045 10.9820i −0.342352 0.592971i 0.642517 0.766271i \(-0.277890\pi\)
−0.984869 + 0.173300i \(0.944557\pi\)
\(8\) −7.50869 −0.331840
\(9\) −7.90234 25.8177i −0.292679 0.956211i
\(10\) 0 0
\(11\) 0.794994 + 1.37697i 0.0217909 + 0.0377429i 0.876715 0.481010i \(-0.159730\pi\)
−0.854924 + 0.518753i \(0.826397\pi\)
\(12\) −16.1121 37.0390i −0.387597 0.891021i
\(13\) −5.36718 + 9.29622i −0.114507 + 0.198331i −0.917582 0.397546i \(-0.869862\pi\)
0.803076 + 0.595877i \(0.203195\pi\)
\(14\) −3.01828 + 5.22781i −0.0576191 + 0.0997993i
\(15\) 0 0
\(16\) −29.3064 50.7601i −0.457912 0.793127i
\(17\) −69.7787 −0.995519 −0.497760 0.867315i \(-0.665844\pi\)
−0.497760 + 0.867315i \(0.665844\pi\)
\(18\) −8.76266 + 9.40287i −0.114743 + 0.123127i
\(19\) 98.5661 1.19014 0.595069 0.803675i \(-0.297125\pi\)
0.595069 + 0.803675i \(0.297125\pi\)
\(20\) 0 0
\(21\) −65.4695 7.44864i −0.680315 0.0774013i
\(22\) 0.378445 0.655486i 0.00366749 0.00635227i
\(23\) 15.7777 27.3278i 0.143038 0.247750i −0.785601 0.618734i \(-0.787646\pi\)
0.928639 + 0.370984i \(0.120979\pi\)
\(24\) −23.2027 + 31.3672i −0.197343 + 0.266784i
\(25\) 0 0
\(26\) 5.10993 0.0385438
\(27\) −132.272 46.7680i −0.942802 0.333352i
\(28\) −98.5736 −0.665309
\(29\) 150.627 + 260.893i 0.964507 + 1.67058i 0.710933 + 0.703260i \(0.248273\pi\)
0.253574 + 0.967316i \(0.418394\pi\)
\(30\) 0 0
\(31\) 58.6364 101.561i 0.339723 0.588417i −0.644658 0.764471i \(-0.723000\pi\)
0.984380 + 0.176054i \(0.0563334\pi\)
\(32\) −43.9856 + 76.1853i −0.242988 + 0.420868i
\(33\) 8.20886 + 0.933944i 0.0433024 + 0.00492663i
\(34\) 16.6086 + 28.7669i 0.0837748 + 0.145102i
\(35\) 0 0
\(36\) −204.517 47.1473i −0.946840 0.218275i
\(37\) −169.562 −0.753402 −0.376701 0.926335i \(-0.622941\pi\)
−0.376701 + 0.926335i \(0.622941\pi\)
\(38\) −23.4605 40.6347i −0.100152 0.173469i
\(39\) 22.2494 + 51.1476i 0.0913526 + 0.210004i
\(40\) 0 0
\(41\) −70.9376 + 122.868i −0.270210 + 0.468017i −0.968915 0.247392i \(-0.920426\pi\)
0.698706 + 0.715409i \(0.253760\pi\)
\(42\) 12.5121 + 28.7633i 0.0459682 + 0.105673i
\(43\) −150.121 260.018i −0.532402 0.922147i −0.999284 0.0378277i \(-0.987956\pi\)
0.466882 0.884319i \(-0.345377\pi\)
\(44\) 12.3596 0.0423472
\(45\) 0 0
\(46\) −15.0215 −0.0481478
\(47\) −243.712 422.122i −0.756364 1.31006i −0.944694 0.327954i \(-0.893641\pi\)
0.188330 0.982106i \(-0.439693\pi\)
\(48\) −302.608 34.4286i −0.909953 0.103528i
\(49\) 91.0974 157.785i 0.265590 0.460016i
\(50\) 0 0
\(51\) −215.625 + 291.498i −0.592029 + 0.800350i
\(52\) 41.7212 + 72.2632i 0.111263 + 0.192713i
\(53\) 459.166 1.19002 0.595012 0.803717i \(-0.297147\pi\)
0.595012 + 0.803717i \(0.297147\pi\)
\(54\) 12.2024 + 65.6616i 0.0307508 + 0.165471i
\(55\) 0 0
\(56\) 47.6084 + 82.4602i 0.113606 + 0.196772i
\(57\) 304.581 411.756i 0.707767 0.956814i
\(58\) 71.7037 124.194i 0.162330 0.281164i
\(59\) 250.099 433.185i 0.551867 0.955862i −0.446273 0.894897i \(-0.647249\pi\)
0.998140 0.0609650i \(-0.0194178\pi\)
\(60\) 0 0
\(61\) −290.915 503.880i −0.610621 1.05763i −0.991136 0.132852i \(-0.957587\pi\)
0.380515 0.924775i \(-0.375747\pi\)
\(62\) −55.8259 −0.114353
\(63\) −233.425 + 250.479i −0.466806 + 0.500911i
\(64\) −427.024 −0.834032
\(65\) 0 0
\(66\) −1.56883 3.60647i −0.00292589 0.00672614i
\(67\) −250.468 + 433.823i −0.456709 + 0.791044i −0.998785 0.0492862i \(-0.984305\pi\)
0.542075 + 0.840330i \(0.317639\pi\)
\(68\) −271.209 + 469.747i −0.483660 + 0.837724i
\(69\) −65.4059 150.357i −0.114115 0.262331i
\(70\) 0 0
\(71\) 1066.69 1.78299 0.891495 0.453031i \(-0.149657\pi\)
0.891495 + 0.453031i \(0.149657\pi\)
\(72\) 59.3362 + 193.857i 0.0971227 + 0.317309i
\(73\) 435.288 0.697899 0.348950 0.937141i \(-0.386538\pi\)
0.348950 + 0.937141i \(0.386538\pi\)
\(74\) 40.3588 + 69.9034i 0.0634002 + 0.109812i
\(75\) 0 0
\(76\) 383.096 663.542i 0.578213 1.00149i
\(77\) 10.0812 17.4612i 0.0149203 0.0258427i
\(78\) 15.7903 21.3465i 0.0229218 0.0309874i
\(79\) −187.644 325.009i −0.267236 0.462866i 0.700911 0.713248i \(-0.252777\pi\)
−0.968147 + 0.250383i \(0.919444\pi\)
\(80\) 0 0
\(81\) −604.106 + 408.040i −0.828678 + 0.559726i
\(82\) 67.5375 0.0909546
\(83\) 646.617 + 1119.97i 0.855126 + 1.48112i 0.876528 + 0.481351i \(0.159854\pi\)
−0.0214014 + 0.999771i \(0.506813\pi\)
\(84\) −304.604 + 411.787i −0.395655 + 0.534877i
\(85\) 0 0
\(86\) −71.4630 + 123.778i −0.0896053 + 0.155201i
\(87\) 1555.33 + 176.954i 1.91665 + 0.218062i
\(88\) −5.96936 10.3392i −0.00723109 0.0125246i
\(89\) −403.296 −0.480330 −0.240165 0.970732i \(-0.577201\pi\)
−0.240165 + 0.970732i \(0.577201\pi\)
\(90\) 0 0
\(91\) 136.121 0.156806
\(92\) −122.646 212.430i −0.138987 0.240732i
\(93\) −243.074 558.787i −0.271028 0.623049i
\(94\) −116.016 + 200.945i −0.127299 + 0.220488i
\(95\) 0 0
\(96\) 182.340 + 419.170i 0.193854 + 0.445639i
\(97\) 790.735 + 1369.59i 0.827700 + 1.43362i 0.899838 + 0.436225i \(0.143685\pi\)
−0.0721373 + 0.997395i \(0.522982\pi\)
\(98\) −86.7311 −0.0893996
\(99\) 29.2679 31.4062i 0.0297124 0.0318832i
\(100\) 0 0
\(101\) 577.422 + 1000.12i 0.568867 + 0.985307i 0.996678 + 0.0814388i \(0.0259515\pi\)
−0.427811 + 0.903868i \(0.640715\pi\)
\(102\) 171.495 + 19.5114i 0.166476 + 0.0189404i
\(103\) 725.615 1256.80i 0.694145 1.20229i −0.276323 0.961065i \(-0.589116\pi\)
0.970468 0.241230i \(-0.0775507\pi\)
\(104\) 40.3004 69.8024i 0.0379979 0.0658143i
\(105\) 0 0
\(106\) −109.290 189.295i −0.100143 0.173452i
\(107\) 136.728 0.123533 0.0617664 0.998091i \(-0.480327\pi\)
0.0617664 + 0.998091i \(0.480327\pi\)
\(108\) −828.939 + 708.673i −0.738562 + 0.631408i
\(109\) 40.1176 0.0352529 0.0176265 0.999845i \(-0.494389\pi\)
0.0176265 + 0.999845i \(0.494389\pi\)
\(110\) 0 0
\(111\) −523.967 + 708.339i −0.448043 + 0.605699i
\(112\) −371.631 + 643.684i −0.313534 + 0.543057i
\(113\) 989.231 1713.40i 0.823531 1.42640i −0.0795054 0.996834i \(-0.525334\pi\)
0.903037 0.429564i \(-0.141333\pi\)
\(114\) −242.245 27.5609i −0.199021 0.0226431i
\(115\) 0 0
\(116\) 2341.76 1.87437
\(117\) 282.420 + 65.1062i 0.223160 + 0.0514450i
\(118\) −238.112 −0.185763
\(119\) 442.428 + 766.309i 0.340818 + 0.590314i
\(120\) 0 0
\(121\) 664.236 1150.49i 0.499050 0.864381i
\(122\) −138.486 + 239.865i −0.102770 + 0.178003i
\(123\) 294.069 + 676.014i 0.215571 + 0.495562i
\(124\) −455.804 789.475i −0.330100 0.571750i
\(125\) 0 0
\(126\) 158.821 + 36.6130i 0.112293 + 0.0258869i
\(127\) 1318.35 0.921142 0.460571 0.887623i \(-0.347645\pi\)
0.460571 + 0.887623i \(0.347645\pi\)
\(128\) 453.524 + 785.527i 0.313174 + 0.542433i
\(129\) −1550.11 176.360i −1.05798 0.120369i
\(130\) 0 0
\(131\) −792.463 + 1372.59i −0.528533 + 0.915446i 0.470913 + 0.882179i \(0.343924\pi\)
−0.999447 + 0.0332667i \(0.989409\pi\)
\(132\) 38.1926 51.6317i 0.0251836 0.0340452i
\(133\) −624.953 1082.45i −0.407446 0.705717i
\(134\) 238.463 0.153732
\(135\) 0 0
\(136\) 523.947 0.330353
\(137\) −190.760 330.406i −0.118961 0.206047i 0.800395 0.599473i \(-0.204623\pi\)
−0.919356 + 0.393426i \(0.871290\pi\)
\(138\) −46.4182 + 62.7517i −0.0286332 + 0.0387086i
\(139\) 1231.19 2132.49i 0.751283 1.30126i −0.195918 0.980620i \(-0.562769\pi\)
0.947201 0.320641i \(-0.103898\pi\)
\(140\) 0 0
\(141\) −2516.50 286.309i −1.50303 0.171004i
\(142\) −253.890 439.750i −0.150042 0.259880i
\(143\) −17.0675 −0.00998080
\(144\) −1078.92 + 1157.75i −0.624375 + 0.669992i
\(145\) 0 0
\(146\) −103.606 179.451i −0.0587295 0.101723i
\(147\) −377.640 868.131i −0.211886 0.487090i
\(148\) −659.037 + 1141.48i −0.366030 + 0.633983i
\(149\) −192.172 + 332.852i −0.105660 + 0.183008i −0.914008 0.405697i \(-0.867029\pi\)
0.808348 + 0.588705i \(0.200362\pi\)
\(150\) 0 0
\(151\) −398.550 690.308i −0.214792 0.372030i 0.738417 0.674345i \(-0.235574\pi\)
−0.953208 + 0.302315i \(0.902241\pi\)
\(152\) −740.102 −0.394935
\(153\) 551.415 + 1801.53i 0.291368 + 0.951926i
\(154\) −9.59804 −0.00502229
\(155\) 0 0
\(156\) 430.800 + 49.0133i 0.221100 + 0.0251551i
\(157\) 435.496 754.300i 0.221378 0.383438i −0.733849 0.679313i \(-0.762278\pi\)
0.955227 + 0.295875i \(0.0956112\pi\)
\(158\) −89.3252 + 154.716i −0.0449768 + 0.0779021i
\(159\) 1418.88 1918.15i 0.707700 0.956723i
\(160\) 0 0
\(161\) −400.152 −0.195878
\(162\) 312.006 + 151.927i 0.151318 + 0.0736822i
\(163\) −31.2604 −0.0150215 −0.00751074 0.999972i \(-0.502391\pi\)
−0.00751074 + 0.999972i \(0.502391\pi\)
\(164\) 551.426 + 955.097i 0.262556 + 0.454759i
\(165\) 0 0
\(166\) 307.813 533.147i 0.143921 0.249278i
\(167\) 18.6415 32.2881i 0.00863787 0.0149612i −0.861674 0.507462i \(-0.830584\pi\)
0.870312 + 0.492501i \(0.163917\pi\)
\(168\) 491.590 + 55.9295i 0.225756 + 0.0256849i
\(169\) 1040.89 + 1802.87i 0.473776 + 0.820605i
\(170\) 0 0
\(171\) −778.903 2544.75i −0.348329 1.13802i
\(172\) −2333.90 −1.03464
\(173\) 590.590 + 1022.93i 0.259548 + 0.449550i 0.966121 0.258090i \(-0.0830932\pi\)
−0.706573 + 0.707640i \(0.749760\pi\)
\(174\) −297.244 683.315i −0.129506 0.297712i
\(175\) 0 0
\(176\) 46.5967 80.7079i 0.0199566 0.0345658i
\(177\) −1036.78 2383.37i −0.440276 1.01212i
\(178\) 95.9916 + 166.262i 0.0404206 + 0.0700106i
\(179\) −429.484 −0.179336 −0.0896680 0.995972i \(-0.528581\pi\)
−0.0896680 + 0.995972i \(0.528581\pi\)
\(180\) 0 0
\(181\) −1787.97 −0.734246 −0.367123 0.930172i \(-0.619657\pi\)
−0.367123 + 0.930172i \(0.619657\pi\)
\(182\) −32.3992 56.1171i −0.0131956 0.0228554i
\(183\) −3003.90 341.762i −1.21341 0.138053i
\(184\) −118.470 + 205.196i −0.0474659 + 0.0822134i
\(185\) 0 0
\(186\) −172.509 + 233.211i −0.0680051 + 0.0919346i
\(187\) −55.4736 96.0832i −0.0216932 0.0375738i
\(188\) −3788.94 −1.46988
\(189\) 325.056 + 1749.13i 0.125102 + 0.673178i
\(190\) 0 0
\(191\) −392.583 679.974i −0.148724 0.257598i 0.782032 0.623238i \(-0.214183\pi\)
−0.930756 + 0.365640i \(0.880850\pi\)
\(192\) −1319.56 + 1783.88i −0.495994 + 0.670522i
\(193\) 238.539 413.162i 0.0889659 0.154093i −0.818108 0.575064i \(-0.804977\pi\)
0.907074 + 0.420971i \(0.138310\pi\)
\(194\) 376.417 651.974i 0.139305 0.241284i
\(195\) 0 0
\(196\) −708.136 1226.53i −0.258067 0.446985i
\(197\) −4628.37 −1.67390 −0.836949 0.547281i \(-0.815663\pi\)
−0.836949 + 0.547281i \(0.815663\pi\)
\(198\) −19.9137 4.59070i −0.00714751 0.00164771i
\(199\) 2533.85 0.902611 0.451305 0.892370i \(-0.350958\pi\)
0.451305 + 0.892370i \(0.350958\pi\)
\(200\) 0 0
\(201\) 1038.30 + 2386.88i 0.364359 + 0.837601i
\(202\) 274.873 476.094i 0.0957425 0.165831i
\(203\) 1910.08 3308.36i 0.660402 1.14385i
\(204\) 1124.28 + 2584.54i 0.385861 + 0.887029i
\(205\) 0 0
\(206\) −690.836 −0.233654
\(207\) −830.222 191.391i −0.278765 0.0642636i
\(208\) 629.170 0.209736
\(209\) 78.3594 + 135.722i 0.0259341 + 0.0449192i
\(210\) 0 0
\(211\) −1382.70 + 2394.90i −0.451131 + 0.781382i −0.998457 0.0555378i \(-0.982313\pi\)
0.547325 + 0.836920i \(0.315646\pi\)
\(212\) 1784.64 3091.08i 0.578158 1.00140i
\(213\) 3296.18 4456.03i 1.06033 1.43344i
\(214\) −32.5437 56.3673i −0.0103955 0.0180056i
\(215\) 0 0
\(216\) 993.185 + 351.166i 0.312860 + 0.110620i
\(217\) −1487.12 −0.465219
\(218\) −9.54869 16.5388i −0.00296660 0.00513830i
\(219\) 1345.09 1818.40i 0.415036 0.561078i
\(220\) 0 0
\(221\) 374.515 648.679i 0.113994 0.197443i
\(222\) 416.732 + 47.4128i 0.125988 + 0.0143339i
\(223\) −234.694 406.502i −0.0704767 0.122069i 0.828634 0.559791i \(-0.189119\pi\)
−0.899110 + 0.437722i \(0.855785\pi\)
\(224\) 1115.55 0.332750
\(225\) 0 0
\(226\) −941.817 −0.277207
\(227\) 2143.99 + 3713.50i 0.626879 + 1.08579i 0.988174 + 0.153335i \(0.0490015\pi\)
−0.361295 + 0.932452i \(0.617665\pi\)
\(228\) −1588.11 3650.79i −0.461294 1.06044i
\(229\) −2052.30 + 3554.69i −0.592227 + 1.02577i 0.401705 + 0.915769i \(0.368418\pi\)
−0.993932 + 0.109998i \(0.964916\pi\)
\(230\) 0 0
\(231\) −41.7913 96.0711i −0.0119033 0.0273637i
\(232\) −1131.01 1958.97i −0.320062 0.554364i
\(233\) −4272.57 −1.20131 −0.600656 0.799508i \(-0.705094\pi\)
−0.600656 + 0.799508i \(0.705094\pi\)
\(234\) −40.3804 131.927i −0.0112810 0.0368560i
\(235\) 0 0
\(236\) −1944.12 3367.31i −0.536235 0.928786i
\(237\) −1937.56 220.441i −0.531045 0.0604185i
\(238\) 210.611 364.790i 0.0573610 0.0993521i
\(239\) 780.619 1352.07i 0.211272 0.365934i −0.740841 0.671681i \(-0.765573\pi\)
0.952113 + 0.305747i \(0.0989061\pi\)
\(240\) 0 0
\(241\) 2410.77 + 4175.58i 0.644362 + 1.11607i 0.984448 + 0.175674i \(0.0562105\pi\)
−0.340086 + 0.940394i \(0.610456\pi\)
\(242\) −632.399 −0.167984
\(243\) −162.187 + 3784.52i −0.0428161 + 0.999083i
\(244\) −4522.80 −1.18665
\(245\) 0 0
\(246\) 208.699 282.135i 0.0540901 0.0731232i
\(247\) −529.021 + 916.292i −0.136279 + 0.236042i
\(248\) −440.282 + 762.591i −0.112734 + 0.195260i
\(249\) 6676.77 + 759.634i 1.69929 + 0.193333i
\(250\) 0 0
\(251\) −3487.72 −0.877063 −0.438532 0.898716i \(-0.644501\pi\)
−0.438532 + 0.898716i \(0.644501\pi\)
\(252\) 778.962 + 2544.94i 0.194722 + 0.636176i
\(253\) 50.1728 0.0124677
\(254\) −313.791 543.503i −0.0775158 0.134261i
\(255\) 0 0
\(256\) −1492.20 + 2584.57i −0.364308 + 0.631000i
\(257\) 2460.87 4262.35i 0.597295 1.03454i −0.395924 0.918283i \(-0.629576\pi\)
0.993219 0.116261i \(-0.0370910\pi\)
\(258\) 296.247 + 681.021i 0.0714865 + 0.164335i
\(259\) 1075.10 + 1862.13i 0.257929 + 0.446745i
\(260\) 0 0
\(261\) 5545.36 5950.51i 1.31513 1.41121i
\(262\) 754.480 0.177908
\(263\) 2758.58 + 4777.99i 0.646772 + 1.12024i 0.983889 + 0.178780i \(0.0572149\pi\)
−0.337117 + 0.941463i \(0.609452\pi\)
\(264\) −61.6377 7.01269i −0.0143695 0.00163485i
\(265\) 0 0
\(266\) −297.500 + 515.284i −0.0685747 + 0.118775i
\(267\) −1246.23 + 1684.75i −0.285649 + 0.386162i
\(268\) 1946.98 + 3372.28i 0.443772 + 0.768636i
\(269\) −7844.13 −1.77794 −0.888969 0.457968i \(-0.848577\pi\)
−0.888969 + 0.457968i \(0.848577\pi\)
\(270\) 0 0
\(271\) 4301.35 0.964164 0.482082 0.876126i \(-0.339881\pi\)
0.482082 + 0.876126i \(0.339881\pi\)
\(272\) 2044.96 + 3541.98i 0.455860 + 0.789573i
\(273\) 420.631 568.641i 0.0932517 0.126065i
\(274\) −90.8083 + 157.285i −0.0200216 + 0.0346785i
\(275\) 0 0
\(276\) −1266.41 144.083i −0.276192 0.0314231i
\(277\) −925.922 1603.74i −0.200842 0.347869i 0.747958 0.663746i \(-0.231034\pi\)
−0.948800 + 0.315877i \(0.897701\pi\)
\(278\) −1172.18 −0.252888
\(279\) −3085.44 711.285i −0.662081 0.152629i
\(280\) 0 0
\(281\) −3470.93 6011.82i −0.736862 1.27628i −0.953902 0.300119i \(-0.902974\pi\)
0.217040 0.976163i \(-0.430360\pi\)
\(282\) 480.937 + 1105.59i 0.101558 + 0.233465i
\(283\) −3216.21 + 5570.64i −0.675562 + 1.17011i 0.300743 + 0.953705i \(0.402765\pi\)
−0.976304 + 0.216402i \(0.930568\pi\)
\(284\) 4145.88 7180.87i 0.866242 1.50038i
\(285\) 0 0
\(286\) 4.06236 + 7.03621i 0.000839903 + 0.00145476i
\(287\) 1799.10 0.370027
\(288\) 2314.52 + 533.564i 0.473556 + 0.109169i
\(289\) −43.9287 −0.00894133
\(290\) 0 0
\(291\) 8164.88 + 928.941i 1.64479 + 0.187132i
\(292\) 1691.83 2930.34i 0.339065 0.587278i
\(293\) 3820.89 6617.98i 0.761840 1.31955i −0.180062 0.983655i \(-0.557630\pi\)
0.941901 0.335890i \(-0.109037\pi\)
\(294\) −268.009 + 362.316i −0.0531654 + 0.0718731i
\(295\) 0 0
\(296\) 1273.19 0.250009
\(297\) −40.7569 219.314i −0.00796281 0.0428481i
\(298\) 182.961 0.0355660
\(299\) 169.364 + 293.347i 0.0327577 + 0.0567380i
\(300\) 0 0
\(301\) −1903.67 + 3297.26i −0.364538 + 0.631398i
\(302\) −189.724 + 328.611i −0.0361502 + 0.0626140i
\(303\) 5962.28 + 678.344i 1.13044 + 0.128613i
\(304\) −2888.61 5003.23i −0.544978 0.943930i
\(305\) 0 0
\(306\) 611.448 656.120i 0.114229 0.122575i
\(307\) 4517.66 0.839857 0.419929 0.907557i \(-0.362055\pi\)
0.419929 + 0.907557i \(0.362055\pi\)
\(308\) −78.3654 135.733i −0.0144977 0.0251107i
\(309\) −3008.00 6914.89i −0.553784 1.27306i
\(310\) 0 0
\(311\) −1966.54 + 3406.15i −0.358560 + 0.621044i −0.987721 0.156231i \(-0.950066\pi\)
0.629160 + 0.777275i \(0.283399\pi\)
\(312\) −167.064 384.051i −0.0303145 0.0696879i
\(313\) 1583.09 + 2742.00i 0.285884 + 0.495165i 0.972823 0.231549i \(-0.0743795\pi\)
−0.686939 + 0.726715i \(0.741046\pi\)
\(314\) −414.622 −0.0745175
\(315\) 0 0
\(316\) −2917.26 −0.519332
\(317\) 3920.86 + 6791.13i 0.694692 + 1.20324i 0.970284 + 0.241967i \(0.0777927\pi\)
−0.275592 + 0.961275i \(0.588874\pi\)
\(318\) −1128.49 128.391i −0.199002 0.0226410i
\(319\) −239.495 + 414.817i −0.0420349 + 0.0728066i
\(320\) 0 0
\(321\) 422.506 571.176i 0.0734641 0.0993145i
\(322\) 95.2431 + 164.966i 0.0164835 + 0.0285503i
\(323\) −6877.82 −1.18480
\(324\) 398.932 + 5652.74i 0.0684040 + 0.969263i
\(325\) 0 0
\(326\) 7.44051 + 12.8873i 0.00126409 + 0.00218946i
\(327\) 123.968 167.590i 0.0209647 0.0283417i
\(328\) 532.648 922.574i 0.0896664 0.155307i
\(329\) −3090.49 + 5352.89i −0.517885 + 0.897004i
\(330\) 0 0
\(331\) 5426.53 + 9399.03i 0.901115 + 1.56078i 0.826049 + 0.563599i \(0.190584\pi\)
0.0750663 + 0.997179i \(0.476083\pi\)
\(332\) 10052.8 1.66181
\(333\) 1339.94 + 4377.70i 0.220505 + 0.720411i
\(334\) −17.7480 −0.00290757
\(335\) 0 0
\(336\) 1540.58 + 3541.53i 0.250135 + 0.575019i
\(337\) 3258.64 5644.13i 0.526735 0.912331i −0.472780 0.881180i \(-0.656749\pi\)
0.999515 0.0311507i \(-0.00991719\pi\)
\(338\) 495.499 858.229i 0.0797384 0.138111i
\(339\) −4100.81 9427.08i −0.657008 1.51035i
\(340\) 0 0
\(341\) 186.462 0.0296114
\(342\) −863.701 + 926.804i −0.136560 + 0.146537i
\(343\) −6659.94 −1.04841
\(344\) 1127.21 + 1952.39i 0.176672 + 0.306005i
\(345\) 0 0
\(346\) 281.142 486.952i 0.0436829 0.0756609i
\(347\) −2969.27 + 5142.93i −0.459363 + 0.795640i −0.998927 0.0463041i \(-0.985256\pi\)
0.539564 + 0.841944i \(0.318589\pi\)
\(348\) 7236.33 9782.62i 1.11468 1.50691i
\(349\) 3648.27 + 6318.99i 0.559563 + 0.969192i 0.997533 + 0.0702022i \(0.0223644\pi\)
−0.437970 + 0.898990i \(0.644302\pi\)
\(350\) 0 0
\(351\) 1144.69 978.613i 0.174071 0.148816i
\(352\) −139.873 −0.0211797
\(353\) −625.356 1083.15i −0.0942900 0.163315i 0.815022 0.579430i \(-0.196725\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(354\) −735.795 + 994.704i −0.110472 + 0.149344i
\(355\) 0 0
\(356\) −1567.49 + 2714.97i −0.233362 + 0.404195i
\(357\) 4568.38 + 519.757i 0.677267 + 0.0770545i
\(358\) 102.225 + 177.058i 0.0150915 + 0.0261392i
\(359\) −10928.3 −1.60661 −0.803303 0.595570i \(-0.796926\pi\)
−0.803303 + 0.595570i \(0.796926\pi\)
\(360\) 0 0
\(361\) 2856.27 0.416427
\(362\) 425.567 + 737.104i 0.0617882 + 0.107020i
\(363\) −2753.56 6329.97i −0.398139 0.915254i
\(364\) 529.062 916.362i 0.0761823 0.131952i
\(365\) 0 0
\(366\) 574.087 + 1319.73i 0.0819891 + 0.188479i
\(367\) 3215.66 + 5569.68i 0.457373 + 0.792194i 0.998821 0.0485405i \(-0.0154570\pi\)
−0.541448 + 0.840734i \(0.682124\pi\)
\(368\) −1849.55 −0.261996
\(369\) 3732.73 + 860.504i 0.526607 + 0.121398i
\(370\) 0 0
\(371\) −2911.32 5042.55i −0.407407 0.705650i
\(372\) −4706.49 535.470i −0.655968 0.0746312i
\(373\) −2455.85 + 4253.66i −0.340909 + 0.590472i −0.984602 0.174812i \(-0.944068\pi\)
0.643693 + 0.765284i \(0.277402\pi\)
\(374\) −26.4074 + 45.7389i −0.00365105 + 0.00632381i
\(375\) 0 0
\(376\) 1829.96 + 3169.58i 0.250992 + 0.434731i
\(377\) −3233.76 −0.441770
\(378\) 643.726 550.331i 0.0875918 0.0748836i
\(379\) 4805.81 0.651340 0.325670 0.945483i \(-0.394410\pi\)
0.325670 + 0.945483i \(0.394410\pi\)
\(380\) 0 0
\(381\) 4073.87 5507.37i 0.547797 0.740554i
\(382\) −186.883 + 323.691i −0.0250308 + 0.0433547i
\(383\) 2116.08 3665.15i 0.282314 0.488983i −0.689640 0.724152i \(-0.742231\pi\)
0.971954 + 0.235170i \(0.0755645\pi\)
\(384\) 4682.95 + 532.792i 0.622333 + 0.0708045i
\(385\) 0 0
\(386\) −227.106 −0.0299466
\(387\) −5526.75 + 5930.53i −0.725944 + 0.778982i
\(388\) 12293.4 1.60851
\(389\) 1758.54 + 3045.89i 0.229208 + 0.396999i 0.957573 0.288189i \(-0.0930532\pi\)
−0.728366 + 0.685188i \(0.759720\pi\)
\(390\) 0 0
\(391\) −1100.95 + 1906.90i −0.142398 + 0.246640i
\(392\) −684.022 + 1184.76i −0.0881335 + 0.152652i
\(393\) 3285.12 + 7551.94i 0.421660 + 0.969325i
\(394\) 1101.63 + 1908.09i 0.140862 + 0.243980i
\(395\) 0 0
\(396\) −97.6697 319.096i −0.0123942 0.0404929i
\(397\) 3925.05 0.496203 0.248101 0.968734i \(-0.420193\pi\)
0.248101 + 0.968734i \(0.420193\pi\)
\(398\) −603.100 1044.60i −0.0759564 0.131560i
\(399\) −6453.07 734.184i −0.809669 0.0921182i
\(400\) 0 0
\(401\) −403.676 + 699.188i −0.0502709 + 0.0870718i −0.890066 0.455832i \(-0.849342\pi\)
0.839795 + 0.542904i \(0.182675\pi\)
\(402\) 736.879 996.169i 0.0914233 0.123593i
\(403\) 629.424 + 1090.19i 0.0778011 + 0.134755i
\(404\) 8977.05 1.10551
\(405\) 0 0
\(406\) −1818.53 −0.222296
\(407\) −134.801 233.482i −0.0164173 0.0284356i
\(408\) 1619.06 2188.77i 0.196459 0.265588i
\(409\) −404.224 + 700.137i −0.0488694 + 0.0846444i −0.889425 0.457080i \(-0.848895\pi\)
0.840556 + 0.541725i \(0.182228\pi\)
\(410\) 0 0
\(411\) −1969.73 224.101i −0.236398 0.0268956i
\(412\) −5640.49 9769.61i −0.674482 1.16824i
\(413\) −6342.97 −0.755732
\(414\) 118.705 + 387.821i 0.0140919 + 0.0460395i
\(415\) 0 0
\(416\) −472.157 817.800i −0.0556476 0.0963844i
\(417\) −5103.85 11732.9i −0.599369 1.37785i
\(418\) 37.3018 64.6086i 0.00436481 0.00756008i
\(419\) −880.089 + 1524.36i −0.102614 + 0.177732i −0.912761 0.408495i \(-0.866054\pi\)
0.810147 + 0.586227i \(0.199387\pi\)
\(420\) 0 0
\(421\) −7287.86 12622.9i −0.843678 1.46129i −0.886765 0.462221i \(-0.847053\pi\)
0.0430868 0.999071i \(-0.486281\pi\)
\(422\) 1316.42 0.151854
\(423\) −8972.32 + 9627.84i −1.03132 + 1.10667i
\(424\) −3447.73 −0.394898
\(425\) 0 0
\(426\) −2621.59 298.265i −0.298160 0.0339225i
\(427\) −3689.07 + 6389.65i −0.418095 + 0.724161i
\(428\) 531.421 920.447i 0.0600168 0.103952i
\(429\) −52.7405 + 71.2987i −0.00593552 + 0.00802409i
\(430\) 0 0
\(431\) 5715.34 0.638743 0.319371 0.947630i \(-0.396528\pi\)
0.319371 + 0.947630i \(0.396528\pi\)
\(432\) 1502.45 + 8084.72i 0.167330 + 0.900408i
\(433\) −12751.4 −1.41523 −0.707614 0.706599i \(-0.750228\pi\)
−0.707614 + 0.706599i \(0.750228\pi\)
\(434\) 353.962 + 613.079i 0.0391491 + 0.0678082i
\(435\) 0 0
\(436\) 155.925 270.070i 0.0171272 0.0296651i
\(437\) 1555.15 2693.60i 0.170235 0.294856i
\(438\) −1069.81 121.715i −0.116706 0.0132780i
\(439\) −2420.51 4192.44i −0.263154 0.455796i 0.703924 0.710275i \(-0.251429\pi\)
−0.967078 + 0.254479i \(0.918096\pi\)
\(440\) 0 0
\(441\) −4793.54 1105.05i −0.517605 0.119323i
\(442\) −356.564 −0.0383711
\(443\) 4472.98 + 7747.43i 0.479724 + 0.830907i 0.999730 0.0232564i \(-0.00740339\pi\)
−0.520005 + 0.854163i \(0.674070\pi\)
\(444\) 2732.01 + 6280.42i 0.292016 + 0.671297i
\(445\) 0 0
\(446\) −111.723 + 193.509i −0.0118615 + 0.0205447i
\(447\) 796.640 + 1831.34i 0.0842948 + 0.193780i
\(448\) 2707.53 + 4689.57i 0.285533 + 0.494557i
\(449\) −2743.57 −0.288367 −0.144184 0.989551i \(-0.546056\pi\)
−0.144184 + 0.989551i \(0.546056\pi\)
\(450\) 0 0
\(451\) −225.580 −0.0235524
\(452\) −7689.68 13318.9i −0.800204 1.38599i
\(453\) −4115.30 468.209i −0.426829 0.0485615i
\(454\) 1020.61 1767.76i 0.105506 0.182742i
\(455\) 0 0
\(456\) −2287.00 + 3091.75i −0.234865 + 0.317509i
\(457\) −2806.35 4860.74i −0.287255 0.497540i 0.685899 0.727697i \(-0.259409\pi\)
−0.973153 + 0.230157i \(0.926076\pi\)
\(458\) 1953.93 0.199348
\(459\) 9229.74 + 3263.41i 0.938578 + 0.331858i
\(460\) 0 0
\(461\) −6273.50 10866.0i −0.633809 1.09779i −0.986766 0.162150i \(-0.948157\pi\)
0.352957 0.935640i \(-0.385176\pi\)
\(462\) −29.6591 + 40.0954i −0.00298672 + 0.00403768i
\(463\) 5361.12 9285.74i 0.538126 0.932062i −0.460879 0.887463i \(-0.652466\pi\)
0.999005 0.0445990i \(-0.0142010\pi\)
\(464\) 8828.65 15291.7i 0.883319 1.52995i
\(465\) 0 0
\(466\) 1016.95 + 1761.40i 0.101093 + 0.175098i
\(467\) −12798.4 −1.26818 −0.634089 0.773260i \(-0.718625\pi\)
−0.634089 + 0.773260i \(0.718625\pi\)
\(468\) 1535.97 1648.19i 0.151710 0.162794i
\(469\) 6352.31 0.625421
\(470\) 0 0
\(471\) −1805.33 4150.14i −0.176614 0.406005i
\(472\) −1877.92 + 3252.65i −0.183132 + 0.317193i
\(473\) 238.691 413.425i 0.0232030 0.0401888i
\(474\) 370.293 + 851.242i 0.0358822 + 0.0824870i
\(475\) 0 0
\(476\) 6878.34 0.662328
\(477\) −3628.49 11854.6i −0.348296 1.13791i
\(478\) −743.203 −0.0711158
\(479\) −1207.38 2091.25i −0.115171 0.199481i 0.802677 0.596413i \(-0.203408\pi\)
−0.917848 + 0.396932i \(0.870075\pi\)
\(480\) 0 0
\(481\) 910.070 1576.29i 0.0862695 0.149423i
\(482\) 1147.61 1987.72i 0.108449 0.187839i
\(483\) −1236.52 + 1671.62i −0.116487 + 0.157477i
\(484\) −5163.37 8943.21i −0.484914 0.839896i
\(485\) 0 0
\(486\) 1598.80 833.919i 0.149225 0.0778340i
\(487\) −16386.9 −1.52477 −0.762384 0.647125i \(-0.775971\pi\)
−0.762384 + 0.647125i \(0.775971\pi\)
\(488\) 2184.39 + 3783.48i 0.202629 + 0.350963i
\(489\) −96.5982 + 130.589i −0.00893317 + 0.0120766i
\(490\) 0 0
\(491\) −7935.54 + 13744.8i −0.729381 + 1.26332i 0.227764 + 0.973716i \(0.426858\pi\)
−0.957145 + 0.289609i \(0.906475\pi\)
\(492\) 5693.85 + 647.805i 0.521745 + 0.0593604i
\(493\) −10510.6 18204.8i −0.960186 1.66309i
\(494\) 503.665 0.0458724
\(495\) 0 0
\(496\) −6873.68 −0.622252
\(497\) −6763.26 11714.3i −0.610410 1.05726i
\(498\) −1276.02 2933.36i −0.114819 0.263950i
\(499\) −5730.39 + 9925.33i −0.514083 + 0.890419i 0.485783 + 0.874079i \(0.338534\pi\)
−0.999867 + 0.0163392i \(0.994799\pi\)
\(500\) 0 0
\(501\) −77.2776 177.648i −0.00689123 0.0158418i
\(502\) 830.138 + 1437.84i 0.0738065 + 0.127837i
\(503\) 1038.52 0.0920585 0.0460293 0.998940i \(-0.485343\pi\)
0.0460293 + 0.998940i \(0.485343\pi\)
\(504\) 1752.71 1880.77i 0.154905 0.166222i
\(505\) 0 0
\(506\) −11.9420 20.6841i −0.00104918 0.00181724i
\(507\) 10747.9 + 1222.81i 0.941479 + 0.107115i
\(508\) 5124.04 8875.10i 0.447525 0.775135i
\(509\) 2514.44 4355.14i 0.218960 0.379249i −0.735530 0.677492i \(-0.763067\pi\)
0.954490 + 0.298242i \(0.0964003\pi\)
\(510\) 0 0
\(511\) −2759.92 4780.33i −0.238927 0.413834i
\(512\) 8677.07 0.748976
\(513\) −13037.5 4609.74i −1.12206 0.396735i
\(514\) −2342.92 −0.201054
\(515\) 0 0
\(516\) −7212.04 + 9749.79i −0.615295 + 0.831803i
\(517\) 387.499 671.169i 0.0329636 0.0570947i
\(518\) 511.785 886.438i 0.0434104 0.0751889i
\(519\) 6098.25 + 693.815i 0.515768 + 0.0586803i
\(520\) 0 0
\(521\) 7057.78 0.593487 0.296744 0.954957i \(-0.404099\pi\)
0.296744 + 0.954957i \(0.404099\pi\)
\(522\) −3773.04 869.797i −0.316363 0.0729310i
\(523\) 14453.5 1.20843 0.604215 0.796821i \(-0.293487\pi\)
0.604215 + 0.796821i \(0.293487\pi\)
\(524\) 6160.13 + 10669.7i 0.513562 + 0.889515i
\(525\) 0 0
\(526\) 1313.18 2274.49i 0.108854 0.188541i
\(527\) −4091.57 + 7086.81i −0.338201 + 0.585781i
\(528\) −193.165 444.053i −0.0159212 0.0366002i
\(529\) 5585.63 + 9674.59i 0.459080 + 0.795150i
\(530\) 0 0
\(531\) −13160.2 3033.81i −1.07553 0.247940i
\(532\) −9716.01 −0.791809
\(533\) −761.469 1318.90i −0.0618816 0.107182i
\(534\) 991.180 + 112.769i 0.0803231 + 0.00913858i
\(535\) 0 0
\(536\) 1880.68 3257.44i 0.151554 0.262500i
\(537\) −1327.16 + 1794.15i −0.106650 + 0.144178i
\(538\) 1867.04 + 3233.81i 0.149617 + 0.259144i
\(539\) 289.687 0.0231498
\(540\) 0 0
\(541\) 4101.59 0.325954 0.162977 0.986630i \(-0.447890\pi\)
0.162977 + 0.986630i \(0.447890\pi\)
\(542\) −1023.80 1773.27i −0.0811362 0.140532i
\(543\) −5525.03 + 7469.16i −0.436651 + 0.590299i
\(544\) 3069.26 5316.11i 0.241900 0.418982i
\(545\) 0 0
\(546\) −334.544 38.0620i −0.0262219 0.00298334i
\(547\) 8410.52 + 14567.4i 0.657418 + 1.13868i 0.981282 + 0.192578i \(0.0616848\pi\)
−0.323863 + 0.946104i \(0.604982\pi\)
\(548\) −2965.70 −0.231183
\(549\) −10710.1 + 11492.6i −0.832598 + 0.893428i
\(550\) 0 0
\(551\) 14846.7 + 25715.2i 1.14790 + 1.98821i
\(552\) 491.112 + 1128.98i 0.0378680 + 0.0870521i
\(553\) −2379.50 + 4121.41i −0.182977 + 0.316926i
\(554\) −440.771 + 763.438i −0.0338025 + 0.0585476i
\(555\) 0 0
\(556\) −9570.54 16576.7i −0.730002 1.26440i
\(557\) −12248.8 −0.931771 −0.465885 0.884845i \(-0.654264\pi\)
−0.465885 + 0.884845i \(0.654264\pi\)
\(558\) 441.156 + 1441.30i 0.0334688 + 0.109346i
\(559\) 3222.91 0.243854
\(560\) 0 0
\(561\) −572.804 65.1694i −0.0431084 0.00490455i
\(562\) −1652.28 + 2861.84i −0.124017 + 0.214803i
\(563\) −4422.86 + 7660.62i −0.331086 + 0.573457i −0.982725 0.185072i \(-0.940748\pi\)
0.651639 + 0.758529i \(0.274082\pi\)
\(564\) −11708.3 + 15828.1i −0.874127 + 1.18171i
\(565\) 0 0
\(566\) 3062.06 0.227399
\(567\) 8311.39 + 4047.12i 0.615601 + 0.299759i
\(568\) −8009.40 −0.591667
\(569\) 4049.35 + 7013.68i 0.298344 + 0.516747i 0.975757 0.218856i \(-0.0702325\pi\)
−0.677413 + 0.735603i \(0.736899\pi\)
\(570\) 0 0
\(571\) 8189.02 14183.8i 0.600175 1.03953i −0.392619 0.919701i \(-0.628431\pi\)
0.992794 0.119832i \(-0.0382356\pi\)
\(572\) −66.3361 + 114.897i −0.00484904 + 0.00839879i
\(573\) −4053.69 461.200i −0.295542 0.0336246i
\(574\) −428.218 741.696i −0.0311385 0.0539334i
\(575\) 0 0
\(576\) 3374.49 + 11024.8i 0.244104 + 0.797510i
\(577\) 24920.9 1.79804 0.899020 0.437907i \(-0.144280\pi\)
0.899020 + 0.437907i \(0.144280\pi\)
\(578\) 10.4558 + 18.1100i 0.000752430 + 0.00130325i
\(579\) −988.853 2273.21i −0.0709764 0.163163i
\(580\) 0 0
\(581\) 8199.69 14202.3i 0.585509 1.01413i
\(582\) −1560.42 3587.15i −0.111137 0.255484i
\(583\) 365.034 + 632.257i 0.0259317 + 0.0449150i
\(584\) −3268.44 −0.231591
\(585\) 0 0
\(586\) −3637.76 −0.256441
\(587\) 4182.25 + 7243.86i 0.294071 + 0.509346i 0.974768 0.223219i \(-0.0716564\pi\)
−0.680697 + 0.732565i \(0.738323\pi\)
\(588\) −7311.99 831.905i −0.512826 0.0583456i
\(589\) 5779.56 10010.5i 0.404317 0.700297i
\(590\) 0 0
\(591\) −14302.2 + 19334.8i −0.995456 + 1.34573i
\(592\) 4969.25 + 8607.00i 0.344992 + 0.597543i
\(593\) 27169.7 1.88150 0.940749 0.339105i \(-0.110124\pi\)
0.940749 + 0.339105i \(0.110124\pi\)
\(594\) −80.7132 + 69.0030i −0.00557526 + 0.00476637i
\(595\) 0 0
\(596\) 1493.83 + 2587.39i 0.102667 + 0.177825i
\(597\) 7829.88 10585.0i 0.536777 0.725656i
\(598\) 80.6231 139.643i 0.00551325 0.00954923i
\(599\) −10666.2 + 18474.4i −0.727560 + 1.26017i 0.230351 + 0.973108i \(0.426013\pi\)
−0.957911 + 0.287064i \(0.907321\pi\)
\(600\) 0 0
\(601\) −292.016 505.786i −0.0198196 0.0343285i 0.855946 0.517066i \(-0.172976\pi\)
−0.875765 + 0.482738i \(0.839643\pi\)
\(602\) 1812.43 0.122706
\(603\) 13179.6 + 3038.28i 0.890074 + 0.205188i
\(604\) −6196.17 −0.417415
\(605\) 0 0
\(606\) −1139.47 2619.46i −0.0763827 0.175591i
\(607\) −5635.12 + 9760.32i −0.376808 + 0.652651i −0.990596 0.136820i \(-0.956312\pi\)
0.613788 + 0.789471i \(0.289645\pi\)
\(608\) −4335.49 + 7509.29i −0.289190 + 0.500891i
\(609\) −7918.17 18202.5i −0.526864 1.21117i
\(610\) 0 0
\(611\) 5232.19 0.346435
\(612\) 14271.0 + 3289.88i 0.942598 + 0.217297i
\(613\) 4271.02 0.281411 0.140706 0.990051i \(-0.455063\pi\)
0.140706 + 0.990051i \(0.455063\pi\)
\(614\) −1075.28 1862.44i −0.0706756 0.122414i
\(615\) 0 0
\(616\) −75.6968 + 131.111i −0.00495115 + 0.00857565i
\(617\) 3598.08 6232.06i 0.234770 0.406634i −0.724436 0.689342i \(-0.757900\pi\)
0.959206 + 0.282708i \(0.0912329\pi\)
\(618\) −2134.76 + 2885.94i −0.138953 + 0.187847i
\(619\) −5128.24 8882.36i −0.332991 0.576757i 0.650106 0.759843i \(-0.274724\pi\)
−0.983097 + 0.183087i \(0.941391\pi\)
\(620\) 0 0
\(621\) −3365.01 + 2876.80i −0.217445 + 0.185897i
\(622\) 1872.28 0.120694
\(623\) 2557.08 + 4428.99i 0.164442 + 0.284822i
\(624\) 1944.21 2628.33i 0.124729 0.168618i
\(625\) 0 0
\(626\) 753.607 1305.29i 0.0481153 0.0833382i
\(627\) 809.115 + 92.0552i 0.0515358 + 0.00586337i
\(628\) −3385.28 5863.47i −0.215107 0.372576i
\(629\) 11831.8 0.750026
\(630\) 0 0
\(631\) 15187.7 0.958183 0.479091 0.877765i \(-0.340966\pi\)
0.479091 + 0.877765i \(0.340966\pi\)
\(632\) 1408.96 + 2440.39i 0.0886795 + 0.153597i
\(633\) 5731.90 + 13176.7i 0.359909 + 0.827371i
\(634\) 1866.47 3232.81i 0.116919 0.202510i
\(635\) 0 0
\(636\) −7398.14 17007.1i −0.461250 1.06034i
\(637\) 977.872 + 1693.72i 0.0608237 + 0.105350i
\(638\) 228.016 0.0141493
\(639\) −8429.31 27539.3i −0.521844 1.70491i
\(640\) 0 0
\(641\) 14196.7 + 24589.4i 0.874783 + 1.51517i 0.856994 + 0.515327i \(0.172329\pi\)
0.0177891 + 0.999842i \(0.494337\pi\)
\(642\) −336.036 38.2317i −0.0206578 0.00235029i
\(643\) 5844.00 10122.1i 0.358421 0.620804i −0.629276 0.777182i \(-0.716649\pi\)
0.987697 + 0.156378i \(0.0499818\pi\)
\(644\) −1555.27 + 2693.80i −0.0951648 + 0.164830i
\(645\) 0 0
\(646\) 1637.04 + 2835.44i 0.0997036 + 0.172692i
\(647\) −12800.8 −0.777822 −0.388911 0.921275i \(-0.627149\pi\)
−0.388911 + 0.921275i \(0.627149\pi\)
\(648\) 4536.04 3063.85i 0.274989 0.185740i
\(649\) 795.310 0.0481027
\(650\) 0 0
\(651\) −4595.39 + 6212.40i −0.276663 + 0.374014i
\(652\) −121.500 + 210.443i −0.00729799 + 0.0126405i
\(653\) 3079.46 5333.78i 0.184546 0.319643i −0.758877 0.651233i \(-0.774252\pi\)
0.943423 + 0.331590i \(0.107585\pi\)
\(654\) −98.5968 11.2176i −0.00589517 0.000670709i
\(655\) 0 0
\(656\) 8315.69 0.494929
\(657\) −3439.80 11238.1i −0.204261 0.667339i
\(658\) 2942.36 0.174324
\(659\) −8289.10 14357.1i −0.489981 0.848672i 0.509953 0.860202i \(-0.329663\pi\)
−0.999934 + 0.0115307i \(0.996330\pi\)
\(660\) 0 0
\(661\) 11469.8 19866.4i 0.674925 1.16900i −0.301566 0.953445i \(-0.597509\pi\)
0.976491 0.215559i \(-0.0691573\pi\)
\(662\) 2583.22 4474.27i 0.151661 0.262685i
\(663\) −1552.53 3569.01i −0.0909433 0.209063i
\(664\) −4855.25 8409.53i −0.283765 0.491496i
\(665\) 0 0
\(666\) 1485.82 1594.37i 0.0864478 0.0927637i
\(667\) 9506.20 0.551847
\(668\) −144.908 250.988i −0.00839319 0.0145374i
\(669\) −2423.38 275.715i −0.140050 0.0159338i
\(670\) 0 0
\(671\) 462.552 801.163i 0.0266119 0.0460932i
\(672\) 3447.19 4660.18i 0.197884 0.267515i
\(673\) −1181.62 2046.62i −0.0676790 0.117223i 0.830200 0.557465i \(-0.188226\pi\)
−0.897879 + 0.440242i \(0.854893\pi\)
\(674\) −3102.46 −0.177303
\(675\) 0 0
\(676\) 16182.4 0.920712
\(677\) 7824.09 + 13551.7i 0.444172 + 0.769328i 0.997994 0.0633068i \(-0.0201647\pi\)
−0.553822 + 0.832635i \(0.686831\pi\)
\(678\) −2910.33 + 3934.40i −0.164853 + 0.222861i
\(679\) 10027.2 17367.7i 0.566730 0.981605i
\(680\) 0 0
\(681\) 22138.2 + 2518.72i 1.24572 + 0.141729i
\(682\) −44.3813 76.8706i −0.00249186 0.00431602i
\(683\) 19626.7 1.09955 0.549777 0.835311i \(-0.314713\pi\)
0.549777 + 0.835311i \(0.314713\pi\)
\(684\) −20158.5 4647.12i −1.12687 0.259777i
\(685\) 0 0
\(686\) 1585.18 + 2745.62i 0.0882253 + 0.152811i
\(687\) 8507.72 + 19557.8i 0.472474 + 1.08614i
\(688\) −8799.02 + 15240.3i −0.487586 + 0.844524i
\(689\) −2464.42 + 4268.51i −0.136266 + 0.236019i
\(690\) 0 0
\(691\) 51.5955 + 89.3660i 0.00284050 + 0.00491989i 0.867442 0.497538i \(-0.165763\pi\)
−0.864602 + 0.502458i \(0.832429\pi\)
\(692\) 9181.78 0.504391
\(693\) −530.473 122.290i −0.0290779 0.00670332i
\(694\) 2826.96 0.154625
\(695\) 0 0
\(696\) −11678.5 1328.69i −0.636021 0.0723619i
\(697\) 4949.93 8573.54i 0.268999 0.465920i
\(698\) 1736.71 3008.06i 0.0941766 0.163119i
\(699\) −13202.8 + 17848.5i −0.714412 + 0.965797i
\(700\) 0 0
\(701\) −17977.8 −0.968631 −0.484316 0.874893i \(-0.660931\pi\)
−0.484316 + 0.874893i \(0.660931\pi\)
\(702\) −675.898 238.981i −0.0363392 0.0128487i
\(703\) −16713.1 −0.896651
\(704\) −339.482 588.000i −0.0181743 0.0314788i
\(705\) 0 0
\(706\) −297.692 + 515.617i −0.0158694 + 0.0274865i
\(707\) 7322.22 12682.5i 0.389506 0.674644i
\(708\) −20074.4 2283.92i −1.06560 0.121236i
\(709\) −5385.10 9327.26i −0.285249 0.494066i 0.687421 0.726260i \(-0.258743\pi\)
−0.972670 + 0.232194i \(0.925410\pi\)
\(710\) 0 0
\(711\) −6908.16 + 7412.87i −0.364383 + 0.391005i
\(712\) 3028.23 0.159393
\(713\) −1850.30 3204.81i −0.0971868 0.168333i
\(714\) −873.080 2007.06i −0.0457622 0.105200i
\(715\) 0 0
\(716\) −1669.27 + 2891.27i −0.0871280 + 0.150910i
\(717\) −3236.02 7439.06i −0.168551 0.387471i
\(718\) 2601.12 + 4505.27i 0.135199 + 0.234171i
\(719\) 24138.7 1.25205 0.626023 0.779804i \(-0.284681\pi\)
0.626023 + 0.779804i \(0.284681\pi\)
\(720\) 0 0
\(721\) −18402.9 −0.950568
\(722\) −679.843 1177.52i −0.0350431 0.0606964i
\(723\) 24892.9 + 2832.13i 1.28046 + 0.145682i
\(724\) −6949.28 + 12036.5i −0.356724 + 0.617864i
\(725\) 0 0
\(726\) −1954.19 + 2641.82i −0.0998991 + 0.135051i
\(727\) 5395.46 + 9345.20i 0.275250 + 0.476746i 0.970198 0.242313i \(-0.0779062\pi\)
−0.694949 + 0.719059i \(0.744573\pi\)
\(728\) −1022.09 −0.0520347
\(729\) 15308.5 + 12372.1i 0.777753 + 0.628570i
\(730\) 0 0
\(731\) 10475.3 + 18143.7i 0.530016 + 0.918015i
\(732\) −13976.0 + 18893.8i −0.705692 + 0.954009i
\(733\) 10492.9 18174.3i 0.528738 0.915801i −0.470700 0.882293i \(-0.655999\pi\)
0.999438 0.0335082i \(-0.0106680\pi\)
\(734\) 1530.77 2651.36i 0.0769776 0.133329i
\(735\) 0 0
\(736\) 1387.99 + 2404.06i 0.0695134 + 0.120401i
\(737\) −796.481 −0.0398084
\(738\) −533.705 1743.66i −0.0266205 0.0869717i
\(739\) 1773.47 0.0882790 0.0441395 0.999025i \(-0.485945\pi\)
0.0441395 + 0.999025i \(0.485945\pi\)
\(740\) 0 0
\(741\) 2193.03 + 5041.42i 0.108722 + 0.249934i
\(742\) −1385.89 + 2400.43i −0.0685682 + 0.118764i
\(743\) 2640.39 4573.28i 0.130372 0.225811i −0.793448 0.608638i \(-0.791716\pi\)
0.923820 + 0.382827i \(0.125050\pi\)
\(744\) 1825.17 + 4195.76i 0.0899381 + 0.206753i
\(745\) 0 0
\(746\) 2338.14 0.114753
\(747\) 23805.4 25544.6i 1.16599 1.25117i
\(748\) −862.437 −0.0421575
\(749\) −866.918 1501.55i −0.0422917 0.0732514i
\(750\) 0 0
\(751\) −5514.51 + 9551.40i −0.267946 + 0.464095i −0.968331 0.249669i \(-0.919678\pi\)
0.700386 + 0.713765i \(0.253011\pi\)
\(752\) −14284.6 + 24741.7i −0.692696 + 1.19978i
\(753\) −10777.5 + 14569.8i −0.521584 + 0.705117i
\(754\) 769.692 + 1333.15i 0.0371758 + 0.0643904i
\(755\) 0 0
\(756\) 13038.5 + 4610.09i 0.627255 + 0.221782i
\(757\) −19897.2 −0.955318 −0.477659 0.878545i \(-0.658514\pi\)
−0.477659 + 0.878545i \(0.658514\pi\)
\(758\) −1143.87 1981.24i −0.0548115 0.0949363i
\(759\) 155.040 209.595i 0.00741448 0.0100235i
\(760\) 0 0
\(761\) 12636.2 21886.5i 0.601920 1.04256i −0.390610 0.920556i \(-0.627736\pi\)
0.992530 0.122000i \(-0.0389307\pi\)
\(762\) −3240.11 368.636i −0.154038 0.0175253i
\(763\) −254.364 440.571i −0.0120689 0.0209040i
\(764\) −6103.40 −0.289023
\(765\) 0 0
\(766\) −2014.65 −0.0950292
\(767\) 2684.65 + 4649.96i 0.126385 + 0.218905i
\(768\) 6185.87 + 14220.3i 0.290642 + 0.668137i
\(769\) −15167.1 + 26270.1i −0.711233 + 1.23189i 0.253162 + 0.967424i \(0.418529\pi\)
−0.964395 + 0.264467i \(0.914804\pi\)
\(770\) 0 0
\(771\) −10201.4 23451.3i −0.476517 1.09543i
\(772\) −1854.26 3211.67i −0.0864458 0.149729i
\(773\) 6671.36 0.310417 0.155208 0.987882i \(-0.450395\pi\)
0.155208 + 0.987882i \(0.450395\pi\)
\(774\) 3760.37 + 866.877i 0.174630 + 0.0402574i
\(775\) 0 0
\(776\) −5937.38 10283.8i −0.274664 0.475732i
\(777\) 11101.2 + 1263.01i 0.512551 + 0.0583143i
\(778\) 837.129 1449.95i 0.0385765 0.0668165i
\(779\) −6992.04 + 12110.6i −0.321586 + 0.557004i