Properties

Label 225.3.g.g.118.1
Level $225$
Weight $3$
Character 225.118
Analytic conductor $6.131$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(82,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.82");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 118.1
Root \(-1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 225.118
Dual form 225.3.g.g.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58114 + 1.58114i) q^{2} -1.00000i q^{4} +(5.00000 - 5.00000i) q^{7} +(-4.74342 - 4.74342i) q^{8} -15.8114 q^{11} +(-10.0000 - 10.0000i) q^{13} +15.8114i q^{14} +19.0000 q^{16} +(3.16228 - 3.16228i) q^{17} -18.0000i q^{19} +(25.0000 - 25.0000i) q^{22} +(3.16228 + 3.16228i) q^{23} +31.6228 q^{26} +(-5.00000 - 5.00000i) q^{28} -47.4342i q^{29} +8.00000 q^{31} +(-11.0680 + 11.0680i) q^{32} +10.0000i q^{34} +(-10.0000 + 10.0000i) q^{37} +(28.4605 + 28.4605i) q^{38} +31.6228 q^{41} +(-10.0000 - 10.0000i) q^{43} +15.8114i q^{44} -10.0000 q^{46} +(41.1096 - 41.1096i) q^{47} -1.00000i q^{49} +(-10.0000 + 10.0000i) q^{52} +(-25.2982 - 25.2982i) q^{53} -47.4342 q^{56} +(75.0000 + 75.0000i) q^{58} +47.4342i q^{59} -58.0000 q^{61} +(-12.6491 + 12.6491i) q^{62} +41.0000i q^{64} +(-70.0000 + 70.0000i) q^{67} +(-3.16228 - 3.16228i) q^{68} -63.2456 q^{71} +(-55.0000 - 55.0000i) q^{73} -31.6228i q^{74} -18.0000 q^{76} +(-79.0569 + 79.0569i) q^{77} -12.0000i q^{79} +(-50.0000 + 50.0000i) q^{82} +(-53.7587 - 53.7587i) q^{83} +31.6228 q^{86} +(75.0000 + 75.0000i) q^{88} -100.000 q^{91} +(3.16228 - 3.16228i) q^{92} +130.000i q^{94} +(5.00000 - 5.00000i) q^{97} +(1.58114 + 1.58114i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 20 q^{7} - 40 q^{13} + 76 q^{16} + 100 q^{22} - 20 q^{28} + 32 q^{31} - 40 q^{37} - 40 q^{43} - 40 q^{46} - 40 q^{52} + 300 q^{58} - 232 q^{61} - 280 q^{67} - 220 q^{73} - 72 q^{76} - 200 q^{82} + 300 q^{88}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58114 + 1.58114i −0.790569 + 0.790569i −0.981587 0.191017i \(-0.938821\pi\)
0.191017 + 0.981587i \(0.438821\pi\)
\(3\) 0 0
\(4\) 1.00000i 0.250000i
\(5\) 0 0
\(6\) 0 0
\(7\) 5.00000 5.00000i 0.714286 0.714286i −0.253143 0.967429i \(-0.581464\pi\)
0.967429 + 0.253143i \(0.0814644\pi\)
\(8\) −4.74342 4.74342i −0.592927 0.592927i
\(9\) 0 0
\(10\) 0 0
\(11\) −15.8114 −1.43740 −0.718699 0.695321i \(-0.755262\pi\)
−0.718699 + 0.695321i \(0.755262\pi\)
\(12\) 0 0
\(13\) −10.0000 10.0000i −0.769231 0.769231i 0.208740 0.977971i \(-0.433064\pi\)
−0.977971 + 0.208740i \(0.933064\pi\)
\(14\) 15.8114i 1.12938i
\(15\) 0 0
\(16\) 19.0000 1.18750
\(17\) 3.16228 3.16228i 0.186016 0.186016i −0.607955 0.793971i \(-0.708010\pi\)
0.793971 + 0.607955i \(0.208010\pi\)
\(18\) 0 0
\(19\) 18.0000i 0.947368i −0.880695 0.473684i \(-0.842924\pi\)
0.880695 0.473684i \(-0.157076\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 25.0000 25.0000i 1.13636 1.13636i
\(23\) 3.16228 + 3.16228i 0.137490 + 0.137490i 0.772502 0.635012i \(-0.219005\pi\)
−0.635012 + 0.772502i \(0.719005\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 31.6228 1.21626
\(27\) 0 0
\(28\) −5.00000 5.00000i −0.178571 0.178571i
\(29\) 47.4342i 1.63566i −0.575459 0.817830i \(-0.695177\pi\)
0.575459 0.817830i \(-0.304823\pi\)
\(30\) 0 0
\(31\) 8.00000 0.258065 0.129032 0.991640i \(-0.458813\pi\)
0.129032 + 0.991640i \(0.458813\pi\)
\(32\) −11.0680 + 11.0680i −0.345874 + 0.345874i
\(33\) 0 0
\(34\) 10.0000i 0.294118i
\(35\) 0 0
\(36\) 0 0
\(37\) −10.0000 + 10.0000i −0.270270 + 0.270270i −0.829209 0.558939i \(-0.811209\pi\)
0.558939 + 0.829209i \(0.311209\pi\)
\(38\) 28.4605 + 28.4605i 0.748960 + 0.748960i
\(39\) 0 0
\(40\) 0 0
\(41\) 31.6228 0.771287 0.385644 0.922648i \(-0.373979\pi\)
0.385644 + 0.922648i \(0.373979\pi\)
\(42\) 0 0
\(43\) −10.0000 10.0000i −0.232558 0.232558i 0.581202 0.813760i \(-0.302583\pi\)
−0.813760 + 0.581202i \(0.802583\pi\)
\(44\) 15.8114i 0.359350i
\(45\) 0 0
\(46\) −10.0000 −0.217391
\(47\) 41.1096 41.1096i 0.874673 0.874673i −0.118305 0.992977i \(-0.537746\pi\)
0.992977 + 0.118305i \(0.0377460\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.0204082i
\(50\) 0 0
\(51\) 0 0
\(52\) −10.0000 + 10.0000i −0.192308 + 0.192308i
\(53\) −25.2982 25.2982i −0.477325 0.477325i 0.426950 0.904275i \(-0.359588\pi\)
−0.904275 + 0.426950i \(0.859588\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −47.4342 −0.847039
\(57\) 0 0
\(58\) 75.0000 + 75.0000i 1.29310 + 1.29310i
\(59\) 47.4342i 0.803969i 0.915646 + 0.401984i \(0.131679\pi\)
−0.915646 + 0.401984i \(0.868321\pi\)
\(60\) 0 0
\(61\) −58.0000 −0.950820 −0.475410 0.879764i \(-0.657700\pi\)
−0.475410 + 0.879764i \(0.657700\pi\)
\(62\) −12.6491 + 12.6491i −0.204018 + 0.204018i
\(63\) 0 0
\(64\) 41.0000i 0.640625i
\(65\) 0 0
\(66\) 0 0
\(67\) −70.0000 + 70.0000i −1.04478 + 1.04478i −0.0458267 + 0.998949i \(0.514592\pi\)
−0.998949 + 0.0458267i \(0.985408\pi\)
\(68\) −3.16228 3.16228i −0.0465041 0.0465041i
\(69\) 0 0
\(70\) 0 0
\(71\) −63.2456 −0.890782 −0.445391 0.895336i \(-0.646935\pi\)
−0.445391 + 0.895336i \(0.646935\pi\)
\(72\) 0 0
\(73\) −55.0000 55.0000i −0.753425 0.753425i 0.221692 0.975117i \(-0.428842\pi\)
−0.975117 + 0.221692i \(0.928842\pi\)
\(74\) 31.6228i 0.427335i
\(75\) 0 0
\(76\) −18.0000 −0.236842
\(77\) −79.0569 + 79.0569i −1.02671 + 1.02671i
\(78\) 0 0
\(79\) 12.0000i 0.151899i −0.997112 0.0759494i \(-0.975801\pi\)
0.997112 0.0759494i \(-0.0241987\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −50.0000 + 50.0000i −0.609756 + 0.609756i
\(83\) −53.7587 53.7587i −0.647695 0.647695i 0.304740 0.952436i \(-0.401430\pi\)
−0.952436 + 0.304740i \(0.901430\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 31.6228 0.367707
\(87\) 0 0
\(88\) 75.0000 + 75.0000i 0.852273 + 0.852273i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −100.000 −1.09890
\(92\) 3.16228 3.16228i 0.0343726 0.0343726i
\(93\) 0 0
\(94\) 130.000i 1.38298i
\(95\) 0 0
\(96\) 0 0
\(97\) 5.00000 5.00000i 0.0515464 0.0515464i −0.680864 0.732410i \(-0.738395\pi\)
0.732410 + 0.680864i \(0.238395\pi\)
\(98\) 1.58114 + 1.58114i 0.0161341 + 0.0161341i
\(99\) 0 0
\(100\) 0 0
\(101\) −15.8114 −0.156548 −0.0782742 0.996932i \(-0.524941\pi\)
−0.0782742 + 0.996932i \(0.524941\pi\)
\(102\) 0 0
\(103\) 35.0000 + 35.0000i 0.339806 + 0.339806i 0.856294 0.516488i \(-0.172761\pi\)
−0.516488 + 0.856294i \(0.672761\pi\)
\(104\) 94.8683i 0.912195i
\(105\) 0 0
\(106\) 80.0000 0.754717
\(107\) 60.0833 60.0833i 0.561526 0.561526i −0.368215 0.929741i \(-0.620031\pi\)
0.929741 + 0.368215i \(0.120031\pi\)
\(108\) 0 0
\(109\) 162.000i 1.48624i −0.669159 0.743119i \(-0.733345\pi\)
0.669159 0.743119i \(-0.266655\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 95.0000 95.0000i 0.848214 0.848214i
\(113\) 117.004 + 117.004i 1.03544 + 1.03544i 0.999349 + 0.0360874i \(0.0114895\pi\)
0.0360874 + 0.999349i \(0.488511\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −47.4342 −0.408915
\(117\) 0 0
\(118\) −75.0000 75.0000i −0.635593 0.635593i
\(119\) 31.6228i 0.265738i
\(120\) 0 0
\(121\) 129.000 1.06612
\(122\) 91.7061 91.7061i 0.751689 0.751689i
\(123\) 0 0
\(124\) 8.00000i 0.0645161i
\(125\) 0 0
\(126\) 0 0
\(127\) −55.0000 + 55.0000i −0.433071 + 0.433071i −0.889672 0.456601i \(-0.849067\pi\)
0.456601 + 0.889672i \(0.349067\pi\)
\(128\) −109.099 109.099i −0.852333 0.852333i
\(129\) 0 0
\(130\) 0 0
\(131\) 173.925 1.32767 0.663837 0.747877i \(-0.268927\pi\)
0.663837 + 0.747877i \(0.268927\pi\)
\(132\) 0 0
\(133\) −90.0000 90.0000i −0.676692 0.676692i
\(134\) 221.359i 1.65194i
\(135\) 0 0
\(136\) −30.0000 −0.220588
\(137\) −15.8114 + 15.8114i −0.115412 + 0.115412i −0.762454 0.647042i \(-0.776006\pi\)
0.647042 + 0.762454i \(0.276006\pi\)
\(138\) 0 0
\(139\) 102.000i 0.733813i 0.930258 + 0.366906i \(0.119583\pi\)
−0.930258 + 0.366906i \(0.880417\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 100.000 100.000i 0.704225 0.704225i
\(143\) 158.114 + 158.114i 1.10569 + 1.10569i
\(144\) 0 0
\(145\) 0 0
\(146\) 173.925 1.19127
\(147\) 0 0
\(148\) 10.0000 + 10.0000i 0.0675676 + 0.0675676i
\(149\) 47.4342i 0.318350i 0.987250 + 0.159175i \(0.0508834\pi\)
−0.987250 + 0.159175i \(0.949117\pi\)
\(150\) 0 0
\(151\) −22.0000 −0.145695 −0.0728477 0.997343i \(-0.523209\pi\)
−0.0728477 + 0.997343i \(0.523209\pi\)
\(152\) −85.3815 + 85.3815i −0.561720 + 0.561720i
\(153\) 0 0
\(154\) 250.000i 1.62338i
\(155\) 0 0
\(156\) 0 0
\(157\) 200.000 200.000i 1.27389 1.27389i 0.329853 0.944032i \(-0.393001\pi\)
0.944032 0.329853i \(-0.106999\pi\)
\(158\) 18.9737 + 18.9737i 0.120086 + 0.120086i
\(159\) 0 0
\(160\) 0 0
\(161\) 31.6228 0.196415
\(162\) 0 0
\(163\) −100.000 100.000i −0.613497 0.613497i 0.330359 0.943856i \(-0.392830\pi\)
−0.943856 + 0.330359i \(0.892830\pi\)
\(164\) 31.6228i 0.192822i
\(165\) 0 0
\(166\) 170.000 1.02410
\(167\) −148.627 + 148.627i −0.889982 + 0.889982i −0.994521 0.104539i \(-0.966663\pi\)
0.104539 + 0.994521i \(0.466663\pi\)
\(168\) 0 0
\(169\) 31.0000i 0.183432i
\(170\) 0 0
\(171\) 0 0
\(172\) −10.0000 + 10.0000i −0.0581395 + 0.0581395i
\(173\) −110.680 110.680i −0.639767 0.639767i 0.310731 0.950498i \(-0.399426\pi\)
−0.950498 + 0.310731i \(0.899426\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −300.416 −1.70691
\(177\) 0 0
\(178\) 0 0
\(179\) 142.302i 0.794986i 0.917605 + 0.397493i \(0.130120\pi\)
−0.917605 + 0.397493i \(0.869880\pi\)
\(180\) 0 0
\(181\) 218.000 1.20442 0.602210 0.798338i \(-0.294287\pi\)
0.602210 + 0.798338i \(0.294287\pi\)
\(182\) 158.114 158.114i 0.868758 0.868758i
\(183\) 0 0
\(184\) 30.0000i 0.163043i
\(185\) 0 0
\(186\) 0 0
\(187\) −50.0000 + 50.0000i −0.267380 + 0.267380i
\(188\) −41.1096 41.1096i −0.218668 0.218668i
\(189\) 0 0
\(190\) 0 0
\(191\) −158.114 −0.827821 −0.413911 0.910317i \(-0.635837\pi\)
−0.413911 + 0.910317i \(0.635837\pi\)
\(192\) 0 0
\(193\) 125.000 + 125.000i 0.647668 + 0.647668i 0.952429 0.304761i \(-0.0985765\pi\)
−0.304761 + 0.952429i \(0.598576\pi\)
\(194\) 15.8114i 0.0815020i
\(195\) 0 0
\(196\) −1.00000 −0.00510204
\(197\) 145.465 145.465i 0.738400 0.738400i −0.233868 0.972268i \(-0.575138\pi\)
0.972268 + 0.233868i \(0.0751385\pi\)
\(198\) 0 0
\(199\) 18.0000i 0.0904523i 0.998977 + 0.0452261i \(0.0144008\pi\)
−0.998977 + 0.0452261i \(0.985599\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 25.0000 25.0000i 0.123762 0.123762i
\(203\) −237.171 237.171i −1.16833 1.16833i
\(204\) 0 0
\(205\) 0 0
\(206\) −110.680 −0.537280
\(207\) 0 0
\(208\) −190.000 190.000i −0.913462 0.913462i
\(209\) 284.605i 1.36175i
\(210\) 0 0
\(211\) −298.000 −1.41232 −0.706161 0.708051i \(-0.749575\pi\)
−0.706161 + 0.708051i \(0.749575\pi\)
\(212\) −25.2982 + 25.2982i −0.119331 + 0.119331i
\(213\) 0 0
\(214\) 190.000i 0.887850i
\(215\) 0 0
\(216\) 0 0
\(217\) 40.0000 40.0000i 0.184332 0.184332i
\(218\) 256.144 + 256.144i 1.17497 + 1.17497i
\(219\) 0 0
\(220\) 0 0
\(221\) −63.2456 −0.286179
\(222\) 0 0
\(223\) 215.000 + 215.000i 0.964126 + 0.964126i 0.999378 0.0352529i \(-0.0112237\pi\)
−0.0352529 + 0.999378i \(0.511224\pi\)
\(224\) 110.680i 0.494106i
\(225\) 0 0
\(226\) −370.000 −1.63717
\(227\) −271.956 + 271.956i −1.19804 + 1.19804i −0.223292 + 0.974752i \(0.571680\pi\)
−0.974752 + 0.223292i \(0.928320\pi\)
\(228\) 0 0
\(229\) 78.0000i 0.340611i −0.985391 0.170306i \(-0.945524\pi\)
0.985391 0.170306i \(-0.0544755\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −225.000 + 225.000i −0.969828 + 0.969828i
\(233\) −110.680 110.680i −0.475020 0.475020i 0.428515 0.903535i \(-0.359037\pi\)
−0.903535 + 0.428515i \(0.859037\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 47.4342 0.200992
\(237\) 0 0
\(238\) 50.0000 + 50.0000i 0.210084 + 0.210084i
\(239\) 379.473i 1.58775i −0.608078 0.793877i \(-0.708059\pi\)
0.608078 0.793877i \(-0.291941\pi\)
\(240\) 0 0
\(241\) 212.000 0.879668 0.439834 0.898079i \(-0.355037\pi\)
0.439834 + 0.898079i \(0.355037\pi\)
\(242\) −203.967 + 203.967i −0.842838 + 0.842838i
\(243\) 0 0
\(244\) 58.0000i 0.237705i
\(245\) 0 0
\(246\) 0 0
\(247\) −180.000 + 180.000i −0.728745 + 0.728745i
\(248\) −37.9473 37.9473i −0.153013 0.153013i
\(249\) 0 0
\(250\) 0 0
\(251\) 363.662 1.44885 0.724426 0.689352i \(-0.242105\pi\)
0.724426 + 0.689352i \(0.242105\pi\)
\(252\) 0 0
\(253\) −50.0000 50.0000i −0.197628 0.197628i
\(254\) 173.925i 0.684745i
\(255\) 0 0
\(256\) 181.000 0.707031
\(257\) 306.741 306.741i 1.19354 1.19354i 0.217480 0.976065i \(-0.430216\pi\)
0.976065 0.217480i \(-0.0697836\pi\)
\(258\) 0 0
\(259\) 100.000i 0.386100i
\(260\) 0 0
\(261\) 0 0
\(262\) −275.000 + 275.000i −1.04962 + 1.04962i
\(263\) 287.767 + 287.767i 1.09417 + 1.09417i 0.995078 + 0.0990940i \(0.0315945\pi\)
0.0990940 + 0.995078i \(0.468406\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 284.605 1.06994
\(267\) 0 0
\(268\) 70.0000 + 70.0000i 0.261194 + 0.261194i
\(269\) 142.302i 0.529006i −0.964385 0.264503i \(-0.914792\pi\)
0.964385 0.264503i \(-0.0852078\pi\)
\(270\) 0 0
\(271\) −178.000 −0.656827 −0.328413 0.944534i \(-0.606514\pi\)
−0.328413 + 0.944534i \(0.606514\pi\)
\(272\) 60.0833 60.0833i 0.220894 0.220894i
\(273\) 0 0
\(274\) 50.0000i 0.182482i
\(275\) 0 0
\(276\) 0 0
\(277\) 230.000 230.000i 0.830325 0.830325i −0.157236 0.987561i \(-0.550258\pi\)
0.987561 + 0.157236i \(0.0502584\pi\)
\(278\) −161.276 161.276i −0.580130 0.580130i
\(279\) 0 0
\(280\) 0 0
\(281\) −158.114 −0.562683 −0.281341 0.959608i \(-0.590779\pi\)
−0.281341 + 0.959608i \(0.590779\pi\)
\(282\) 0 0
\(283\) 350.000 + 350.000i 1.23675 + 1.23675i 0.961322 + 0.275427i \(0.0888193\pi\)
0.275427 + 0.961322i \(0.411181\pi\)
\(284\) 63.2456i 0.222696i
\(285\) 0 0
\(286\) −500.000 −1.74825
\(287\) 158.114 158.114i 0.550919 0.550919i
\(288\) 0 0
\(289\) 269.000i 0.930796i
\(290\) 0 0
\(291\) 0 0
\(292\) −55.0000 + 55.0000i −0.188356 + 0.188356i
\(293\) 202.386 + 202.386i 0.690736 + 0.690736i 0.962394 0.271658i \(-0.0875718\pi\)
−0.271658 + 0.962394i \(0.587572\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 94.8683 0.320501
\(297\) 0 0
\(298\) −75.0000 75.0000i −0.251678 0.251678i
\(299\) 63.2456i 0.211524i
\(300\) 0 0
\(301\) −100.000 −0.332226
\(302\) 34.7851 34.7851i 0.115182 0.115182i
\(303\) 0 0
\(304\) 342.000i 1.12500i
\(305\) 0 0
\(306\) 0 0
\(307\) −190.000 + 190.000i −0.618893 + 0.618893i −0.945247 0.326355i \(-0.894180\pi\)
0.326355 + 0.945247i \(0.394180\pi\)
\(308\) 79.0569 + 79.0569i 0.256678 + 0.256678i
\(309\) 0 0
\(310\) 0 0
\(311\) −252.982 −0.813448 −0.406724 0.913551i \(-0.633329\pi\)
−0.406724 + 0.913551i \(0.633329\pi\)
\(312\) 0 0
\(313\) −145.000 145.000i −0.463259 0.463259i 0.436463 0.899722i \(-0.356231\pi\)
−0.899722 + 0.436463i \(0.856231\pi\)
\(314\) 632.456i 2.01419i
\(315\) 0 0
\(316\) −12.0000 −0.0379747
\(317\) −15.8114 + 15.8114i −0.0498782 + 0.0498782i −0.731606 0.681728i \(-0.761229\pi\)
0.681728 + 0.731606i \(0.261229\pi\)
\(318\) 0 0
\(319\) 750.000i 2.35110i
\(320\) 0 0
\(321\) 0 0
\(322\) −50.0000 + 50.0000i −0.155280 + 0.155280i
\(323\) −56.9210 56.9210i −0.176226 0.176226i
\(324\) 0 0
\(325\) 0 0
\(326\) 316.228 0.970024
\(327\) 0 0
\(328\) −150.000 150.000i −0.457317 0.457317i
\(329\) 411.096i 1.24953i
\(330\) 0 0
\(331\) 482.000 1.45619 0.728097 0.685474i \(-0.240405\pi\)
0.728097 + 0.685474i \(0.240405\pi\)
\(332\) −53.7587 + 53.7587i −0.161924 + 0.161924i
\(333\) 0 0
\(334\) 470.000i 1.40719i
\(335\) 0 0
\(336\) 0 0
\(337\) 155.000 155.000i 0.459941 0.459941i −0.438695 0.898636i \(-0.644559\pi\)
0.898636 + 0.438695i \(0.144559\pi\)
\(338\) −49.0153 49.0153i −0.145016 0.145016i
\(339\) 0 0
\(340\) 0 0
\(341\) −126.491 −0.370942
\(342\) 0 0
\(343\) 240.000 + 240.000i 0.699708 + 0.699708i
\(344\) 94.8683i 0.275780i
\(345\) 0 0
\(346\) 350.000 1.01156
\(347\) 164.438 164.438i 0.473886 0.473886i −0.429284 0.903170i \(-0.641234\pi\)
0.903170 + 0.429284i \(0.141234\pi\)
\(348\) 0 0
\(349\) 318.000i 0.911175i −0.890191 0.455587i \(-0.849429\pi\)
0.890191 0.455587i \(-0.150571\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 175.000 175.000i 0.497159 0.497159i
\(353\) −224.522 224.522i −0.636039 0.636039i 0.313537 0.949576i \(-0.398486\pi\)
−0.949576 + 0.313537i \(0.898486\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −225.000 225.000i −0.628492 0.628492i
\(359\) 284.605i 0.792772i −0.918084 0.396386i \(-0.870264\pi\)
0.918084 0.396386i \(-0.129736\pi\)
\(360\) 0 0
\(361\) 37.0000 0.102493
\(362\) −344.688 + 344.688i −0.952178 + 0.952178i
\(363\) 0 0
\(364\) 100.000i 0.274725i
\(365\) 0 0
\(366\) 0 0
\(367\) 185.000 185.000i 0.504087 0.504087i −0.408618 0.912705i \(-0.633989\pi\)
0.912705 + 0.408618i \(0.133989\pi\)
\(368\) 60.0833 + 60.0833i 0.163270 + 0.163270i
\(369\) 0 0
\(370\) 0 0
\(371\) −252.982 −0.681893
\(372\) 0 0
\(373\) −100.000 100.000i −0.268097 0.268097i 0.560236 0.828333i \(-0.310710\pi\)
−0.828333 + 0.560236i \(0.810710\pi\)
\(374\) 158.114i 0.422764i
\(375\) 0 0
\(376\) −390.000 −1.03723
\(377\) −474.342 + 474.342i −1.25820 + 1.25820i
\(378\) 0 0
\(379\) 558.000i 1.47230i −0.676821 0.736148i \(-0.736643\pi\)
0.676821 0.736148i \(-0.263357\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 250.000 250.000i 0.654450 0.654450i
\(383\) −281.443 281.443i −0.734837 0.734837i 0.236737 0.971574i \(-0.423922\pi\)
−0.971574 + 0.236737i \(0.923922\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −395.285 −1.02405
\(387\) 0 0
\(388\) −5.00000 5.00000i −0.0128866 0.0128866i
\(389\) 521.776i 1.34133i 0.741762 + 0.670663i \(0.233990\pi\)
−0.741762 + 0.670663i \(0.766010\pi\)
\(390\) 0 0
\(391\) 20.0000 0.0511509
\(392\) −4.74342 + 4.74342i −0.0121006 + 0.0121006i
\(393\) 0 0
\(394\) 460.000i 1.16751i
\(395\) 0 0
\(396\) 0 0
\(397\) 260.000 260.000i 0.654912 0.654912i −0.299260 0.954172i \(-0.596740\pi\)
0.954172 + 0.299260i \(0.0967397\pi\)
\(398\) −28.4605 28.4605i −0.0715088 0.0715088i
\(399\) 0 0
\(400\) 0 0
\(401\) −252.982 −0.630878 −0.315439 0.948946i \(-0.602152\pi\)
−0.315439 + 0.948946i \(0.602152\pi\)
\(402\) 0 0
\(403\) −80.0000 80.0000i −0.198511 0.198511i
\(404\) 15.8114i 0.0391371i
\(405\) 0 0
\(406\) 750.000 1.84729
\(407\) 158.114 158.114i 0.388486 0.388486i
\(408\) 0 0
\(409\) 348.000i 0.850856i −0.904992 0.425428i \(-0.860124\pi\)
0.904992 0.425428i \(-0.139876\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 35.0000 35.0000i 0.0849515 0.0849515i
\(413\) 237.171 + 237.171i 0.574263 + 0.574263i
\(414\) 0 0
\(415\) 0 0
\(416\) 221.359 0.532114
\(417\) 0 0
\(418\) −450.000 450.000i −1.07656 1.07656i
\(419\) 616.644i 1.47170i 0.677142 + 0.735852i \(0.263218\pi\)
−0.677142 + 0.735852i \(0.736782\pi\)
\(420\) 0 0
\(421\) 338.000 0.802850 0.401425 0.915892i \(-0.368515\pi\)
0.401425 + 0.915892i \(0.368515\pi\)
\(422\) 471.179 471.179i 1.11654 1.11654i
\(423\) 0 0
\(424\) 240.000i 0.566038i
\(425\) 0 0
\(426\) 0 0
\(427\) −290.000 + 290.000i −0.679157 + 0.679157i
\(428\) −60.0833 60.0833i −0.140381 0.140381i
\(429\) 0 0
\(430\) 0 0
\(431\) 221.359 0.513595 0.256797 0.966465i \(-0.417333\pi\)
0.256797 + 0.966465i \(0.417333\pi\)
\(432\) 0 0
\(433\) −145.000 145.000i −0.334873 0.334873i 0.519561 0.854434i \(-0.326096\pi\)
−0.854434 + 0.519561i \(0.826096\pi\)
\(434\) 126.491i 0.291454i
\(435\) 0 0
\(436\) −162.000 −0.371560
\(437\) 56.9210 56.9210i 0.130254 0.130254i
\(438\) 0 0
\(439\) 78.0000i 0.177677i 0.996046 + 0.0888383i \(0.0283154\pi\)
−0.996046 + 0.0888383i \(0.971685\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 100.000 100.000i 0.226244 0.226244i
\(443\) −196.061 196.061i −0.442576 0.442576i 0.450301 0.892877i \(-0.351317\pi\)
−0.892877 + 0.450301i \(0.851317\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −679.890 −1.52442
\(447\) 0 0
\(448\) 205.000 + 205.000i 0.457589 + 0.457589i
\(449\) 284.605i 0.633864i −0.948448 0.316932i \(-0.897347\pi\)
0.948448 0.316932i \(-0.102653\pi\)
\(450\) 0 0
\(451\) −500.000 −1.10865
\(452\) 117.004 117.004i 0.258859 0.258859i
\(453\) 0 0
\(454\) 860.000i 1.89427i
\(455\) 0 0
\(456\) 0 0
\(457\) 365.000 365.000i 0.798687 0.798687i −0.184201 0.982889i \(-0.558970\pi\)
0.982889 + 0.184201i \(0.0589699\pi\)
\(458\) 123.329 + 123.329i 0.269277 + 0.269277i
\(459\) 0 0
\(460\) 0 0
\(461\) 838.004 1.81780 0.908898 0.417019i \(-0.136925\pi\)
0.908898 + 0.417019i \(0.136925\pi\)
\(462\) 0 0
\(463\) 35.0000 + 35.0000i 0.0755940 + 0.0755940i 0.743893 0.668299i \(-0.232977\pi\)
−0.668299 + 0.743893i \(0.732977\pi\)
\(464\) 901.249i 1.94235i
\(465\) 0 0
\(466\) 350.000 0.751073
\(467\) 117.004 117.004i 0.250544 0.250544i −0.570649 0.821194i \(-0.693308\pi\)
0.821194 + 0.570649i \(0.193308\pi\)
\(468\) 0 0
\(469\) 700.000i 1.49254i
\(470\) 0 0
\(471\) 0 0
\(472\) 225.000 225.000i 0.476695 0.476695i
\(473\) 158.114 + 158.114i 0.334279 + 0.334279i
\(474\) 0 0
\(475\) 0 0
\(476\) −31.6228 −0.0664344
\(477\) 0 0
\(478\) 600.000 + 600.000i 1.25523 + 1.25523i
\(479\) 379.473i 0.792220i 0.918203 + 0.396110i \(0.129640\pi\)
−0.918203 + 0.396110i \(0.870360\pi\)
\(480\) 0 0
\(481\) 200.000 0.415800
\(482\) −335.201 + 335.201i −0.695439 + 0.695439i
\(483\) 0 0
\(484\) 129.000i 0.266529i
\(485\) 0 0
\(486\) 0 0
\(487\) 125.000 125.000i 0.256674 0.256674i −0.567026 0.823700i \(-0.691906\pi\)
0.823700 + 0.567026i \(0.191906\pi\)
\(488\) 275.118 + 275.118i 0.563767 + 0.563767i
\(489\) 0 0
\(490\) 0 0
\(491\) 458.530 0.933870 0.466935 0.884292i \(-0.345358\pi\)
0.466935 + 0.884292i \(0.345358\pi\)
\(492\) 0 0
\(493\) −150.000 150.000i −0.304260 0.304260i
\(494\) 569.210i 1.15225i
\(495\) 0 0
\(496\) 152.000 0.306452
\(497\) −316.228 + 316.228i −0.636273 + 0.636273i
\(498\) 0 0
\(499\) 222.000i 0.444890i −0.974945 0.222445i \(-0.928596\pi\)
0.974945 0.222445i \(-0.0714037\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −575.000 + 575.000i −1.14542 + 1.14542i
\(503\) 458.530 + 458.530i 0.911591 + 0.911591i 0.996397 0.0848065i \(-0.0270272\pi\)
−0.0848065 + 0.996397i \(0.527027\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 158.114 0.312478
\(507\) 0 0
\(508\) 55.0000 + 55.0000i 0.108268 + 0.108268i
\(509\) 237.171i 0.465954i −0.972482 0.232977i \(-0.925153\pi\)
0.972482 0.232977i \(-0.0748468\pi\)
\(510\) 0 0
\(511\) −550.000 −1.07632
\(512\) 150.208 150.208i 0.293375 0.293375i
\(513\) 0 0
\(514\) 970.000i 1.88716i
\(515\) 0 0
\(516\) 0 0
\(517\) −650.000 + 650.000i −1.25725 + 1.25725i
\(518\) −158.114 158.114i −0.305239 0.305239i
\(519\) 0 0
\(520\) 0 0
\(521\) 790.569 1.51741 0.758704 0.651436i \(-0.225833\pi\)
0.758704 + 0.651436i \(0.225833\pi\)
\(522\) 0 0
\(523\) −370.000 370.000i −0.707457 0.707457i 0.258543 0.966000i \(-0.416758\pi\)
−0.966000 + 0.258543i \(0.916758\pi\)
\(524\) 173.925i 0.331918i
\(525\) 0 0
\(526\) −910.000 −1.73004
\(527\) 25.2982 25.2982i 0.0480042 0.0480042i
\(528\) 0 0
\(529\) 509.000i 0.962193i
\(530\) 0 0
\(531\) 0 0
\(532\) −90.0000 + 90.0000i −0.169173 + 0.169173i
\(533\) −316.228 316.228i −0.593298 0.593298i
\(534\) 0 0
\(535\) 0 0
\(536\) 664.078 1.23895
\(537\) 0 0
\(538\) 225.000 + 225.000i 0.418216 + 0.418216i
\(539\) 15.8114i 0.0293347i
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) 281.443 281.443i 0.519267 0.519267i
\(543\) 0 0
\(544\) 70.0000i 0.128676i
\(545\) 0 0
\(546\) 0 0
\(547\) −490.000 + 490.000i −0.895795 + 0.895795i −0.995061 0.0992657i \(-0.968351\pi\)
0.0992657 + 0.995061i \(0.468351\pi\)
\(548\) 15.8114 + 15.8114i 0.0288529 + 0.0288529i
\(549\) 0 0
\(550\) 0 0
\(551\) −853.815 −1.54957
\(552\) 0 0
\(553\) −60.0000 60.0000i −0.108499 0.108499i
\(554\) 727.324i 1.31286i
\(555\) 0 0
\(556\) 102.000 0.183453
\(557\) −252.982 + 252.982i −0.454187 + 0.454187i −0.896742 0.442555i \(-0.854072\pi\)
0.442555 + 0.896742i \(0.354072\pi\)
\(558\) 0 0
\(559\) 200.000i 0.357782i
\(560\) 0 0
\(561\) 0 0
\(562\) 250.000 250.000i 0.444840 0.444840i
\(563\) 202.386 + 202.386i 0.359477 + 0.359477i 0.863620 0.504143i \(-0.168192\pi\)
−0.504143 + 0.863620i \(0.668192\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1106.80 −1.95547
\(567\) 0 0
\(568\) 300.000 + 300.000i 0.528169 + 0.528169i
\(569\) 189.737i 0.333456i −0.986003 0.166728i \(-0.946680\pi\)
0.986003 0.166728i \(-0.0533202\pi\)
\(570\) 0 0
\(571\) −658.000 −1.15236 −0.576182 0.817321i \(-0.695458\pi\)
−0.576182 + 0.817321i \(0.695458\pi\)
\(572\) 158.114 158.114i 0.276423 0.276423i
\(573\) 0 0
\(574\) 500.000i 0.871080i
\(575\) 0 0
\(576\) 0 0
\(577\) 35.0000 35.0000i 0.0606586 0.0606586i −0.676127 0.736785i \(-0.736343\pi\)
0.736785 + 0.676127i \(0.236343\pi\)
\(578\) −425.326 425.326i −0.735859 0.735859i
\(579\) 0 0
\(580\) 0 0
\(581\) −537.587 −0.925279
\(582\) 0 0
\(583\) 400.000 + 400.000i 0.686106 + 0.686106i
\(584\) 521.776i 0.893452i
\(585\) 0 0
\(586\) −640.000 −1.09215
\(587\) 154.952 154.952i 0.263972 0.263972i −0.562694 0.826666i \(-0.690235\pi\)
0.826666 + 0.562694i \(0.190235\pi\)
\(588\) 0 0
\(589\) 144.000i 0.244482i
\(590\) 0 0
\(591\) 0 0
\(592\) −190.000 + 190.000i −0.320946 + 0.320946i
\(593\) −167.601 167.601i −0.282632 0.282632i 0.551526 0.834158i \(-0.314046\pi\)
−0.834158 + 0.551526i \(0.814046\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 47.4342 0.0795875
\(597\) 0 0
\(598\) 100.000 + 100.000i 0.167224 + 0.167224i
\(599\) 1043.55i 1.74216i 0.491144 + 0.871078i \(0.336579\pi\)
−0.491144 + 0.871078i \(0.663421\pi\)
\(600\) 0 0
\(601\) −382.000 −0.635607 −0.317804 0.948157i \(-0.602945\pi\)
−0.317804 + 0.948157i \(0.602945\pi\)
\(602\) 158.114 158.114i 0.262648 0.262648i
\(603\) 0 0
\(604\) 22.0000i 0.0364238i
\(605\) 0 0
\(606\) 0 0
\(607\) −655.000 + 655.000i −1.07908 + 1.07908i −0.0824851 + 0.996592i \(0.526286\pi\)
−0.996592 + 0.0824851i \(0.973714\pi\)
\(608\) 199.223 + 199.223i 0.327670 + 0.327670i
\(609\) 0 0
\(610\) 0 0
\(611\) −822.192 −1.34565
\(612\) 0 0
\(613\) 620.000 + 620.000i 1.01142 + 1.01142i 0.999934 + 0.0114852i \(0.00365594\pi\)
0.0114852 + 0.999934i \(0.496344\pi\)
\(614\) 600.833i 0.978555i
\(615\) 0 0
\(616\) 750.000 1.21753
\(617\) −34.7851 + 34.7851i −0.0563777 + 0.0563777i −0.734734 0.678356i \(-0.762693\pi\)
0.678356 + 0.734734i \(0.262693\pi\)
\(618\) 0 0
\(619\) 258.000i 0.416801i 0.978044 + 0.208401i \(0.0668258\pi\)
−0.978044 + 0.208401i \(0.933174\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 400.000 400.000i 0.643087 0.643087i
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 458.530 0.732476
\(627\) 0 0
\(628\) −200.000 200.000i −0.318471 0.318471i
\(629\) 63.2456i 0.100549i
\(630\) 0 0
\(631\) 812.000 1.28685 0.643423 0.765511i \(-0.277514\pi\)
0.643423 + 0.765511i \(0.277514\pi\)
\(632\) −56.9210 + 56.9210i −0.0900649 + 0.0900649i
\(633\) 0 0
\(634\) 50.0000i 0.0788644i
\(635\) 0 0
\(636\) 0 0
\(637\) −10.0000 + 10.0000i −0.0156986 + 0.0156986i
\(638\) −1185.85 1185.85i −1.85871 1.85871i
\(639\) 0 0
\(640\) 0 0
\(641\) −442.719 −0.690669 −0.345335 0.938480i \(-0.612235\pi\)
−0.345335 + 0.938480i \(0.612235\pi\)
\(642\) 0 0
\(643\) −820.000 820.000i −1.27527 1.27527i −0.943283 0.331989i \(-0.892280\pi\)
−0.331989 0.943283i \(-0.607720\pi\)
\(644\) 31.6228i 0.0491037i
\(645\) 0 0
\(646\) 180.000 0.278638
\(647\) −679.890 + 679.890i −1.05083 + 1.05083i −0.0521974 + 0.998637i \(0.516622\pi\)
−0.998637 + 0.0521974i \(0.983378\pi\)
\(648\) 0 0
\(649\) 750.000i 1.15562i
\(650\) 0 0
\(651\) 0 0
\(652\) −100.000 + 100.000i −0.153374 + 0.153374i
\(653\) 515.451 + 515.451i 0.789359 + 0.789359i 0.981389 0.192030i \(-0.0615072\pi\)
−0.192030 + 0.981389i \(0.561507\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 600.833 0.915904
\(657\) 0 0
\(658\) 650.000 + 650.000i 0.987842 + 0.987842i
\(659\) 901.249i 1.36760i −0.729669 0.683801i \(-0.760326\pi\)
0.729669 0.683801i \(-0.239674\pi\)
\(660\) 0 0
\(661\) −802.000 −1.21331 −0.606657 0.794964i \(-0.707490\pi\)
−0.606657 + 0.794964i \(0.707490\pi\)
\(662\) −762.109 + 762.109i −1.15122 + 1.15122i
\(663\) 0 0
\(664\) 510.000i 0.768072i
\(665\) 0 0
\(666\) 0 0
\(667\) 150.000 150.000i 0.224888 0.224888i
\(668\) 148.627 + 148.627i 0.222496 + 0.222496i
\(669\) 0 0
\(670\) 0 0
\(671\) 917.061 1.36671
\(672\) 0 0
\(673\) −775.000 775.000i −1.15156 1.15156i −0.986240 0.165320i \(-0.947134\pi\)
−0.165320 0.986240i \(-0.552866\pi\)
\(674\) 490.153i 0.727230i
\(675\) 0 0
\(676\) 31.0000 0.0458580
\(677\) 496.478 496.478i 0.733349 0.733349i −0.237932 0.971282i \(-0.576470\pi\)
0.971282 + 0.237932i \(0.0764696\pi\)
\(678\) 0 0
\(679\) 50.0000i 0.0736377i
\(680\) 0 0
\(681\) 0 0
\(682\) 200.000 200.000i 0.293255 0.293255i
\(683\) 60.0833 + 60.0833i 0.0879697 + 0.0879697i 0.749722 0.661753i \(-0.230187\pi\)
−0.661753 + 0.749722i \(0.730187\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −758.947 −1.10634
\(687\) 0 0
\(688\) −190.000 190.000i −0.276163 0.276163i
\(689\) 505.964i 0.734346i
\(690\) 0 0
\(691\) −562.000 −0.813314 −0.406657 0.913581i \(-0.633306\pi\)
−0.406657 + 0.913581i \(0.633306\pi\)
\(692\) −110.680 + 110.680i −0.159942 + 0.159942i
\(693\) 0 0
\(694\) 520.000i 0.749280i
\(695\) 0 0
\(696\) 0 0
\(697\) 100.000 100.000i 0.143472 0.143472i
\(698\) 502.802 + 502.802i 0.720347 + 0.720347i
\(699\) 0 0
\(700\) 0 0
\(701\) 363.662 0.518776 0.259388 0.965773i \(-0.416479\pi\)
0.259388 + 0.965773i \(0.416479\pi\)
\(702\) 0 0
\(703\) 180.000 + 180.000i 0.256046 + 0.256046i
\(704\) 648.267i 0.920834i
\(705\) 0 0
\(706\) 710.000 1.00567
\(707\) −79.0569 + 79.0569i −0.111820 + 0.111820i
\(708\) 0 0
\(709\) 498.000i 0.702398i −0.936301 0.351199i \(-0.885774\pi\)
0.936301 0.351199i \(-0.114226\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 25.2982 + 25.2982i 0.0354814 + 0.0354814i
\(714\) 0 0
\(715\) 0 0
\(716\) 142.302 0.198747
\(717\) 0 0
\(718\) 450.000 + 450.000i 0.626741 + 0.626741i
\(719\) 569.210i 0.791669i −0.918322 0.395834i \(-0.870455\pi\)
0.918322 0.395834i \(-0.129545\pi\)
\(720\) 0 0
\(721\) 350.000 0.485437
\(722\) −58.5021 + 58.5021i −0.0810279 + 0.0810279i
\(723\) 0 0
\(724\) 218.000i 0.301105i
\(725\) 0 0
\(726\) 0 0
\(727\) 905.000 905.000i 1.24484 1.24484i 0.286873 0.957969i \(-0.407384\pi\)
0.957969 0.286873i \(-0.0926159\pi\)
\(728\) 474.342 + 474.342i 0.651568 + 0.651568i
\(729\) 0 0
\(730\) 0 0
\(731\) −63.2456 −0.0865192
\(732\) 0 0
\(733\) −550.000 550.000i −0.750341 0.750341i 0.224202 0.974543i \(-0.428023\pi\)
−0.974543 + 0.224202i \(0.928023\pi\)
\(734\) 585.021i 0.797032i
\(735\) 0 0
\(736\) −70.0000 −0.0951087
\(737\) 1106.80 1106.80i 1.50176 1.50176i
\(738\) 0 0
\(739\) 198.000i 0.267930i −0.990986 0.133965i \(-0.957229\pi\)
0.990986 0.133965i \(-0.0427709\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 400.000 400.000i 0.539084 0.539084i
\(743\) −964.495 964.495i −1.29811 1.29811i −0.929640 0.368468i \(-0.879882\pi\)
−0.368468 0.929640i \(-0.620118\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 316.228 0.423898
\(747\) 0 0
\(748\) 50.0000 + 50.0000i 0.0668449 + 0.0668449i
\(749\) 600.833i 0.802180i
\(750\) 0 0
\(751\) 728.000 0.969374 0.484687 0.874688i \(-0.338933\pi\)
0.484687 + 0.874688i \(0.338933\pi\)
\(752\) 781.083 781.083i 1.03867 1.03867i
\(753\) 0 0
\(754\) 1500.00i 1.98939i
\(755\) 0 0
\(756\) 0 0
\(757\) 170.000 170.000i 0.224571 0.224571i −0.585849 0.810420i \(-0.699239\pi\)
0.810420 + 0.585849i \(0.199239\pi\)
\(758\) 882.275 + 882.275i 1.16395 + 1.16395i
\(759\) 0 0
\(760\) 0 0
\(761\) 31.6228 0.0415542 0.0207771 0.999784i \(-0.493386\pi\)
0.0207771 + 0.999784i \(0.493386\pi\)
\(762\) 0 0
\(763\) −810.000 810.000i −1.06160 1.06160i
\(764\) 158.114i 0.206955i
\(765\) 0 0
\(766\) 890.000 1.16188
\(767\) 474.342 474.342i 0.618438 0.618438i
\(768\) 0 0
\(769\) 318.000i 0.413524i 0.978391 + 0.206762i \(0.0662926\pi\)
−0.978391 + 0.206762i \(0.933707\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 125.000 125.000i 0.161917 0.161917i
\(773\) −452.206 452.206i −0.585001 0.585001i 0.351272 0.936273i \(-0.385749\pi\)
−0.936273 + 0.351272i \(0.885749\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −47.4342 −0.0611265
\(777\) 0 0
\(778\) −825.000 825.000i −1.06041 1.06041i
\(779\) 569.210i 0.730693i
\(780\) 0 0
\(781\) 1000.00 1.28041
\(782\) −31.6228 + 31.6228i −0.0404383 + 0.0404383i
\(783\) 0 0
\(784\) 19.0000i 0.0242347i
\(785\) 0 0
\(786\) 0 0
\(787\) −250.000 + 250.000i −0.317662 + 0.317662i −0.847869 0.530207i \(-0.822114\pi\)
0.530207 + 0.847869i \(0.322114\pi\)
\(788\) −145.465 145.465i −0.184600 0.184600i
\(789\) 0 0
\(790\) 0 0
\(791\) 1170.04 1.47919
\(792\) 0 0
\(793\) 580.000 + 580.000i 0.731400 + 0.731400i
\(794\) 822.192i 1.03551i
\(795\) 0 0
\(796\) 18.0000 0.0226131
\(797\) −888.600 + 888.600i −1.11493 + 1.11493i −0.122457 + 0.992474i \(0.539077\pi\)
−0.992474 + 0.122457i \(0.960923\pi\)
\(798\) 0 0
\(799\) 260.000i 0.325407i
\(800\) 0 0
\(801\) 0 0
\(802\) 400.000 400.000i 0.498753 0.498753i
\(803\) 869.626 + 869.626i 1.08297 + 1.08297i
\(804\) 0 0
\(805\) 0 0
\(806\) 252.982 0.313874
\(807\) 0 0
\(808\) 75.0000 + 75.0000i 0.0928218 + 0.0928218i
\(809\) 569.210i 0.703597i 0.936076 + 0.351799i \(0.114430\pi\)
−0.936076 + 0.351799i \(0.885570\pi\)
\(810\) 0 0
\(811\) −142.000 −0.175092 −0.0875462 0.996160i \(-0.527903\pi\)
−0.0875462 + 0.996160i \(0.527903\pi\)
\(812\) −237.171 + 237.171i −0.292082 + 0.292082i
\(813\) 0 0
\(814\) 500.000i 0.614251i
\(815\) 0 0
\(816\) 0 0
\(817\) −180.000 + 180.000i −0.220318 + 0.220318i
\(818\) 550.236 + 550.236i 0.672661 + 0.672661i
\(819\) 0 0
\(820\) 0 0
\(821\) −869.626 −1.05923 −0.529614 0.848239i \(-0.677663\pi\)
−0.529614 + 0.848239i \(0.677663\pi\)
\(822\) 0 0
\(823\) 1115.00 + 1115.00i 1.35480 + 1.35480i 0.880204 + 0.474595i \(0.157406\pi\)
0.474595 + 0.880204i \(0.342594\pi\)
\(824\) 332.039i 0.402960i
\(825\) 0 0
\(826\) −750.000 −0.907990
\(827\) −25.2982 + 25.2982i −0.0305904 + 0.0305904i −0.722237 0.691646i \(-0.756886\pi\)
0.691646 + 0.722237i \(0.256886\pi\)
\(828\) 0 0
\(829\) 1062.00i 1.28106i 0.767933 + 0.640531i \(0.221286\pi\)
−0.767933 + 0.640531i \(0.778714\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 410.000 410.000i 0.492788 0.492788i
\(833\) −3.16228 3.16228i −0.00379625 0.00379625i
\(834\) 0 0
\(835\) 0 0
\(836\) 284.605 0.340437
\(837\) 0 0
\(838\) −975.000 975.000i −1.16348 1.16348i
\(839\) 474.342i 0.565365i −0.959213 0.282683i \(-0.908776\pi\)
0.959213 0.282683i \(-0.0912244\pi\)
\(840\) 0 0
\(841\) −1409.00 −1.67539
\(842\) −534.425 + 534.425i −0.634709 + 0.634709i
\(843\) 0 0
\(844\) 298.000i 0.353081i
\(845\) 0 0
\(846\) 0 0
\(847\) 645.000 645.000i 0.761511 0.761511i
\(848\) −480.666 480.666i −0.566823 0.566823i
\(849\) 0 0
\(850\) 0 0
\(851\) −63.2456 −0.0743191
\(852\) 0 0
\(853\) 80.0000 + 80.0000i 0.0937866 + 0.0937866i 0.752443 0.658657i \(-0.228875\pi\)
−0.658657 + 0.752443i \(0.728875\pi\)
\(854\) 917.061i 1.07384i
\(855\) 0 0
\(856\) −570.000 −0.665888
\(857\) −243.495 + 243.495i −0.284125 + 0.284125i −0.834752 0.550626i \(-0.814389\pi\)
0.550626 + 0.834752i \(0.314389\pi\)
\(858\) 0 0
\(859\) 1482.00i 1.72526i −0.505834 0.862631i \(-0.668815\pi\)
0.505834 0.862631i \(-0.331185\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −350.000 + 350.000i −0.406032 + 0.406032i
\(863\) −964.495 964.495i −1.11761 1.11761i −0.992092 0.125515i \(-0.959942\pi\)
−0.125515 0.992092i \(-0.540058\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 458.530 0.529481
\(867\) 0 0
\(868\) −40.0000 40.0000i −0.0460829 0.0460829i
\(869\) 189.737i 0.218339i
\(870\) 0 0
\(871\) 1400.00 1.60735
\(872\) −768.433 + 768.433i −0.881231 + 0.881231i
\(873\) 0 0
\(874\) 180.000i 0.205950i
\(875\) 0 0
\(876\) 0 0
\(877\) −700.000 + 700.000i −0.798176 + 0.798176i −0.982808 0.184632i \(-0.940891\pi\)
0.184632 + 0.982808i \(0.440891\pi\)
\(878\) −123.329 123.329i −0.140466 0.140466i
\(879\) 0 0
\(880\) 0 0
\(881\) −1201.67 −1.36398 −0.681990 0.731362i \(-0.738885\pi\)
−0.681990 + 0.731362i \(0.738885\pi\)
\(882\) 0 0
\(883\) −640.000 640.000i −0.724802 0.724802i 0.244777 0.969579i \(-0.421285\pi\)
−0.969579 + 0.244777i \(0.921285\pi\)
\(884\) 63.2456i 0.0715447i
\(885\) 0 0
\(886\) 620.000 0.699774
\(887\) 135.978 135.978i 0.153301 0.153301i −0.626290 0.779591i \(-0.715427\pi\)
0.779591 + 0.626290i \(0.215427\pi\)
\(888\) 0 0
\(889\) 550.000i 0.618673i
\(890\) 0 0
\(891\) 0 0
\(892\) 215.000 215.000i 0.241031 0.241031i
\(893\) −739.973 739.973i −0.828637 0.828637i
\(894\) 0 0
\(895\) 0 0
\(896\) −1090.99 −1.21762
\(897\) 0 0
\(898\) 450.000 + 450.000i 0.501114 + 0.501114i
\(899\) 379.473i 0.422106i
\(900\) 0 0
\(901\) −160.000 −0.177580
\(902\) 790.569 790.569i 0.876463 0.876463i
\(903\) 0 0
\(904\) 1110.00i 1.22788i
\(905\) 0 0
\(906\) 0 0
\(907\) −40.0000 + 40.0000i −0.0441014 + 0.0441014i −0.728814 0.684712i \(-0.759928\pi\)
0.684712 + 0.728814i \(0.259928\pi\)
\(908\) 271.956 + 271.956i 0.299511 + 0.299511i
\(909\) 0 0
\(910\) 0 0
\(911\) 411.096 0.451258 0.225629 0.974213i \(-0.427556\pi\)
0.225629 + 0.974213i \(0.427556\pi\)
\(912\) 0 0
\(913\) 850.000 + 850.000i 0.930997 + 0.930997i
\(914\) 1154.23i 1.26284i
\(915\) 0 0
\(916\) −78.0000 −0.0851528
\(917\) 869.626 869.626i 0.948338 0.948338i
\(918\) 0 0
\(919\) 792.000i 0.861806i 0.902398 + 0.430903i \(0.141805\pi\)
−0.902398 + 0.430903i \(0.858195\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1325.00 + 1325.00i −1.43709 + 1.43709i
\(923\) 632.456 + 632.456i 0.685217 + 0.685217i
\(924\) 0 0
\(925\) 0 0
\(926\) −110.680 −0.119525
\(927\) 0 0
\(928\) 525.000 + 525.000i 0.565733 + 0.565733i
\(929\) 1233.29i 1.32754i 0.747935 + 0.663772i \(0.231045\pi\)
−0.747935 + 0.663772i \(0.768955\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.0193340
\(932\) −110.680 + 110.680i −0.118755 + 0.118755i
\(933\) 0 0
\(934\) 370.000i 0.396146i
\(935\) 0 0
\(936\) 0 0
\(937\) −865.000 + 865.000i −0.923159 + 0.923159i −0.997251 0.0740924i \(-0.976394\pi\)
0.0740924 + 0.997251i \(0.476394\pi\)
\(938\) −1106.80 1106.80i −1.17995 1.17995i
\(939\) 0 0
\(940\) 0 0
\(941\) −964.495 −1.02497 −0.512484 0.858697i \(-0.671275\pi\)
−0.512484 + 0.858697i \(0.671275\pi\)
\(942\) 0 0
\(943\) 100.000 + 100.000i 0.106045 + 0.106045i
\(944\) 901.249i 0.954713i
\(945\) 0 0
\(946\) −500.000 −0.528541
\(947\) −841.166 + 841.166i −0.888243 + 0.888243i −0.994354 0.106112i \(-0.966160\pi\)
0.106112 + 0.994354i \(0.466160\pi\)
\(948\) 0 0
\(949\) 1100.00i 1.15911i
\(950\) 0 0
\(951\) 0 0
\(952\) −150.000 + 150.000i −0.157563 + 0.157563i
\(953\) 1141.58 + 1141.58i 1.19788 + 1.19788i 0.974799 + 0.223083i \(0.0716122\pi\)
0.223083 + 0.974799i \(0.428388\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −379.473 −0.396939
\(957\) 0 0
\(958\) −600.000 600.000i −0.626305 0.626305i
\(959\) 158.114i 0.164874i
\(960\) 0 0
\(961\) −897.000 −0.933403
\(962\) −316.228 + 316.228i −0.328719 + 0.328719i
\(963\) 0 0
\(964\) 212.000i 0.219917i
\(965\) 0 0
\(966\) 0 0
\(967\) 1145.00 1145.00i 1.18407 1.18407i 0.205395 0.978679i \(-0.434152\pi\)
0.978679 0.205395i \(-0.0658480\pi\)
\(968\) −611.901 611.901i −0.632129 0.632129i
\(969\) 0 0
\(970\) 0 0
\(971\) −1628.57 −1.67721 −0.838606 0.544738i \(-0.816629\pi\)
−0.838606 + 0.544738i \(0.816629\pi\)
\(972\) 0 0
\(973\) 510.000 + 510.000i 0.524152 + 0.524152i
\(974\) 395.285i 0.405836i
\(975\) 0 0
\(976\) −1102.00 −1.12910
\(977\) 762.109 762.109i 0.780050 0.780050i −0.199789 0.979839i \(-0.564026\pi\)
0.979839 + 0.199789i \(0.0640256\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −725.000 + 725.000i −0.738289 + 0.738289i
\(983\) −167.601 167.601i −0.170499 0.170499i 0.616699 0.787199i \(-0.288469\pi\)
−0.787199 + 0.616699i \(0.788469\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 474.342 0.481077
\(987\) 0 0
\(988\) 180.000 + 180.000i 0.182186 + 0.182186i
\(989\) 63.2456i 0.0639490i
\(990\) 0 0
\(991\) 2.00000 0.00201816 0.00100908 0.999999i \(-0.499679\pi\)
0.00100908 + 0.999999i \(0.499679\pi\)
\(992\) −88.5438 + 88.5438i −0.0892578 + 0.0892578i
\(993\) 0 0
\(994\) 1000.00i 1.00604i
\(995\) 0 0
\(996\) 0 0
\(997\) −310.000 + 310.000i −0.310933 + 0.310933i −0.845271 0.534338i \(-0.820561\pi\)
0.534338 + 0.845271i \(0.320561\pi\)
\(998\) 351.013 + 351.013i 0.351716 + 0.351716i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.g.g.118.1 4
3.2 odd 2 inner 225.3.g.g.118.2 4
5.2 odd 4 inner 225.3.g.g.82.1 4
5.3 odd 4 45.3.g.a.37.2 yes 4
5.4 even 2 45.3.g.a.28.2 yes 4
15.2 even 4 inner 225.3.g.g.82.2 4
15.8 even 4 45.3.g.a.37.1 yes 4
15.14 odd 2 45.3.g.a.28.1 4
20.3 even 4 720.3.bh.j.577.2 4
20.19 odd 2 720.3.bh.j.433.2 4
45.4 even 6 405.3.l.g.298.2 8
45.13 odd 12 405.3.l.g.217.1 8
45.14 odd 6 405.3.l.g.298.1 8
45.23 even 12 405.3.l.g.217.2 8
45.29 odd 6 405.3.l.g.28.2 8
45.34 even 6 405.3.l.g.28.1 8
45.38 even 12 405.3.l.g.352.1 8
45.43 odd 12 405.3.l.g.352.2 8
60.23 odd 4 720.3.bh.j.577.1 4
60.59 even 2 720.3.bh.j.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.g.a.28.1 4 15.14 odd 2
45.3.g.a.28.2 yes 4 5.4 even 2
45.3.g.a.37.1 yes 4 15.8 even 4
45.3.g.a.37.2 yes 4 5.3 odd 4
225.3.g.g.82.1 4 5.2 odd 4 inner
225.3.g.g.82.2 4 15.2 even 4 inner
225.3.g.g.118.1 4 1.1 even 1 trivial
225.3.g.g.118.2 4 3.2 odd 2 inner
405.3.l.g.28.1 8 45.34 even 6
405.3.l.g.28.2 8 45.29 odd 6
405.3.l.g.217.1 8 45.13 odd 12
405.3.l.g.217.2 8 45.23 even 12
405.3.l.g.298.1 8 45.14 odd 6
405.3.l.g.298.2 8 45.4 even 6
405.3.l.g.352.1 8 45.38 even 12
405.3.l.g.352.2 8 45.43 odd 12
720.3.bh.j.433.1 4 60.59 even 2
720.3.bh.j.433.2 4 20.19 odd 2
720.3.bh.j.577.1 4 60.23 odd 4
720.3.bh.j.577.2 4 20.3 even 4