Properties

Label 225.3.i.a
Level $225$
Weight $3$
Character orbit 225.i
Analytic conductor $6.131$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(74,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.74");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} - \zeta_{12}) q^{2} + (3 \zeta_{12}^{3} - 3 \zeta_{12}) q^{3} + ( - \zeta_{12}^{2} + 1) q^{4} + (3 \zeta_{12}^{2} + 3) q^{6} + ( - 2 \zeta_{12}^{3} + 2 \zeta_{12}) q^{7} + (5 \zeta_{12}^{3} - 10 \zeta_{12}) q^{8}+ \cdots + (18 \zeta_{12}^{2} - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 18 q^{6} + 18 q^{9} - 6 q^{11} - 12 q^{14} + 22 q^{16} - 44 q^{19} - 12 q^{21} + 90 q^{24} - 156 q^{29} - 64 q^{31} + 54 q^{34} - 18 q^{36} + 48 q^{39} - 42 q^{41} + 192 q^{46} - 90 q^{49}+ \cdots - 168 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1 - \zeta_{12}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
74.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 1.50000i −2.59808 1.50000i 0.500000 + 0.866025i 0 4.50000 2.59808i 1.73205 + 1.00000i −8.66025 4.50000 + 7.79423i 0
74.2 0.866025 1.50000i 2.59808 + 1.50000i 0.500000 + 0.866025i 0 4.50000 2.59808i −1.73205 1.00000i 8.66025 4.50000 + 7.79423i 0
149.1 −0.866025 1.50000i −2.59808 + 1.50000i 0.500000 0.866025i 0 4.50000 + 2.59808i 1.73205 1.00000i −8.66025 4.50000 7.79423i 0
149.2 0.866025 + 1.50000i 2.59808 1.50000i 0.500000 0.866025i 0 4.50000 + 2.59808i −1.73205 + 1.00000i 8.66025 4.50000 7.79423i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.d odd 6 1 inner
45.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 225.3.i.a 4
3.b odd 2 1 675.3.i.a 4
5.b even 2 1 inner 225.3.i.a 4
5.c odd 4 1 9.3.d.a 2
5.c odd 4 1 225.3.j.a 2
9.c even 3 1 675.3.i.a 4
9.d odd 6 1 inner 225.3.i.a 4
15.d odd 2 1 675.3.i.a 4
15.e even 4 1 27.3.d.a 2
15.e even 4 1 675.3.j.a 2
20.e even 4 1 144.3.q.a 2
35.f even 4 1 441.3.r.a 2
35.k even 12 1 441.3.j.b 2
35.k even 12 1 441.3.n.a 2
35.l odd 12 1 441.3.j.a 2
35.l odd 12 1 441.3.n.b 2
40.i odd 4 1 576.3.q.b 2
40.k even 4 1 576.3.q.a 2
45.h odd 6 1 inner 225.3.i.a 4
45.j even 6 1 675.3.i.a 4
45.k odd 12 1 27.3.d.a 2
45.k odd 12 1 81.3.b.a 2
45.k odd 12 1 675.3.j.a 2
45.l even 12 1 9.3.d.a 2
45.l even 12 1 81.3.b.a 2
45.l even 12 1 225.3.j.a 2
60.l odd 4 1 432.3.q.a 2
120.q odd 4 1 1728.3.q.b 2
120.w even 4 1 1728.3.q.a 2
180.v odd 12 1 144.3.q.a 2
180.v odd 12 1 1296.3.e.a 2
180.x even 12 1 432.3.q.a 2
180.x even 12 1 1296.3.e.a 2
315.bu odd 12 1 441.3.n.a 2
315.bv even 12 1 441.3.n.b 2
315.bw odd 12 1 441.3.j.b 2
315.bx even 12 1 441.3.j.a 2
315.cf odd 12 1 441.3.r.a 2
360.bo even 12 1 1728.3.q.b 2
360.br even 12 1 576.3.q.b 2
360.bt odd 12 1 576.3.q.a 2
360.bu odd 12 1 1728.3.q.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.3.d.a 2 5.c odd 4 1
9.3.d.a 2 45.l even 12 1
27.3.d.a 2 15.e even 4 1
27.3.d.a 2 45.k odd 12 1
81.3.b.a 2 45.k odd 12 1
81.3.b.a 2 45.l even 12 1
144.3.q.a 2 20.e even 4 1
144.3.q.a 2 180.v odd 12 1
225.3.i.a 4 1.a even 1 1 trivial
225.3.i.a 4 5.b even 2 1 inner
225.3.i.a 4 9.d odd 6 1 inner
225.3.i.a 4 45.h odd 6 1 inner
225.3.j.a 2 5.c odd 4 1
225.3.j.a 2 45.l even 12 1
432.3.q.a 2 60.l odd 4 1
432.3.q.a 2 180.x even 12 1
441.3.j.a 2 35.l odd 12 1
441.3.j.a 2 315.bx even 12 1
441.3.j.b 2 35.k even 12 1
441.3.j.b 2 315.bw odd 12 1
441.3.n.a 2 35.k even 12 1
441.3.n.a 2 315.bu odd 12 1
441.3.n.b 2 35.l odd 12 1
441.3.n.b 2 315.bv even 12 1
441.3.r.a 2 35.f even 4 1
441.3.r.a 2 315.cf odd 12 1
576.3.q.a 2 40.k even 4 1
576.3.q.a 2 360.bt odd 12 1
576.3.q.b 2 40.i odd 4 1
576.3.q.b 2 360.br even 12 1
675.3.i.a 4 3.b odd 2 1
675.3.i.a 4 9.c even 3 1
675.3.i.a 4 15.d odd 2 1
675.3.i.a 4 45.j even 6 1
675.3.j.a 2 15.e even 4 1
675.3.j.a 2 45.k odd 12 1
1296.3.e.a 2 180.v odd 12 1
1296.3.e.a 2 180.x even 12 1
1728.3.q.a 2 120.w even 4 1
1728.3.q.a 2 360.bu odd 12 1
1728.3.q.b 2 120.q odd 4 1
1728.3.q.b 2 360.bo even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 3T_{2}^{2} + 9 \) acting on \(S_{3}^{\mathrm{new}}(225, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$3$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$17$ \( (T^{2} - 243)^{2} \) Copy content Toggle raw display
$19$ \( (T + 11)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 768 T^{2} + 589824 \) Copy content Toggle raw display
$29$ \( (T^{2} + 78 T + 2028)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 32 T + 1024)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 1156)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 21 T + 147)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 3721 T^{2} + 13845841 \) Copy content Toggle raw display
$47$ \( T^{4} + 2352 T^{2} + 5531904 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 87 T + 2523)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 56 T + 3136)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 961 T^{2} + 923521 \) Copy content Toggle raw display
$71$ \( (T^{2} + 972)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4225)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 38 T + 1444)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 2352 T^{2} + 5531904 \) Copy content Toggle raw display
$89$ \( (T^{2} + 15552)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 13225 T^{2} + 174900625 \) Copy content Toggle raw display
show more
show less