Properties

Label 225.4.b.f.199.2
Level $225$
Weight $4$
Character 225.199
Analytic conductor $13.275$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,4,Mod(199,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 225.199
Dual form 225.4.b.f.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +7.00000 q^{4} -6.00000i q^{7} +15.0000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} +7.00000 q^{4} -6.00000i q^{7} +15.0000i q^{8} +43.0000 q^{11} -28.0000i q^{13} +6.00000 q^{14} +41.0000 q^{16} +91.0000i q^{17} +35.0000 q^{19} +43.0000i q^{22} -162.000i q^{23} +28.0000 q^{26} -42.0000i q^{28} +160.000 q^{29} +42.0000 q^{31} +161.000i q^{32} -91.0000 q^{34} +314.000i q^{37} +35.0000i q^{38} +203.000 q^{41} +92.0000i q^{43} +301.000 q^{44} +162.000 q^{46} +196.000i q^{47} +307.000 q^{49} -196.000i q^{52} -82.0000i q^{53} +90.0000 q^{56} +160.000i q^{58} -280.000 q^{59} -518.000 q^{61} +42.0000i q^{62} +167.000 q^{64} -141.000i q^{67} +637.000i q^{68} -412.000 q^{71} -763.000i q^{73} -314.000 q^{74} +245.000 q^{76} -258.000i q^{77} -510.000 q^{79} +203.000i q^{82} -777.000i q^{83} -92.0000 q^{86} +645.000i q^{88} -945.000 q^{89} -168.000 q^{91} -1134.00i q^{92} -196.000 q^{94} -1246.00i q^{97} +307.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 14 q^{4} + 86 q^{11} + 12 q^{14} + 82 q^{16} + 70 q^{19} + 56 q^{26} + 320 q^{29} + 84 q^{31} - 182 q^{34} + 406 q^{41} + 602 q^{44} + 324 q^{46} + 614 q^{49} + 180 q^{56} - 560 q^{59} - 1036 q^{61} + 334 q^{64} - 824 q^{71} - 628 q^{74} + 490 q^{76} - 1020 q^{79} - 184 q^{86} - 1890 q^{89} - 336 q^{91} - 392 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.353553i 0.984251 + 0.176777i \(0.0565670\pi\)
−0.984251 + 0.176777i \(0.943433\pi\)
\(3\) 0 0
\(4\) 7.00000 0.875000
\(5\) 0 0
\(6\) 0 0
\(7\) − 6.00000i − 0.323970i −0.986793 0.161985i \(-0.948210\pi\)
0.986793 0.161985i \(-0.0517895\pi\)
\(8\) 15.0000i 0.662913i
\(9\) 0 0
\(10\) 0 0
\(11\) 43.0000 1.17864 0.589318 0.807901i \(-0.299397\pi\)
0.589318 + 0.807901i \(0.299397\pi\)
\(12\) 0 0
\(13\) − 28.0000i − 0.597369i −0.954352 0.298685i \(-0.903452\pi\)
0.954352 0.298685i \(-0.0965479\pi\)
\(14\) 6.00000 0.114541
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) 91.0000i 1.29828i 0.760669 + 0.649139i \(0.224871\pi\)
−0.760669 + 0.649139i \(0.775129\pi\)
\(18\) 0 0
\(19\) 35.0000 0.422608 0.211304 0.977420i \(-0.432229\pi\)
0.211304 + 0.977420i \(0.432229\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 43.0000i 0.416710i
\(23\) − 162.000i − 1.46867i −0.678789 0.734333i \(-0.737495\pi\)
0.678789 0.734333i \(-0.262505\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 28.0000 0.211202
\(27\) 0 0
\(28\) − 42.0000i − 0.283473i
\(29\) 160.000 1.02453 0.512263 0.858829i \(-0.328807\pi\)
0.512263 + 0.858829i \(0.328807\pi\)
\(30\) 0 0
\(31\) 42.0000 0.243336 0.121668 0.992571i \(-0.461176\pi\)
0.121668 + 0.992571i \(0.461176\pi\)
\(32\) 161.000i 0.889408i
\(33\) 0 0
\(34\) −91.0000 −0.459011
\(35\) 0 0
\(36\) 0 0
\(37\) 314.000i 1.39517i 0.716502 + 0.697585i \(0.245742\pi\)
−0.716502 + 0.697585i \(0.754258\pi\)
\(38\) 35.0000i 0.149414i
\(39\) 0 0
\(40\) 0 0
\(41\) 203.000 0.773251 0.386625 0.922237i \(-0.373641\pi\)
0.386625 + 0.922237i \(0.373641\pi\)
\(42\) 0 0
\(43\) 92.0000i 0.326276i 0.986603 + 0.163138i \(0.0521616\pi\)
−0.986603 + 0.163138i \(0.947838\pi\)
\(44\) 301.000 1.03131
\(45\) 0 0
\(46\) 162.000 0.519252
\(47\) 196.000i 0.608288i 0.952626 + 0.304144i \(0.0983704\pi\)
−0.952626 + 0.304144i \(0.901630\pi\)
\(48\) 0 0
\(49\) 307.000 0.895044
\(50\) 0 0
\(51\) 0 0
\(52\) − 196.000i − 0.522698i
\(53\) − 82.0000i − 0.212520i −0.994338 0.106260i \(-0.966112\pi\)
0.994338 0.106260i \(-0.0338876\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 90.0000 0.214763
\(57\) 0 0
\(58\) 160.000i 0.362225i
\(59\) −280.000 −0.617846 −0.308923 0.951087i \(-0.599968\pi\)
−0.308923 + 0.951087i \(0.599968\pi\)
\(60\) 0 0
\(61\) −518.000 −1.08726 −0.543632 0.839324i \(-0.682951\pi\)
−0.543632 + 0.839324i \(0.682951\pi\)
\(62\) 42.0000i 0.0860323i
\(63\) 0 0
\(64\) 167.000 0.326172
\(65\) 0 0
\(66\) 0 0
\(67\) − 141.000i − 0.257103i −0.991703 0.128551i \(-0.958967\pi\)
0.991703 0.128551i \(-0.0410327\pi\)
\(68\) 637.000i 1.13599i
\(69\) 0 0
\(70\) 0 0
\(71\) −412.000 −0.688668 −0.344334 0.938847i \(-0.611895\pi\)
−0.344334 + 0.938847i \(0.611895\pi\)
\(72\) 0 0
\(73\) − 763.000i − 1.22332i −0.791121 0.611660i \(-0.790502\pi\)
0.791121 0.611660i \(-0.209498\pi\)
\(74\) −314.000 −0.493267
\(75\) 0 0
\(76\) 245.000 0.369782
\(77\) − 258.000i − 0.381842i
\(78\) 0 0
\(79\) −510.000 −0.726323 −0.363161 0.931726i \(-0.618303\pi\)
−0.363161 + 0.931726i \(0.618303\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 203.000i 0.273385i
\(83\) − 777.000i − 1.02755i −0.857924 0.513776i \(-0.828246\pi\)
0.857924 0.513776i \(-0.171754\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −92.0000 −0.115356
\(87\) 0 0
\(88\) 645.000i 0.781332i
\(89\) −945.000 −1.12550 −0.562752 0.826626i \(-0.690257\pi\)
−0.562752 + 0.826626i \(0.690257\pi\)
\(90\) 0 0
\(91\) −168.000 −0.193530
\(92\) − 1134.00i − 1.28508i
\(93\) 0 0
\(94\) −196.000 −0.215062
\(95\) 0 0
\(96\) 0 0
\(97\) − 1246.00i − 1.30425i −0.758112 0.652124i \(-0.773878\pi\)
0.758112 0.652124i \(-0.226122\pi\)
\(98\) 307.000i 0.316446i
\(99\) 0 0
\(100\) 0 0
\(101\) −1302.00 −1.28271 −0.641356 0.767244i \(-0.721628\pi\)
−0.641356 + 0.767244i \(0.721628\pi\)
\(102\) 0 0
\(103\) 532.000i 0.508927i 0.967082 + 0.254464i \(0.0818989\pi\)
−0.967082 + 0.254464i \(0.918101\pi\)
\(104\) 420.000 0.396004
\(105\) 0 0
\(106\) 82.0000 0.0751372
\(107\) − 1269.00i − 1.14653i −0.819370 0.573266i \(-0.805676\pi\)
0.819370 0.573266i \(-0.194324\pi\)
\(108\) 0 0
\(109\) −1070.00 −0.940251 −0.470126 0.882599i \(-0.655791\pi\)
−0.470126 + 0.882599i \(0.655791\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 246.000i − 0.207543i
\(113\) 503.000i 0.418746i 0.977836 + 0.209373i \(0.0671422\pi\)
−0.977836 + 0.209373i \(0.932858\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1120.00 0.896460
\(117\) 0 0
\(118\) − 280.000i − 0.218441i
\(119\) 546.000 0.420603
\(120\) 0 0
\(121\) 518.000 0.389181
\(122\) − 518.000i − 0.384406i
\(123\) 0 0
\(124\) 294.000 0.212919
\(125\) 0 0
\(126\) 0 0
\(127\) 874.000i 0.610669i 0.952245 + 0.305334i \(0.0987683\pi\)
−0.952245 + 0.305334i \(0.901232\pi\)
\(128\) 1455.00i 1.00473i
\(129\) 0 0
\(130\) 0 0
\(131\) −1092.00 −0.728309 −0.364155 0.931339i \(-0.618642\pi\)
−0.364155 + 0.931339i \(0.618642\pi\)
\(132\) 0 0
\(133\) − 210.000i − 0.136912i
\(134\) 141.000 0.0908996
\(135\) 0 0
\(136\) −1365.00 −0.860645
\(137\) 411.000i 0.256307i 0.991754 + 0.128154i \(0.0409051\pi\)
−0.991754 + 0.128154i \(0.959095\pi\)
\(138\) 0 0
\(139\) 595.000 0.363074 0.181537 0.983384i \(-0.441893\pi\)
0.181537 + 0.983384i \(0.441893\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 412.000i − 0.243481i
\(143\) − 1204.00i − 0.704081i
\(144\) 0 0
\(145\) 0 0
\(146\) 763.000 0.432509
\(147\) 0 0
\(148\) 2198.00i 1.22077i
\(149\) −3200.00 −1.75942 −0.879712 0.475507i \(-0.842265\pi\)
−0.879712 + 0.475507i \(0.842265\pi\)
\(150\) 0 0
\(151\) 202.000 0.108864 0.0544322 0.998517i \(-0.482665\pi\)
0.0544322 + 0.998517i \(0.482665\pi\)
\(152\) 525.000i 0.280152i
\(153\) 0 0
\(154\) 258.000 0.135002
\(155\) 0 0
\(156\) 0 0
\(157\) − 406.000i − 0.206384i −0.994661 0.103192i \(-0.967094\pi\)
0.994661 0.103192i \(-0.0329057\pi\)
\(158\) − 510.000i − 0.256794i
\(159\) 0 0
\(160\) 0 0
\(161\) −972.000 −0.475803
\(162\) 0 0
\(163\) − 3803.00i − 1.82745i −0.406336 0.913724i \(-0.633194\pi\)
0.406336 0.913724i \(-0.366806\pi\)
\(164\) 1421.00 0.676594
\(165\) 0 0
\(166\) 777.000 0.363295
\(167\) 4116.00i 1.90722i 0.301046 + 0.953610i \(0.402664\pi\)
−0.301046 + 0.953610i \(0.597336\pi\)
\(168\) 0 0
\(169\) 1413.00 0.643150
\(170\) 0 0
\(171\) 0 0
\(172\) 644.000i 0.285492i
\(173\) − 1512.00i − 0.664481i −0.943195 0.332241i \(-0.892195\pi\)
0.943195 0.332241i \(-0.107805\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1763.00 0.755063
\(177\) 0 0
\(178\) − 945.000i − 0.397926i
\(179\) 2585.00 1.07940 0.539698 0.841859i \(-0.318538\pi\)
0.539698 + 0.841859i \(0.318538\pi\)
\(180\) 0 0
\(181\) −2758.00 −1.13260 −0.566300 0.824199i \(-0.691626\pi\)
−0.566300 + 0.824199i \(0.691626\pi\)
\(182\) − 168.000i − 0.0684230i
\(183\) 0 0
\(184\) 2430.00 0.973598
\(185\) 0 0
\(186\) 0 0
\(187\) 3913.00i 1.53020i
\(188\) 1372.00i 0.532252i
\(189\) 0 0
\(190\) 0 0
\(191\) 2378.00 0.900869 0.450435 0.892809i \(-0.351269\pi\)
0.450435 + 0.892809i \(0.351269\pi\)
\(192\) 0 0
\(193\) 3067.00i 1.14387i 0.820298 + 0.571937i \(0.193808\pi\)
−0.820298 + 0.571937i \(0.806192\pi\)
\(194\) 1246.00 0.461122
\(195\) 0 0
\(196\) 2149.00 0.783163
\(197\) 2346.00i 0.848455i 0.905556 + 0.424227i \(0.139454\pi\)
−0.905556 + 0.424227i \(0.860546\pi\)
\(198\) 0 0
\(199\) −4900.00 −1.74549 −0.872743 0.488180i \(-0.837661\pi\)
−0.872743 + 0.488180i \(0.837661\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 1302.00i − 0.453507i
\(203\) − 960.000i − 0.331915i
\(204\) 0 0
\(205\) 0 0
\(206\) −532.000 −0.179933
\(207\) 0 0
\(208\) − 1148.00i − 0.382690i
\(209\) 1505.00 0.498101
\(210\) 0 0
\(211\) 4307.00 1.40524 0.702621 0.711564i \(-0.252013\pi\)
0.702621 + 0.711564i \(0.252013\pi\)
\(212\) − 574.000i − 0.185955i
\(213\) 0 0
\(214\) 1269.00 0.405360
\(215\) 0 0
\(216\) 0 0
\(217\) − 252.000i − 0.0788335i
\(218\) − 1070.00i − 0.332429i
\(219\) 0 0
\(220\) 0 0
\(221\) 2548.00 0.775552
\(222\) 0 0
\(223\) 2212.00i 0.664244i 0.943236 + 0.332122i \(0.107765\pi\)
−0.943236 + 0.332122i \(0.892235\pi\)
\(224\) 966.000 0.288141
\(225\) 0 0
\(226\) −503.000 −0.148049
\(227\) 476.000i 0.139177i 0.997576 + 0.0695886i \(0.0221687\pi\)
−0.997576 + 0.0695886i \(0.977831\pi\)
\(228\) 0 0
\(229\) 2940.00 0.848387 0.424194 0.905572i \(-0.360558\pi\)
0.424194 + 0.905572i \(0.360558\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2400.00i 0.679171i
\(233\) − 1002.00i − 0.281730i −0.990029 0.140865i \(-0.955012\pi\)
0.990029 0.140865i \(-0.0449884\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1960.00 −0.540615
\(237\) 0 0
\(238\) 546.000i 0.148706i
\(239\) 2480.00 0.671204 0.335602 0.942004i \(-0.391060\pi\)
0.335602 + 0.942004i \(0.391060\pi\)
\(240\) 0 0
\(241\) 1897.00 0.507039 0.253520 0.967330i \(-0.418412\pi\)
0.253520 + 0.967330i \(0.418412\pi\)
\(242\) 518.000i 0.137596i
\(243\) 0 0
\(244\) −3626.00 −0.951356
\(245\) 0 0
\(246\) 0 0
\(247\) − 980.000i − 0.252453i
\(248\) 630.000i 0.161311i
\(249\) 0 0
\(250\) 0 0
\(251\) 2373.00 0.596743 0.298371 0.954450i \(-0.403557\pi\)
0.298371 + 0.954450i \(0.403557\pi\)
\(252\) 0 0
\(253\) − 6966.00i − 1.73102i
\(254\) −874.000 −0.215904
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) − 4494.00i − 1.09077i −0.838185 0.545385i \(-0.816383\pi\)
0.838185 0.545385i \(-0.183617\pi\)
\(258\) 0 0
\(259\) 1884.00 0.451993
\(260\) 0 0
\(261\) 0 0
\(262\) − 1092.00i − 0.257496i
\(263\) − 722.000i − 0.169279i −0.996412 0.0846396i \(-0.973026\pi\)
0.996412 0.0846396i \(-0.0269739\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 210.000 0.0484057
\(267\) 0 0
\(268\) − 987.000i − 0.224965i
\(269\) −6160.00 −1.39621 −0.698107 0.715993i \(-0.745974\pi\)
−0.698107 + 0.715993i \(0.745974\pi\)
\(270\) 0 0
\(271\) −7238.00 −1.62243 −0.811213 0.584751i \(-0.801192\pi\)
−0.811213 + 0.584751i \(0.801192\pi\)
\(272\) 3731.00i 0.831710i
\(273\) 0 0
\(274\) −411.000 −0.0906183
\(275\) 0 0
\(276\) 0 0
\(277\) − 1776.00i − 0.385233i −0.981274 0.192616i \(-0.938303\pi\)
0.981274 0.192616i \(-0.0616973\pi\)
\(278\) 595.000i 0.128366i
\(279\) 0 0
\(280\) 0 0
\(281\) −4542.00 −0.964246 −0.482123 0.876104i \(-0.660134\pi\)
−0.482123 + 0.876104i \(0.660134\pi\)
\(282\) 0 0
\(283\) 7077.00i 1.48652i 0.669005 + 0.743258i \(0.266720\pi\)
−0.669005 + 0.743258i \(0.733280\pi\)
\(284\) −2884.00 −0.602584
\(285\) 0 0
\(286\) 1204.00 0.248930
\(287\) − 1218.00i − 0.250510i
\(288\) 0 0
\(289\) −3368.00 −0.685528
\(290\) 0 0
\(291\) 0 0
\(292\) − 5341.00i − 1.07041i
\(293\) 4158.00i 0.829054i 0.910037 + 0.414527i \(0.136053\pi\)
−0.910037 + 0.414527i \(0.863947\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4710.00 −0.924876
\(297\) 0 0
\(298\) − 3200.00i − 0.622050i
\(299\) −4536.00 −0.877337
\(300\) 0 0
\(301\) 552.000 0.105703
\(302\) 202.000i 0.0384894i
\(303\) 0 0
\(304\) 1435.00 0.270733
\(305\) 0 0
\(306\) 0 0
\(307\) 2569.00i 0.477591i 0.971070 + 0.238796i \(0.0767526\pi\)
−0.971070 + 0.238796i \(0.923247\pi\)
\(308\) − 1806.00i − 0.334112i
\(309\) 0 0
\(310\) 0 0
\(311\) −2982.00 −0.543710 −0.271855 0.962338i \(-0.587637\pi\)
−0.271855 + 0.962338i \(0.587637\pi\)
\(312\) 0 0
\(313\) 2422.00i 0.437379i 0.975795 + 0.218689i \(0.0701781\pi\)
−0.975795 + 0.218689i \(0.929822\pi\)
\(314\) 406.000 0.0729679
\(315\) 0 0
\(316\) −3570.00 −0.635532
\(317\) − 9484.00i − 1.68036i −0.542307 0.840181i \(-0.682449\pi\)
0.542307 0.840181i \(-0.317551\pi\)
\(318\) 0 0
\(319\) 6880.00 1.20754
\(320\) 0 0
\(321\) 0 0
\(322\) − 972.000i − 0.168222i
\(323\) 3185.00i 0.548663i
\(324\) 0 0
\(325\) 0 0
\(326\) 3803.00 0.646100
\(327\) 0 0
\(328\) 3045.00i 0.512598i
\(329\) 1176.00 0.197067
\(330\) 0 0
\(331\) −183.000 −0.0303885 −0.0151942 0.999885i \(-0.504837\pi\)
−0.0151942 + 0.999885i \(0.504837\pi\)
\(332\) − 5439.00i − 0.899108i
\(333\) 0 0
\(334\) −4116.00 −0.674304
\(335\) 0 0
\(336\) 0 0
\(337\) − 2861.00i − 0.462459i −0.972899 0.231229i \(-0.925725\pi\)
0.972899 0.231229i \(-0.0742748\pi\)
\(338\) 1413.00i 0.227388i
\(339\) 0 0
\(340\) 0 0
\(341\) 1806.00 0.286805
\(342\) 0 0
\(343\) − 3900.00i − 0.613936i
\(344\) −1380.00 −0.216292
\(345\) 0 0
\(346\) 1512.00 0.234930
\(347\) − 629.000i − 0.0973098i −0.998816 0.0486549i \(-0.984507\pi\)
0.998816 0.0486549i \(-0.0154934\pi\)
\(348\) 0 0
\(349\) −5950.00 −0.912597 −0.456298 0.889827i \(-0.650825\pi\)
−0.456298 + 0.889827i \(0.650825\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6923.00i 1.04829i
\(353\) 11718.0i 1.76682i 0.468604 + 0.883408i \(0.344757\pi\)
−0.468604 + 0.883408i \(0.655243\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6615.00 −0.984815
\(357\) 0 0
\(358\) 2585.00i 0.381624i
\(359\) 8070.00 1.18640 0.593201 0.805054i \(-0.297864\pi\)
0.593201 + 0.805054i \(0.297864\pi\)
\(360\) 0 0
\(361\) −5634.00 −0.821403
\(362\) − 2758.00i − 0.400434i
\(363\) 0 0
\(364\) −1176.00 −0.169338
\(365\) 0 0
\(366\) 0 0
\(367\) − 8316.00i − 1.18281i −0.806374 0.591406i \(-0.798573\pi\)
0.806374 0.591406i \(-0.201427\pi\)
\(368\) − 6642.00i − 0.940865i
\(369\) 0 0
\(370\) 0 0
\(371\) −492.000 −0.0688500
\(372\) 0 0
\(373\) 12062.0i 1.67439i 0.546906 + 0.837194i \(0.315805\pi\)
−0.546906 + 0.837194i \(0.684195\pi\)
\(374\) −3913.00 −0.541006
\(375\) 0 0
\(376\) −2940.00 −0.403242
\(377\) − 4480.00i − 0.612021i
\(378\) 0 0
\(379\) −1735.00 −0.235148 −0.117574 0.993064i \(-0.537512\pi\)
−0.117574 + 0.993064i \(0.537512\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2378.00i 0.318505i
\(383\) − 7602.00i − 1.01421i −0.861883 0.507107i \(-0.830715\pi\)
0.861883 0.507107i \(-0.169285\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3067.00 −0.404420
\(387\) 0 0
\(388\) − 8722.00i − 1.14122i
\(389\) 3030.00 0.394928 0.197464 0.980310i \(-0.436729\pi\)
0.197464 + 0.980310i \(0.436729\pi\)
\(390\) 0 0
\(391\) 14742.0 1.90674
\(392\) 4605.00i 0.593336i
\(393\) 0 0
\(394\) −2346.00 −0.299974
\(395\) 0 0
\(396\) 0 0
\(397\) 1204.00i 0.152209i 0.997100 + 0.0761046i \(0.0242483\pi\)
−0.997100 + 0.0761046i \(0.975752\pi\)
\(398\) − 4900.00i − 0.617123i
\(399\) 0 0
\(400\) 0 0
\(401\) −1077.00 −0.134122 −0.0670609 0.997749i \(-0.521362\pi\)
−0.0670609 + 0.997749i \(0.521362\pi\)
\(402\) 0 0
\(403\) − 1176.00i − 0.145362i
\(404\) −9114.00 −1.12237
\(405\) 0 0
\(406\) 960.000 0.117350
\(407\) 13502.0i 1.64440i
\(408\) 0 0
\(409\) 3955.00 0.478147 0.239074 0.971001i \(-0.423156\pi\)
0.239074 + 0.971001i \(0.423156\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3724.00i 0.445311i
\(413\) 1680.00i 0.200163i
\(414\) 0 0
\(415\) 0 0
\(416\) 4508.00 0.531305
\(417\) 0 0
\(418\) 1505.00i 0.176105i
\(419\) 6265.00 0.730466 0.365233 0.930916i \(-0.380989\pi\)
0.365233 + 0.930916i \(0.380989\pi\)
\(420\) 0 0
\(421\) −3788.00 −0.438517 −0.219259 0.975667i \(-0.570364\pi\)
−0.219259 + 0.975667i \(0.570364\pi\)
\(422\) 4307.00i 0.496828i
\(423\) 0 0
\(424\) 1230.00 0.140882
\(425\) 0 0
\(426\) 0 0
\(427\) 3108.00i 0.352240i
\(428\) − 8883.00i − 1.00321i
\(429\) 0 0
\(430\) 0 0
\(431\) 15258.0 1.70523 0.852613 0.522544i \(-0.175017\pi\)
0.852613 + 0.522544i \(0.175017\pi\)
\(432\) 0 0
\(433\) − 13573.0i − 1.50641i −0.657784 0.753206i \(-0.728506\pi\)
0.657784 0.753206i \(-0.271494\pi\)
\(434\) 252.000 0.0278719
\(435\) 0 0
\(436\) −7490.00 −0.822720
\(437\) − 5670.00i − 0.620670i
\(438\) 0 0
\(439\) 8120.00 0.882794 0.441397 0.897312i \(-0.354483\pi\)
0.441397 + 0.897312i \(0.354483\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2548.00i 0.274199i
\(443\) 6183.00i 0.663122i 0.943434 + 0.331561i \(0.107575\pi\)
−0.943434 + 0.331561i \(0.892425\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −2212.00 −0.234846
\(447\) 0 0
\(448\) − 1002.00i − 0.105670i
\(449\) −1975.00 −0.207586 −0.103793 0.994599i \(-0.533098\pi\)
−0.103793 + 0.994599i \(0.533098\pi\)
\(450\) 0 0
\(451\) 8729.00 0.911380
\(452\) 3521.00i 0.366402i
\(453\) 0 0
\(454\) −476.000 −0.0492066
\(455\) 0 0
\(456\) 0 0
\(457\) − 11831.0i − 1.21101i −0.795842 0.605504i \(-0.792971\pi\)
0.795842 0.605504i \(-0.207029\pi\)
\(458\) 2940.00i 0.299950i
\(459\) 0 0
\(460\) 0 0
\(461\) −1932.00 −0.195189 −0.0975946 0.995226i \(-0.531115\pi\)
−0.0975946 + 0.995226i \(0.531115\pi\)
\(462\) 0 0
\(463\) − 9228.00i − 0.926267i −0.886289 0.463133i \(-0.846725\pi\)
0.886289 0.463133i \(-0.153275\pi\)
\(464\) 6560.00 0.656337
\(465\) 0 0
\(466\) 1002.00 0.0996068
\(467\) 13916.0i 1.37892i 0.724324 + 0.689460i \(0.242152\pi\)
−0.724324 + 0.689460i \(0.757848\pi\)
\(468\) 0 0
\(469\) −846.000 −0.0832935
\(470\) 0 0
\(471\) 0 0
\(472\) − 4200.00i − 0.409578i
\(473\) 3956.00i 0.384560i
\(474\) 0 0
\(475\) 0 0
\(476\) 3822.00 0.368027
\(477\) 0 0
\(478\) 2480.00i 0.237307i
\(479\) 2310.00 0.220348 0.110174 0.993912i \(-0.464859\pi\)
0.110174 + 0.993912i \(0.464859\pi\)
\(480\) 0 0
\(481\) 8792.00 0.833432
\(482\) 1897.00i 0.179266i
\(483\) 0 0
\(484\) 3626.00 0.340533
\(485\) 0 0
\(486\) 0 0
\(487\) 17114.0i 1.59242i 0.605019 + 0.796211i \(0.293165\pi\)
−0.605019 + 0.796211i \(0.706835\pi\)
\(488\) − 7770.00i − 0.720761i
\(489\) 0 0
\(490\) 0 0
\(491\) 17228.0 1.58348 0.791740 0.610858i \(-0.209175\pi\)
0.791740 + 0.610858i \(0.209175\pi\)
\(492\) 0 0
\(493\) 14560.0i 1.33012i
\(494\) 980.000 0.0892556
\(495\) 0 0
\(496\) 1722.00 0.155887
\(497\) 2472.00i 0.223107i
\(498\) 0 0
\(499\) 12500.0 1.12140 0.560698 0.828020i \(-0.310533\pi\)
0.560698 + 0.828020i \(0.310533\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2373.00i 0.210980i
\(503\) 868.000i 0.0769428i 0.999260 + 0.0384714i \(0.0122488\pi\)
−0.999260 + 0.0384714i \(0.987751\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6966.00 0.612009
\(507\) 0 0
\(508\) 6118.00i 0.534335i
\(509\) 13370.0 1.16427 0.582136 0.813091i \(-0.302217\pi\)
0.582136 + 0.813091i \(0.302217\pi\)
\(510\) 0 0
\(511\) −4578.00 −0.396319
\(512\) 11521.0i 0.994455i
\(513\) 0 0
\(514\) 4494.00 0.385646
\(515\) 0 0
\(516\) 0 0
\(517\) 8428.00i 0.716950i
\(518\) 1884.00i 0.159803i
\(519\) 0 0
\(520\) 0 0
\(521\) −21637.0 −1.81945 −0.909726 0.415210i \(-0.863708\pi\)
−0.909726 + 0.415210i \(0.863708\pi\)
\(522\) 0 0
\(523\) 287.000i 0.0239955i 0.999928 + 0.0119977i \(0.00381909\pi\)
−0.999928 + 0.0119977i \(0.996181\pi\)
\(524\) −7644.00 −0.637270
\(525\) 0 0
\(526\) 722.000 0.0598492
\(527\) 3822.00i 0.315918i
\(528\) 0 0
\(529\) −14077.0 −1.15698
\(530\) 0 0
\(531\) 0 0
\(532\) − 1470.00i − 0.119798i
\(533\) − 5684.00i − 0.461916i
\(534\) 0 0
\(535\) 0 0
\(536\) 2115.00 0.170437
\(537\) 0 0
\(538\) − 6160.00i − 0.493637i
\(539\) 13201.0 1.05493
\(540\) 0 0
\(541\) −5328.00 −0.423417 −0.211709 0.977333i \(-0.567903\pi\)
−0.211709 + 0.977333i \(0.567903\pi\)
\(542\) − 7238.00i − 0.573614i
\(543\) 0 0
\(544\) −14651.0 −1.15470
\(545\) 0 0
\(546\) 0 0
\(547\) − 71.0000i − 0.00554980i −0.999996 0.00277490i \(-0.999117\pi\)
0.999996 0.00277490i \(-0.000883279\pi\)
\(548\) 2877.00i 0.224269i
\(549\) 0 0
\(550\) 0 0
\(551\) 5600.00 0.432973
\(552\) 0 0
\(553\) 3060.00i 0.235306i
\(554\) 1776.00 0.136200
\(555\) 0 0
\(556\) 4165.00 0.317689
\(557\) − 18444.0i − 1.40305i −0.712646 0.701524i \(-0.752503\pi\)
0.712646 0.701524i \(-0.247497\pi\)
\(558\) 0 0
\(559\) 2576.00 0.194907
\(560\) 0 0
\(561\) 0 0
\(562\) − 4542.00i − 0.340912i
\(563\) − 672.000i − 0.0503045i −0.999684 0.0251522i \(-0.991993\pi\)
0.999684 0.0251522i \(-0.00800705\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −7077.00 −0.525563
\(567\) 0 0
\(568\) − 6180.00i − 0.456526i
\(569\) −10935.0 −0.805657 −0.402829 0.915275i \(-0.631973\pi\)
−0.402829 + 0.915275i \(0.631973\pi\)
\(570\) 0 0
\(571\) −13588.0 −0.995867 −0.497934 0.867215i \(-0.665908\pi\)
−0.497934 + 0.867215i \(0.665908\pi\)
\(572\) − 8428.00i − 0.616071i
\(573\) 0 0
\(574\) 1218.00 0.0885685
\(575\) 0 0
\(576\) 0 0
\(577\) − 8701.00i − 0.627777i −0.949460 0.313889i \(-0.898368\pi\)
0.949460 0.313889i \(-0.101632\pi\)
\(578\) − 3368.00i − 0.242371i
\(579\) 0 0
\(580\) 0 0
\(581\) −4662.00 −0.332896
\(582\) 0 0
\(583\) − 3526.00i − 0.250484i
\(584\) 11445.0 0.810955
\(585\) 0 0
\(586\) −4158.00 −0.293115
\(587\) 11361.0i 0.798839i 0.916768 + 0.399420i \(0.130788\pi\)
−0.916768 + 0.399420i \(0.869212\pi\)
\(588\) 0 0
\(589\) 1470.00 0.102836
\(590\) 0 0
\(591\) 0 0
\(592\) 12874.0i 0.893781i
\(593\) − 11417.0i − 0.790624i −0.918547 0.395312i \(-0.870636\pi\)
0.918547 0.395312i \(-0.129364\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −22400.0 −1.53950
\(597\) 0 0
\(598\) − 4536.00i − 0.310185i
\(599\) −21050.0 −1.43586 −0.717930 0.696116i \(-0.754910\pi\)
−0.717930 + 0.696116i \(0.754910\pi\)
\(600\) 0 0
\(601\) 7427.00 0.504083 0.252041 0.967716i \(-0.418898\pi\)
0.252041 + 0.967716i \(0.418898\pi\)
\(602\) 552.000i 0.0373718i
\(603\) 0 0
\(604\) 1414.00 0.0952564
\(605\) 0 0
\(606\) 0 0
\(607\) 4144.00i 0.277100i 0.990355 + 0.138550i \(0.0442442\pi\)
−0.990355 + 0.138550i \(0.955756\pi\)
\(608\) 5635.00i 0.375871i
\(609\) 0 0
\(610\) 0 0
\(611\) 5488.00 0.363373
\(612\) 0 0
\(613\) 30122.0i 1.98469i 0.123489 + 0.992346i \(0.460592\pi\)
−0.123489 + 0.992346i \(0.539408\pi\)
\(614\) −2569.00 −0.168854
\(615\) 0 0
\(616\) 3870.00 0.253128
\(617\) − 11934.0i − 0.778679i −0.921094 0.389339i \(-0.872703\pi\)
0.921094 0.389339i \(-0.127297\pi\)
\(618\) 0 0
\(619\) −8540.00 −0.554526 −0.277263 0.960794i \(-0.589427\pi\)
−0.277263 + 0.960794i \(0.589427\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 2982.00i − 0.192230i
\(623\) 5670.00i 0.364629i
\(624\) 0 0
\(625\) 0 0
\(626\) −2422.00 −0.154637
\(627\) 0 0
\(628\) − 2842.00i − 0.180586i
\(629\) −28574.0 −1.81132
\(630\) 0 0
\(631\) −3158.00 −0.199236 −0.0996181 0.995026i \(-0.531762\pi\)
−0.0996181 + 0.995026i \(0.531762\pi\)
\(632\) − 7650.00i − 0.481488i
\(633\) 0 0
\(634\) 9484.00 0.594097
\(635\) 0 0
\(636\) 0 0
\(637\) − 8596.00i − 0.534672i
\(638\) 6880.00i 0.426931i
\(639\) 0 0
\(640\) 0 0
\(641\) 4278.00 0.263605 0.131803 0.991276i \(-0.457924\pi\)
0.131803 + 0.991276i \(0.457924\pi\)
\(642\) 0 0
\(643\) − 11508.0i − 0.705803i −0.935661 0.352901i \(-0.885195\pi\)
0.935661 0.352901i \(-0.114805\pi\)
\(644\) −6804.00 −0.416328
\(645\) 0 0
\(646\) −3185.00 −0.193982
\(647\) − 8204.00i − 0.498505i −0.968439 0.249252i \(-0.919815\pi\)
0.968439 0.249252i \(-0.0801849\pi\)
\(648\) 0 0
\(649\) −12040.0 −0.728215
\(650\) 0 0
\(651\) 0 0
\(652\) − 26621.0i − 1.59902i
\(653\) 5518.00i 0.330683i 0.986236 + 0.165342i \(0.0528726\pi\)
−0.986236 + 0.165342i \(0.947127\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 8323.00 0.495364
\(657\) 0 0
\(658\) 1176.00i 0.0696736i
\(659\) 13295.0 0.785887 0.392944 0.919563i \(-0.371457\pi\)
0.392944 + 0.919563i \(0.371457\pi\)
\(660\) 0 0
\(661\) −9968.00 −0.586551 −0.293276 0.956028i \(-0.594745\pi\)
−0.293276 + 0.956028i \(0.594745\pi\)
\(662\) − 183.000i − 0.0107440i
\(663\) 0 0
\(664\) 11655.0 0.681177
\(665\) 0 0
\(666\) 0 0
\(667\) − 25920.0i − 1.50469i
\(668\) 28812.0i 1.66882i
\(669\) 0 0
\(670\) 0 0
\(671\) −22274.0 −1.28149
\(672\) 0 0
\(673\) − 15738.0i − 0.901419i −0.892671 0.450710i \(-0.851171\pi\)
0.892671 0.450710i \(-0.148829\pi\)
\(674\) 2861.00 0.163504
\(675\) 0 0
\(676\) 9891.00 0.562756
\(677\) − 19824.0i − 1.12540i −0.826660 0.562702i \(-0.809762\pi\)
0.826660 0.562702i \(-0.190238\pi\)
\(678\) 0 0
\(679\) −7476.00 −0.422537
\(680\) 0 0
\(681\) 0 0
\(682\) 1806.00i 0.101401i
\(683\) 11073.0i 0.620346i 0.950680 + 0.310173i \(0.100387\pi\)
−0.950680 + 0.310173i \(0.899613\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3900.00 0.217059
\(687\) 0 0
\(688\) 3772.00i 0.209021i
\(689\) −2296.00 −0.126953
\(690\) 0 0
\(691\) −6503.00 −0.358011 −0.179006 0.983848i \(-0.557288\pi\)
−0.179006 + 0.983848i \(0.557288\pi\)
\(692\) − 10584.0i − 0.581421i
\(693\) 0 0
\(694\) 629.000 0.0344042
\(695\) 0 0
\(696\) 0 0
\(697\) 18473.0i 1.00389i
\(698\) − 5950.00i − 0.322652i
\(699\) 0 0
\(700\) 0 0
\(701\) 10148.0 0.546768 0.273384 0.961905i \(-0.411857\pi\)
0.273384 + 0.961905i \(0.411857\pi\)
\(702\) 0 0
\(703\) 10990.0i 0.589610i
\(704\) 7181.00 0.384438
\(705\) 0 0
\(706\) −11718.0 −0.624664
\(707\) 7812.00i 0.415559i
\(708\) 0 0
\(709\) 9980.00 0.528641 0.264321 0.964435i \(-0.414852\pi\)
0.264321 + 0.964435i \(0.414852\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 14175.0i − 0.746110i
\(713\) − 6804.00i − 0.357380i
\(714\) 0 0
\(715\) 0 0
\(716\) 18095.0 0.944472
\(717\) 0 0
\(718\) 8070.00i 0.419456i
\(719\) −27510.0 −1.42691 −0.713456 0.700700i \(-0.752871\pi\)
−0.713456 + 0.700700i \(0.752871\pi\)
\(720\) 0 0
\(721\) 3192.00 0.164877
\(722\) − 5634.00i − 0.290410i
\(723\) 0 0
\(724\) −19306.0 −0.991025
\(725\) 0 0
\(726\) 0 0
\(727\) 17024.0i 0.868480i 0.900797 + 0.434240i \(0.142983\pi\)
−0.900797 + 0.434240i \(0.857017\pi\)
\(728\) − 2520.00i − 0.128293i
\(729\) 0 0
\(730\) 0 0
\(731\) −8372.00 −0.423597
\(732\) 0 0
\(733\) − 34748.0i − 1.75095i −0.483263 0.875475i \(-0.660549\pi\)
0.483263 0.875475i \(-0.339451\pi\)
\(734\) 8316.00 0.418187
\(735\) 0 0
\(736\) 26082.0 1.30624
\(737\) − 6063.00i − 0.303030i
\(738\) 0 0
\(739\) 12020.0 0.598326 0.299163 0.954202i \(-0.403293\pi\)
0.299163 + 0.954202i \(0.403293\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 492.000i − 0.0243422i
\(743\) − 28642.0i − 1.41423i −0.707098 0.707115i \(-0.749996\pi\)
0.707098 0.707115i \(-0.250004\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −12062.0 −0.591986
\(747\) 0 0
\(748\) 27391.0i 1.33892i
\(749\) −7614.00 −0.371441
\(750\) 0 0
\(751\) 8752.00 0.425253 0.212627 0.977134i \(-0.431798\pi\)
0.212627 + 0.977134i \(0.431798\pi\)
\(752\) 8036.00i 0.389685i
\(753\) 0 0
\(754\) 4480.00 0.216382
\(755\) 0 0
\(756\) 0 0
\(757\) − 10256.0i − 0.492418i −0.969217 0.246209i \(-0.920815\pi\)
0.969217 0.246209i \(-0.0791850\pi\)
\(758\) − 1735.00i − 0.0831373i
\(759\) 0 0
\(760\) 0 0
\(761\) −33957.0 −1.61753 −0.808765 0.588132i \(-0.799864\pi\)
−0.808765 + 0.588132i \(0.799864\pi\)
\(762\) 0 0
\(763\) 6420.00i 0.304613i
\(764\) 16646.0 0.788261
\(765\) 0 0
\(766\) 7602.00 0.358579
\(767\) 7840.00i 0.369082i
\(768\) 0 0
\(769\) −27965.0 −1.31137 −0.655685 0.755034i \(-0.727620\pi\)
−0.655685 + 0.755034i \(0.727620\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 21469.0i 1.00089i
\(773\) − 9912.00i − 0.461203i −0.973048 0.230601i \(-0.925931\pi\)
0.973048 0.230601i \(-0.0740694\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 18690.0 0.864603
\(777\) 0 0
\(778\) 3030.00i 0.139628i
\(779\) 7105.00 0.326782
\(780\) 0 0
\(781\) −17716.0 −0.811688
\(782\) 14742.0i 0.674134i
\(783\) 0 0
\(784\) 12587.0 0.573387
\(785\) 0 0
\(786\) 0 0
\(787\) 25564.0i 1.15789i 0.815367 + 0.578944i \(0.196535\pi\)
−0.815367 + 0.578944i \(0.803465\pi\)
\(788\) 16422.0i 0.742398i
\(789\) 0 0
\(790\) 0 0
\(791\) 3018.00 0.135661
\(792\) 0 0
\(793\) 14504.0i 0.649498i
\(794\) −1204.00 −0.0538141
\(795\) 0 0
\(796\) −34300.0 −1.52730
\(797\) 12446.0i 0.553149i 0.960992 + 0.276575i \(0.0891993\pi\)
−0.960992 + 0.276575i \(0.910801\pi\)
\(798\) 0 0
\(799\) −17836.0 −0.789728
\(800\) 0 0
\(801\) 0 0
\(802\) − 1077.00i − 0.0474192i
\(803\) − 32809.0i − 1.44185i
\(804\) 0 0
\(805\) 0 0
\(806\) 1176.00 0.0513931
\(807\) 0 0
\(808\) − 19530.0i − 0.850325i
\(809\) 33970.0 1.47629 0.738147 0.674640i \(-0.235701\pi\)
0.738147 + 0.674640i \(0.235701\pi\)
\(810\) 0 0
\(811\) 18732.0 0.811060 0.405530 0.914082i \(-0.367087\pi\)
0.405530 + 0.914082i \(0.367087\pi\)
\(812\) − 6720.00i − 0.290426i
\(813\) 0 0
\(814\) −13502.0 −0.581382
\(815\) 0 0
\(816\) 0 0
\(817\) 3220.00i 0.137887i
\(818\) 3955.00i 0.169051i
\(819\) 0 0
\(820\) 0 0
\(821\) −6162.00 −0.261943 −0.130972 0.991386i \(-0.541810\pi\)
−0.130972 + 0.991386i \(0.541810\pi\)
\(822\) 0 0
\(823\) − 25388.0i − 1.07530i −0.843169 0.537649i \(-0.819313\pi\)
0.843169 0.537649i \(-0.180687\pi\)
\(824\) −7980.00 −0.337374
\(825\) 0 0
\(826\) −1680.00 −0.0707684
\(827\) 25201.0i 1.05964i 0.848109 + 0.529821i \(0.177741\pi\)
−0.848109 + 0.529821i \(0.822259\pi\)
\(828\) 0 0
\(829\) 19740.0 0.827019 0.413509 0.910500i \(-0.364303\pi\)
0.413509 + 0.910500i \(0.364303\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 4676.00i − 0.194845i
\(833\) 27937.0i 1.16202i
\(834\) 0 0
\(835\) 0 0
\(836\) 10535.0 0.435838
\(837\) 0 0
\(838\) 6265.00i 0.258259i
\(839\) 29680.0 1.22130 0.610648 0.791902i \(-0.290909\pi\)
0.610648 + 0.791902i \(0.290909\pi\)
\(840\) 0 0
\(841\) 1211.00 0.0496535
\(842\) − 3788.00i − 0.155039i
\(843\) 0 0
\(844\) 30149.0 1.22959
\(845\) 0 0
\(846\) 0 0
\(847\) − 3108.00i − 0.126083i
\(848\) − 3362.00i − 0.136146i
\(849\) 0 0
\(850\) 0 0
\(851\) 50868.0 2.04904
\(852\) 0 0
\(853\) − 1218.00i − 0.0488904i −0.999701 0.0244452i \(-0.992218\pi\)
0.999701 0.0244452i \(-0.00778193\pi\)
\(854\) −3108.00 −0.124536
\(855\) 0 0
\(856\) 19035.0 0.760050
\(857\) 38731.0i 1.54379i 0.635752 + 0.771894i \(0.280690\pi\)
−0.635752 + 0.771894i \(0.719310\pi\)
\(858\) 0 0
\(859\) 23555.0 0.935607 0.467803 0.883833i \(-0.345046\pi\)
0.467803 + 0.883833i \(0.345046\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 15258.0i 0.602888i
\(863\) − 24872.0i − 0.981058i −0.871425 0.490529i \(-0.836804\pi\)
0.871425 0.490529i \(-0.163196\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 13573.0 0.532597
\(867\) 0 0
\(868\) − 1764.00i − 0.0689793i
\(869\) −21930.0 −0.856069
\(870\) 0 0
\(871\) −3948.00 −0.153585
\(872\) − 16050.0i − 0.623305i
\(873\) 0 0
\(874\) 5670.00 0.219440
\(875\) 0 0
\(876\) 0 0
\(877\) 17124.0i 0.659335i 0.944097 + 0.329667i \(0.106937\pi\)
−0.944097 + 0.329667i \(0.893063\pi\)
\(878\) 8120.00i 0.312115i
\(879\) 0 0
\(880\) 0 0
\(881\) 658.000 0.0251630 0.0125815 0.999921i \(-0.495995\pi\)
0.0125815 + 0.999921i \(0.495995\pi\)
\(882\) 0 0
\(883\) 33727.0i 1.28540i 0.766120 + 0.642698i \(0.222185\pi\)
−0.766120 + 0.642698i \(0.777815\pi\)
\(884\) 17836.0 0.678608
\(885\) 0 0
\(886\) −6183.00 −0.234449
\(887\) 36036.0i 1.36412i 0.731298 + 0.682058i \(0.238915\pi\)
−0.731298 + 0.682058i \(0.761085\pi\)
\(888\) 0 0
\(889\) 5244.00 0.197838
\(890\) 0 0
\(891\) 0 0
\(892\) 15484.0i 0.581214i
\(893\) 6860.00i 0.257067i
\(894\) 0 0
\(895\) 0 0
\(896\) 8730.00 0.325501
\(897\) 0 0
\(898\) − 1975.00i − 0.0733927i
\(899\) 6720.00 0.249304
\(900\) 0 0
\(901\) 7462.00 0.275910
\(902\) 8729.00i 0.322222i
\(903\) 0 0
\(904\) −7545.00 −0.277592
\(905\) 0 0
\(906\) 0 0
\(907\) − 39156.0i − 1.43347i −0.697348 0.716733i \(-0.745637\pi\)
0.697348 0.716733i \(-0.254363\pi\)
\(908\) 3332.00i 0.121780i
\(909\) 0 0
\(910\) 0 0
\(911\) −43532.0 −1.58318 −0.791591 0.611051i \(-0.790747\pi\)
−0.791591 + 0.611051i \(0.790747\pi\)
\(912\) 0 0
\(913\) − 33411.0i − 1.21111i
\(914\) 11831.0 0.428156
\(915\) 0 0
\(916\) 20580.0 0.742339
\(917\) 6552.00i 0.235950i
\(918\) 0 0
\(919\) 28610.0 1.02694 0.513469 0.858108i \(-0.328360\pi\)
0.513469 + 0.858108i \(0.328360\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 1932.00i − 0.0690098i
\(923\) 11536.0i 0.411389i
\(924\) 0 0
\(925\) 0 0
\(926\) 9228.00 0.327485
\(927\) 0 0
\(928\) 25760.0i 0.911221i
\(929\) −24290.0 −0.857835 −0.428918 0.903344i \(-0.641105\pi\)
−0.428918 + 0.903344i \(0.641105\pi\)
\(930\) 0 0
\(931\) 10745.0 0.378253
\(932\) − 7014.00i − 0.246514i
\(933\) 0 0
\(934\) −13916.0 −0.487522
\(935\) 0 0
\(936\) 0 0
\(937\) − 34461.0i − 1.20149i −0.799442 0.600743i \(-0.794872\pi\)
0.799442 0.600743i \(-0.205128\pi\)
\(938\) − 846.000i − 0.0294487i
\(939\) 0 0
\(940\) 0 0
\(941\) 40628.0 1.40748 0.703738 0.710460i \(-0.251513\pi\)
0.703738 + 0.710460i \(0.251513\pi\)
\(942\) 0 0
\(943\) − 32886.0i − 1.13565i
\(944\) −11480.0 −0.395807
\(945\) 0 0
\(946\) −3956.00 −0.135963
\(947\) − 20904.0i − 0.717306i −0.933471 0.358653i \(-0.883236\pi\)
0.933471 0.358653i \(-0.116764\pi\)
\(948\) 0 0
\(949\) −21364.0 −0.730774
\(950\) 0 0
\(951\) 0 0
\(952\) 8190.00i 0.278823i
\(953\) − 1807.00i − 0.0614213i −0.999528 0.0307106i \(-0.990223\pi\)
0.999528 0.0307106i \(-0.00977704\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 17360.0 0.587304
\(957\) 0 0
\(958\) 2310.00i 0.0779047i
\(959\) 2466.00 0.0830358
\(960\) 0 0
\(961\) −28027.0 −0.940787
\(962\) 8792.00i 0.294663i
\(963\) 0 0
\(964\) 13279.0 0.443660
\(965\) 0 0
\(966\) 0 0
\(967\) 57584.0i 1.91497i 0.288482 + 0.957485i \(0.406849\pi\)
−0.288482 + 0.957485i \(0.593151\pi\)
\(968\) 7770.00i 0.257993i
\(969\) 0 0
\(970\) 0 0
\(971\) −27237.0 −0.900182 −0.450091 0.892983i \(-0.648608\pi\)
−0.450091 + 0.892983i \(0.648608\pi\)
\(972\) 0 0
\(973\) − 3570.00i − 0.117625i
\(974\) −17114.0 −0.563006
\(975\) 0 0
\(976\) −21238.0 −0.696528
\(977\) − 13649.0i − 0.446950i −0.974710 0.223475i \(-0.928260\pi\)
0.974710 0.223475i \(-0.0717401\pi\)
\(978\) 0 0
\(979\) −40635.0 −1.32656
\(980\) 0 0
\(981\) 0 0
\(982\) 17228.0i 0.559845i
\(983\) − 16002.0i − 0.519211i −0.965715 0.259606i \(-0.916407\pi\)
0.965715 0.259606i \(-0.0835925\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −14560.0 −0.470269
\(987\) 0 0
\(988\) − 6860.00i − 0.220896i
\(989\) 14904.0 0.479191
\(990\) 0 0
\(991\) 37022.0 1.18672 0.593362 0.804936i \(-0.297800\pi\)
0.593362 + 0.804936i \(0.297800\pi\)
\(992\) 6762.00i 0.216425i
\(993\) 0 0
\(994\) −2472.00 −0.0788804
\(995\) 0 0
\(996\) 0 0
\(997\) − 18396.0i − 0.584360i −0.956363 0.292180i \(-0.905619\pi\)
0.956363 0.292180i \(-0.0943807\pi\)
\(998\) 12500.0i 0.396474i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.b.f.199.2 2
3.2 odd 2 25.4.b.b.24.1 2
5.2 odd 4 225.4.a.c.1.1 1
5.3 odd 4 225.4.a.e.1.1 1
5.4 even 2 inner 225.4.b.f.199.1 2
12.11 even 2 400.4.c.e.49.1 2
15.2 even 4 25.4.a.b.1.1 yes 1
15.8 even 4 25.4.a.a.1.1 1
15.14 odd 2 25.4.b.b.24.2 2
60.23 odd 4 400.4.a.s.1.1 1
60.47 odd 4 400.4.a.c.1.1 1
60.59 even 2 400.4.c.e.49.2 2
105.62 odd 4 1225.4.a.i.1.1 1
105.83 odd 4 1225.4.a.h.1.1 1
120.53 even 4 1600.4.a.bt.1.1 1
120.77 even 4 1600.4.a.i.1.1 1
120.83 odd 4 1600.4.a.h.1.1 1
120.107 odd 4 1600.4.a.bs.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.4.a.a.1.1 1 15.8 even 4
25.4.a.b.1.1 yes 1 15.2 even 4
25.4.b.b.24.1 2 3.2 odd 2
25.4.b.b.24.2 2 15.14 odd 2
225.4.a.c.1.1 1 5.2 odd 4
225.4.a.e.1.1 1 5.3 odd 4
225.4.b.f.199.1 2 5.4 even 2 inner
225.4.b.f.199.2 2 1.1 even 1 trivial
400.4.a.c.1.1 1 60.47 odd 4
400.4.a.s.1.1 1 60.23 odd 4
400.4.c.e.49.1 2 12.11 even 2
400.4.c.e.49.2 2 60.59 even 2
1225.4.a.h.1.1 1 105.83 odd 4
1225.4.a.i.1.1 1 105.62 odd 4
1600.4.a.h.1.1 1 120.83 odd 4
1600.4.a.i.1.1 1 120.77 even 4
1600.4.a.bs.1.1 1 120.107 odd 4
1600.4.a.bt.1.1 1 120.53 even 4