Properties

Label 225.4.e.c
Level $225$
Weight $4$
Character orbit 225.e
Analytic conductor $13.275$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(76,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.76"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.15759792.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 16x^{4} - 27x^{3} + 52x^{2} - 39x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} + \beta_1) q^{2} + (\beta_{5} - \beta_{2} - 1) q^{3} + (2 \beta_{5} - 3 \beta_{4} + 4 \beta_{3}) q^{4} + ( - \beta_{4} + 5 \beta_{3} + \cdots + 17) q^{6} + ( - \beta_{5} + 6 \beta_{4} + \cdots - 16) q^{7}+ \cdots + (160 \beta_{5} + 53 \beta_{4} + \cdots + 208) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 9 q^{3} - 11 q^{4} + 84 q^{6} - 43 q^{7} + 54 q^{8} + 57 q^{9} - 14 q^{11} - 75 q^{12} + 40 q^{13} + 27 q^{14} + 13 q^{16} + 332 q^{17} - 3 q^{18} - 328 q^{19} - 144 q^{21} - 376 q^{22} + 171 q^{23}+ \cdots - 762 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} + 16x^{4} - 27x^{3} + 52x^{2} - 39x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu + 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 2\nu^{3} - 11\nu^{2} + 10\nu - 12 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{5} - 5\nu^{4} + 30\nu^{3} - 40\nu^{2} + 88\nu - 39 ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -7\nu^{5} + 18\nu^{4} - 103\nu^{3} + 141\nu^{2} - 289\nu + 126 ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -8\nu^{5} + 20\nu^{4} - 117\nu^{3} + 157\nu^{2} - 334\nu + 147 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{5} + 2\beta_{4} - \beta_{3} + \beta_{2} + \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{5} + 2\beta_{4} - \beta_{3} + \beta_{2} + 4\beta _1 - 11 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 13\beta_{5} - 10\beta_{4} + 17\beta_{3} - 5\beta_{2} - 2\beta _1 - 8 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 28\beta_{5} - 22\beta_{4} + 35\beta_{3} - 20\beta_{2} - 38\beta _1 + 79 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -77\beta_{5} + 47\beta_{4} - 139\beta_{3} + \beta_{2} - 29\beta _1 + 112 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(\beta_{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
76.1
0.500000 2.88506i
0.500000 + 1.98116i
0.500000 + 0.0378788i
0.500000 + 2.88506i
0.500000 1.98116i
0.500000 0.0378788i
−2.28679 3.96084i −3.36330 + 3.96084i −6.45882 + 11.1870i 0 23.3794 + 4.26387i −10.0573 17.4197i 22.4912 −4.37646 26.6429i 0
76.2 −0.0874923 0.151541i −5.19394 + 0.151541i 3.98469 6.90169i 0 0.477395 + 0.773837i 4.23186 + 7.32979i −2.79440 26.9541 1.57419i 0
76.3 1.87428 + 3.24635i 4.05724 3.24635i −3.02587 + 5.24096i 0 18.1432 + 7.08665i −15.6746 27.1492i 7.30318 5.92239 26.3425i 0
151.1 −2.28679 + 3.96084i −3.36330 3.96084i −6.45882 11.1870i 0 23.3794 4.26387i −10.0573 + 17.4197i 22.4912 −4.37646 + 26.6429i 0
151.2 −0.0874923 + 0.151541i −5.19394 0.151541i 3.98469 + 6.90169i 0 0.477395 0.773837i 4.23186 7.32979i −2.79440 26.9541 + 1.57419i 0
151.3 1.87428 3.24635i 4.05724 + 3.24635i −3.02587 5.24096i 0 18.1432 7.08665i −15.6746 + 27.1492i 7.30318 5.92239 + 26.3425i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 76.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 225.4.e.c 6
5.b even 2 1 45.4.e.b 6
5.c odd 4 2 225.4.k.c 12
9.c even 3 1 inner 225.4.e.c 6
9.c even 3 1 2025.4.a.s 3
9.d odd 6 1 2025.4.a.q 3
15.d odd 2 1 135.4.e.b 6
45.h odd 6 1 135.4.e.b 6
45.h odd 6 1 405.4.a.j 3
45.j even 6 1 45.4.e.b 6
45.j even 6 1 405.4.a.h 3
45.k odd 12 2 225.4.k.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.4.e.b 6 5.b even 2 1
45.4.e.b 6 45.j even 6 1
135.4.e.b 6 15.d odd 2 1
135.4.e.b 6 45.h odd 6 1
225.4.e.c 6 1.a even 1 1 trivial
225.4.e.c 6 9.c even 3 1 inner
225.4.k.c 12 5.c odd 4 2
225.4.k.c 12 45.k odd 12 2
405.4.a.h 3 45.j even 6 1
405.4.a.j 3 45.h odd 6 1
2025.4.a.q 3 9.d odd 6 1
2025.4.a.s 3 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + T_{2}^{5} + 18T_{2}^{4} - 11T_{2}^{3} + 292T_{2}^{2} + 51T_{2} + 9 \) acting on \(S_{4}^{\mathrm{new}}(225, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} + 18 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{6} + 9 T^{5} + \cdots + 19683 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 43 T^{5} + \cdots + 28483569 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 1896428304 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 5679732496 \) Copy content Toggle raw display
$17$ \( (T^{3} - 166 T^{2} + \cdots - 156324)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} + 164 T^{2} + \cdots + 57316)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 3746541681 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 11463342489 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 97238137683600 \) Copy content Toggle raw display
$37$ \( (T^{3} + 402 T^{2} + \cdots - 3335284)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 52247959475625 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 238533321586576 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 6187571675289 \) Copy content Toggle raw display
$53$ \( (T^{3} - 730 T^{2} + \cdots - 3250536)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 30\!\cdots\!09 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 43\!\cdots\!81 \) Copy content Toggle raw display
$71$ \( (T^{3} - 70 T^{2} + \cdots + 223775052)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 368 T^{2} + \cdots + 134927744)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 19\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 91\!\cdots\!41 \) Copy content Toggle raw display
$89$ \( (T^{3} - 1719 T^{2} + \cdots + 125506395)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 285551326213696 \) Copy content Toggle raw display
show more
show less