Properties

Label 225.3.o.b.157.2
Level $225$
Weight $3$
Character 225.157
Analytic conductor $6.131$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,3,Mod(7,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([8, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.o (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 157.2
Character \(\chi\) \(=\) 225.157
Dual form 225.3.o.b.43.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.863931 + 3.22423i) q^{2} +(2.79645 + 1.08621i) q^{3} +(-6.18520 - 3.57103i) q^{4} +(-5.91814 + 8.07800i) q^{6} +(-2.35787 + 8.79970i) q^{7} +(7.41620 - 7.41620i) q^{8} +(6.64028 + 6.07508i) q^{9} +(1.02371 + 1.77311i) q^{11} +(-13.4177 - 16.7046i) q^{12} +(1.12075 + 4.18269i) q^{13} +(-26.3352 - 15.2047i) q^{14} +(3.22036 + 5.57783i) q^{16} +(-17.1585 - 17.1585i) q^{17} +(-25.3242 + 16.1614i) q^{18} +18.6363i q^{19} +(-16.1520 + 22.0468i) q^{21} +(-6.60133 + 1.76882i) q^{22} +(-3.08350 - 11.5078i) q^{23} +(28.7946 - 12.6835i) q^{24} -14.4542 q^{26} +(11.9704 + 24.2014i) q^{27} +(46.0079 - 46.0079i) q^{28} +(-19.4918 + 11.2536i) q^{29} +(11.9368 - 20.6752i) q^{31} +(19.7565 - 5.29373i) q^{32} +(0.936770 + 6.07038i) q^{33} +(70.1467 - 40.4992i) q^{34} +(-19.3772 - 61.2882i) q^{36} +(33.2840 + 33.2840i) q^{37} +(-60.0877 - 16.1005i) q^{38} +(-1.40917 + 12.9141i) q^{39} +(2.15756 - 3.73700i) q^{41} +(-57.1297 - 71.1247i) q^{42} +(30.4181 + 8.15051i) q^{43} -14.6227i q^{44} +39.7677 q^{46} +(-0.224807 + 0.838990i) q^{47} +(2.94688 + 19.0961i) q^{48} +(-29.4398 - 16.9971i) q^{49} +(-29.3451 - 66.6207i) q^{51} +(8.00445 - 29.8730i) q^{52} +(3.33316 - 3.33316i) q^{53} +(-88.3727 + 17.6870i) q^{54} +(47.7739 + 82.7467i) q^{56} +(-20.2430 + 52.1155i) q^{57} +(-19.4446 - 72.5684i) q^{58} +(66.3254 + 38.2930i) q^{59} +(35.3623 + 61.2493i) q^{61} +(56.3490 + 56.3490i) q^{62} +(-69.1158 + 44.1082i) q^{63} +94.0358i q^{64} +(-20.3816 - 2.22403i) q^{66} +(20.8965 - 5.59919i) q^{67} +(44.8553 + 167.402i) q^{68} +(3.87703 - 35.5302i) q^{69} -28.6105 q^{71} +(94.2997 - 4.19166i) q^{72} +(-48.1316 + 48.1316i) q^{73} +(-136.071 + 78.5604i) q^{74} +(66.5507 - 115.269i) q^{76} +(-18.0166 + 4.82753i) q^{77} +(-40.4205 - 15.7004i) q^{78} +(0.201686 - 0.116444i) q^{79} +(7.18677 + 80.6805i) q^{81} +(10.1850 + 10.1850i) q^{82} +(153.477 + 41.1240i) q^{83} +(178.633 - 78.6845i) q^{84} +(-52.5583 + 91.0337i) q^{86} +(-66.7316 + 10.2979i) q^{87} +(20.7418 + 5.55774i) q^{88} -103.385i q^{89} -39.4490 q^{91} +(-22.0225 + 82.1891i) q^{92} +(55.8384 - 44.8512i) q^{93} +(-2.51088 - 1.44966i) q^{94} +(60.9981 + 6.65606i) q^{96} +(18.6837 - 69.7287i) q^{97} +(80.2366 - 80.2366i) q^{98} +(-3.97409 + 17.9931i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 6 q^{3} - 24 q^{6} + 2 q^{7} + 24 q^{8} + 8 q^{11} + 30 q^{12} + 2 q^{13} + 28 q^{16} - 28 q^{17} - 48 q^{18} + 12 q^{21} - 14 q^{22} - 82 q^{23} - 112 q^{26} + 198 q^{27} + 88 q^{28} - 4 q^{31}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.863931 + 3.22423i −0.431965 + 1.61212i 0.316261 + 0.948672i \(0.397573\pi\)
−0.748226 + 0.663444i \(0.769094\pi\)
\(3\) 2.79645 + 1.08621i 0.932151 + 0.362071i
\(4\) −6.18520 3.57103i −1.54630 0.892757i
\(5\) 0 0
\(6\) −5.91814 + 8.07800i −0.986357 + 1.34633i
\(7\) −2.35787 + 8.79970i −0.336839 + 1.25710i 0.565023 + 0.825075i \(0.308867\pi\)
−0.901862 + 0.432024i \(0.857799\pi\)
\(8\) 7.41620 7.41620i 0.927025 0.927025i
\(9\) 6.64028 + 6.07508i 0.737809 + 0.675009i
\(10\) 0 0
\(11\) 1.02371 + 1.77311i 0.0930642 + 0.161192i 0.908799 0.417234i \(-0.137000\pi\)
−0.815735 + 0.578426i \(0.803667\pi\)
\(12\) −13.4177 16.7046i −1.11814 1.39205i
\(13\) 1.12075 + 4.18269i 0.0862115 + 0.321746i 0.995541 0.0943314i \(-0.0300713\pi\)
−0.909329 + 0.416077i \(0.863405\pi\)
\(14\) −26.3352 15.2047i −1.88109 1.08605i
\(15\) 0 0
\(16\) 3.22036 + 5.57783i 0.201273 + 0.348615i
\(17\) −17.1585 17.1585i −1.00932 1.00932i −0.999956 0.00936716i \(-0.997018\pi\)
−0.00936716 0.999956i \(-0.502982\pi\)
\(18\) −25.3242 + 16.1614i −1.40690 + 0.897854i
\(19\) 18.6363i 0.980857i 0.871481 + 0.490428i \(0.163160\pi\)
−0.871481 + 0.490428i \(0.836840\pi\)
\(20\) 0 0
\(21\) −16.1520 + 22.0468i −0.769143 + 1.04985i
\(22\) −6.60133 + 1.76882i −0.300061 + 0.0804010i
\(23\) −3.08350 11.5078i −0.134065 0.500338i −1.00000 0.000180980i \(-0.999942\pi\)
0.865935 0.500157i \(-0.166724\pi\)
\(24\) 28.7946 12.6835i 1.19978 0.528478i
\(25\) 0 0
\(26\) −14.4542 −0.555932
\(27\) 11.9704 + 24.2014i 0.443348 + 0.896349i
\(28\) 46.0079 46.0079i 1.64314 1.64314i
\(29\) −19.4918 + 11.2536i −0.672131 + 0.388055i −0.796883 0.604133i \(-0.793520\pi\)
0.124753 + 0.992188i \(0.460186\pi\)
\(30\) 0 0
\(31\) 11.9368 20.6752i 0.385059 0.666941i −0.606719 0.794917i \(-0.707514\pi\)
0.991777 + 0.127975i \(0.0408478\pi\)
\(32\) 19.7565 5.29373i 0.617389 0.165429i
\(33\) 0.936770 + 6.07038i 0.0283870 + 0.183951i
\(34\) 70.1467 40.4992i 2.06314 1.19115i
\(35\) 0 0
\(36\) −19.3772 61.2882i −0.538256 1.70245i
\(37\) 33.2840 + 33.2840i 0.899568 + 0.899568i 0.995398 0.0958294i \(-0.0305503\pi\)
−0.0958294 + 0.995398i \(0.530550\pi\)
\(38\) −60.0877 16.1005i −1.58126 0.423696i
\(39\) −1.40917 + 12.9141i −0.0361326 + 0.331130i
\(40\) 0 0
\(41\) 2.15756 3.73700i 0.0526234 0.0911464i −0.838514 0.544880i \(-0.816575\pi\)
0.891137 + 0.453734i \(0.149908\pi\)
\(42\) −57.1297 71.1247i −1.36023 1.69345i
\(43\) 30.4181 + 8.15051i 0.707398 + 0.189547i 0.594542 0.804065i \(-0.297333\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(44\) 14.6227i 0.332335i
\(45\) 0 0
\(46\) 39.7677 0.864514
\(47\) −0.224807 + 0.838990i −0.00478312 + 0.0178509i −0.968276 0.249883i \(-0.919608\pi\)
0.963493 + 0.267733i \(0.0862746\pi\)
\(48\) 2.94688 + 19.0961i 0.0613933 + 0.397836i
\(49\) −29.4398 16.9971i −0.600813 0.346880i
\(50\) 0 0
\(51\) −29.3451 66.6207i −0.575395 1.30629i
\(52\) 8.00445 29.8730i 0.153932 0.574481i
\(53\) 3.33316 3.33316i 0.0628899 0.0628899i −0.674962 0.737852i \(-0.735840\pi\)
0.737852 + 0.674962i \(0.235840\pi\)
\(54\) −88.3727 + 17.6870i −1.63653 + 0.327537i
\(55\) 0 0
\(56\) 47.7739 + 82.7467i 0.853105 + 1.47762i
\(57\) −20.2430 + 52.1155i −0.355140 + 0.914306i
\(58\) −19.4446 72.5684i −0.335252 1.25118i
\(59\) 66.3254 + 38.2930i 1.12416 + 0.649033i 0.942459 0.334321i \(-0.108507\pi\)
0.181699 + 0.983354i \(0.441840\pi\)
\(60\) 0 0
\(61\) 35.3623 + 61.2493i 0.579710 + 1.00409i 0.995512 + 0.0946322i \(0.0301675\pi\)
−0.415802 + 0.909455i \(0.636499\pi\)
\(62\) 56.3490 + 56.3490i 0.908855 + 0.908855i
\(63\) −69.1158 + 44.1082i −1.09708 + 0.700131i
\(64\) 94.0358i 1.46931i
\(65\) 0 0
\(66\) −20.3816 2.22403i −0.308813 0.0336974i
\(67\) 20.8965 5.59919i 0.311888 0.0835700i −0.0994800 0.995040i \(-0.531718\pi\)
0.411368 + 0.911470i \(0.365051\pi\)
\(68\) 44.8553 + 167.402i 0.659637 + 2.46180i
\(69\) 3.87703 35.5302i 0.0561888 0.514931i
\(70\) 0 0
\(71\) −28.6105 −0.402965 −0.201483 0.979492i \(-0.564576\pi\)
−0.201483 + 0.979492i \(0.564576\pi\)
\(72\) 94.2997 4.19166i 1.30972 0.0582175i
\(73\) −48.1316 + 48.1316i −0.659336 + 0.659336i −0.955223 0.295887i \(-0.904385\pi\)
0.295887 + 0.955223i \(0.404385\pi\)
\(74\) −136.071 + 78.5604i −1.83879 + 1.06163i
\(75\) 0 0
\(76\) 66.5507 115.269i 0.875667 1.51670i
\(77\) −18.0166 + 4.82753i −0.233982 + 0.0626953i
\(78\) −40.4205 15.7004i −0.518212 0.201287i
\(79\) 0.201686 0.116444i 0.00255299 0.00147397i −0.498723 0.866761i \(-0.666197\pi\)
0.501276 + 0.865287i \(0.332864\pi\)
\(80\) 0 0
\(81\) 7.18677 + 80.6805i 0.0887255 + 0.996056i
\(82\) 10.1850 + 10.1850i 0.124207 + 0.124207i
\(83\) 153.477 + 41.1240i 1.84912 + 0.495470i 0.999491 0.0319094i \(-0.0101588\pi\)
0.849630 + 0.527380i \(0.176825\pi\)
\(84\) 178.633 78.6845i 2.12658 0.936720i
\(85\) 0 0
\(86\) −52.5583 + 91.0337i −0.611143 + 1.05853i
\(87\) −66.7316 + 10.2979i −0.767030 + 0.118367i
\(88\) 20.7418 + 5.55774i 0.235702 + 0.0631561i
\(89\) 103.385i 1.16163i −0.814035 0.580816i \(-0.802734\pi\)
0.814035 0.580816i \(-0.197266\pi\)
\(90\) 0 0
\(91\) −39.4490 −0.433506
\(92\) −22.0225 + 82.1891i −0.239375 + 0.893360i
\(93\) 55.8384 44.8512i 0.600413 0.482271i
\(94\) −2.51088 1.44966i −0.0267115 0.0154219i
\(95\) 0 0
\(96\) 60.9981 + 6.65606i 0.635397 + 0.0693340i
\(97\) 18.6837 69.7287i 0.192616 0.718852i −0.800255 0.599660i \(-0.795303\pi\)
0.992871 0.119193i \(-0.0380306\pi\)
\(98\) 80.2366 80.2366i 0.818741 0.818741i
\(99\) −3.97409 + 17.9931i −0.0401424 + 0.181748i
\(100\) 0 0
\(101\) −31.0086 53.7085i −0.307016 0.531767i 0.670692 0.741736i \(-0.265997\pi\)
−0.977708 + 0.209969i \(0.932664\pi\)
\(102\) 240.153 37.0599i 2.35444 0.363332i
\(103\) 13.6798 + 51.0537i 0.132813 + 0.495667i 0.999997 0.00232157i \(-0.000738981\pi\)
−0.867184 + 0.497988i \(0.834072\pi\)
\(104\) 39.3314 + 22.7080i 0.378186 + 0.218346i
\(105\) 0 0
\(106\) 7.86727 + 13.6265i 0.0742195 + 0.128552i
\(107\) −84.3909 84.3909i −0.788700 0.788700i 0.192581 0.981281i \(-0.438314\pi\)
−0.981281 + 0.192581i \(0.938314\pi\)
\(108\) 12.3846 192.437i 0.114672 1.78183i
\(109\) 102.481i 0.940190i 0.882616 + 0.470095i \(0.155780\pi\)
−0.882616 + 0.470095i \(0.844220\pi\)
\(110\) 0 0
\(111\) 56.9237 + 129.231i 0.512826 + 1.16424i
\(112\) −56.6764 + 15.1864i −0.506040 + 0.135593i
\(113\) 10.5178 + 39.2529i 0.0930777 + 0.347371i 0.996721 0.0809152i \(-0.0257843\pi\)
−0.903643 + 0.428286i \(0.859118\pi\)
\(114\) −150.544 110.292i −1.32056 0.967475i
\(115\) 0 0
\(116\) 160.747 1.38575
\(117\) −17.9681 + 34.5829i −0.153574 + 0.295580i
\(118\) −180.766 + 180.766i −1.53192 + 1.53192i
\(119\) 191.447 110.532i 1.60880 0.928840i
\(120\) 0 0
\(121\) 58.4041 101.159i 0.482678 0.836023i
\(122\) −228.033 + 61.1012i −1.86912 + 0.500829i
\(123\) 10.0927 8.10678i 0.0820544 0.0659088i
\(124\) −147.663 + 85.2534i −1.19083 + 0.687528i
\(125\) 0 0
\(126\) −82.5039 260.952i −0.654793 2.07105i
\(127\) 81.3527 + 81.3527i 0.640572 + 0.640572i 0.950696 0.310124i \(-0.100370\pi\)
−0.310124 + 0.950696i \(0.600370\pi\)
\(128\) −224.167 60.0655i −1.75131 0.469261i
\(129\) 76.2096 + 55.8331i 0.590772 + 0.432814i
\(130\) 0 0
\(131\) −41.3420 + 71.6064i −0.315588 + 0.546614i −0.979562 0.201141i \(-0.935535\pi\)
0.663975 + 0.747755i \(0.268868\pi\)
\(132\) 15.8834 40.8918i 0.120329 0.309786i
\(133\) −163.994 43.9420i −1.23303 0.330391i
\(134\) 72.2124i 0.538899i
\(135\) 0 0
\(136\) −254.502 −1.87134
\(137\) 40.3630 150.637i 0.294621 1.09954i −0.646898 0.762577i \(-0.723934\pi\)
0.941518 0.336962i \(-0.109399\pi\)
\(138\) 111.208 + 43.1961i 0.805857 + 0.313015i
\(139\) −1.35272 0.780993i −0.00973180 0.00561866i 0.495126 0.868821i \(-0.335122\pi\)
−0.504858 + 0.863202i \(0.668455\pi\)
\(140\) 0 0
\(141\) −1.53998 + 2.10201i −0.0109219 + 0.0149079i
\(142\) 24.7175 92.2470i 0.174067 0.649627i
\(143\) −6.26906 + 6.26906i −0.0438396 + 0.0438396i
\(144\) −12.5017 + 56.6024i −0.0868171 + 0.393072i
\(145\) 0 0
\(146\) −113.605 196.770i −0.778117 1.34774i
\(147\) −63.8646 79.5095i −0.434453 0.540881i
\(148\) −87.0102 324.727i −0.587907 2.19410i
\(149\) −87.4092 50.4657i −0.586639 0.338696i 0.177128 0.984188i \(-0.443319\pi\)
−0.763767 + 0.645492i \(0.776653\pi\)
\(150\) 0 0
\(151\) −109.094 188.956i −0.722477 1.25137i −0.960004 0.279986i \(-0.909670\pi\)
0.237527 0.971381i \(-0.423663\pi\)
\(152\) 138.210 + 138.210i 0.909279 + 0.909279i
\(153\) −9.69804 218.177i −0.0633859 1.42599i
\(154\) 62.2604i 0.404288i
\(155\) 0 0
\(156\) 54.8325 74.8439i 0.351490 0.479769i
\(157\) −256.443 + 68.7136i −1.63339 + 0.437666i −0.954897 0.296937i \(-0.904035\pi\)
−0.678496 + 0.734604i \(0.737368\pi\)
\(158\) 0.201198 + 0.750883i 0.00127341 + 0.00475242i
\(159\) 12.9416 5.70051i 0.0813934 0.0358522i
\(160\) 0 0
\(161\) 108.535 0.674133
\(162\) −266.342 46.5306i −1.64408 0.287226i
\(163\) 161.076 161.076i 0.988199 0.988199i −0.0117324 0.999931i \(-0.503735\pi\)
0.999931 + 0.0117324i \(0.00373463\pi\)
\(164\) −26.6899 + 15.4094i −0.162743 + 0.0939598i
\(165\) 0 0
\(166\) −265.187 + 459.317i −1.59751 + 2.76697i
\(167\) 57.6223 15.4399i 0.345044 0.0924542i −0.0821354 0.996621i \(-0.526174\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(168\) 43.7167 + 283.290i 0.260219 + 1.68625i
\(169\) 130.119 75.1245i 0.769938 0.444524i
\(170\) 0 0
\(171\) −113.217 + 123.750i −0.662087 + 0.723685i
\(172\) −159.037 159.037i −0.924631 0.924631i
\(173\) 93.6378 + 25.0902i 0.541259 + 0.145030i 0.519083 0.854724i \(-0.326274\pi\)
0.0221766 + 0.999754i \(0.492940\pi\)
\(174\) 24.4487 224.055i 0.140510 1.28767i
\(175\) 0 0
\(176\) −6.59341 + 11.4201i −0.0374626 + 0.0648871i
\(177\) 143.881 + 179.128i 0.812889 + 1.01202i
\(178\) 333.338 + 89.3176i 1.87269 + 0.501784i
\(179\) 89.4315i 0.499617i −0.968295 0.249809i \(-0.919632\pi\)
0.968295 0.249809i \(-0.0803677\pi\)
\(180\) 0 0
\(181\) 307.336 1.69799 0.848995 0.528401i \(-0.177208\pi\)
0.848995 + 0.528401i \(0.177208\pi\)
\(182\) 34.0812 127.193i 0.187259 0.698861i
\(183\) 32.3592 + 209.692i 0.176826 + 1.14586i
\(184\) −108.212 62.4761i −0.588107 0.339544i
\(185\) 0 0
\(186\) 96.3703 + 218.784i 0.518120 + 1.17626i
\(187\) 12.8587 47.9892i 0.0687629 0.256627i
\(188\) 4.38653 4.38653i 0.0233326 0.0233326i
\(189\) −241.190 + 48.2721i −1.27614 + 0.255408i
\(190\) 0 0
\(191\) 81.7990 + 141.680i 0.428267 + 0.741780i 0.996719 0.0809360i \(-0.0257910\pi\)
−0.568452 + 0.822716i \(0.692458\pi\)
\(192\) −102.143 + 262.966i −0.531994 + 1.36962i
\(193\) 65.7869 + 245.520i 0.340865 + 1.27212i 0.897369 + 0.441280i \(0.145476\pi\)
−0.556504 + 0.830845i \(0.687858\pi\)
\(194\) 208.680 + 120.481i 1.07567 + 0.621039i
\(195\) 0 0
\(196\) 121.394 + 210.261i 0.619358 + 1.07276i
\(197\) 83.9878 + 83.9878i 0.426334 + 0.426334i 0.887377 0.461044i \(-0.152525\pi\)
−0.461044 + 0.887377i \(0.652525\pi\)
\(198\) −54.5805 28.3582i −0.275659 0.143223i
\(199\) 165.065i 0.829471i −0.909942 0.414736i \(-0.863874\pi\)
0.909942 0.414736i \(-0.136126\pi\)
\(200\) 0 0
\(201\) 64.5179 + 7.04014i 0.320985 + 0.0350256i
\(202\) 199.958 53.5786i 0.989891 0.265240i
\(203\) −53.0690 198.056i −0.261424 0.975647i
\(204\) −56.3987 + 516.855i −0.276464 + 2.53360i
\(205\) 0 0
\(206\) −176.427 −0.856443
\(207\) 49.4353 95.1473i 0.238818 0.459649i
\(208\) −19.7211 + 19.7211i −0.0948132 + 0.0948132i
\(209\) −33.0442 + 19.0781i −0.158106 + 0.0912827i
\(210\) 0 0
\(211\) 5.87275 10.1719i 0.0278329 0.0482081i −0.851773 0.523910i \(-0.824473\pi\)
0.879606 + 0.475702i \(0.157806\pi\)
\(212\) −32.5191 + 8.71347i −0.153392 + 0.0411013i
\(213\) −80.0080 31.0771i −0.375624 0.145902i
\(214\) 345.004 199.188i 1.61217 0.930785i
\(215\) 0 0
\(216\) 268.258 + 90.7077i 1.24193 + 0.419943i
\(217\) 153.790 + 153.790i 0.708709 + 0.708709i
\(218\) −330.422 88.5362i −1.51570 0.406129i
\(219\) −186.879 + 82.3165i −0.853327 + 0.375874i
\(220\) 0 0
\(221\) 52.5383 90.9991i 0.237730 0.411761i
\(222\) −465.848 + 71.8888i −2.09841 + 0.323823i
\(223\) −12.3702 3.31460i −0.0554720 0.0148637i 0.230976 0.972959i \(-0.425808\pi\)
−0.286448 + 0.958096i \(0.592475\pi\)
\(224\) 186.333i 0.831843i
\(225\) 0 0
\(226\) −135.647 −0.600208
\(227\) 114.563 427.557i 0.504685 1.88351i 0.0376093 0.999293i \(-0.488026\pi\)
0.467076 0.884217i \(-0.345308\pi\)
\(228\) 311.313 250.056i 1.36541 1.09674i
\(229\) −164.262 94.8369i −0.717303 0.414135i 0.0964562 0.995337i \(-0.469249\pi\)
−0.813759 + 0.581202i \(0.802583\pi\)
\(230\) 0 0
\(231\) −55.6263 6.06989i −0.240806 0.0262766i
\(232\) −61.0961 + 228.014i −0.263345 + 0.982818i
\(233\) 62.7917 62.7917i 0.269492 0.269492i −0.559403 0.828896i \(-0.688970\pi\)
0.828896 + 0.559403i \(0.188970\pi\)
\(234\) −95.9802 87.8106i −0.410172 0.375259i
\(235\) 0 0
\(236\) −273.491 473.699i −1.15886 2.00720i
\(237\) 0.690489 0.106555i 0.00291345 0.000449599i
\(238\) 190.984 + 712.762i 0.802454 + 2.99480i
\(239\) −57.9140 33.4367i −0.242318 0.139902i 0.373924 0.927460i \(-0.378012\pi\)
−0.616242 + 0.787557i \(0.711346\pi\)
\(240\) 0 0
\(241\) 29.6700 + 51.3900i 0.123112 + 0.213236i 0.920993 0.389578i \(-0.127379\pi\)
−0.797881 + 0.602815i \(0.794046\pi\)
\(242\) 275.702 + 275.702i 1.13927 + 1.13927i
\(243\) −67.5388 + 233.426i −0.277937 + 0.960599i
\(244\) 505.119i 2.07016i
\(245\) 0 0
\(246\) 17.4188 + 39.5449i 0.0708080 + 0.160751i
\(247\) −77.9498 + 20.8866i −0.315586 + 0.0845611i
\(248\) −64.8054 241.857i −0.261312 0.975230i
\(249\) 384.522 + 281.710i 1.54426 + 1.13137i
\(250\) 0 0
\(251\) −88.5781 −0.352901 −0.176450 0.984310i \(-0.556461\pi\)
−0.176450 + 0.984310i \(0.556461\pi\)
\(252\) 585.007 26.0038i 2.32146 0.103190i
\(253\) 17.2480 17.2480i 0.0681737 0.0681737i
\(254\) −332.583 + 192.017i −1.30938 + 0.755972i
\(255\) 0 0
\(256\) 199.259 345.126i 0.778354 1.34815i
\(257\) −151.819 + 40.6797i −0.590734 + 0.158287i −0.541789 0.840515i \(-0.682253\pi\)
−0.0489452 + 0.998801i \(0.515586\pi\)
\(258\) −245.859 + 197.482i −0.952940 + 0.765433i
\(259\) −371.369 + 214.410i −1.43386 + 0.827837i
\(260\) 0 0
\(261\) −197.797 43.6872i −0.757845 0.167384i
\(262\) −195.159 195.159i −0.744882 0.744882i
\(263\) −339.020 90.8401i −1.28905 0.345400i −0.451750 0.892145i \(-0.649200\pi\)
−0.837299 + 0.546745i \(0.815867\pi\)
\(264\) 51.9664 + 38.0719i 0.196843 + 0.144212i
\(265\) 0 0
\(266\) 283.358 490.791i 1.06526 1.84508i
\(267\) 112.298 289.112i 0.420593 1.08282i
\(268\) −149.244 39.9897i −0.556880 0.149215i
\(269\) 81.1798i 0.301784i −0.988550 0.150892i \(-0.951785\pi\)
0.988550 0.150892i \(-0.0482145\pi\)
\(270\) 0 0
\(271\) −96.4105 −0.355758 −0.177879 0.984052i \(-0.556924\pi\)
−0.177879 + 0.984052i \(0.556924\pi\)
\(272\) 40.4506 150.964i 0.148716 0.555014i
\(273\) −110.317 42.8500i −0.404092 0.156960i
\(274\) 450.817 + 260.280i 1.64532 + 0.949925i
\(275\) 0 0
\(276\) −150.860 + 205.917i −0.546593 + 0.746075i
\(277\) −113.398 + 423.206i −0.409378 + 1.52782i 0.386458 + 0.922307i \(0.373698\pi\)
−0.795836 + 0.605512i \(0.792968\pi\)
\(278\) 3.68676 3.68676i 0.0132617 0.0132617i
\(279\) 204.867 64.7719i 0.734292 0.232157i
\(280\) 0 0
\(281\) −95.5531 165.503i −0.340047 0.588978i 0.644394 0.764693i \(-0.277110\pi\)
−0.984441 + 0.175715i \(0.943776\pi\)
\(282\) −5.44693 6.78125i −0.0193153 0.0240470i
\(283\) −89.6088 334.424i −0.316639 1.18171i −0.922454 0.386107i \(-0.873820\pi\)
0.605815 0.795605i \(-0.292847\pi\)
\(284\) 176.962 + 102.169i 0.623105 + 0.359750i
\(285\) 0 0
\(286\) −14.7969 25.6289i −0.0517373 0.0896117i
\(287\) 27.7972 + 27.7972i 0.0968545 + 0.0968545i
\(288\) 163.348 + 84.8702i 0.567182 + 0.294688i
\(289\) 299.828i 1.03747i
\(290\) 0 0
\(291\) 127.988 174.698i 0.439822 0.600338i
\(292\) 469.582 125.824i 1.60816 0.430905i
\(293\) 77.5588 + 289.453i 0.264706 + 0.987895i 0.962430 + 0.271529i \(0.0875292\pi\)
−0.697725 + 0.716366i \(0.745804\pi\)
\(294\) 311.532 137.224i 1.05963 0.466748i
\(295\) 0 0
\(296\) 493.682 1.66784
\(297\) −30.6576 + 46.0000i −0.103224 + 0.154882i
\(298\) 238.229 238.229i 0.799426 0.799426i
\(299\) 44.6776 25.7946i 0.149423 0.0862697i
\(300\) 0 0
\(301\) −143.444 + 248.452i −0.476558 + 0.825423i
\(302\) 703.489 188.499i 2.32944 0.624170i
\(303\) −28.3753 183.875i −0.0936477 0.606849i
\(304\) −103.950 + 60.0156i −0.341941 + 0.197420i
\(305\) 0 0
\(306\) 711.831 + 157.221i 2.32624 + 0.513793i
\(307\) −138.397 138.397i −0.450805 0.450805i 0.444817 0.895622i \(-0.353269\pi\)
−0.895622 + 0.444817i \(0.853269\pi\)
\(308\) 128.676 + 34.4785i 0.417778 + 0.111943i
\(309\) −17.2003 + 157.628i −0.0556643 + 0.510124i
\(310\) 0 0
\(311\) 53.6367 92.9015i 0.172465 0.298719i −0.766816 0.641867i \(-0.778160\pi\)
0.939281 + 0.343148i \(0.111493\pi\)
\(312\) 85.3226 + 106.224i 0.273470 + 0.340462i
\(313\) −528.306 141.559i −1.68788 0.452266i −0.718038 0.696004i \(-0.754960\pi\)
−0.969841 + 0.243738i \(0.921626\pi\)
\(314\) 886.195i 2.82228i
\(315\) 0 0
\(316\) −1.66329 −0.00526359
\(317\) −112.931 + 421.463i −0.356248 + 1.32954i 0.522658 + 0.852542i \(0.324941\pi\)
−0.878906 + 0.476994i \(0.841726\pi\)
\(318\) 7.19916 + 46.6514i 0.0226389 + 0.146703i
\(319\) −39.9077 23.0407i −0.125103 0.0722280i
\(320\) 0 0
\(321\) −144.329 327.661i −0.449622 1.02075i
\(322\) −93.7670 + 349.943i −0.291202 + 1.08678i
\(323\) 319.771 319.771i 0.990002 0.990002i
\(324\) 243.661 524.690i 0.752040 1.61941i
\(325\) 0 0
\(326\) 380.189 + 658.507i 1.16622 + 2.01996i
\(327\) −111.316 + 286.582i −0.340415 + 0.876398i
\(328\) −11.7135 43.7152i −0.0357118 0.133278i
\(329\) −6.85279 3.95646i −0.0208292 0.0120257i
\(330\) 0 0
\(331\) −293.152 507.754i −0.885655 1.53400i −0.844961 0.534827i \(-0.820377\pi\)
−0.0406933 0.999172i \(-0.512957\pi\)
\(332\) −802.431 802.431i −2.41696 2.41696i
\(333\) 18.8122 + 423.219i 0.0564932 + 1.27093i
\(334\) 199.127i 0.596188i
\(335\) 0 0
\(336\) −174.989 19.0946i −0.520799 0.0568292i
\(337\) 459.691 123.174i 1.36407 0.365501i 0.498760 0.866740i \(-0.333789\pi\)
0.865309 + 0.501239i \(0.167122\pi\)
\(338\) 129.805 + 484.438i 0.384038 + 1.43325i
\(339\) −13.2245 + 121.193i −0.0390104 + 0.357502i
\(340\) 0 0
\(341\) 48.8792 0.143341
\(342\) −301.188 471.949i −0.880667 1.37997i
\(343\) −96.6647 + 96.6647i −0.281821 + 0.281821i
\(344\) 286.033 165.141i 0.831490 0.480061i
\(345\) 0 0
\(346\) −161.793 + 280.234i −0.467610 + 0.809925i
\(347\) −169.638 + 45.4544i −0.488870 + 0.130992i −0.494830 0.868990i \(-0.664770\pi\)
0.00595969 + 0.999982i \(0.498103\pi\)
\(348\) 449.523 + 174.606i 1.29173 + 0.501741i
\(349\) −298.148 + 172.136i −0.854292 + 0.493226i −0.862097 0.506744i \(-0.830849\pi\)
0.00780468 + 0.999970i \(0.497516\pi\)
\(350\) 0 0
\(351\) −87.8113 + 77.1923i −0.250175 + 0.219921i
\(352\) 29.6112 + 29.6112i 0.0841227 + 0.0841227i
\(353\) −260.440 69.7848i −0.737792 0.197691i −0.129695 0.991554i \(-0.541400\pi\)
−0.608096 + 0.793863i \(0.708067\pi\)
\(354\) −701.854 + 309.153i −1.98264 + 0.873314i
\(355\) 0 0
\(356\) −369.191 + 639.458i −1.03705 + 1.79623i
\(357\) 655.434 101.145i 1.83595 0.283320i
\(358\) 288.348 + 77.2626i 0.805441 + 0.215817i
\(359\) 411.438i 1.14607i 0.819532 + 0.573033i \(0.194233\pi\)
−0.819532 + 0.573033i \(0.805767\pi\)
\(360\) 0 0
\(361\) 13.6890 0.0379198
\(362\) −265.517 + 990.923i −0.733473 + 2.73736i
\(363\) 273.204 219.446i 0.752628 0.604536i
\(364\) 244.000 + 140.873i 0.670330 + 0.387015i
\(365\) 0 0
\(366\) −704.051 76.8255i −1.92364 0.209906i
\(367\) 167.988 626.938i 0.457732 1.70828i −0.222199 0.975001i \(-0.571323\pi\)
0.679930 0.733277i \(-0.262010\pi\)
\(368\) 54.2584 54.2584i 0.147441 0.147441i
\(369\) 37.0294 11.7074i 0.100351 0.0317274i
\(370\) 0 0
\(371\) 21.4716 + 37.1900i 0.0578751 + 0.100243i
\(372\) −505.537 + 78.0134i −1.35897 + 0.209714i
\(373\) −28.7295 107.220i −0.0770229 0.287453i 0.916662 0.399664i \(-0.130873\pi\)
−0.993684 + 0.112211i \(0.964207\pi\)
\(374\) 143.619 + 82.9186i 0.384009 + 0.221708i
\(375\) 0 0
\(376\) 4.55491 + 7.88933i 0.0121141 + 0.0209823i
\(377\) −68.9157 68.9157i −0.182800 0.182800i
\(378\) 52.7309 819.356i 0.139500 2.16761i
\(379\) 317.077i 0.836614i −0.908306 0.418307i \(-0.862624\pi\)
0.908306 0.418307i \(-0.137376\pi\)
\(380\) 0 0
\(381\) 139.133 + 315.865i 0.365177 + 0.829043i
\(382\) −527.478 + 141.337i −1.38083 + 0.369993i
\(383\) −23.0644 86.0774i −0.0602203 0.224745i 0.929257 0.369434i \(-0.120448\pi\)
−0.989477 + 0.144689i \(0.953782\pi\)
\(384\) −561.629 411.464i −1.46258 1.07152i
\(385\) 0 0
\(386\) −848.449 −2.19806
\(387\) 152.470 + 238.914i 0.393979 + 0.617350i
\(388\) −364.566 + 364.566i −0.939602 + 0.939602i
\(389\) 64.0677 36.9895i 0.164698 0.0950887i −0.415385 0.909646i \(-0.636353\pi\)
0.580084 + 0.814557i \(0.303020\pi\)
\(390\) 0 0
\(391\) −144.548 + 250.364i −0.369687 + 0.640318i
\(392\) −344.386 + 92.2778i −0.878535 + 0.235403i
\(393\) −193.391 + 155.338i −0.492088 + 0.395261i
\(394\) −343.356 + 198.237i −0.871461 + 0.503138i
\(395\) 0 0
\(396\) 88.8343 97.0991i 0.224329 0.245200i
\(397\) −331.663 331.663i −0.835422 0.835422i 0.152830 0.988252i \(-0.451161\pi\)
−0.988252 + 0.152830i \(0.951161\pi\)
\(398\) 532.207 + 142.605i 1.33720 + 0.358303i
\(399\) −410.870 301.013i −1.02975 0.754420i
\(400\) 0 0
\(401\) −324.360 + 561.808i −0.808877 + 1.40102i 0.104765 + 0.994497i \(0.466591\pi\)
−0.913642 + 0.406520i \(0.866742\pi\)
\(402\) −78.4380 + 201.939i −0.195119 + 0.502335i
\(403\) 99.8561 + 26.7564i 0.247782 + 0.0663930i
\(404\) 442.930i 1.09636i
\(405\) 0 0
\(406\) 684.428 1.68578
\(407\) −24.9432 + 93.0893i −0.0612855 + 0.228721i
\(408\) −711.702 276.443i −1.74437 0.677556i
\(409\) −545.487 314.937i −1.33371 0.770017i −0.347842 0.937553i \(-0.613086\pi\)
−0.985866 + 0.167536i \(0.946419\pi\)
\(410\) 0 0
\(411\) 276.497 377.406i 0.672742 0.918262i
\(412\) 97.7018 364.628i 0.237140 0.885019i
\(413\) −493.353 + 493.353i −1.19456 + 1.19456i
\(414\) 264.069 + 241.592i 0.637847 + 0.583555i
\(415\) 0 0
\(416\) 44.2841 + 76.7023i 0.106452 + 0.184380i
\(417\) −2.93449 3.65335i −0.00703715 0.00876103i
\(418\) −32.9643 123.024i −0.0788619 0.294317i
\(419\) −153.113 88.3997i −0.365424 0.210978i 0.306033 0.952021i \(-0.400998\pi\)
−0.671457 + 0.741043i \(0.734331\pi\)
\(420\) 0 0
\(421\) 44.6779 + 77.3843i 0.106123 + 0.183811i 0.914197 0.405271i \(-0.132823\pi\)
−0.808073 + 0.589082i \(0.799490\pi\)
\(422\) 27.7229 + 27.7229i 0.0656941 + 0.0656941i
\(423\) −6.58972 + 4.20542i −0.0155785 + 0.00994188i
\(424\) 49.4388i 0.116601i
\(425\) 0 0
\(426\) 169.321 231.116i 0.397468 0.542526i
\(427\) −622.355 + 166.760i −1.45751 + 0.390538i
\(428\) 220.612 + 823.337i 0.515449 + 1.92368i
\(429\) −24.3407 + 10.7216i −0.0567381 + 0.0249921i
\(430\) 0 0
\(431\) 648.364 1.50433 0.752163 0.658977i \(-0.229011\pi\)
0.752163 + 0.658977i \(0.229011\pi\)
\(432\) −96.4425 + 144.706i −0.223247 + 0.334968i
\(433\) 481.270 481.270i 1.11148 1.11148i 0.118526 0.992951i \(-0.462183\pi\)
0.992951 0.118526i \(-0.0378169\pi\)
\(434\) −628.718 + 362.991i −1.44866 + 0.836384i
\(435\) 0 0
\(436\) 365.961 633.864i 0.839361 1.45382i
\(437\) 214.462 57.4649i 0.490760 0.131499i
\(438\) −103.957 673.656i −0.237345 1.53803i
\(439\) 543.519 313.801i 1.23808 0.714809i 0.269382 0.963033i \(-0.413180\pi\)
0.968702 + 0.248225i \(0.0798471\pi\)
\(440\) 0 0
\(441\) −92.2302 291.715i −0.209139 0.661485i
\(442\) 248.013 + 248.013i 0.561115 + 0.561115i
\(443\) 519.441 + 139.184i 1.17255 + 0.314185i 0.791969 0.610562i \(-0.209056\pi\)
0.380584 + 0.924746i \(0.375723\pi\)
\(444\) 109.402 1002.59i 0.246401 2.25809i
\(445\) 0 0
\(446\) 21.3741 37.0210i 0.0479239 0.0830067i
\(447\) −189.619 236.070i −0.424204 0.528121i
\(448\) −827.486 221.724i −1.84707 0.494920i
\(449\) 252.073i 0.561410i 0.959794 + 0.280705i \(0.0905683\pi\)
−0.959794 + 0.280705i \(0.909432\pi\)
\(450\) 0 0
\(451\) 8.83482 0.0195894
\(452\) 75.1186 280.346i 0.166191 0.620235i
\(453\) −99.8294 646.907i −0.220374 1.42805i
\(454\) 1279.57 + 738.759i 2.81843 + 1.62722i
\(455\) 0 0
\(456\) 236.373 + 536.624i 0.518361 + 1.17681i
\(457\) −76.3993 + 285.126i −0.167176 + 0.623908i 0.830577 + 0.556904i \(0.188011\pi\)
−0.997753 + 0.0670042i \(0.978656\pi\)
\(458\) 447.688 447.688i 0.977484 0.977484i
\(459\) 209.866 620.654i 0.457224 1.35219i
\(460\) 0 0
\(461\) 254.881 + 441.467i 0.552887 + 0.957629i 0.998065 + 0.0621865i \(0.0198074\pi\)
−0.445177 + 0.895443i \(0.646859\pi\)
\(462\) 67.6280 174.108i 0.146381 0.376858i
\(463\) 76.4168 + 285.192i 0.165047 + 0.615964i 0.998034 + 0.0626719i \(0.0199622\pi\)
−0.832987 + 0.553293i \(0.813371\pi\)
\(464\) −125.541 72.4813i −0.270563 0.156210i
\(465\) 0 0
\(466\) 148.208 + 256.703i 0.318042 + 0.550865i
\(467\) 375.745 + 375.745i 0.804593 + 0.804593i 0.983810 0.179217i \(-0.0573564\pi\)
−0.179217 + 0.983810i \(0.557356\pi\)
\(468\) 234.633 149.738i 0.501352 0.319952i
\(469\) 197.085i 0.420223i
\(470\) 0 0
\(471\) −791.767 86.3970i −1.68103 0.183433i
\(472\) 775.871 207.894i 1.64379 0.440453i
\(473\) 16.6875 + 62.2784i 0.0352800 + 0.131667i
\(474\) −0.252977 + 2.31835i −0.000533706 + 0.00489104i
\(475\) 0 0
\(476\) −1578.85 −3.31691
\(477\) 42.3824 1.88391i 0.0888520 0.00394951i
\(478\) 157.841 157.841i 0.330212 0.330212i
\(479\) 375.237 216.643i 0.783376 0.452282i −0.0542492 0.998527i \(-0.517277\pi\)
0.837625 + 0.546245i \(0.183943\pi\)
\(480\) 0 0
\(481\) −101.914 + 176.520i −0.211879 + 0.366985i
\(482\) −191.326 + 51.2656i −0.396942 + 0.106360i
\(483\) 303.514 + 117.892i 0.628393 + 0.244084i
\(484\) −722.482 + 417.125i −1.49273 + 0.861828i
\(485\) 0 0
\(486\) −694.270 419.424i −1.42854 0.863013i
\(487\) −417.712 417.712i −0.857725 0.857725i 0.133345 0.991070i \(-0.457428\pi\)
−0.991070 + 0.133345i \(0.957428\pi\)
\(488\) 716.491 + 191.983i 1.46822 + 0.393408i
\(489\) 625.406 275.479i 1.27895 0.563352i
\(490\) 0 0
\(491\) 385.003 666.845i 0.784121 1.35814i −0.145402 0.989373i \(-0.546447\pi\)
0.929523 0.368765i \(-0.120219\pi\)
\(492\) −91.3748 + 14.1008i −0.185721 + 0.0286601i
\(493\) 527.544 + 141.355i 1.07007 + 0.286724i
\(494\) 269.373i 0.545289i
\(495\) 0 0
\(496\) 153.764 0.310007
\(497\) 67.4600 251.764i 0.135734 0.506567i
\(498\) −1240.50 + 996.409i −2.49096 + 2.00082i
\(499\) −84.7687 48.9412i −0.169877 0.0980786i 0.412651 0.910889i \(-0.364603\pi\)
−0.582528 + 0.812811i \(0.697936\pi\)
\(500\) 0 0
\(501\) 177.909 + 19.4133i 0.355108 + 0.0387491i
\(502\) 76.5253 285.596i 0.152441 0.568917i
\(503\) −350.849 + 350.849i −0.697512 + 0.697512i −0.963873 0.266361i \(-0.914179\pi\)
0.266361 + 0.963873i \(0.414179\pi\)
\(504\) −185.461 + 839.692i −0.367979 + 1.66606i
\(505\) 0 0
\(506\) 40.7104 + 70.5125i 0.0804553 + 0.139353i
\(507\) 445.474 68.7447i 0.878647 0.135591i
\(508\) −212.670 793.696i −0.418642 1.56239i
\(509\) 389.842 + 225.075i 0.765897 + 0.442191i 0.831409 0.555661i \(-0.187535\pi\)
−0.0655119 + 0.997852i \(0.520868\pi\)
\(510\) 0 0
\(511\) −310.055 537.031i −0.606761 1.05094i
\(512\) 284.213 + 284.213i 0.555104 + 0.555104i
\(513\) −451.025 + 223.084i −0.879190 + 0.434861i
\(514\) 524.643i 1.02071i
\(515\) 0 0
\(516\) −271.991 617.485i −0.527113 1.19668i
\(517\) −1.71776 + 0.460272i −0.00332255 + 0.000890275i
\(518\) −370.470 1382.61i −0.715194 2.66914i
\(519\) 234.600 + 171.874i 0.452024 + 0.331164i
\(520\) 0 0
\(521\) 749.947 1.43944 0.719718 0.694266i \(-0.244271\pi\)
0.719718 + 0.694266i \(0.244271\pi\)
\(522\) 311.741 600.002i 0.597205 1.14943i
\(523\) −377.284 + 377.284i −0.721385 + 0.721385i −0.968887 0.247502i \(-0.920390\pi\)
0.247502 + 0.968887i \(0.420390\pi\)
\(524\) 511.417 295.267i 0.975986 0.563486i
\(525\) 0 0
\(526\) 585.779 1014.60i 1.11365 1.92890i
\(527\) −559.573 + 149.937i −1.06181 + 0.284511i
\(528\) −30.8428 + 24.7740i −0.0584145 + 0.0469204i
\(529\) 335.207 193.532i 0.633661 0.365844i
\(530\) 0 0
\(531\) 207.786 + 657.208i 0.391312 + 1.23768i
\(532\) 857.415 + 857.415i 1.61168 + 1.61168i
\(533\) 18.0488 + 4.83616i 0.0338627 + 0.00907348i
\(534\) 835.146 + 611.848i 1.56394 + 1.14578i
\(535\) 0 0
\(536\) 113.448 196.497i 0.211656 0.366599i
\(537\) 97.1416 250.091i 0.180897 0.465719i
\(538\) 261.743 + 70.1337i 0.486510 + 0.130360i
\(539\) 69.6001i 0.129128i
\(540\) 0 0
\(541\) 861.919 1.59320 0.796598 0.604509i \(-0.206631\pi\)
0.796598 + 0.604509i \(0.206631\pi\)
\(542\) 83.2920 310.850i 0.153675 0.573524i
\(543\) 859.451 + 333.832i 1.58278 + 0.614793i
\(544\) −429.824 248.159i −0.790117 0.456174i
\(545\) 0 0
\(546\) 233.465 318.669i 0.427591 0.583643i
\(547\) −103.247 + 385.325i −0.188752 + 0.704433i 0.805044 + 0.593215i \(0.202142\pi\)
−0.993796 + 0.111218i \(0.964525\pi\)
\(548\) −787.582 + 787.582i −1.43719 + 1.43719i
\(549\) −137.279 + 621.542i −0.250052 + 1.13213i
\(550\) 0 0
\(551\) −209.725 363.254i −0.380626 0.659264i
\(552\) −234.747 292.252i −0.425266 0.529442i
\(553\) 0.549118 + 2.04934i 0.000992981 + 0.00370585i
\(554\) −1266.55 731.241i −2.28619 1.31993i
\(555\) 0 0
\(556\) 5.57790 + 9.66120i 0.0100322 + 0.0173763i
\(557\) 262.321 + 262.321i 0.470954 + 0.470954i 0.902223 0.431269i \(-0.141934\pi\)
−0.431269 + 0.902223i \(0.641934\pi\)
\(558\) 31.8487 + 716.499i 0.0570765 + 1.28405i
\(559\) 136.364i 0.243943i
\(560\) 0 0
\(561\) 88.0851 120.232i 0.157014 0.214318i
\(562\) 616.171 165.102i 1.09639 0.293777i
\(563\) −235.225 877.872i −0.417806 1.55928i −0.779147 0.626841i \(-0.784347\pi\)
0.361341 0.932434i \(-0.382319\pi\)
\(564\) 17.0314 7.50202i 0.0301976 0.0133015i
\(565\) 0 0
\(566\) 1155.68 2.04183
\(567\) −726.910 126.993i −1.28203 0.223973i
\(568\) −212.181 + 212.181i −0.373559 + 0.373559i
\(569\) −632.780 + 365.336i −1.11209 + 0.642066i −0.939370 0.342905i \(-0.888589\pi\)
−0.172721 + 0.984971i \(0.555256\pi\)
\(570\) 0 0
\(571\) −348.293 + 603.262i −0.609971 + 1.05650i 0.381273 + 0.924462i \(0.375486\pi\)
−0.991245 + 0.132039i \(0.957848\pi\)
\(572\) 61.1624 16.3884i 0.106927 0.0286511i
\(573\) 74.8523 + 485.052i 0.130632 + 0.846514i
\(574\) −113.640 + 65.6099i −0.197978 + 0.114303i
\(575\) 0 0
\(576\) −571.275 + 624.424i −0.991797 + 1.08407i
\(577\) 524.179 + 524.179i 0.908455 + 0.908455i 0.996148 0.0876926i \(-0.0279493\pi\)
−0.0876926 + 0.996148i \(0.527949\pi\)
\(578\) −966.715 259.031i −1.67252 0.448150i
\(579\) −82.7171 + 758.044i −0.142862 + 1.30923i
\(580\) 0 0
\(581\) −723.758 + 1253.59i −1.24571 + 2.15763i
\(582\) 452.695 + 563.591i 0.777827 + 0.968370i
\(583\) 9.32225 + 2.49789i 0.0159901 + 0.00428454i
\(584\) 713.907i 1.22244i
\(585\) 0 0
\(586\) −1000.27 −1.70695
\(587\) 141.391 527.677i 0.240870 0.898938i −0.734545 0.678560i \(-0.762604\pi\)
0.975415 0.220378i \(-0.0707291\pi\)
\(588\) 111.085 + 719.845i 0.188920 + 1.22423i
\(589\) 385.309 + 222.458i 0.654174 + 0.377688i
\(590\) 0 0
\(591\) 143.639 + 326.096i 0.243044 + 0.551770i
\(592\) −78.4661 + 292.839i −0.132544 + 0.494661i
\(593\) 61.2676 61.2676i 0.103318 0.103318i −0.653558 0.756876i \(-0.726725\pi\)
0.756876 + 0.653558i \(0.226725\pi\)
\(594\) −121.829 138.588i −0.205099 0.233314i
\(595\) 0 0
\(596\) 360.429 + 624.282i 0.604747 + 1.04745i
\(597\) 179.295 461.596i 0.300327 0.773192i
\(598\) 44.5696 + 166.336i 0.0745310 + 0.278154i
\(599\) −572.037 330.266i −0.954987 0.551362i −0.0603602 0.998177i \(-0.519225\pi\)
−0.894626 + 0.446815i \(0.852558\pi\)
\(600\) 0 0
\(601\) 65.1748 + 112.886i 0.108444 + 0.187830i 0.915140 0.403136i \(-0.132080\pi\)
−0.806696 + 0.590966i \(0.798747\pi\)
\(602\) −677.143 677.143i −1.12482 1.12482i
\(603\) 172.774 + 89.7675i 0.286524 + 0.148868i
\(604\) 1558.31i 2.57999i
\(605\) 0 0
\(606\) 617.371 + 67.3669i 1.01876 + 0.111167i
\(607\) −313.749 + 84.0689i −0.516885 + 0.138499i −0.507826 0.861460i \(-0.669551\pi\)
−0.00905986 + 0.999959i \(0.502884\pi\)
\(608\) 98.6554 + 368.187i 0.162262 + 0.605571i
\(609\) 66.7263 611.499i 0.109567 1.00410i
\(610\) 0 0
\(611\) −3.76119 −0.00615580
\(612\) −719.130 + 1384.10i −1.17505 + 2.26160i
\(613\) 778.916 778.916i 1.27066 1.27066i 0.324921 0.945741i \(-0.394662\pi\)
0.945741 0.324921i \(-0.105338\pi\)
\(614\) 565.790 326.659i 0.921482 0.532018i
\(615\) 0 0
\(616\) −97.8128 + 169.417i −0.158787 + 0.275027i
\(617\) −331.081 + 88.7130i −0.536599 + 0.143781i −0.516934 0.856025i \(-0.672927\pi\)
−0.0196651 + 0.999807i \(0.506260\pi\)
\(618\) −493.370 191.637i −0.798334 0.310093i
\(619\) 448.805 259.118i 0.725049 0.418607i −0.0915591 0.995800i \(-0.529185\pi\)
0.816608 + 0.577192i \(0.195852\pi\)
\(620\) 0 0
\(621\) 241.594 212.378i 0.389040 0.341993i
\(622\) 253.198 + 253.198i 0.407070 + 0.407070i
\(623\) 909.758 + 243.769i 1.46029 + 0.391282i
\(624\) −76.5706 + 33.7279i −0.122709 + 0.0540511i
\(625\) 0 0
\(626\) 912.840 1581.09i 1.45821 2.52569i
\(627\) −113.129 + 17.4579i −0.180430 + 0.0278435i
\(628\) 1831.53 + 490.756i 2.91645 + 0.781459i
\(629\) 1142.21i 1.81591i
\(630\) 0 0
\(631\) −48.4016 −0.0767062 −0.0383531 0.999264i \(-0.512211\pi\)
−0.0383531 + 0.999264i \(0.512211\pi\)
\(632\) 0.632177 2.35932i 0.00100028 0.00373309i
\(633\) 27.4717 22.0662i 0.0433992 0.0348597i
\(634\) −1261.33 728.230i −1.98948 1.14863i
\(635\) 0 0
\(636\) −100.403 10.9559i −0.157866 0.0172262i
\(637\) 38.0990 142.187i 0.0598100 0.223214i
\(638\) 108.766 108.766i 0.170480 0.170480i
\(639\) −189.982 173.811i −0.297312 0.272005i
\(640\) 0 0
\(641\) −313.217 542.507i −0.488637 0.846345i 0.511277 0.859416i \(-0.329173\pi\)
−0.999915 + 0.0130711i \(0.995839\pi\)
\(642\) 1181.15 182.272i 1.83979 0.283913i
\(643\) −125.261 467.479i −0.194807 0.727028i −0.992317 0.123723i \(-0.960517\pi\)
0.797510 0.603305i \(-0.206150\pi\)
\(644\) −671.313 387.583i −1.04241 0.601836i
\(645\) 0 0
\(646\) 754.755 + 1307.27i 1.16835 + 2.02364i
\(647\) 388.357 + 388.357i 0.600242 + 0.600242i 0.940377 0.340135i \(-0.110473\pi\)
−0.340135 + 0.940377i \(0.610473\pi\)
\(648\) 651.642 + 545.045i 1.00562 + 0.841118i
\(649\) 156.803i 0.241607i
\(650\) 0 0
\(651\) 263.017 + 597.114i 0.404021 + 0.917226i
\(652\) −1571.50 + 421.082i −2.41027 + 0.645831i
\(653\) −51.2298 191.192i −0.0784530 0.292791i 0.915541 0.402225i \(-0.131763\pi\)
−0.993994 + 0.109434i \(0.965096\pi\)
\(654\) −827.839 606.495i −1.26581 0.927363i
\(655\) 0 0
\(656\) 27.7925 0.0423666
\(657\) −612.010 + 27.2041i −0.931523 + 0.0414066i
\(658\) 18.6769 18.6769i 0.0283843 0.0283843i
\(659\) −97.2838 + 56.1668i −0.147623 + 0.0852304i −0.571992 0.820259i \(-0.693829\pi\)
0.424369 + 0.905489i \(0.360496\pi\)
\(660\) 0 0
\(661\) 55.4873 96.1067i 0.0839444 0.145396i −0.820997 0.570933i \(-0.806582\pi\)
0.904941 + 0.425537i \(0.139915\pi\)
\(662\) 1890.38 506.525i 2.85556 0.765144i
\(663\) 245.765 197.407i 0.370687 0.297748i
\(664\) 1443.20 833.232i 2.17349 1.25487i
\(665\) 0 0
\(666\) −1380.81 304.976i −2.07329 0.457923i
\(667\) 189.607 + 189.607i 0.284268 + 0.284268i
\(668\) −411.542 110.272i −0.616081 0.165078i
\(669\) −30.9924 22.7058i −0.0463265 0.0339400i
\(670\) 0 0
\(671\) −72.4012 + 125.403i −0.107900 + 0.186889i
\(672\) −202.397 + 521.071i −0.301186 + 0.775403i
\(673\) 202.929 + 54.3747i 0.301529 + 0.0807945i 0.406412 0.913690i \(-0.366780\pi\)
−0.104882 + 0.994485i \(0.533447\pi\)
\(674\) 1588.56i 2.35692i
\(675\) 0 0
\(676\) −1073.09 −1.58741
\(677\) −193.957 + 723.857i −0.286495 + 1.06921i 0.661246 + 0.750169i \(0.270028\pi\)
−0.947740 + 0.319043i \(0.896639\pi\)
\(678\) −379.331 147.342i −0.559485 0.217318i
\(679\) 569.537 + 328.822i 0.838788 + 0.484275i
\(680\) 0 0
\(681\) 784.789 1071.20i 1.15241 1.57298i
\(682\) −42.2282 + 157.598i −0.0619182 + 0.231082i
\(683\) −441.268 + 441.268i −0.646074 + 0.646074i −0.952042 0.305968i \(-0.901020\pi\)
0.305968 + 0.952042i \(0.401020\pi\)
\(684\) 1142.18 361.119i 1.66986 0.527952i
\(685\) 0 0
\(686\) −228.158 395.181i −0.332592 0.576066i
\(687\) −356.339 443.631i −0.518688 0.645751i
\(688\) 52.4952 + 195.915i 0.0763012 + 0.284760i
\(689\) 17.6772 + 10.2060i 0.0256564 + 0.0148127i
\(690\) 0 0
\(691\) 396.083 + 686.036i 0.573202 + 0.992816i 0.996234 + 0.0867010i \(0.0276325\pi\)
−0.423032 + 0.906115i \(0.639034\pi\)
\(692\) −489.571 489.571i −0.707473 0.707473i
\(693\) −148.963 77.3961i −0.214954 0.111683i
\(694\) 586.222i 0.844700i
\(695\) 0 0
\(696\) −418.524 + 571.266i −0.601327 + 0.820785i
\(697\) −101.142 + 27.1009i −0.145110 + 0.0388822i
\(698\) −297.427 1110.01i −0.426113 1.59027i
\(699\) 243.799 107.389i 0.348783 0.153632i
\(700\) 0 0
\(701\) −1185.25 −1.69080 −0.845401 0.534133i \(-0.820638\pi\)
−0.845401 + 0.534133i \(0.820638\pi\)
\(702\) −173.023 349.813i −0.246471 0.498309i
\(703\) −620.290 + 620.290i −0.882348 + 0.882348i
\(704\) −166.736 + 96.2650i −0.236841 + 0.136740i
\(705\) 0 0
\(706\) 450.005 779.431i 0.637401 1.10401i
\(707\) 545.733 146.229i 0.771899 0.206830i
\(708\) −250.265 1621.75i −0.353481 2.29060i
\(709\) 237.674 137.221i 0.335224 0.193542i −0.322934 0.946421i \(-0.604669\pi\)
0.658158 + 0.752880i \(0.271336\pi\)
\(710\) 0 0
\(711\) 2.04666 + 0.452042i 0.00287856 + 0.000635783i
\(712\) −766.725 766.725i −1.07686 1.07686i
\(713\) −274.732 73.6143i −0.385319 0.103246i
\(714\) −240.133 + 2200.65i −0.336321 + 3.08215i
\(715\) 0 0
\(716\) −319.362 + 553.152i −0.446037 + 0.772558i
\(717\) −125.634 156.411i −0.175222 0.218146i
\(718\) −1326.57 355.454i −1.84759 0.495061i
\(719\) 1409.12i 1.95983i 0.199416 + 0.979915i \(0.436096\pi\)
−0.199416 + 0.979915i \(0.563904\pi\)
\(720\) 0 0
\(721\) −481.512 −0.667839
\(722\) −11.8264 + 44.1367i −0.0163800 + 0.0611311i
\(723\) 27.1503 + 175.937i 0.0375523 + 0.243344i
\(724\) −1900.94 1097.51i −2.62560 1.51589i
\(725\) 0 0
\(726\) 471.517 + 1070.46i 0.649473 + 1.47446i
\(727\) 184.607 688.962i 0.253930 0.947678i −0.714753 0.699377i \(-0.753461\pi\)
0.968683 0.248302i \(-0.0798724\pi\)
\(728\) −292.562 + 292.562i −0.401870 + 0.401870i
\(729\) −442.419 + 579.402i −0.606884 + 0.794790i
\(730\) 0 0
\(731\) −382.079 661.780i −0.522680 0.905308i
\(732\) 548.667 1412.54i 0.749545 1.92970i
\(733\) 230.005 + 858.390i 0.313786 + 1.17106i 0.925115 + 0.379688i \(0.123969\pi\)
−0.611329 + 0.791377i \(0.709365\pi\)
\(734\) 1876.26 + 1083.26i 2.55622 + 1.47583i
\(735\) 0 0
\(736\) −121.838 211.030i −0.165541 0.286725i
\(737\) 31.3198 + 31.3198i 0.0424964 + 0.0424964i
\(738\) 5.75659 + 129.506i 0.00780025 + 0.175482i
\(739\) 719.160i 0.973153i −0.873638 0.486577i \(-0.838245\pi\)
0.873638 0.486577i \(-0.161755\pi\)
\(740\) 0 0
\(741\) −240.670 26.2617i −0.324791 0.0354409i
\(742\) −138.459 + 37.1000i −0.186603 + 0.0500000i
\(743\) 43.1096 + 160.887i 0.0580210 + 0.216537i 0.988849 0.148919i \(-0.0475795\pi\)
−0.930828 + 0.365457i \(0.880913\pi\)
\(744\) 81.4830 746.734i 0.109520 1.00368i
\(745\) 0 0
\(746\) 370.523 0.496679
\(747\) 769.299 + 1205.46i 1.02985 + 1.61374i
\(748\) −250.904 + 250.904i −0.335433 + 0.335433i
\(749\) 941.597 543.631i 1.25714 0.725809i
\(750\) 0 0
\(751\) 241.781 418.776i 0.321945 0.557625i −0.658945 0.752192i \(-0.728997\pi\)
0.980889 + 0.194567i \(0.0623301\pi\)
\(752\) −5.40371 + 1.44792i −0.00718578 + 0.00192542i
\(753\) −247.704 96.2146i −0.328957 0.127775i
\(754\) 281.739 162.662i 0.373659 0.215732i
\(755\) 0 0
\(756\) 1664.19 + 562.723i 2.20131 + 0.744343i
\(757\) −144.792 144.792i −0.191270 0.191270i 0.604974 0.796245i \(-0.293183\pi\)
−0.796245 + 0.604974i \(0.793183\pi\)
\(758\) 1022.33 + 273.932i 1.34872 + 0.361388i
\(759\) 66.9680 29.4981i 0.0882319 0.0388645i
\(760\) 0 0
\(761\) 149.929 259.685i 0.197016 0.341241i −0.750544 0.660821i \(-0.770208\pi\)
0.947559 + 0.319580i \(0.103542\pi\)
\(762\) −1138.62 + 175.710i −1.49426 + 0.230591i
\(763\) −901.799 241.636i −1.18191 0.316692i
\(764\) 1168.43i 1.52935i
\(765\) 0 0
\(766\) 297.459 0.388328
\(767\) −85.8336 + 320.335i −0.111908 + 0.417647i
\(768\) 932.097 748.691i 1.21367 0.974858i
\(769\) −96.6554 55.8040i −0.125690 0.0725670i 0.435837 0.900026i \(-0.356452\pi\)
−0.561527 + 0.827459i \(0.689786\pi\)
\(770\) 0 0
\(771\) −468.740 51.1485i −0.607964 0.0663405i
\(772\) 469.854 1753.52i 0.608619 2.27140i
\(773\) 43.6287 43.6287i 0.0564408 0.0564408i −0.678323 0.734764i \(-0.737293\pi\)
0.734764 + 0.678323i \(0.237293\pi\)
\(774\) −902.039 + 285.193i −1.16543 + 0.368467i
\(775\) 0 0
\(776\) −378.559 655.684i −0.487834 0.844954i
\(777\) −1271.41 + 196.201i −1.63631 + 0.252512i
\(778\) 63.9127 + 238.526i 0.0821500 + 0.306588i
\(779\) 69.6438 + 40.2089i 0.0894015 + 0.0516160i
\(780\) 0 0
\(781\) −29.2888 50.7297i −0.0375016 0.0649547i
\(782\) −682.353 682.353i −0.872574 0.872574i
\(783\) −505.678 337.019i −0.645821 0.430420i
\(784\) 218.947i 0.279270i
\(785\) 0 0
\(786\) −333.769 757.737i −0.424642 0.964042i
\(787\) 1190.57 319.011i 1.51279 0.405351i 0.595430 0.803407i \(-0.296982\pi\)
0.917361 + 0.398056i \(0.130315\pi\)
\(788\) −219.559 819.404i −0.278628 1.03985i
\(789\) −849.381 622.277i −1.07653 0.788691i
\(790\) 0 0
\(791\) −370.213 −0.468032
\(792\) 103.967 + 162.913i 0.131272 + 0.205698i
\(793\) −216.555 + 216.555i −0.273083 + 0.273083i
\(794\) 1355.89 782.824i 1.70767 0.985925i
\(795\) 0 0
\(796\) −589.451 + 1020.96i −0.740516 + 1.28261i
\(797\) −735.470 + 197.069i −0.922799 + 0.247263i −0.688781 0.724969i \(-0.741854\pi\)
−0.234017 + 0.972232i \(0.575187\pi\)
\(798\) 1325.50 1064.69i 1.66103 1.33419i
\(799\) 18.2532 10.5385i 0.0228450 0.0131896i
\(800\) 0 0
\(801\) 628.073 686.507i 0.784112 0.857063i
\(802\) −1531.17 1531.17i −1.90920 1.90920i
\(803\) −134.615 36.0700i −0.167640 0.0449191i
\(804\) −373.916 273.940i −0.465069 0.340721i
\(805\) 0 0
\(806\) −172.538 + 298.844i −0.214066 + 0.370774i
\(807\) 88.1785 227.015i 0.109267 0.281308i
\(808\) −628.279 168.347i −0.777573 0.208350i
\(809\) 225.758i 0.279058i 0.990218 + 0.139529i \(0.0445589\pi\)
−0.990218 + 0.139529i \(0.955441\pi\)
\(810\) 0 0
\(811\) −149.469 −0.184303 −0.0921513 0.995745i \(-0.529374\pi\)
−0.0921513 + 0.995745i \(0.529374\pi\)
\(812\) −379.022 + 1414.53i −0.466776 + 1.74203i
\(813\) −269.607 104.722i −0.331620 0.128810i
\(814\) −278.593 160.845i −0.342251 0.197599i
\(815\) 0 0
\(816\) 277.097 378.225i 0.339580 0.463511i
\(817\) −151.895 + 566.881i −0.185918 + 0.693856i
\(818\) 1486.69 1486.69i 1.81747 1.81747i
\(819\) −261.953 239.656i −0.319844 0.292620i
\(820\) 0 0
\(821\) 2.78890 + 4.83052i 0.00339696 + 0.00588370i 0.867719 0.497055i \(-0.165585\pi\)
−0.864322 + 0.502939i \(0.832252\pi\)
\(822\) 977.970 + 1217.54i 1.18974 + 1.48120i
\(823\) 167.604 + 625.506i 0.203650 + 0.760032i 0.989857 + 0.142069i \(0.0453754\pi\)
−0.786207 + 0.617963i \(0.787958\pi\)
\(824\) 480.076 + 277.172i 0.582617 + 0.336374i
\(825\) 0 0
\(826\) −1164.46 2016.91i −1.40976 2.44178i
\(827\) −230.120 230.120i −0.278258 0.278258i 0.554155 0.832413i \(-0.313041\pi\)
−0.832413 + 0.554155i \(0.813041\pi\)
\(828\) −645.541 + 411.971i −0.779639 + 0.497549i
\(829\) 1504.68i 1.81505i 0.419994 + 0.907527i \(0.362032\pi\)
−0.419994 + 0.907527i \(0.637968\pi\)
\(830\) 0 0
\(831\) −776.803 + 1060.30i −0.934781 + 1.27593i
\(832\) −393.323 + 105.390i −0.472744 + 0.126671i
\(833\) 213.499 + 796.788i 0.256301 + 0.956528i
\(834\) 14.3145 6.30524i 0.0171636 0.00756024i
\(835\) 0 0
\(836\) 272.513 0.325973
\(837\) 643.258 + 41.3979i 0.768528 + 0.0494598i
\(838\) 417.300 417.300i 0.497971 0.497971i
\(839\) −915.370 + 528.489i −1.09103 + 0.629904i −0.933849 0.357667i \(-0.883572\pi\)
−0.157176 + 0.987571i \(0.550239\pi\)
\(840\) 0 0
\(841\) −167.214 + 289.622i −0.198827 + 0.344378i
\(842\) −288.104 + 77.1972i −0.342166 + 0.0916831i
\(843\) −87.4384 566.612i −0.103723 0.672137i
\(844\) −72.6483 + 41.9435i −0.0860762 + 0.0496961i
\(845\) 0 0
\(846\) −7.86618 24.8800i −0.00929809 0.0294089i
\(847\) 752.457 + 752.457i 0.888379 + 0.888379i
\(848\) 29.3258 + 7.85783i 0.0345823 + 0.00926631i
\(849\) 112.669 1032.54i 0.132708 1.21618i
\(850\) 0 0
\(851\) 280.394 485.656i 0.329487 0.570689i
\(852\) 383.888 + 477.929i 0.450573 + 0.560949i
\(853\) 715.340 + 191.675i 0.838617 + 0.224707i 0.652469 0.757815i \(-0.273733\pi\)
0.186148 + 0.982522i \(0.440400\pi\)
\(854\) 2150.69i 2.51837i
\(855\) 0 0
\(856\) −1251.72 −1.46229
\(857\) 326.446 1218.31i 0.380918 1.42160i −0.463585 0.886052i \(-0.653437\pi\)
0.844503 0.535551i \(-0.179896\pi\)
\(858\) −13.5403 87.7427i −0.0157812 0.102264i
\(859\) 37.7603 + 21.8009i 0.0439584 + 0.0253794i 0.521818 0.853057i \(-0.325254\pi\)
−0.477860 + 0.878436i \(0.658587\pi\)
\(860\) 0 0
\(861\) 47.5399 + 107.927i 0.0552148 + 0.125351i
\(862\) −560.142 + 2090.48i −0.649817 + 2.42515i
\(863\) 274.423 274.423i 0.317988 0.317988i −0.530006 0.847994i \(-0.677810\pi\)
0.847994 + 0.530006i \(0.177810\pi\)
\(864\) 364.609 + 414.767i 0.422001 + 0.480054i
\(865\) 0 0
\(866\) 1135.94 + 1967.51i 1.31171 + 2.27195i
\(867\) −325.677 + 838.454i −0.375637 + 0.967075i
\(868\) −402.033 1500.41i −0.463172 1.72858i
\(869\) 0.412935 + 0.238408i 0.000475184 + 0.000274348i
\(870\) 0 0
\(871\) 46.8394 + 81.1282i 0.0537766 + 0.0931438i
\(872\) 760.017 + 760.017i 0.871579 + 0.871579i
\(873\) 547.673 349.513i 0.627346 0.400359i
\(874\) 741.121i 0.847965i
\(875\) 0 0
\(876\) 1449.84 + 158.205i 1.65506 + 0.180599i
\(877\) −171.710 + 46.0094i −0.195792 + 0.0524623i −0.355382 0.934721i \(-0.615649\pi\)
0.159590 + 0.987183i \(0.448983\pi\)
\(878\) 542.205 + 2023.53i 0.617545 + 2.30471i
\(879\) −97.5184 + 893.687i −0.110942 + 1.01671i
\(880\) 0 0
\(881\) −1000.82 −1.13600 −0.568000 0.823029i \(-0.692282\pi\)
−0.568000 + 0.823029i \(0.692282\pi\)
\(882\) 1020.24 45.3500i 1.15673 0.0514172i
\(883\) −766.494 + 766.494i −0.868057 + 0.868057i −0.992257 0.124201i \(-0.960363\pi\)
0.124201 + 0.992257i \(0.460363\pi\)
\(884\) −649.920 + 375.232i −0.735204 + 0.424470i
\(885\) 0 0
\(886\) −897.522 + 1554.55i −1.01300 + 1.75457i
\(887\) 621.429 166.511i 0.700596 0.187724i 0.109099 0.994031i \(-0.465204\pi\)
0.591498 + 0.806307i \(0.298537\pi\)
\(888\) 1380.56 + 536.244i 1.55468 + 0.603878i
\(889\) −907.698 + 524.060i −1.02103 + 0.589494i
\(890\) 0 0
\(891\) −135.698 + 95.3361i −0.152299 + 0.106999i
\(892\) 64.6759 + 64.6759i 0.0725067 + 0.0725067i
\(893\) −15.6357 4.18956i −0.0175091 0.00469156i
\(894\) 924.963 407.428i 1.03463 0.455736i
\(895\) 0 0
\(896\) 1057.12 1830.98i 1.17982 2.04350i
\(897\) 152.957 23.6041i 0.170521 0.0263145i
\(898\) −812.743 217.774i −0.905058 0.242510i
\(899\) 537.328i 0.597696i
\(900\) 0 0
\(901\) −114.384 −0.126952
\(902\) −7.63268 + 28.4855i −0.00846195 + 0.0315804i
\(903\) −671.006 + 538.974i −0.743086 + 0.596871i
\(904\) 369.109 + 213.105i 0.408307 + 0.235736i
\(905\) 0 0
\(906\) 2172.02 + 237.009i 2.39738 + 0.261600i
\(907\) 170.993 638.156i 0.188526 0.703589i −0.805322 0.592838i \(-0.798008\pi\)
0.993848 0.110752i \(-0.0353258\pi\)
\(908\) −2235.42 + 2235.42i −2.46191 + 2.46191i
\(909\) 120.377 545.019i 0.132428 0.599581i
\(910\) 0 0
\(911\) 536.476 + 929.204i 0.588887 + 1.01998i 0.994379 + 0.105884i \(0.0337671\pi\)
−0.405491 + 0.914099i \(0.632900\pi\)
\(912\) −355.881 + 54.9189i −0.390221 + 0.0602181i
\(913\) 84.1979 + 314.231i 0.0922211 + 0.344174i
\(914\) −853.309 492.658i −0.933598 0.539013i
\(915\) 0 0
\(916\) 677.331 + 1173.17i 0.739444 + 1.28075i
\(917\) −532.635 532.635i −0.580846 0.580846i
\(918\) 1819.82 + 1212.86i 1.98238 + 1.32120i
\(919\) 728.665i 0.792889i 0.918059 + 0.396444i \(0.129756\pi\)
−0.918059 + 0.396444i \(0.870244\pi\)
\(920\) 0 0
\(921\) −236.692 537.349i −0.256995 0.583441i
\(922\) −1643.59 + 440.399i −1.78264 + 0.477656i
\(923\) −32.0652 119.669i −0.0347402 0.129652i
\(924\) 322.384 + 236.187i 0.348901 + 0.255613i
\(925\) 0 0
\(926\) −985.543 −1.06430
\(927\) −219.317 + 422.117i −0.236588 + 0.455358i
\(928\) −325.515 + 325.515i −0.350771 + 0.350771i
\(929\) −844.876 + 487.790i −0.909447 + 0.525070i −0.880253 0.474504i \(-0.842627\pi\)
−0.0291940 + 0.999574i \(0.509294\pi\)
\(930\) 0 0
\(931\) 316.763 548.649i 0.340239 0.589312i
\(932\) −612.611 + 164.149i −0.657308 + 0.176125i
\(933\) 250.903 201.534i 0.268921 0.216006i
\(934\) −1536.11 + 886.871i −1.64465 + 0.949541i
\(935\) 0 0
\(936\) 123.219 + 389.729i 0.131644 + 0.416377i
\(937\) 141.251 + 141.251i 0.150749 + 0.150749i 0.778452 0.627704i \(-0.216005\pi\)
−0.627704 + 0.778452i \(0.716005\pi\)
\(938\) −635.447 170.268i −0.677449 0.181522i
\(939\) −1323.62 969.716i −1.40961 1.03271i
\(940\) 0 0
\(941\) 557.909 966.326i 0.592889 1.02691i −0.400952 0.916099i \(-0.631321\pi\)
0.993841 0.110815i \(-0.0353461\pi\)
\(942\) 962.596 2478.20i 1.02186 2.63079i
\(943\) −49.6574 13.3057i −0.0526589 0.0141099i
\(944\) 493.269i 0.522531i
\(945\) 0 0
\(946\) −215.217 −0.227502
\(947\) −205.274 + 766.094i −0.216763 + 0.808969i 0.768776 + 0.639518i \(0.220866\pi\)
−0.985539 + 0.169451i \(0.945801\pi\)
\(948\) −4.65132 1.80669i −0.00490646 0.00190579i
\(949\) −255.263 147.376i −0.268981 0.155296i
\(950\) 0 0
\(951\) −773.604 + 1055.93i −0.813464 + 1.11034i
\(952\) 600.082 2239.54i 0.630338 2.35245i
\(953\) 80.4623 80.4623i 0.0844305 0.0844305i −0.663630 0.748061i \(-0.730985\pi\)
0.748061 + 0.663630i \(0.230985\pi\)
\(954\) −30.5413 + 138.278i −0.0320139 + 0.144946i
\(955\) 0 0
\(956\) 238.807 + 413.625i 0.249798 + 0.432662i
\(957\) −86.5729 107.781i −0.0904628 0.112623i
\(958\) 374.330 + 1397.02i 0.390741 + 1.45826i
\(959\) 1230.39 + 710.365i 1.28299 + 0.740735i
\(960\) 0 0
\(961\) 195.525 + 338.658i 0.203459 + 0.352402i
\(962\) −481.095 481.095i −0.500099 0.500099i
\(963\) −47.6980 1073.06i −0.0495306 1.11429i
\(964\) 423.810i 0.439636i
\(965\) 0 0
\(966\) −642.328 + 876.748i −0.664935 + 0.907607i
\(967\) 328.164 87.9314i 0.339363 0.0909322i −0.0851126 0.996371i \(-0.527125\pi\)
0.424476 + 0.905439i \(0.360458\pi\)
\(968\) −317.078 1183.35i −0.327560 1.22247i
\(969\) 1241.56 546.884i 1.28128 0.564380i
\(970\) 0 0
\(971\) 1786.19 1.83954 0.919769 0.392460i \(-0.128376\pi\)
0.919769 + 0.392460i \(0.128376\pi\)
\(972\) 1251.31 1202.60i 1.28736 1.23724i
\(973\) 10.0620 10.0620i 0.0103413 0.0103413i
\(974\) 1707.67 985.926i 1.75326 1.01224i
\(975\) 0 0
\(976\) −227.759 + 394.490i −0.233360 + 0.404191i
\(977\) −743.412 + 199.197i −0.760913 + 0.203886i −0.618353 0.785900i \(-0.712200\pi\)
−0.142560 + 0.989786i \(0.545533\pi\)
\(978\) 347.902 + 2254.45i 0.355728 + 2.30516i
\(979\) 183.313 105.836i 0.187246 0.108106i
\(980\) 0 0
\(981\) −622.578 + 680.501i −0.634637 + 0.693681i
\(982\) 1817.45 + 1817.45i 1.85076 + 1.85076i
\(983\) −79.2948 21.2470i −0.0806661 0.0216144i 0.218260 0.975891i \(-0.429962\pi\)
−0.298926 + 0.954276i \(0.596629\pi\)
\(984\) 14.7279 134.971i 0.0149674 0.137166i
\(985\) 0 0
\(986\) −911.523 + 1578.80i −0.924466 + 1.60122i
\(987\) −14.8660 18.5076i −0.0150618 0.0187514i
\(988\) 556.722 + 149.173i 0.563484 + 0.150985i
\(989\) 375.177i 0.379350i
\(990\) 0 0
\(991\) −515.156 −0.519835 −0.259917 0.965631i \(-0.583695\pi\)
−0.259917 + 0.965631i \(0.583695\pi\)
\(992\) 126.381 471.659i 0.127400 0.475462i
\(993\) −268.256 1738.33i −0.270147 1.75059i
\(994\) 753.465 + 435.013i 0.758013 + 0.437639i
\(995\) 0 0
\(996\) −1372.35 3115.57i −1.37786 3.12808i
\(997\) 96.0965 358.637i 0.0963856 0.359716i −0.900840 0.434151i \(-0.857049\pi\)
0.997226 + 0.0744346i \(0.0237152\pi\)
\(998\) 231.032 231.032i 0.231495 0.231495i
\(999\) −407.098 + 1203.94i −0.407505 + 1.20515i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.o.b.157.2 40
5.2 odd 4 45.3.k.a.13.2 yes 40
5.3 odd 4 inner 225.3.o.b.193.9 40
5.4 even 2 45.3.k.a.22.9 yes 40
9.7 even 3 inner 225.3.o.b.7.9 40
15.2 even 4 135.3.l.a.118.9 40
15.14 odd 2 135.3.l.a.37.2 40
45.2 even 12 135.3.l.a.73.2 40
45.4 even 6 405.3.g.h.82.9 20
45.7 odd 12 45.3.k.a.43.9 yes 40
45.14 odd 6 405.3.g.g.82.2 20
45.22 odd 12 405.3.g.h.163.9 20
45.29 odd 6 135.3.l.a.127.9 40
45.32 even 12 405.3.g.g.163.2 20
45.34 even 6 45.3.k.a.7.2 40
45.43 odd 12 inner 225.3.o.b.43.2 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.2 40 45.34 even 6
45.3.k.a.13.2 yes 40 5.2 odd 4
45.3.k.a.22.9 yes 40 5.4 even 2
45.3.k.a.43.9 yes 40 45.7 odd 12
135.3.l.a.37.2 40 15.14 odd 2
135.3.l.a.73.2 40 45.2 even 12
135.3.l.a.118.9 40 15.2 even 4
135.3.l.a.127.9 40 45.29 odd 6
225.3.o.b.7.9 40 9.7 even 3 inner
225.3.o.b.43.2 40 45.43 odd 12 inner
225.3.o.b.157.2 40 1.1 even 1 trivial
225.3.o.b.193.9 40 5.3 odd 4 inner
405.3.g.g.82.2 20 45.14 odd 6
405.3.g.g.163.2 20 45.32 even 12
405.3.g.h.82.9 20 45.4 even 6
405.3.g.h.163.9 20 45.22 odd 12