Properties

Label 225.3.o.b.157.5
Level $225$
Weight $3$
Character 225.157
Analytic conductor $6.131$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,3,Mod(7,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([8, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.o (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 157.5
Character \(\chi\) \(=\) 225.157
Dual form 225.3.o.b.43.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.194442 + 0.725667i) q^{2} +(1.34163 + 2.68329i) q^{3} +(2.97532 + 1.71780i) q^{4} +(-2.20804 + 0.451834i) q^{6} +(-0.481578 + 1.79727i) q^{7} +(-3.94998 + 3.94998i) q^{8} +(-5.40005 + 7.19996i) q^{9} +(5.82294 + 10.0856i) q^{11} +(-0.617573 + 10.2883i) q^{12} +(-5.30726 - 19.8070i) q^{13} +(-1.21058 - 0.698930i) q^{14} +(4.77288 + 8.26686i) q^{16} +(10.0254 + 10.0254i) q^{17} +(-4.17477 - 5.31861i) q^{18} -10.8032i q^{19} +(-5.46870 + 1.11907i) q^{21} +(-8.45102 + 2.26444i) q^{22} +(-0.360576 - 1.34569i) q^{23} +(-15.8983 - 5.29951i) q^{24} +15.4052 q^{26} +(-26.5644 - 4.83020i) q^{27} +(-4.52021 + 4.52021i) q^{28} +(-20.7968 + 12.0070i) q^{29} +(21.6233 - 37.4526i) q^{31} +(-28.5101 + 7.63926i) q^{32} +(-19.2504 + 29.1558i) q^{33} +(-9.22442 + 5.32572i) q^{34} +(-28.4350 + 12.1460i) q^{36} +(32.5443 + 32.5443i) q^{37} +(7.83949 + 2.10058i) q^{38} +(46.0274 - 40.8145i) q^{39} +(-20.5409 + 35.5778i) q^{41} +(0.251275 - 4.18605i) q^{42} +(8.01349 + 2.14721i) q^{43} +40.0106i q^{44} +1.04663 q^{46} +(4.62418 - 17.2577i) q^{47} +(-15.7789 + 23.8981i) q^{48} +(39.4370 + 22.7689i) q^{49} +(-13.4506 + 40.3513i) q^{51} +(18.2336 - 68.0488i) q^{52} +(51.3281 - 51.3281i) q^{53} +(8.67035 - 18.3377i) q^{54} +(-5.19697 - 9.00141i) q^{56} +(28.9880 - 14.4938i) q^{57} +(-4.66933 - 17.4262i) q^{58} +(-24.3449 - 14.0555i) q^{59} +(-41.1002 - 71.1876i) q^{61} +(22.9736 + 22.9736i) q^{62} +(-10.3398 - 13.1727i) q^{63} +16.0088i q^{64} +(-17.4143 - 19.6385i) q^{66} +(32.3105 - 8.65757i) q^{67} +(12.6071 + 47.0502i) q^{68} +(3.12710 - 2.77294i) q^{69} +99.6917 q^{71} +(-7.10958 - 49.7697i) q^{72} +(22.3583 - 22.3583i) q^{73} +(-29.9443 + 17.2883i) q^{74} +(18.5577 - 32.1428i) q^{76} +(-20.9308 + 5.60840i) q^{77} +(20.6681 + 41.3366i) q^{78} +(52.9926 - 30.5953i) q^{79} +(-22.6788 - 77.7603i) q^{81} +(-21.8237 - 21.8237i) q^{82} +(49.9199 + 13.3760i) q^{83} +(-18.1935 - 6.06456i) q^{84} +(-3.11631 + 5.39761i) q^{86} +(-60.1198 - 39.6947i) q^{87} +(-62.8384 - 16.8375i) q^{88} -113.914i q^{89} +38.1544 q^{91} +(1.23879 - 4.62324i) q^{92} +(129.506 + 7.77386i) q^{93} +(11.6242 + 6.71123i) q^{94} +(-58.7483 - 66.2517i) q^{96} +(-7.92297 + 29.5689i) q^{97} +(-24.1909 + 24.1909i) q^{98} +(-104.060 - 12.5380i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 6 q^{3} - 24 q^{6} + 2 q^{7} + 24 q^{8} + 8 q^{11} + 30 q^{12} + 2 q^{13} + 28 q^{16} - 28 q^{17} - 48 q^{18} + 12 q^{21} - 14 q^{22} - 82 q^{23} - 112 q^{26} + 198 q^{27} + 88 q^{28} - 4 q^{31}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.194442 + 0.725667i −0.0972209 + 0.362833i −0.997347 0.0727965i \(-0.976808\pi\)
0.900126 + 0.435630i \(0.143474\pi\)
\(3\) 1.34163 + 2.68329i 0.447210 + 0.894429i
\(4\) 2.97532 + 1.71780i 0.743829 + 0.429450i
\(5\) 0 0
\(6\) −2.20804 + 0.451834i −0.368007 + 0.0753056i
\(7\) −0.481578 + 1.79727i −0.0687969 + 0.256753i −0.991755 0.128146i \(-0.959097\pi\)
0.922958 + 0.384900i \(0.125764\pi\)
\(8\) −3.94998 + 3.94998i −0.493747 + 0.493747i
\(9\) −5.40005 + 7.19996i −0.600006 + 0.799996i
\(10\) 0 0
\(11\) 5.82294 + 10.0856i 0.529358 + 0.916875i 0.999414 + 0.0342381i \(0.0109005\pi\)
−0.470056 + 0.882637i \(0.655766\pi\)
\(12\) −0.617573 + 10.2883i −0.0514644 + 0.857357i
\(13\) −5.30726 19.8070i −0.408251 1.52361i −0.797980 0.602684i \(-0.794098\pi\)
0.389729 0.920930i \(-0.372569\pi\)
\(14\) −1.21058 0.698930i −0.0864702 0.0499236i
\(15\) 0 0
\(16\) 4.77288 + 8.26686i 0.298305 + 0.516679i
\(17\) 10.0254 + 10.0254i 0.589728 + 0.589728i 0.937558 0.347830i \(-0.113081\pi\)
−0.347830 + 0.937558i \(0.613081\pi\)
\(18\) −4.17477 5.31861i −0.231932 0.295478i
\(19\) 10.8032i 0.568587i −0.958737 0.284294i \(-0.908241\pi\)
0.958737 0.284294i \(-0.0917590\pi\)
\(20\) 0 0
\(21\) −5.46870 + 1.11907i −0.260414 + 0.0532889i
\(22\) −8.45102 + 2.26444i −0.384137 + 0.102929i
\(23\) −0.360576 1.34569i −0.0156772 0.0585081i 0.957644 0.287954i \(-0.0929751\pi\)
−0.973321 + 0.229446i \(0.926308\pi\)
\(24\) −15.8983 5.29951i −0.662430 0.220813i
\(25\) 0 0
\(26\) 15.4052 0.592508
\(27\) −26.5644 4.83020i −0.983868 0.178896i
\(28\) −4.52021 + 4.52021i −0.161436 + 0.161436i
\(29\) −20.7968 + 12.0070i −0.717130 + 0.414035i −0.813695 0.581292i \(-0.802548\pi\)
0.0965656 + 0.995327i \(0.469214\pi\)
\(30\) 0 0
\(31\) 21.6233 37.4526i 0.697524 1.20815i −0.271798 0.962354i \(-0.587618\pi\)
0.969322 0.245793i \(-0.0790484\pi\)
\(32\) −28.5101 + 7.63926i −0.890941 + 0.238727i
\(33\) −19.2504 + 29.1558i −0.583345 + 0.883509i
\(34\) −9.22442 + 5.32572i −0.271307 + 0.156639i
\(35\) 0 0
\(36\) −28.4350 + 12.1460i −0.789860 + 0.337388i
\(37\) 32.5443 + 32.5443i 0.879576 + 0.879576i 0.993491 0.113915i \(-0.0363391\pi\)
−0.113915 + 0.993491i \(0.536339\pi\)
\(38\) 7.83949 + 2.10058i 0.206302 + 0.0552785i
\(39\) 46.0274 40.8145i 1.18019 1.04653i
\(40\) 0 0
\(41\) −20.5409 + 35.5778i −0.500997 + 0.867752i 0.499002 + 0.866601i \(0.333700\pi\)
−0.999999 + 0.00115173i \(0.999633\pi\)
\(42\) 0.251275 4.18605i 0.00598274 0.0996678i
\(43\) 8.01349 + 2.14721i 0.186360 + 0.0499351i 0.350792 0.936453i \(-0.385912\pi\)
−0.164432 + 0.986388i \(0.552579\pi\)
\(44\) 40.0106i 0.909331i
\(45\) 0 0
\(46\) 1.04663 0.0227528
\(47\) 4.62418 17.2577i 0.0983868 0.367185i −0.899124 0.437693i \(-0.855796\pi\)
0.997511 + 0.0705087i \(0.0224622\pi\)
\(48\) −15.7789 + 23.8981i −0.328728 + 0.497876i
\(49\) 39.4370 + 22.7689i 0.804836 + 0.464672i
\(50\) 0 0
\(51\) −13.4506 + 40.3513i −0.263737 + 0.791202i
\(52\) 18.2336 68.0488i 0.350647 1.30863i
\(53\) 51.3281 51.3281i 0.968455 0.968455i −0.0310621 0.999517i \(-0.509889\pi\)
0.999517 + 0.0310621i \(0.00988897\pi\)
\(54\) 8.67035 18.3377i 0.160562 0.339588i
\(55\) 0 0
\(56\) −5.19697 9.00141i −0.0928030 0.160739i
\(57\) 28.9880 14.4938i 0.508561 0.254278i
\(58\) −4.66933 17.4262i −0.0805057 0.300451i
\(59\) −24.3449 14.0555i −0.412625 0.238229i 0.279292 0.960206i \(-0.409900\pi\)
−0.691917 + 0.721977i \(0.743234\pi\)
\(60\) 0 0
\(61\) −41.1002 71.1876i −0.673774 1.16701i −0.976826 0.214036i \(-0.931339\pi\)
0.303052 0.952974i \(-0.401994\pi\)
\(62\) 22.9736 + 22.9736i 0.370542 + 0.370542i
\(63\) −10.3398 13.1727i −0.164123 0.209091i
\(64\) 16.0088i 0.250137i
\(65\) 0 0
\(66\) −17.4143 19.6385i −0.263853 0.297552i
\(67\) 32.3105 8.65757i 0.482246 0.129217i −0.00950210 0.999955i \(-0.503025\pi\)
0.491748 + 0.870737i \(0.336358\pi\)
\(68\) 12.6071 + 47.0502i 0.185398 + 0.691915i
\(69\) 3.12710 2.77294i 0.0453203 0.0401876i
\(70\) 0 0
\(71\) 99.6917 1.40411 0.702054 0.712123i \(-0.252266\pi\)
0.702054 + 0.712123i \(0.252266\pi\)
\(72\) −7.10958 49.7697i −0.0987442 0.691246i
\(73\) 22.3583 22.3583i 0.306278 0.306278i −0.537186 0.843464i \(-0.680513\pi\)
0.843464 + 0.537186i \(0.180513\pi\)
\(74\) −29.9443 + 17.2883i −0.404653 + 0.233626i
\(75\) 0 0
\(76\) 18.5577 32.1428i 0.244180 0.422932i
\(77\) −20.9308 + 5.60840i −0.271829 + 0.0728363i
\(78\) 20.6681 + 41.3366i 0.264976 + 0.529956i
\(79\) 52.9926 30.5953i 0.670793 0.387282i −0.125584 0.992083i \(-0.540081\pi\)
0.796377 + 0.604801i \(0.206747\pi\)
\(80\) 0 0
\(81\) −22.6788 77.7603i −0.279986 0.960004i
\(82\) −21.8237 21.8237i −0.266142 0.266142i
\(83\) 49.9199 + 13.3760i 0.601444 + 0.161157i 0.546678 0.837343i \(-0.315892\pi\)
0.0547660 + 0.998499i \(0.482559\pi\)
\(84\) −18.1935 6.06456i −0.216589 0.0721971i
\(85\) 0 0
\(86\) −3.11631 + 5.39761i −0.0362362 + 0.0627630i
\(87\) −60.1198 39.6947i −0.691033 0.456261i
\(88\) −62.8384 16.8375i −0.714073 0.191335i
\(89\) 113.914i 1.27993i −0.768402 0.639967i \(-0.778948\pi\)
0.768402 0.639967i \(-0.221052\pi\)
\(90\) 0 0
\(91\) 38.1544 0.419279
\(92\) 1.23879 4.62324i 0.0134651 0.0502526i
\(93\) 129.506 + 7.77386i 1.39254 + 0.0835899i
\(94\) 11.6242 + 6.71123i 0.123662 + 0.0713960i
\(95\) 0 0
\(96\) −58.7483 66.2517i −0.611962 0.690122i
\(97\) −7.92297 + 29.5689i −0.0816801 + 0.304834i −0.994665 0.103160i \(-0.967105\pi\)
0.912985 + 0.407994i \(0.133771\pi\)
\(98\) −24.1909 + 24.1909i −0.246845 + 0.246845i
\(99\) −104.060 12.5380i −1.05111 0.126646i
\(100\) 0 0
\(101\) 29.8920 + 51.7745i 0.295961 + 0.512619i 0.975208 0.221291i \(-0.0710270\pi\)
−0.679247 + 0.733909i \(0.737694\pi\)
\(102\) −26.6662 17.6066i −0.261433 0.172614i
\(103\) −13.1011 48.8939i −0.127195 0.474698i 0.872713 0.488233i \(-0.162358\pi\)
−0.999908 + 0.0135348i \(0.995692\pi\)
\(104\) 99.2006 + 57.2735i 0.953852 + 0.550707i
\(105\) 0 0
\(106\) 27.2668 + 47.2274i 0.257234 + 0.445542i
\(107\) 14.8359 + 14.8359i 0.138653 + 0.138653i 0.773027 0.634374i \(-0.218742\pi\)
−0.634374 + 0.773027i \(0.718742\pi\)
\(108\) −70.7403 60.0038i −0.655003 0.555591i
\(109\) 115.290i 1.05770i 0.848714 + 0.528852i \(0.177377\pi\)
−0.848714 + 0.528852i \(0.822623\pi\)
\(110\) 0 0
\(111\) −43.6633 + 130.988i −0.393363 + 1.18007i
\(112\) −17.1563 + 4.59703i −0.153182 + 0.0410449i
\(113\) 27.1198 + 101.212i 0.239998 + 0.895686i 0.975832 + 0.218523i \(0.0701239\pi\)
−0.735833 + 0.677163i \(0.763209\pi\)
\(114\) 4.88123 + 23.8538i 0.0428178 + 0.209244i
\(115\) 0 0
\(116\) −82.5026 −0.711229
\(117\) 171.269 + 68.7466i 1.46384 + 0.587578i
\(118\) 14.9333 14.9333i 0.126553 0.126553i
\(119\) −22.8463 + 13.1903i −0.191986 + 0.110843i
\(120\) 0 0
\(121\) −7.31319 + 12.6668i −0.0604396 + 0.104684i
\(122\) 59.6501 15.9832i 0.488935 0.131010i
\(123\) −123.024 7.38473i −1.00019 0.0600385i
\(124\) 128.672 74.2889i 1.03768 0.599104i
\(125\) 0 0
\(126\) 11.5695 4.94189i 0.0918213 0.0392213i
\(127\) −56.0831 56.0831i −0.441599 0.441599i 0.450950 0.892549i \(-0.351085\pi\)
−0.892549 + 0.450950i \(0.851085\pi\)
\(128\) −125.657 33.6698i −0.981699 0.263045i
\(129\) 4.98957 + 24.3832i 0.0386788 + 0.189017i
\(130\) 0 0
\(131\) −2.31731 + 4.01371i −0.0176894 + 0.0306390i −0.874735 0.484602i \(-0.838964\pi\)
0.857045 + 0.515241i \(0.172298\pi\)
\(132\) −107.360 + 53.6794i −0.813332 + 0.406662i
\(133\) 19.4162 + 5.20256i 0.145987 + 0.0391170i
\(134\) 25.1300i 0.187538i
\(135\) 0 0
\(136\) −79.1999 −0.582352
\(137\) 0.615617 2.29751i 0.00449355 0.0167702i −0.963643 0.267194i \(-0.913903\pi\)
0.968136 + 0.250424i \(0.0805701\pi\)
\(138\) 1.40419 + 2.80841i 0.0101753 + 0.0203508i
\(139\) −221.925 128.128i −1.59658 0.921786i −0.992140 0.125136i \(-0.960063\pi\)
−0.604441 0.796650i \(-0.706603\pi\)
\(140\) 0 0
\(141\) 52.5112 10.7454i 0.372420 0.0762087i
\(142\) −19.3842 + 72.3429i −0.136509 + 0.509457i
\(143\) 168.862 168.862i 1.18085 1.18085i
\(144\) −85.2949 10.2770i −0.592325 0.0713680i
\(145\) 0 0
\(146\) 11.8773 + 20.5721i 0.0813513 + 0.140905i
\(147\) −8.18575 + 136.368i −0.0556854 + 0.927675i
\(148\) 40.9250 + 152.734i 0.276520 + 1.03199i
\(149\) 81.5954 + 47.1091i 0.547620 + 0.316168i 0.748161 0.663517i \(-0.230937\pi\)
−0.200542 + 0.979685i \(0.564270\pi\)
\(150\) 0 0
\(151\) 14.0475 + 24.3310i 0.0930299 + 0.161133i 0.908785 0.417265i \(-0.137011\pi\)
−0.815755 + 0.578398i \(0.803678\pi\)
\(152\) 42.6722 + 42.6722i 0.280738 + 0.280738i
\(153\) −126.320 + 18.0447i −0.825619 + 0.117939i
\(154\) 16.2793i 0.105710i
\(155\) 0 0
\(156\) 207.057 42.3704i 1.32729 0.271605i
\(157\) 37.2690 9.98621i 0.237382 0.0636064i −0.138166 0.990409i \(-0.544121\pi\)
0.375549 + 0.926803i \(0.377454\pi\)
\(158\) 11.8980 + 44.4040i 0.0753039 + 0.281038i
\(159\) 206.591 + 68.8647i 1.29932 + 0.433111i
\(160\) 0 0
\(161\) 2.59221 0.0161007
\(162\) 60.8378 1.33742i 0.375542 0.00825566i
\(163\) −140.797 + 140.797i −0.863787 + 0.863787i −0.991776 0.127989i \(-0.959148\pi\)
0.127989 + 0.991776i \(0.459148\pi\)
\(164\) −122.231 + 70.5703i −0.745313 + 0.430306i
\(165\) 0 0
\(166\) −19.4130 + 33.6243i −0.116946 + 0.202556i
\(167\) −273.273 + 73.2232i −1.63636 + 0.438462i −0.955750 0.294180i \(-0.904953\pi\)
−0.680614 + 0.732642i \(0.738287\pi\)
\(168\) 17.1810 26.0215i 0.102268 0.154890i
\(169\) −217.791 + 125.742i −1.28870 + 0.744033i
\(170\) 0 0
\(171\) 77.7823 + 58.3376i 0.454867 + 0.341156i
\(172\) 20.1542 + 20.1542i 0.117176 + 0.117176i
\(173\) −299.418 80.2289i −1.73074 0.463751i −0.750387 0.660998i \(-0.770133\pi\)
−0.980354 + 0.197248i \(0.936800\pi\)
\(174\) 40.4949 35.9087i 0.232729 0.206372i
\(175\) 0 0
\(176\) −55.5843 + 96.2748i −0.315820 + 0.547016i
\(177\) 5.05315 84.1816i 0.0285489 0.475602i
\(178\) 82.6637 + 22.1497i 0.464403 + 0.124436i
\(179\) 151.884i 0.848512i −0.905542 0.424256i \(-0.860536\pi\)
0.905542 0.424256i \(-0.139464\pi\)
\(180\) 0 0
\(181\) 48.0978 0.265734 0.132867 0.991134i \(-0.457582\pi\)
0.132867 + 0.991134i \(0.457582\pi\)
\(182\) −7.41881 + 27.6874i −0.0407627 + 0.152128i
\(183\) 135.876 205.791i 0.742489 1.12454i
\(184\) 6.73969 + 3.89116i 0.0366288 + 0.0211476i
\(185\) 0 0
\(186\) −30.8227 + 92.4669i −0.165713 + 0.497134i
\(187\) −42.7350 + 159.489i −0.228529 + 0.852883i
\(188\) 43.4036 43.4036i 0.230870 0.230870i
\(189\) 21.4741 45.4174i 0.113619 0.240304i
\(190\) 0 0
\(191\) −181.698 314.711i −0.951300 1.64770i −0.742617 0.669717i \(-0.766416\pi\)
−0.208683 0.977983i \(-0.566918\pi\)
\(192\) −42.9562 + 21.4779i −0.223730 + 0.111864i
\(193\) 3.09769 + 11.5607i 0.0160502 + 0.0599001i 0.973486 0.228745i \(-0.0734620\pi\)
−0.957436 + 0.288645i \(0.906795\pi\)
\(194\) −19.9166 11.4989i −0.102663 0.0592725i
\(195\) 0 0
\(196\) 78.2250 + 135.490i 0.399107 + 0.691274i
\(197\) −45.3414 45.3414i −0.230159 0.230159i 0.582600 0.812759i \(-0.302036\pi\)
−0.812759 + 0.582600i \(0.802036\pi\)
\(198\) 29.3321 73.0751i 0.148142 0.369066i
\(199\) 17.0082i 0.0854685i −0.999086 0.0427343i \(-0.986393\pi\)
0.999086 0.0427343i \(-0.0136069\pi\)
\(200\) 0 0
\(201\) 66.5795 + 75.0831i 0.331241 + 0.373548i
\(202\) −43.3833 + 11.6245i −0.214769 + 0.0575471i
\(203\) −11.5646 43.1598i −0.0569686 0.212610i
\(204\) −109.335 + 96.9524i −0.535957 + 0.475257i
\(205\) 0 0
\(206\) 38.0281 0.184602
\(207\) 11.6360 + 4.67065i 0.0562126 + 0.0225635i
\(208\) 138.411 138.411i 0.665436 0.665436i
\(209\) 108.957 62.9061i 0.521323 0.300986i
\(210\) 0 0
\(211\) −148.887 + 257.879i −0.705624 + 1.22218i 0.260842 + 0.965382i \(0.416000\pi\)
−0.966466 + 0.256795i \(0.917333\pi\)
\(212\) 240.889 64.5460i 1.13627 0.304462i
\(213\) 133.749 + 267.501i 0.627932 + 1.25588i
\(214\) −13.6506 + 7.88119i −0.0637879 + 0.0368280i
\(215\) 0 0
\(216\) 124.008 85.8497i 0.574111 0.397452i
\(217\) 56.8993 + 56.8993i 0.262209 + 0.262209i
\(218\) −83.6620 22.4172i −0.383771 0.102831i
\(219\) 89.9903 + 29.9971i 0.410915 + 0.136973i
\(220\) 0 0
\(221\) 145.365 251.779i 0.657760 1.13927i
\(222\) −86.5638 57.1545i −0.389927 0.257453i
\(223\) −30.8773 8.27356i −0.138463 0.0371012i 0.188922 0.981992i \(-0.439501\pi\)
−0.327385 + 0.944891i \(0.606167\pi\)
\(224\) 54.9194i 0.245176i
\(225\) 0 0
\(226\) −78.7197 −0.348317
\(227\) 101.241 377.838i 0.445997 1.66449i −0.267292 0.963616i \(-0.586129\pi\)
0.713289 0.700870i \(-0.247205\pi\)
\(228\) 111.146 + 6.67174i 0.487482 + 0.0292620i
\(229\) 217.228 + 125.417i 0.948594 + 0.547671i 0.892644 0.450762i \(-0.148848\pi\)
0.0559502 + 0.998434i \(0.482181\pi\)
\(230\) 0 0
\(231\) −43.1304 48.6390i −0.186712 0.210558i
\(232\) 34.7193 129.574i 0.149652 0.558509i
\(233\) −239.086 + 239.086i −1.02612 + 1.02612i −0.0264709 + 0.999650i \(0.508427\pi\)
−0.999650 + 0.0264709i \(0.991573\pi\)
\(234\) −83.1890 + 110.917i −0.355508 + 0.474004i
\(235\) 0 0
\(236\) −48.2891 83.6392i −0.204615 0.354404i
\(237\) 153.193 + 101.147i 0.646382 + 0.426780i
\(238\) −5.12950 19.1436i −0.0215525 0.0804352i
\(239\) −33.8483 19.5423i −0.141625 0.0817672i 0.427513 0.904009i \(-0.359390\pi\)
−0.569138 + 0.822242i \(0.692723\pi\)
\(240\) 0 0
\(241\) −41.8525 72.4907i −0.173662 0.300791i 0.766036 0.642798i \(-0.222227\pi\)
−0.939697 + 0.342007i \(0.888893\pi\)
\(242\) −7.76989 7.76989i −0.0321070 0.0321070i
\(243\) 178.227 165.179i 0.733443 0.679751i
\(244\) 282.408i 1.15741i
\(245\) 0 0
\(246\) 29.2798 87.8384i 0.119024 0.357067i
\(247\) −213.978 + 57.3352i −0.866307 + 0.232126i
\(248\) 62.5254 + 233.348i 0.252119 + 0.940920i
\(249\) 31.0824 + 151.895i 0.124829 + 0.610020i
\(250\) 0 0
\(251\) −116.674 −0.464837 −0.232418 0.972616i \(-0.574664\pi\)
−0.232418 + 0.972616i \(0.574664\pi\)
\(252\) −8.13594 56.9546i −0.0322855 0.226011i
\(253\) 11.4725 11.4725i 0.0453458 0.0453458i
\(254\) 51.6025 29.7927i 0.203159 0.117294i
\(255\) 0 0
\(256\) 16.8485 29.1825i 0.0658146 0.113994i
\(257\) −4.62189 + 1.23843i −0.0179840 + 0.00481880i −0.267800 0.963475i \(-0.586297\pi\)
0.249816 + 0.968293i \(0.419630\pi\)
\(258\) −18.6643 1.12036i −0.0723422 0.00434247i
\(259\) −74.1637 + 42.8184i −0.286346 + 0.165322i
\(260\) 0 0
\(261\) 25.8536 214.574i 0.0990559 0.822124i
\(262\) −2.46203 2.46203i −0.00939706 0.00939706i
\(263\) −94.4750 25.3145i −0.359221 0.0962529i 0.0746949 0.997206i \(-0.476202\pi\)
−0.433916 + 0.900954i \(0.642868\pi\)
\(264\) −39.1261 191.203i −0.148205 0.724255i
\(265\) 0 0
\(266\) −7.55065 + 13.0781i −0.0283859 + 0.0491658i
\(267\) 305.664 152.831i 1.14481 0.572400i
\(268\) 111.006 + 29.7440i 0.414201 + 0.110985i
\(269\) 212.871i 0.791340i −0.918393 0.395670i \(-0.870512\pi\)
0.918393 0.395670i \(-0.129488\pi\)
\(270\) 0 0
\(271\) −180.243 −0.665102 −0.332551 0.943085i \(-0.607909\pi\)
−0.332551 + 0.943085i \(0.607909\pi\)
\(272\) −35.0285 + 130.728i −0.128781 + 0.480618i
\(273\) 51.1891 + 102.379i 0.187506 + 0.375016i
\(274\) 1.54753 + 0.893465i 0.00564791 + 0.00326082i
\(275\) 0 0
\(276\) 14.0675 2.87864i 0.0509691 0.0104299i
\(277\) 84.7048 316.123i 0.305794 1.14124i −0.626467 0.779448i \(-0.715499\pi\)
0.932260 0.361789i \(-0.117834\pi\)
\(278\) 136.130 136.130i 0.489676 0.489676i
\(279\) 152.890 + 357.932i 0.547994 + 1.28291i
\(280\) 0 0
\(281\) −15.6356 27.0816i −0.0556426 0.0963758i 0.836862 0.547413i \(-0.184387\pi\)
−0.892505 + 0.451037i \(0.851054\pi\)
\(282\) −2.41278 + 40.1950i −0.00855596 + 0.142535i
\(283\) 52.4715 + 195.826i 0.185412 + 0.691966i 0.994542 + 0.104337i \(0.0332719\pi\)
−0.809130 + 0.587629i \(0.800061\pi\)
\(284\) 296.614 + 171.250i 1.04442 + 0.602995i
\(285\) 0 0
\(286\) 89.7036 + 155.371i 0.313649 + 0.543256i
\(287\) −54.0511 54.0511i −0.188331 0.188331i
\(288\) 98.9537 246.524i 0.343589 0.855986i
\(289\) 87.9840i 0.304443i
\(290\) 0 0
\(291\) −89.9715 + 18.4110i −0.309181 + 0.0632679i
\(292\) 104.930 28.1159i 0.359350 0.0962875i
\(293\) −10.0935 37.6696i −0.0344490 0.128565i 0.946560 0.322528i \(-0.104533\pi\)
−0.981009 + 0.193963i \(0.937866\pi\)
\(294\) −97.3662 32.4558i −0.331178 0.110394i
\(295\) 0 0
\(296\) −257.098 −0.868576
\(297\) −105.967 296.045i −0.356793 0.996784i
\(298\) −50.0510 + 50.0510i −0.167957 + 0.167957i
\(299\) −24.7403 + 14.2838i −0.0827435 + 0.0477720i
\(300\) 0 0
\(301\) −7.71824 + 13.3684i −0.0256420 + 0.0444132i
\(302\) −20.3876 + 5.46285i −0.0675087 + 0.0180889i
\(303\) −98.8217 + 149.671i −0.326144 + 0.493964i
\(304\) 89.3082 51.5621i 0.293777 0.169612i
\(305\) 0 0
\(306\) 11.4674 95.1747i 0.0374751 0.311028i
\(307\) 28.4359 + 28.4359i 0.0926251 + 0.0926251i 0.751901 0.659276i \(-0.229137\pi\)
−0.659276 + 0.751901i \(0.729137\pi\)
\(308\) −71.9100 19.2682i −0.233474 0.0625591i
\(309\) 113.619 100.751i 0.367701 0.326057i
\(310\) 0 0
\(311\) −215.953 + 374.041i −0.694381 + 1.20270i 0.276007 + 0.961156i \(0.410989\pi\)
−0.970389 + 0.241548i \(0.922345\pi\)
\(312\) −20.5906 + 343.024i −0.0659956 + 1.09943i
\(313\) 200.386 + 53.6933i 0.640211 + 0.171544i 0.564299 0.825571i \(-0.309147\pi\)
0.0759119 + 0.997115i \(0.475813\pi\)
\(314\) 28.9866i 0.0923141i
\(315\) 0 0
\(316\) 210.226 0.665274
\(317\) 91.9060 342.998i 0.289924 1.08201i −0.655241 0.755420i \(-0.727433\pi\)
0.945165 0.326593i \(-0.105900\pi\)
\(318\) −90.1428 + 136.526i −0.283468 + 0.429328i
\(319\) −242.196 139.832i −0.759237 0.438345i
\(320\) 0 0
\(321\) −19.9046 + 59.7132i −0.0620082 + 0.186022i
\(322\) −0.504034 + 1.88108i −0.00156532 + 0.00584187i
\(323\) 108.306 108.306i 0.335311 0.335311i
\(324\) 66.1000 270.319i 0.204012 0.834319i
\(325\) 0 0
\(326\) −74.7950 129.549i −0.229432 0.397389i
\(327\) −309.356 + 154.676i −0.946042 + 0.473016i
\(328\) −59.3957 221.668i −0.181084 0.675816i
\(329\) 28.7899 + 16.6218i 0.0875072 + 0.0505223i
\(330\) 0 0
\(331\) −187.451 324.675i −0.566318 0.980891i −0.996926 0.0783519i \(-0.975034\pi\)
0.430608 0.902539i \(-0.358299\pi\)
\(332\) 125.550 + 125.550i 0.378163 + 0.378163i
\(333\) −410.059 + 58.5767i −1.23141 + 0.175906i
\(334\) 212.543i 0.636355i
\(335\) 0 0
\(336\) −35.3526 39.8678i −0.105216 0.118654i
\(337\) −143.584 + 38.4732i −0.426065 + 0.114164i −0.465478 0.885059i \(-0.654118\pi\)
0.0394135 + 0.999223i \(0.487451\pi\)
\(338\) −48.8988 182.493i −0.144671 0.539920i
\(339\) −235.197 + 208.560i −0.693797 + 0.615221i
\(340\) 0 0
\(341\) 503.643 1.47696
\(342\) −57.4578 + 45.1007i −0.168005 + 0.131873i
\(343\) −124.383 + 124.383i −0.362633 + 0.362633i
\(344\) −40.1345 + 23.1717i −0.116670 + 0.0673595i
\(345\) 0 0
\(346\) 116.439 201.678i 0.336528 0.582884i
\(347\) −233.258 + 62.5014i −0.672214 + 0.180119i −0.578752 0.815504i \(-0.696460\pi\)
−0.0934622 + 0.995623i \(0.529793\pi\)
\(348\) −110.688 221.378i −0.318069 0.636144i
\(349\) −331.191 + 191.213i −0.948971 + 0.547889i −0.892761 0.450530i \(-0.851235\pi\)
−0.0562101 + 0.998419i \(0.517902\pi\)
\(350\) 0 0
\(351\) 45.3127 + 551.796i 0.129096 + 1.57207i
\(352\) −243.059 243.059i −0.690509 0.690509i
\(353\) 503.013 + 134.782i 1.42497 + 0.381819i 0.887243 0.461302i \(-0.152618\pi\)
0.537724 + 0.843121i \(0.319284\pi\)
\(354\) 60.1052 + 20.0353i 0.169789 + 0.0565969i
\(355\) 0 0
\(356\) 195.682 338.931i 0.549668 0.952052i
\(357\) −66.0448 43.6067i −0.184999 0.122148i
\(358\) 110.217 + 29.5325i 0.307868 + 0.0824931i
\(359\) 326.956i 0.910741i 0.890302 + 0.455370i \(0.150493\pi\)
−0.890302 + 0.455370i \(0.849507\pi\)
\(360\) 0 0
\(361\) 244.292 0.676709
\(362\) −9.35222 + 34.9030i −0.0258349 + 0.0964170i
\(363\) −43.8003 2.62919i −0.120662 0.00724296i
\(364\) 113.521 + 65.5417i 0.311872 + 0.180060i
\(365\) 0 0
\(366\) 122.916 + 138.615i 0.335836 + 0.378729i
\(367\) −135.325 + 505.039i −0.368733 + 1.37613i 0.493557 + 0.869713i \(0.335696\pi\)
−0.862290 + 0.506415i \(0.830970\pi\)
\(368\) 9.40362 9.40362i 0.0255533 0.0255533i
\(369\) −145.237 340.016i −0.393597 0.921452i
\(370\) 0 0
\(371\) 67.5322 + 116.969i 0.182028 + 0.315281i
\(372\) 371.969 + 245.596i 0.999916 + 0.660204i
\(373\) −6.28693 23.4631i −0.0168550 0.0629039i 0.956986 0.290134i \(-0.0936998\pi\)
−0.973841 + 0.227230i \(0.927033\pi\)
\(374\) −107.426 62.0227i −0.287237 0.165836i
\(375\) 0 0
\(376\) 49.9020 + 86.4328i 0.132718 + 0.229874i
\(377\) 348.197 + 348.197i 0.923598 + 0.923598i
\(378\) 28.7825 + 24.4141i 0.0761441 + 0.0645874i
\(379\) 364.939i 0.962900i 0.876474 + 0.481450i \(0.159890\pi\)
−0.876474 + 0.481450i \(0.840110\pi\)
\(380\) 0 0
\(381\) 75.2442 225.730i 0.197491 0.592466i
\(382\) 263.705 70.6595i 0.690327 0.184972i
\(383\) 0.870084 + 3.24720i 0.00227176 + 0.00847832i 0.967052 0.254577i \(-0.0819364\pi\)
−0.964781 + 0.263056i \(0.915270\pi\)
\(384\) −78.2401 382.347i −0.203750 0.995696i
\(385\) 0 0
\(386\) −8.99155 −0.0232942
\(387\) −58.7331 + 46.1018i −0.151765 + 0.119126i
\(388\) −74.3668 + 74.3668i −0.191667 + 0.191667i
\(389\) −131.808 + 76.0995i −0.338838 + 0.195628i −0.659758 0.751478i \(-0.729341\pi\)
0.320920 + 0.947106i \(0.396008\pi\)
\(390\) 0 0
\(391\) 9.87610 17.1059i 0.0252586 0.0437491i
\(392\) −245.712 + 65.8383i −0.626816 + 0.167955i
\(393\) −13.8789 0.833107i −0.0353153 0.00211986i
\(394\) 41.7190 24.0865i 0.105886 0.0611332i
\(395\) 0 0
\(396\) −288.074 216.059i −0.727461 0.545604i
\(397\) 275.868 + 275.868i 0.694882 + 0.694882i 0.963302 0.268420i \(-0.0865016\pi\)
−0.268420 + 0.963302i \(0.586502\pi\)
\(398\) 12.3423 + 3.30711i 0.0310108 + 0.00830933i
\(399\) 12.0894 + 59.0792i 0.0302994 + 0.148068i
\(400\) 0 0
\(401\) −337.489 + 584.548i −0.841618 + 1.45773i 0.0469080 + 0.998899i \(0.485063\pi\)
−0.888526 + 0.458826i \(0.848270\pi\)
\(402\) −67.4311 + 33.7152i −0.167739 + 0.0838688i
\(403\) −856.582 229.521i −2.12551 0.569530i
\(404\) 205.394i 0.508401i
\(405\) 0 0
\(406\) 33.5683 0.0826805
\(407\) −138.726 + 517.733i −0.340850 + 1.27207i
\(408\) −106.257 212.516i −0.260434 0.520873i
\(409\) 375.213 + 216.629i 0.917390 + 0.529655i 0.882802 0.469746i \(-0.155655\pi\)
0.0345887 + 0.999402i \(0.488988\pi\)
\(410\) 0 0
\(411\) 6.99082 1.43054i 0.0170093 0.00348063i
\(412\) 45.0101 167.980i 0.109248 0.407718i
\(413\) 36.9856 36.9856i 0.0895534 0.0895534i
\(414\) −5.65186 + 7.53570i −0.0136518 + 0.0182022i
\(415\) 0 0
\(416\) 302.621 + 524.155i 0.727455 + 1.25999i
\(417\) 46.0639 767.388i 0.110465 1.84026i
\(418\) 24.4631 + 91.2977i 0.0585243 + 0.218416i
\(419\) −432.869 249.917i −1.03310 0.596461i −0.115229 0.993339i \(-0.536760\pi\)
−0.917871 + 0.396878i \(0.870093\pi\)
\(420\) 0 0
\(421\) 15.0425 + 26.0544i 0.0357304 + 0.0618869i 0.883338 0.468737i \(-0.155291\pi\)
−0.847607 + 0.530624i \(0.821958\pi\)
\(422\) −158.185 158.185i −0.374845 0.374845i
\(423\) 99.2837 + 126.486i 0.234713 + 0.299022i
\(424\) 405.490i 0.956344i
\(425\) 0 0
\(426\) −220.123 + 45.0441i −0.516721 + 0.105737i
\(427\) 147.737 39.5859i 0.345987 0.0927071i
\(428\) 18.6564 + 69.6265i 0.0435896 + 0.162679i
\(429\) 679.655 + 226.554i 1.58428 + 0.528099i
\(430\) 0 0
\(431\) 515.749 1.19663 0.598316 0.801260i \(-0.295837\pi\)
0.598316 + 0.801260i \(0.295837\pi\)
\(432\) −86.8581 242.659i −0.201060 0.561710i
\(433\) 305.797 305.797i 0.706229 0.706229i −0.259511 0.965740i \(-0.583561\pi\)
0.965740 + 0.259511i \(0.0835613\pi\)
\(434\) −52.3535 + 30.2263i −0.120630 + 0.0696458i
\(435\) 0 0
\(436\) −198.045 + 343.024i −0.454231 + 0.786752i
\(437\) −14.5377 + 3.89535i −0.0332669 + 0.00891385i
\(438\) −39.2658 + 59.4703i −0.0896480 + 0.135777i
\(439\) 437.591 252.643i 0.996790 0.575497i 0.0894929 0.995987i \(-0.471475\pi\)
0.907297 + 0.420491i \(0.138142\pi\)
\(440\) 0 0
\(441\) −376.897 + 160.991i −0.854642 + 0.365059i
\(442\) 154.443 + 154.443i 0.349418 + 0.349418i
\(443\) −195.215 52.3076i −0.440665 0.118076i 0.0316632 0.999499i \(-0.489920\pi\)
−0.472328 + 0.881423i \(0.656586\pi\)
\(444\) −354.923 + 314.726i −0.799377 + 0.708843i
\(445\) 0 0
\(446\) 12.0077 20.7979i 0.0269231 0.0466321i
\(447\) −16.9364 + 282.147i −0.0378890 + 0.631201i
\(448\) −28.7722 7.70948i −0.0642236 0.0172087i
\(449\) 145.089i 0.323138i −0.986861 0.161569i \(-0.948345\pi\)
0.986861 0.161569i \(-0.0516554\pi\)
\(450\) 0 0
\(451\) −478.433 −1.06083
\(452\) −93.1728 + 347.726i −0.206135 + 0.769305i
\(453\) −46.4405 + 70.3367i −0.102518 + 0.155269i
\(454\) 254.499 + 146.935i 0.560570 + 0.323645i
\(455\) 0 0
\(456\) −57.2514 + 171.752i −0.125551 + 0.376649i
\(457\) −76.7746 + 286.527i −0.167997 + 0.626973i 0.829642 + 0.558296i \(0.188545\pi\)
−0.997639 + 0.0686775i \(0.978122\pi\)
\(458\) −133.249 + 133.249i −0.290936 + 0.290936i
\(459\) −217.894 314.743i −0.474714 0.685714i
\(460\) 0 0
\(461\) 143.044 + 247.759i 0.310291 + 0.537439i 0.978425 0.206601i \(-0.0662403\pi\)
−0.668135 + 0.744040i \(0.732907\pi\)
\(462\) 43.6821 21.8408i 0.0945499 0.0472745i
\(463\) −64.7653 241.707i −0.139882 0.522046i −0.999930 0.0118333i \(-0.996233\pi\)
0.860048 0.510213i \(-0.170433\pi\)
\(464\) −198.521 114.616i −0.427846 0.247017i
\(465\) 0 0
\(466\) −127.008 219.985i −0.272550 0.472071i
\(467\) 71.3291 + 71.3291i 0.152739 + 0.152739i 0.779340 0.626601i \(-0.215554\pi\)
−0.626601 + 0.779340i \(0.715554\pi\)
\(468\) 391.486 + 498.749i 0.836509 + 1.06570i
\(469\) 62.2401i 0.132708i
\(470\) 0 0
\(471\) 76.7972 + 86.6057i 0.163051 + 0.183876i
\(472\) 151.681 40.6427i 0.321357 0.0861074i
\(473\) 25.0061 + 93.3241i 0.0528670 + 0.197302i
\(474\) −103.186 + 91.4995i −0.217692 + 0.193037i
\(475\) 0 0
\(476\) −90.6334 −0.190406
\(477\) 92.3858 + 646.735i 0.193681 + 1.35584i
\(478\) 20.7628 20.7628i 0.0434367 0.0434367i
\(479\) 169.803 98.0357i 0.354494 0.204667i −0.312169 0.950027i \(-0.601055\pi\)
0.666663 + 0.745359i \(0.267722\pi\)
\(480\) 0 0
\(481\) 471.883 817.325i 0.981046 1.69922i
\(482\) 60.7419 16.2758i 0.126021 0.0337671i
\(483\) 3.47779 + 6.95565i 0.00720040 + 0.0144009i
\(484\) −43.5181 + 25.1252i −0.0899135 + 0.0519116i
\(485\) 0 0
\(486\) 85.2105 + 161.451i 0.175330 + 0.332204i
\(487\) −660.124 660.124i −1.35549 1.35549i −0.879391 0.476100i \(-0.842050\pi\)
−0.476100 0.879391i \(-0.657950\pi\)
\(488\) 443.534 + 118.845i 0.908882 + 0.243534i
\(489\) −566.697 188.901i −1.15889 0.386301i
\(490\) 0 0
\(491\) 393.999 682.426i 0.802442 1.38987i −0.115562 0.993300i \(-0.536867\pi\)
0.918004 0.396570i \(-0.129800\pi\)
\(492\) −353.349 233.302i −0.718190 0.474192i
\(493\) −328.870 88.1204i −0.667079 0.178743i
\(494\) 166.425i 0.336892i
\(495\) 0 0
\(496\) 412.820 0.832299
\(497\) −48.0093 + 179.173i −0.0965983 + 0.360510i
\(498\) −116.269 6.97925i −0.233472 0.0140146i
\(499\) −144.756 83.5751i −0.290093 0.167485i 0.347891 0.937535i \(-0.386898\pi\)
−0.637984 + 0.770050i \(0.720231\pi\)
\(500\) 0 0
\(501\) −563.110 635.031i −1.12397 1.26753i
\(502\) 22.6863 84.6664i 0.0451918 0.168658i
\(503\) −249.990 + 249.990i −0.496998 + 0.496998i −0.910502 0.413504i \(-0.864305\pi\)
0.413504 + 0.910502i \(0.364305\pi\)
\(504\) 92.8737 + 11.1901i 0.184273 + 0.0222027i
\(505\) 0 0
\(506\) 6.09446 + 10.5559i 0.0120444 + 0.0208615i
\(507\) −629.596 415.696i −1.24181 0.819914i
\(508\) −70.5254 263.204i −0.138830 0.518119i
\(509\) −95.6645 55.2319i −0.187946 0.108511i 0.403075 0.915167i \(-0.367941\pi\)
−0.591021 + 0.806656i \(0.701275\pi\)
\(510\) 0 0
\(511\) 29.4167 + 50.9513i 0.0575670 + 0.0997089i
\(512\) −350.050 350.050i −0.683691 0.683691i
\(513\) −52.1814 + 286.980i −0.101718 + 0.559415i
\(514\) 3.59475i 0.00699368i
\(515\) 0 0
\(516\) −27.0400 + 81.1190i −0.0524031 + 0.157207i
\(517\) 200.981 53.8526i 0.388744 0.104164i
\(518\) −16.6514 62.1438i −0.0321455 0.119969i
\(519\) −186.432 911.062i −0.359213 1.75542i
\(520\) 0 0
\(521\) −415.088 −0.796715 −0.398357 0.917230i \(-0.630420\pi\)
−0.398357 + 0.917230i \(0.630420\pi\)
\(522\) 150.682 + 60.4833i 0.288664 + 0.115868i
\(523\) 384.585 384.585i 0.735344 0.735344i −0.236329 0.971673i \(-0.575944\pi\)
0.971673 + 0.236329i \(0.0759444\pi\)
\(524\) −13.7895 + 7.96136i −0.0263158 + 0.0151934i
\(525\) 0 0
\(526\) 36.7398 63.6352i 0.0698475 0.120979i
\(527\) 592.257 158.695i 1.12383 0.301129i
\(528\) −332.907 19.9833i −0.630505 0.0378472i
\(529\) 456.447 263.530i 0.862848 0.498166i
\(530\) 0 0
\(531\) 232.663 99.3815i 0.438160 0.187159i
\(532\) 48.8325 + 48.8325i 0.0917904 + 0.0917904i
\(533\) 813.705 + 218.032i 1.52665 + 0.409065i
\(534\) 51.4702 + 251.527i 0.0963862 + 0.471024i
\(535\) 0 0
\(536\) −93.4285 + 161.823i −0.174307 + 0.301908i
\(537\) 407.547 203.772i 0.758933 0.379463i
\(538\) 154.473 + 41.3909i 0.287125 + 0.0769348i
\(539\) 530.329i 0.983912i
\(540\) 0 0
\(541\) 251.489 0.464859 0.232430 0.972613i \(-0.425332\pi\)
0.232430 + 0.972613i \(0.425332\pi\)
\(542\) 35.0467 130.796i 0.0646618 0.241321i
\(543\) 64.5295 + 129.060i 0.118839 + 0.237680i
\(544\) −362.411 209.238i −0.666196 0.384628i
\(545\) 0 0
\(546\) −84.2465 + 17.2394i −0.154298 + 0.0315741i
\(547\) 144.553 539.479i 0.264265 0.986251i −0.698433 0.715675i \(-0.746119\pi\)
0.962699 0.270576i \(-0.0872142\pi\)
\(548\) 5.77833 5.77833i 0.0105444 0.0105444i
\(549\) 734.491 + 88.4973i 1.33787 + 0.161197i
\(550\) 0 0
\(551\) 129.714 + 224.671i 0.235415 + 0.407751i
\(552\) −1.39893 + 23.3050i −0.00253429 + 0.0422193i
\(553\) 29.4681 + 109.976i 0.0532876 + 0.198872i
\(554\) 212.930 + 122.935i 0.384349 + 0.221904i
\(555\) 0 0
\(556\) −440.197 762.444i −0.791722 1.37130i
\(557\) −302.419 302.419i −0.542943 0.542943i 0.381447 0.924391i \(-0.375426\pi\)
−0.924391 + 0.381447i \(0.875426\pi\)
\(558\) −289.468 + 41.3504i −0.518760 + 0.0741046i
\(559\) 170.119i 0.304327i
\(560\) 0 0
\(561\) −485.290 + 99.3053i −0.865044 + 0.177015i
\(562\) 22.6924 6.08041i 0.0403780 0.0108192i
\(563\) −234.221 874.123i −0.416022 1.55262i −0.782779 0.622300i \(-0.786198\pi\)
0.366756 0.930317i \(-0.380468\pi\)
\(564\) 174.696 + 58.2327i 0.309745 + 0.103250i
\(565\) 0 0
\(566\) −152.307 −0.269094
\(567\) 150.678 3.31241i 0.265747 0.00584199i
\(568\) −393.780 + 393.780i −0.693274 + 0.693274i
\(569\) −194.081 + 112.053i −0.341092 + 0.196929i −0.660755 0.750602i \(-0.729764\pi\)
0.319663 + 0.947531i \(0.396430\pi\)
\(570\) 0 0
\(571\) −28.3061 + 49.0275i −0.0495728 + 0.0858626i −0.889747 0.456454i \(-0.849119\pi\)
0.840174 + 0.542317i \(0.182453\pi\)
\(572\) 792.488 212.347i 1.38547 0.371235i
\(573\) 600.687 909.774i 1.04832 1.58774i
\(574\) 49.7329 28.7133i 0.0866426 0.0500232i
\(575\) 0 0
\(576\) −115.263 86.4483i −0.200109 0.150084i
\(577\) 450.543 + 450.543i 0.780838 + 0.780838i 0.979972 0.199135i \(-0.0638131\pi\)
−0.199135 + 0.979972i \(0.563813\pi\)
\(578\) 63.8471 + 17.1078i 0.110462 + 0.0295982i
\(579\) −26.8648 + 23.8222i −0.0463986 + 0.0411437i
\(580\) 0 0
\(581\) −48.0806 + 83.2781i −0.0827550 + 0.143336i
\(582\) 4.13400 68.8692i 0.00710309 0.118332i
\(583\) 816.557 + 218.796i 1.40061 + 0.375293i
\(584\) 176.630i 0.302448i
\(585\) 0 0
\(586\) 29.2982 0.0499969
\(587\) 89.8623 335.371i 0.153087 0.571330i −0.846174 0.532906i \(-0.821100\pi\)
0.999262 0.0384234i \(-0.0122336\pi\)
\(588\) −258.609 + 391.677i −0.439810 + 0.666118i
\(589\) −404.606 233.599i −0.686937 0.396603i
\(590\) 0 0
\(591\) 60.8326 182.495i 0.102932 0.308791i
\(592\) −113.709 + 424.369i −0.192077 + 0.716840i
\(593\) 235.628 235.628i 0.397350 0.397350i −0.479948 0.877297i \(-0.659344\pi\)
0.877297 + 0.479948i \(0.159344\pi\)
\(594\) 235.434 19.3335i 0.396354 0.0325480i
\(595\) 0 0
\(596\) 161.848 + 280.329i 0.271557 + 0.470351i
\(597\) 45.6380 22.8188i 0.0764455 0.0382224i
\(598\) −5.55474 20.7306i −0.00928887 0.0346665i
\(599\) 513.829 + 296.659i 0.857811 + 0.495258i 0.863279 0.504727i \(-0.168407\pi\)
−0.00546746 + 0.999985i \(0.501740\pi\)
\(600\) 0 0
\(601\) 269.249 + 466.354i 0.448002 + 0.775963i 0.998256 0.0590349i \(-0.0188023\pi\)
−0.550254 + 0.834998i \(0.685469\pi\)
\(602\) −8.20024 8.20024i −0.0136217 0.0136217i
\(603\) −112.144 + 279.386i −0.185977 + 0.463326i
\(604\) 96.5233i 0.159807i
\(605\) 0 0
\(606\) −89.3962 100.814i −0.147519 0.166360i
\(607\) 395.280 105.915i 0.651203 0.174489i 0.0819303 0.996638i \(-0.473892\pi\)
0.569273 + 0.822149i \(0.307225\pi\)
\(608\) 82.5281 + 307.999i 0.135737 + 0.506577i
\(609\) 100.295 88.9357i 0.164687 0.146036i
\(610\) 0 0
\(611\) −366.364 −0.599614
\(612\) −406.839 163.303i −0.664769 0.266836i
\(613\) 10.5026 10.5026i 0.0171331 0.0171331i −0.698488 0.715621i \(-0.746144\pi\)
0.715621 + 0.698488i \(0.246144\pi\)
\(614\) −26.1641 + 15.1059i −0.0426126 + 0.0246024i
\(615\) 0 0
\(616\) 60.5232 104.829i 0.0982520 0.170177i
\(617\) −421.900 + 113.048i −0.683793 + 0.183222i −0.583960 0.811782i \(-0.698498\pi\)
−0.0998331 + 0.995004i \(0.531831\pi\)
\(618\) 51.0196 + 102.040i 0.0825560 + 0.165114i
\(619\) 8.91186 5.14527i 0.0143972 0.00831222i −0.492784 0.870152i \(-0.664021\pi\)
0.507181 + 0.861839i \(0.330687\pi\)
\(620\) 0 0
\(621\) 3.07855 + 37.4890i 0.00495740 + 0.0603688i
\(622\) −229.439 229.439i −0.368873 0.368873i
\(623\) 204.735 + 54.8585i 0.328627 + 0.0880554i
\(624\) 557.091 + 185.699i 0.892775 + 0.297595i
\(625\) 0 0
\(626\) −77.9268 + 134.973i −0.124484 + 0.215612i
\(627\) 314.975 + 207.965i 0.502352 + 0.331682i
\(628\) 128.042 + 34.3086i 0.203888 + 0.0546316i
\(629\) 652.537i 1.03742i
\(630\) 0 0
\(631\) 154.559 0.244943 0.122472 0.992472i \(-0.460918\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(632\) −88.4689 + 330.170i −0.139982 + 0.522421i
\(633\) −891.715 53.5268i −1.40871 0.0845606i
\(634\) 231.032 + 133.386i 0.364403 + 0.210388i
\(635\) 0 0
\(636\) 496.379 + 559.777i 0.780471 + 0.880153i
\(637\) 241.682 901.968i 0.379406 1.41596i
\(638\) 148.565 148.565i 0.232860 0.232860i
\(639\) −538.341 + 717.776i −0.842474 + 1.12328i
\(640\) 0 0
\(641\) −302.816 524.493i −0.472412 0.818242i 0.527089 0.849810i \(-0.323283\pi\)
−0.999502 + 0.0315680i \(0.989950\pi\)
\(642\) −39.4616 26.0549i −0.0614666 0.0405839i
\(643\) 120.761 + 450.687i 0.187809 + 0.700912i 0.994012 + 0.109273i \(0.0348523\pi\)
−0.806203 + 0.591639i \(0.798481\pi\)
\(644\) 7.71265 + 4.45290i 0.0119762 + 0.00691444i
\(645\) 0 0
\(646\) 57.5346 + 99.6529i 0.0890629 + 0.154261i
\(647\) 117.084 + 117.084i 0.180965 + 0.180965i 0.791776 0.610811i \(-0.209157\pi\)
−0.610811 + 0.791776i \(0.709157\pi\)
\(648\) 396.732 + 217.571i 0.612241 + 0.335757i
\(649\) 327.378i 0.504434i
\(650\) 0 0
\(651\) −76.3392 + 229.015i −0.117265 + 0.351789i
\(652\) −660.778 + 177.055i −1.01346 + 0.271557i
\(653\) 86.4506 + 322.638i 0.132390 + 0.494086i 0.999995 0.00316798i \(-0.00100840\pi\)
−0.867605 + 0.497254i \(0.834342\pi\)
\(654\) −52.0918 254.565i −0.0796511 0.389242i
\(655\) 0 0
\(656\) −392.156 −0.597799
\(657\) 40.2428 + 281.715i 0.0612524 + 0.428790i
\(658\) −17.6599 + 17.6599i −0.0268387 + 0.0268387i
\(659\) 1062.27 613.303i 1.61195 0.930657i 0.623027 0.782200i \(-0.285903\pi\)
0.988919 0.148457i \(-0.0474308\pi\)
\(660\) 0 0
\(661\) 79.8777 138.352i 0.120844 0.209307i −0.799257 0.600989i \(-0.794773\pi\)
0.920101 + 0.391682i \(0.128107\pi\)
\(662\) 272.054 72.8967i 0.410958 0.110116i
\(663\) 870.622 + 52.2607i 1.31316 + 0.0788246i
\(664\) −250.017 + 144.347i −0.376532 + 0.217391i
\(665\) 0 0
\(666\) 37.2254 308.956i 0.0558940 0.463897i
\(667\) 23.6565 + 23.6565i 0.0354670 + 0.0354670i
\(668\) −938.856 251.566i −1.40547 0.376595i
\(669\) −19.2257 93.9528i −0.0287379 0.140438i
\(670\) 0 0
\(671\) 478.648 829.042i 0.713335 1.23553i
\(672\) 147.364 73.6815i 0.219292 0.109645i
\(673\) 45.9717 + 12.3181i 0.0683086 + 0.0183032i 0.292811 0.956170i \(-0.405409\pi\)
−0.224503 + 0.974473i \(0.572076\pi\)
\(674\) 111.675i 0.165690i
\(675\) 0 0
\(676\) −863.996 −1.27810
\(677\) −37.9504 + 141.633i −0.0560567 + 0.209206i −0.988274 0.152694i \(-0.951205\pi\)
0.932217 + 0.361900i \(0.117872\pi\)
\(678\) −105.613 211.228i −0.155771 0.311545i
\(679\) −49.3279 28.4795i −0.0726479 0.0419433i
\(680\) 0 0
\(681\) 1149.68 235.260i 1.68822 0.345462i
\(682\) −97.9293 + 365.477i −0.143591 + 0.535890i
\(683\) −882.608 + 882.608i −1.29225 + 1.29225i −0.358860 + 0.933391i \(0.616835\pi\)
−0.933391 + 0.358860i \(0.883165\pi\)
\(684\) 131.215 + 307.187i 0.191834 + 0.449104i
\(685\) 0 0
\(686\) −66.0754 114.446i −0.0963198 0.166831i
\(687\) −45.0890 + 751.148i −0.0656318 + 1.09337i
\(688\) 20.4967 + 76.4948i 0.0297917 + 0.111184i
\(689\) −1289.07 744.243i −1.87092 1.08018i
\(690\) 0 0
\(691\) 253.832 + 439.650i 0.367340 + 0.636252i 0.989149 0.146917i \(-0.0469351\pi\)
−0.621808 + 0.783169i \(0.713602\pi\)
\(692\) −753.047 753.047i −1.08822 1.08822i
\(693\) 72.6473 180.987i 0.104830 0.261164i
\(694\) 181.421i 0.261413i
\(695\) 0 0
\(696\) 394.265 80.6788i 0.566473 0.115918i
\(697\) −562.611 + 150.751i −0.807189 + 0.216286i
\(698\) −74.3597 277.514i −0.106532 0.397585i
\(699\) −962.302 320.771i −1.37668 0.458900i
\(700\) 0 0
\(701\) 194.042 0.276807 0.138403 0.990376i \(-0.455803\pi\)
0.138403 + 0.990376i \(0.455803\pi\)
\(702\) −409.231 74.4103i −0.582950 0.105998i
\(703\) 351.581 351.581i 0.500115 0.500115i
\(704\) −161.459 + 93.2182i −0.229345 + 0.132412i
\(705\) 0 0
\(706\) −195.614 + 338.813i −0.277073 + 0.479905i
\(707\) −107.448 + 28.7907i −0.151978 + 0.0407223i
\(708\) 159.642 241.787i 0.225483 0.341506i
\(709\) −414.499 + 239.311i −0.584625 + 0.337534i −0.762969 0.646435i \(-0.776259\pi\)
0.178344 + 0.983968i \(0.442926\pi\)
\(710\) 0 0
\(711\) −65.8781 + 546.761i −0.0926555 + 0.769003i
\(712\) 449.958 + 449.958i 0.631963 + 0.631963i
\(713\) −58.1962 15.5936i −0.0816216 0.0218705i
\(714\) 44.4858 39.4475i 0.0623050 0.0552486i
\(715\) 0 0
\(716\) 260.906 451.902i 0.364393 0.631148i
\(717\) 7.02575 117.043i 0.00979881 0.163240i
\(718\) −237.261 63.5739i −0.330447 0.0885430i
\(719\) 443.536i 0.616879i −0.951244 0.308439i \(-0.900193\pi\)
0.951244 0.308439i \(-0.0998067\pi\)
\(720\) 0 0
\(721\) 94.1849 0.130631
\(722\) −47.5005 + 177.274i −0.0657902 + 0.245532i
\(723\) 138.363 209.558i 0.191373 0.289845i
\(724\) 143.106 + 82.6224i 0.197660 + 0.114119i
\(725\) 0 0
\(726\) 10.4245 31.2732i 0.0143588 0.0430760i
\(727\) −75.0285 + 280.010i −0.103203 + 0.385158i −0.998135 0.0610438i \(-0.980557\pi\)
0.894932 + 0.446202i \(0.147224\pi\)
\(728\) −150.709 + 150.709i −0.207018 + 0.207018i
\(729\) 682.338 + 256.623i 0.935992 + 0.352021i
\(730\) 0 0
\(731\) 58.8116 + 101.865i 0.0804536 + 0.139350i
\(732\) 757.781 378.887i 1.03522 0.517605i
\(733\) −264.583 987.435i −0.360958 1.34712i −0.872818 0.488046i \(-0.837710\pi\)
0.511859 0.859069i \(-0.328957\pi\)
\(734\) −340.177 196.401i −0.463457 0.267577i
\(735\) 0 0
\(736\) 20.5601 + 35.6111i 0.0279349 + 0.0483847i
\(737\) 275.459 + 275.459i 0.373757 + 0.373757i
\(738\) 274.978 39.2805i 0.372599 0.0532256i
\(739\) 153.917i 0.208277i 0.994563 + 0.104138i \(0.0332085\pi\)
−0.994563 + 0.104138i \(0.966791\pi\)
\(740\) 0 0
\(741\) −440.926 497.241i −0.595042 0.671041i
\(742\) −98.0117 + 26.2622i −0.132091 + 0.0353938i
\(743\) −337.889 1261.02i −0.454763 1.69720i −0.688784 0.724966i \(-0.741855\pi\)
0.234021 0.972231i \(-0.424811\pi\)
\(744\) −542.254 + 480.841i −0.728836 + 0.646291i
\(745\) 0 0
\(746\) 18.2489 0.0244623
\(747\) −365.877 + 287.190i −0.489795 + 0.384458i
\(748\) −401.121 + 401.121i −0.536258 + 0.536258i
\(749\) −33.8088 + 19.5195i −0.0451385 + 0.0260607i
\(750\) 0 0
\(751\) −728.908 + 1262.51i −0.970583 + 1.68110i −0.276783 + 0.960933i \(0.589268\pi\)
−0.693801 + 0.720167i \(0.744065\pi\)
\(752\) 164.737 44.1413i 0.219066 0.0586985i
\(753\) −156.533 313.070i −0.207880 0.415763i
\(754\) −320.379 + 184.971i −0.424905 + 0.245319i
\(755\) 0 0
\(756\) 141.910 98.2432i 0.187712 0.129951i
\(757\) 575.216 + 575.216i 0.759863 + 0.759863i 0.976297 0.216434i \(-0.0694426\pi\)
−0.216434 + 0.976297i \(0.569443\pi\)
\(758\) −264.824 70.9594i −0.349372 0.0936140i
\(759\) 46.1758 + 15.3921i 0.0608376 + 0.0202795i
\(760\) 0 0
\(761\) −506.722 + 877.668i −0.665863 + 1.15331i 0.313187 + 0.949691i \(0.398603\pi\)
−0.979051 + 0.203618i \(0.934730\pi\)
\(762\) 149.174 + 98.4935i 0.195766 + 0.129257i
\(763\) −207.207 55.5211i −0.271569 0.0727668i
\(764\) 1248.49i 1.63414i
\(765\) 0 0
\(766\) −2.52556 −0.00329708
\(767\) −149.193 + 556.794i −0.194515 + 0.725938i
\(768\) 100.910 + 6.05728i 0.131393 + 0.00788709i
\(769\) 486.081 + 280.639i 0.632095 + 0.364940i 0.781563 0.623827i \(-0.214423\pi\)
−0.149468 + 0.988767i \(0.547756\pi\)
\(770\) 0 0
\(771\) −9.52393 10.7403i −0.0123527 0.0139304i
\(772\) −10.6424 + 39.7180i −0.0137855 + 0.0514482i
\(773\) −445.834 + 445.834i −0.576758 + 0.576758i −0.934008 0.357251i \(-0.883714\pi\)
0.357251 + 0.934008i \(0.383714\pi\)
\(774\) −22.0343 51.5847i −0.0284681 0.0666469i
\(775\) 0 0
\(776\) −85.5009 148.092i −0.110182 0.190840i
\(777\) −214.394 141.556i −0.275926 0.182183i
\(778\) −29.5938 110.446i −0.0380383 0.141961i
\(779\) 384.353 + 221.906i 0.493393 + 0.284860i
\(780\) 0 0
\(781\) 580.499 + 1005.45i 0.743276 + 1.28739i
\(782\) 10.4929 + 10.4929i 0.0134180 + 0.0134180i
\(783\) 610.451 218.507i 0.779630 0.279064i
\(784\) 434.693i 0.554456i
\(785\) 0 0
\(786\) 3.30320 9.90946i 0.00420254 0.0126075i
\(787\) −1353.23 + 362.598i −1.71948 + 0.460734i −0.977717 0.209925i \(-0.932678\pi\)
−0.741766 + 0.670659i \(0.766011\pi\)
\(788\) −57.0176 212.793i −0.0723573 0.270041i
\(789\) −58.8245 287.466i −0.0745558 0.364343i
\(790\) 0 0
\(791\) −194.967 −0.246482
\(792\) 460.560 361.511i 0.581515 0.456453i
\(793\) −1191.88 + 1191.88i −1.50300 + 1.50300i
\(794\) −253.828 + 146.548i −0.319683 + 0.184569i
\(795\) 0 0
\(796\) 29.2167 50.6049i 0.0367045 0.0635740i
\(797\) −458.403 + 122.829i −0.575160 + 0.154114i −0.534662 0.845066i \(-0.679561\pi\)
−0.0404981 + 0.999180i \(0.512894\pi\)
\(798\) −45.2225 2.71456i −0.0566698 0.00340171i
\(799\) 219.374 126.655i 0.274560 0.158517i
\(800\) 0 0
\(801\) 820.177 + 615.142i 1.02394 + 0.767968i
\(802\) −358.565 358.565i −0.447088 0.447088i
\(803\) 355.688 + 95.3064i 0.442949 + 0.118688i
\(804\) 69.1175 + 337.766i 0.0859670 + 0.420107i
\(805\) 0 0
\(806\) 333.111 576.965i 0.413289 0.715837i
\(807\) 571.193 285.594i 0.707798 0.353895i
\(808\) −322.581 86.4352i −0.399234 0.106974i
\(809\) 806.321i 0.996689i 0.866979 + 0.498344i \(0.166059\pi\)
−0.866979 + 0.498344i \(0.833941\pi\)
\(810\) 0 0
\(811\) −928.637 −1.14505 −0.572526 0.819887i \(-0.694036\pi\)
−0.572526 + 0.819887i \(0.694036\pi\)
\(812\) 39.7315 148.280i 0.0489304 0.182611i
\(813\) −241.819 483.642i −0.297440 0.594886i
\(814\) −348.727 201.338i −0.428412 0.247344i
\(815\) 0 0
\(816\) −397.776 + 81.3974i −0.487471 + 0.0997517i
\(817\) 23.1966 86.5709i 0.0283924 0.105962i
\(818\) −230.158 + 230.158i −0.281366 + 0.281366i
\(819\) −206.036 + 274.710i −0.251570 + 0.335422i
\(820\) 0 0
\(821\) −259.589 449.622i −0.316187 0.547652i 0.663502 0.748174i \(-0.269069\pi\)
−0.979689 + 0.200523i \(0.935736\pi\)
\(822\) −0.321213 + 5.35116i −0.000390770 + 0.00650993i
\(823\) 333.724 + 1245.48i 0.405497 + 1.51334i 0.803136 + 0.595795i \(0.203163\pi\)
−0.397639 + 0.917542i \(0.630170\pi\)
\(824\) 244.879 + 141.381i 0.297183 + 0.171579i
\(825\) 0 0
\(826\) 19.6477 + 34.0307i 0.0237865 + 0.0411994i
\(827\) 380.149 + 380.149i 0.459672 + 0.459672i 0.898548 0.438876i \(-0.144623\pi\)
−0.438876 + 0.898548i \(0.644623\pi\)
\(828\) 26.5976 + 33.8850i 0.0321227 + 0.0409239i
\(829\) 511.167i 0.616606i −0.951288 0.308303i \(-0.900239\pi\)
0.951288 0.308303i \(-0.0997611\pi\)
\(830\) 0 0
\(831\) 961.890 196.833i 1.15751 0.236862i
\(832\) 317.086 84.9628i 0.381113 0.102119i
\(833\) 167.103 + 623.637i 0.200604 + 0.748664i
\(834\) 547.911 + 182.639i 0.656968 + 0.218992i
\(835\) 0 0
\(836\) 432.240 0.517034
\(837\) −755.313 + 890.462i −0.902405 + 1.06387i
\(838\) 265.524 265.524i 0.316855 0.316855i
\(839\) 889.044 513.290i 1.05965 0.611788i 0.134313 0.990939i \(-0.457117\pi\)
0.925335 + 0.379151i \(0.123784\pi\)
\(840\) 0 0
\(841\) −132.163 + 228.913i −0.157150 + 0.272192i
\(842\) −21.8317 + 5.84978i −0.0259284 + 0.00694749i
\(843\) 51.6905 78.2882i 0.0613173 0.0928686i
\(844\) −885.970 + 511.515i −1.04973 + 0.606061i
\(845\) 0 0
\(846\) −111.092 + 47.4527i −0.131314 + 0.0560906i
\(847\) −19.2439 19.2439i −0.0227200 0.0227200i
\(848\) 669.305 + 179.340i 0.789275 + 0.211486i
\(849\) −455.061 + 403.523i −0.535996 + 0.475292i
\(850\) 0 0
\(851\) 32.0597 55.5291i 0.0376730 0.0652516i
\(852\) −61.5669 + 1025.66i −0.0722616 + 1.20382i
\(853\) 1345.32 + 360.478i 1.57717 + 0.422600i 0.938047 0.346508i \(-0.112633\pi\)
0.639119 + 0.769108i \(0.279299\pi\)
\(854\) 114.905i 0.134549i
\(855\) 0 0
\(856\) −117.203 −0.136919
\(857\) 85.4914 319.058i 0.0997566 0.372297i −0.897941 0.440116i \(-0.854937\pi\)
0.997698 + 0.0678191i \(0.0216041\pi\)
\(858\) −296.556 + 449.151i −0.345637 + 0.523486i
\(859\) −264.795 152.879i −0.308259 0.177974i 0.337888 0.941186i \(-0.390287\pi\)
−0.646147 + 0.763213i \(0.723621\pi\)
\(860\) 0 0
\(861\) 72.5180 217.551i 0.0842253 0.252673i
\(862\) −100.283 + 374.262i −0.116338 + 0.434178i
\(863\) −386.017 + 386.017i −0.447297 + 0.447297i −0.894455 0.447158i \(-0.852436\pi\)
0.447158 + 0.894455i \(0.352436\pi\)
\(864\) 794.254 65.2230i 0.919275 0.0754895i
\(865\) 0 0
\(866\) 162.447 + 281.367i 0.187583 + 0.324904i
\(867\) 236.086 118.042i 0.272303 0.136150i
\(868\) 71.5518 + 267.035i 0.0824329 + 0.307644i
\(869\) 617.145 + 356.309i 0.710179 + 0.410022i
\(870\) 0 0
\(871\) −342.961 594.025i −0.393755 0.682004i
\(872\) −455.392 455.392i −0.522238 0.522238i
\(873\) −170.111 216.719i −0.194857 0.248246i
\(874\) 11.3069i 0.0129370i
\(875\) 0 0
\(876\) 216.221 + 243.836i 0.246827 + 0.278352i
\(877\) 403.592 108.142i 0.460196 0.123309i −0.0212701 0.999774i \(-0.506771\pi\)
0.481466 + 0.876465i \(0.340104\pi\)
\(878\) 98.2488 + 366.669i 0.111901 + 0.417619i
\(879\) 87.5366 77.6226i 0.0995865 0.0883078i
\(880\) 0 0
\(881\) −1495.93 −1.69799 −0.848993 0.528403i \(-0.822791\pi\)
−0.848993 + 0.528403i \(0.822791\pi\)
\(882\) −43.5413 304.805i −0.0493665 0.345584i
\(883\) 158.383 158.383i 0.179369 0.179369i −0.611712 0.791081i \(-0.709519\pi\)
0.791081 + 0.611712i \(0.209519\pi\)
\(884\) 865.014 499.416i 0.978522 0.564950i
\(885\) 0 0
\(886\) 75.9157 131.490i 0.0856837 0.148408i
\(887\) 1325.65 355.206i 1.49453 0.400458i 0.583266 0.812281i \(-0.301775\pi\)
0.911264 + 0.411823i \(0.135108\pi\)
\(888\) −344.931 689.869i −0.388436 0.776879i
\(889\) 127.805 73.7883i 0.143763 0.0830014i
\(890\) 0 0
\(891\) 652.204 681.524i 0.731991 0.764898i
\(892\) −77.6576 77.6576i −0.0870601 0.0870601i
\(893\) −186.437 49.9557i −0.208776 0.0559415i
\(894\) −201.451 67.1513i −0.225337 0.0751133i
\(895\) 0 0
\(896\) 121.028 209.626i 0.135076 0.233958i
\(897\) −71.5199 47.2217i −0.0797324 0.0526440i
\(898\) 105.286 + 28.2113i 0.117245 + 0.0314157i
\(899\) 1038.52i 1.15520i
\(900\) 0 0
\(901\) 1029.17 1.14225
\(902\) 93.0274 347.183i 0.103135 0.384903i
\(903\) −46.2262 2.77482i −0.0511918 0.00307288i
\(904\) −506.909 292.664i −0.560741 0.323744i
\(905\) 0 0
\(906\) −42.0111 47.3767i −0.0463698 0.0522922i
\(907\) 143.552 535.743i 0.158271 0.590676i −0.840532 0.541762i \(-0.817757\pi\)
0.998803 0.0489140i \(-0.0155760\pi\)
\(908\) 950.276 950.276i 1.04656 1.04656i
\(909\) −534.193 64.3637i −0.587671 0.0708072i
\(910\) 0 0
\(911\) −484.409 839.021i −0.531733 0.920989i −0.999314 0.0370382i \(-0.988208\pi\)
0.467581 0.883950i \(-0.345126\pi\)
\(912\) 258.175 + 170.462i 0.283086 + 0.186910i
\(913\) 155.775 + 581.361i 0.170619 + 0.636759i
\(914\) −192.995 111.426i −0.211154 0.121910i
\(915\) 0 0
\(916\) 430.882 + 746.309i 0.470395 + 0.814748i
\(917\) −6.09776 6.09776i −0.00664968 0.00664968i
\(918\) 270.766 96.9190i 0.294952 0.105576i
\(919\) 600.903i 0.653866i −0.945048 0.326933i \(-0.893985\pi\)
0.945048 0.326933i \(-0.106015\pi\)
\(920\) 0 0
\(921\) −38.1512 + 114.452i −0.0414237 + 0.124270i
\(922\) −207.604 + 55.6275i −0.225168 + 0.0603335i
\(923\) −529.090 1974.59i −0.573229 2.13932i
\(924\) −44.7745 218.806i −0.0484572 0.236803i
\(925\) 0 0
\(926\) 187.992 0.203015
\(927\) 422.780 + 169.702i 0.456074 + 0.183066i
\(928\) 501.193 501.193i 0.540079 0.540079i
\(929\) −435.996 + 251.722i −0.469318 + 0.270961i −0.715954 0.698147i \(-0.754008\pi\)
0.246636 + 0.969108i \(0.420675\pi\)
\(930\) 0 0
\(931\) 245.976 426.044i 0.264207 0.457619i
\(932\) −1122.06 + 300.655i −1.20393 + 0.322591i
\(933\) −1293.39 77.6380i −1.38627 0.0832133i
\(934\) −65.6305 + 37.8918i −0.0702682 + 0.0405694i
\(935\) 0 0
\(936\) −948.056 + 404.960i −1.01288 + 0.432650i
\(937\) −1181.10 1181.10i −1.26051 1.26051i −0.950847 0.309660i \(-0.899785\pi\)
−0.309660 0.950847i \(-0.600215\pi\)
\(938\) −45.1656 12.1021i −0.0481509 0.0129020i
\(939\) 124.770 + 609.730i 0.132875 + 0.649339i
\(940\) 0 0
\(941\) −576.616 + 998.729i −0.612770 + 1.06135i 0.378002 + 0.925805i \(0.376611\pi\)
−0.990771 + 0.135543i \(0.956722\pi\)
\(942\) −77.7795 + 38.8894i −0.0825684 + 0.0412838i
\(943\) 55.2832 + 14.8131i 0.0586248 + 0.0157085i
\(944\) 268.341i 0.284259i
\(945\) 0 0
\(946\) −72.5844 −0.0767277
\(947\) 354.616 1323.45i 0.374463 1.39751i −0.479665 0.877451i \(-0.659242\pi\)
0.854128 0.520063i \(-0.174091\pi\)
\(948\) 282.046 + 564.098i 0.297517 + 0.595040i
\(949\) −561.512 324.189i −0.591688 0.341611i
\(950\) 0 0
\(951\) 1043.67 213.566i 1.09744 0.224570i
\(952\) 38.1409 142.344i 0.0400640 0.149521i
\(953\) −77.4456 + 77.4456i −0.0812650 + 0.0812650i −0.746571 0.665306i \(-0.768301\pi\)
0.665306 + 0.746571i \(0.268301\pi\)
\(954\) −487.278 58.7110i −0.510773 0.0615420i
\(955\) 0 0
\(956\) −67.1397 116.289i −0.0702298 0.121642i
\(957\) 50.2716 837.486i 0.0525304 0.875116i
\(958\) 38.1245 + 142.282i 0.0397959 + 0.148520i
\(959\) 3.83279 + 2.21286i 0.00399666 + 0.00230747i
\(960\) 0 0
\(961\) −454.630 787.443i −0.473080 0.819399i
\(962\) 501.352 + 501.352i 0.521156 + 0.521156i
\(963\) −186.932 + 26.7032i −0.194114 + 0.0277292i
\(964\) 287.577i 0.298316i
\(965\) 0 0
\(966\) −5.72371 + 1.17125i −0.00592517 + 0.00121247i
\(967\) 1559.00 417.733i 1.61220 0.431989i 0.663505 0.748172i \(-0.269068\pi\)
0.948698 + 0.316183i \(0.102401\pi\)
\(968\) −21.1467 78.9205i −0.0218458 0.0815295i
\(969\) 435.921 + 145.309i 0.449867 + 0.149958i
\(970\) 0 0
\(971\) 158.612 0.163349 0.0816745 0.996659i \(-0.473973\pi\)
0.0816745 + 0.996659i \(0.473973\pi\)
\(972\) 814.026 185.304i 0.837475 0.190642i
\(973\) 337.156 337.156i 0.346511 0.346511i
\(974\) 607.386 350.674i 0.623599 0.360035i
\(975\) 0 0
\(976\) 392.332 679.539i 0.401980 0.696249i
\(977\) 10.6944 2.86555i 0.0109461 0.00293301i −0.253342 0.967377i \(-0.581530\pi\)
0.264288 + 0.964444i \(0.414863\pi\)
\(978\) 247.269 374.503i 0.252831 0.382927i
\(979\) 1148.89 663.315i 1.17354 0.677543i
\(980\) 0 0
\(981\) −830.082 622.571i −0.846159 0.634629i
\(982\) 418.604 + 418.604i 0.426277 + 0.426277i
\(983\) 1101.63 + 295.182i 1.12069 + 0.300287i 0.771161 0.636640i \(-0.219676\pi\)
0.349525 + 0.936927i \(0.386343\pi\)
\(984\) 515.111 456.772i 0.523486 0.464199i
\(985\) 0 0
\(986\) 127.892 221.516i 0.129708 0.224661i
\(987\) −5.97578 + 99.5518i −0.00605449 + 0.100863i
\(988\) −735.142 196.981i −0.744071 0.199373i
\(989\) 11.5579i 0.0116864i
\(990\) 0 0
\(991\) −95.8581 −0.0967287 −0.0483643 0.998830i \(-0.515401\pi\)
−0.0483643 + 0.998830i \(0.515401\pi\)
\(992\) −330.371 + 1232.96i −0.333036 + 1.24291i
\(993\) 619.706 938.579i 0.624074 0.945195i
\(994\) −120.685 69.6776i −0.121414 0.0700982i
\(995\) 0 0
\(996\) −168.445 + 505.329i −0.169122 + 0.507359i
\(997\) −227.782 + 850.093i −0.228467 + 0.852651i 0.752518 + 0.658571i \(0.228839\pi\)
−0.980986 + 0.194080i \(0.937828\pi\)
\(998\) 88.7943 88.7943i 0.0889723 0.0889723i
\(999\) −707.325 1021.72i −0.708033 1.02274i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.o.b.157.5 40
5.2 odd 4 45.3.k.a.13.5 yes 40
5.3 odd 4 inner 225.3.o.b.193.6 40
5.4 even 2 45.3.k.a.22.6 yes 40
9.7 even 3 inner 225.3.o.b.7.6 40
15.2 even 4 135.3.l.a.118.6 40
15.14 odd 2 135.3.l.a.37.5 40
45.2 even 12 135.3.l.a.73.5 40
45.4 even 6 405.3.g.h.82.6 20
45.7 odd 12 45.3.k.a.43.6 yes 40
45.14 odd 6 405.3.g.g.82.5 20
45.22 odd 12 405.3.g.h.163.6 20
45.29 odd 6 135.3.l.a.127.6 40
45.32 even 12 405.3.g.g.163.5 20
45.34 even 6 45.3.k.a.7.5 40
45.43 odd 12 inner 225.3.o.b.43.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.5 40 45.34 even 6
45.3.k.a.13.5 yes 40 5.2 odd 4
45.3.k.a.22.6 yes 40 5.4 even 2
45.3.k.a.43.6 yes 40 45.7 odd 12
135.3.l.a.37.5 40 15.14 odd 2
135.3.l.a.73.5 40 45.2 even 12
135.3.l.a.118.6 40 15.2 even 4
135.3.l.a.127.6 40 45.29 odd 6
225.3.o.b.7.6 40 9.7 even 3 inner
225.3.o.b.43.5 40 45.43 odd 12 inner
225.3.o.b.157.5 40 1.1 even 1 trivial
225.3.o.b.193.6 40 5.3 odd 4 inner
405.3.g.g.82.5 20 45.14 odd 6
405.3.g.g.163.5 20 45.32 even 12
405.3.g.h.82.6 20 45.4 even 6
405.3.g.h.163.6 20 45.22 odd 12