Properties

Label 225.3.g.f.118.2
Level $225$
Weight $3$
Character 225.118
Analytic conductor $6.131$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(82,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.82");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 118.2
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 225.118
Dual form 225.3.g.f.82.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 1.22474i) q^{2} +1.00000i q^{4} +(-7.34847 + 7.34847i) q^{7} +(6.12372 + 6.12372i) q^{8} +18.0000 q^{11} +(7.34847 + 7.34847i) q^{13} +18.0000i q^{14} +11.0000 q^{16} +(-4.89898 + 4.89898i) q^{17} +10.0000i q^{19} +(22.0454 - 22.0454i) q^{22} +(-19.5959 - 19.5959i) q^{23} +18.0000 q^{26} +(-7.34847 - 7.34847i) q^{28} +22.0000 q^{31} +(-11.0227 + 11.0227i) q^{32} +12.0000i q^{34} +(-7.34847 + 7.34847i) q^{37} +(12.2474 + 12.2474i) q^{38} +18.0000 q^{41} +(-29.3939 - 29.3939i) q^{43} +18.0000i q^{44} -48.0000 q^{46} +(44.0908 - 44.0908i) q^{47} -59.0000i q^{49} +(-7.34847 + 7.34847i) q^{52} +(4.89898 + 4.89898i) q^{53} -90.0000 q^{56} -90.0000i q^{59} +2.00000 q^{61} +(26.9444 - 26.9444i) q^{62} +71.0000i q^{64} +(-44.0908 + 44.0908i) q^{67} +(-4.89898 - 4.89898i) q^{68} -72.0000 q^{71} +(44.0908 + 44.0908i) q^{73} +18.0000i q^{74} -10.0000 q^{76} +(-132.272 + 132.272i) q^{77} -70.0000i q^{79} +(22.0454 - 22.0454i) q^{82} +(53.8888 + 53.8888i) q^{83} -72.0000 q^{86} +(110.227 + 110.227i) q^{88} -90.0000i q^{89} -108.000 q^{91} +(19.5959 - 19.5959i) q^{92} -108.000i q^{94} +(102.879 - 102.879i) q^{97} +(-72.2599 - 72.2599i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 72 q^{11} + 44 q^{16} + 72 q^{26} + 88 q^{31} + 72 q^{41} - 192 q^{46} - 360 q^{56} + 8 q^{61} - 288 q^{71} - 40 q^{76} - 288 q^{86} - 432 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 1.22474i 0.612372 0.612372i −0.331191 0.943564i \(-0.607451\pi\)
0.943564 + 0.331191i \(0.107451\pi\)
\(3\) 0 0
\(4\) 1.00000i 0.250000i
\(5\) 0 0
\(6\) 0 0
\(7\) −7.34847 + 7.34847i −1.04978 + 1.04978i −0.0510871 + 0.998694i \(0.516269\pi\)
−0.998694 + 0.0510871i \(0.983731\pi\)
\(8\) 6.12372 + 6.12372i 0.765466 + 0.765466i
\(9\) 0 0
\(10\) 0 0
\(11\) 18.0000 1.63636 0.818182 0.574960i \(-0.194982\pi\)
0.818182 + 0.574960i \(0.194982\pi\)
\(12\) 0 0
\(13\) 7.34847 + 7.34847i 0.565267 + 0.565267i 0.930799 0.365532i \(-0.119113\pi\)
−0.365532 + 0.930799i \(0.619113\pi\)
\(14\) 18.0000i 1.28571i
\(15\) 0 0
\(16\) 11.0000 0.687500
\(17\) −4.89898 + 4.89898i −0.288175 + 0.288175i −0.836358 0.548183i \(-0.815320\pi\)
0.548183 + 0.836358i \(0.315320\pi\)
\(18\) 0 0
\(19\) 10.0000i 0.526316i 0.964753 + 0.263158i \(0.0847640\pi\)
−0.964753 + 0.263158i \(0.915236\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 22.0454 22.0454i 1.00206 1.00206i
\(23\) −19.5959 19.5959i −0.851996 0.851996i 0.138382 0.990379i \(-0.455810\pi\)
−0.990379 + 0.138382i \(0.955810\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 18.0000 0.692308
\(27\) 0 0
\(28\) −7.34847 7.34847i −0.262445 0.262445i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 22.0000 0.709677 0.354839 0.934928i \(-0.384536\pi\)
0.354839 + 0.934928i \(0.384536\pi\)
\(32\) −11.0227 + 11.0227i −0.344459 + 0.344459i
\(33\) 0 0
\(34\) 12.0000i 0.352941i
\(35\) 0 0
\(36\) 0 0
\(37\) −7.34847 + 7.34847i −0.198607 + 0.198607i −0.799403 0.600795i \(-0.794851\pi\)
0.600795 + 0.799403i \(0.294851\pi\)
\(38\) 12.2474 + 12.2474i 0.322301 + 0.322301i
\(39\) 0 0
\(40\) 0 0
\(41\) 18.0000 0.439024 0.219512 0.975610i \(-0.429553\pi\)
0.219512 + 0.975610i \(0.429553\pi\)
\(42\) 0 0
\(43\) −29.3939 29.3939i −0.683579 0.683579i 0.277226 0.960805i \(-0.410585\pi\)
−0.960805 + 0.277226i \(0.910585\pi\)
\(44\) 18.0000i 0.409091i
\(45\) 0 0
\(46\) −48.0000 −1.04348
\(47\) 44.0908 44.0908i 0.938102 0.938102i −0.0600905 0.998193i \(-0.519139\pi\)
0.998193 + 0.0600905i \(0.0191389\pi\)
\(48\) 0 0
\(49\) 59.0000i 1.20408i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.34847 + 7.34847i −0.141317 + 0.141317i
\(53\) 4.89898 + 4.89898i 0.0924336 + 0.0924336i 0.751812 0.659378i \(-0.229180\pi\)
−0.659378 + 0.751812i \(0.729180\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −90.0000 −1.60714
\(57\) 0 0
\(58\) 0 0
\(59\) 90.0000i 1.52542i −0.646738 0.762712i \(-0.723867\pi\)
0.646738 0.762712i \(-0.276133\pi\)
\(60\) 0 0
\(61\) 2.00000 0.0327869 0.0163934 0.999866i \(-0.494782\pi\)
0.0163934 + 0.999866i \(0.494782\pi\)
\(62\) 26.9444 26.9444i 0.434587 0.434587i
\(63\) 0 0
\(64\) 71.0000i 1.10938i
\(65\) 0 0
\(66\) 0 0
\(67\) −44.0908 + 44.0908i −0.658072 + 0.658072i −0.954924 0.296852i \(-0.904063\pi\)
0.296852 + 0.954924i \(0.404063\pi\)
\(68\) −4.89898 4.89898i −0.0720438 0.0720438i
\(69\) 0 0
\(70\) 0 0
\(71\) −72.0000 −1.01408 −0.507042 0.861921i \(-0.669261\pi\)
−0.507042 + 0.861921i \(0.669261\pi\)
\(72\) 0 0
\(73\) 44.0908 + 44.0908i 0.603984 + 0.603984i 0.941367 0.337384i \(-0.109542\pi\)
−0.337384 + 0.941367i \(0.609542\pi\)
\(74\) 18.0000i 0.243243i
\(75\) 0 0
\(76\) −10.0000 −0.131579
\(77\) −132.272 + 132.272i −1.71782 + 1.71782i
\(78\) 0 0
\(79\) 70.0000i 0.886076i −0.896503 0.443038i \(-0.853901\pi\)
0.896503 0.443038i \(-0.146099\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 22.0454 22.0454i 0.268846 0.268846i
\(83\) 53.8888 + 53.8888i 0.649262 + 0.649262i 0.952815 0.303552i \(-0.0981727\pi\)
−0.303552 + 0.952815i \(0.598173\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −72.0000 −0.837209
\(87\) 0 0
\(88\) 110.227 + 110.227i 1.25258 + 1.25258i
\(89\) 90.0000i 1.01124i −0.862757 0.505618i \(-0.831265\pi\)
0.862757 0.505618i \(-0.168735\pi\)
\(90\) 0 0
\(91\) −108.000 −1.18681
\(92\) 19.5959 19.5959i 0.212999 0.212999i
\(93\) 0 0
\(94\) 108.000i 1.14894i
\(95\) 0 0
\(96\) 0 0
\(97\) 102.879 102.879i 1.06060 1.06060i 0.0625628 0.998041i \(-0.480073\pi\)
0.998041 0.0625628i \(-0.0199274\pi\)
\(98\) −72.2599 72.2599i −0.737346 0.737346i
\(99\) 0 0
\(100\) 0 0
\(101\) 108.000 1.06931 0.534653 0.845071i \(-0.320442\pi\)
0.534653 + 0.845071i \(0.320442\pi\)
\(102\) 0 0
\(103\) −66.1362 66.1362i −0.642099 0.642099i 0.308972 0.951071i \(-0.400015\pi\)
−0.951071 + 0.308972i \(0.900015\pi\)
\(104\) 90.0000i 0.865385i
\(105\) 0 0
\(106\) 12.0000 0.113208
\(107\) 44.0908 44.0908i 0.412064 0.412064i −0.470393 0.882457i \(-0.655888\pi\)
0.882457 + 0.470393i \(0.155888\pi\)
\(108\) 0 0
\(109\) 170.000i 1.55963i 0.626008 + 0.779817i \(0.284688\pi\)
−0.626008 + 0.779817i \(0.715312\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −80.8332 + 80.8332i −0.721725 + 0.721725i
\(113\) −44.0908 44.0908i −0.390184 0.390184i 0.484569 0.874753i \(-0.338976\pi\)
−0.874753 + 0.484569i \(0.838976\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −110.227 110.227i −0.934127 0.934127i
\(119\) 72.0000i 0.605042i
\(120\) 0 0
\(121\) 203.000 1.67769
\(122\) 2.44949 2.44949i 0.0200778 0.0200778i
\(123\) 0 0
\(124\) 22.0000i 0.177419i
\(125\) 0 0
\(126\) 0 0
\(127\) −7.34847 + 7.34847i −0.0578620 + 0.0578620i −0.735446 0.677584i \(-0.763027\pi\)
0.677584 + 0.735446i \(0.263027\pi\)
\(128\) 42.8661 + 42.8661i 0.334891 + 0.334891i
\(129\) 0 0
\(130\) 0 0
\(131\) 18.0000 0.137405 0.0687023 0.997637i \(-0.478114\pi\)
0.0687023 + 0.997637i \(0.478114\pi\)
\(132\) 0 0
\(133\) −73.4847 73.4847i −0.552516 0.552516i
\(134\) 108.000i 0.805970i
\(135\) 0 0
\(136\) −60.0000 −0.441176
\(137\) 142.070 142.070i 1.03701 1.03701i 0.0377220 0.999288i \(-0.487990\pi\)
0.999288 0.0377220i \(-0.0120101\pi\)
\(138\) 0 0
\(139\) 170.000i 1.22302i −0.791236 0.611511i \(-0.790562\pi\)
0.791236 0.611511i \(-0.209438\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −88.1816 + 88.1816i −0.620997 + 0.620997i
\(143\) 132.272 + 132.272i 0.924982 + 0.924982i
\(144\) 0 0
\(145\) 0 0
\(146\) 108.000 0.739726
\(147\) 0 0
\(148\) −7.34847 7.34847i −0.0496518 0.0496518i
\(149\) 180.000i 1.20805i 0.796964 + 0.604027i \(0.206438\pi\)
−0.796964 + 0.604027i \(0.793562\pi\)
\(150\) 0 0
\(151\) 22.0000 0.145695 0.0728477 0.997343i \(-0.476791\pi\)
0.0728477 + 0.997343i \(0.476791\pi\)
\(152\) −61.2372 + 61.2372i −0.402877 + 0.402877i
\(153\) 0 0
\(154\) 324.000i 2.10390i
\(155\) 0 0
\(156\) 0 0
\(157\) 139.621 139.621i 0.889305 0.889305i −0.105151 0.994456i \(-0.533533\pi\)
0.994456 + 0.105151i \(0.0335326\pi\)
\(158\) −85.7321 85.7321i −0.542608 0.542608i
\(159\) 0 0
\(160\) 0 0
\(161\) 288.000 1.78882
\(162\) 0 0
\(163\) 117.576 + 117.576i 0.721322 + 0.721322i 0.968875 0.247552i \(-0.0796262\pi\)
−0.247552 + 0.968875i \(0.579626\pi\)
\(164\) 18.0000i 0.109756i
\(165\) 0 0
\(166\) 132.000 0.795181
\(167\) 19.5959 19.5959i 0.117341 0.117341i −0.645998 0.763339i \(-0.723559\pi\)
0.763339 + 0.645998i \(0.223559\pi\)
\(168\) 0 0
\(169\) 61.0000i 0.360947i
\(170\) 0 0
\(171\) 0 0
\(172\) 29.3939 29.3939i 0.170895 0.170895i
\(173\) −142.070 142.070i −0.821216 0.821216i 0.165066 0.986282i \(-0.447216\pi\)
−0.986282 + 0.165066i \(0.947216\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 198.000 1.12500
\(177\) 0 0
\(178\) −110.227 110.227i −0.619253 0.619253i
\(179\) 90.0000i 0.502793i 0.967884 + 0.251397i \(0.0808899\pi\)
−0.967884 + 0.251397i \(0.919110\pi\)
\(180\) 0 0
\(181\) −98.0000 −0.541436 −0.270718 0.962659i \(-0.587261\pi\)
−0.270718 + 0.962659i \(0.587261\pi\)
\(182\) −132.272 + 132.272i −0.726772 + 0.726772i
\(183\) 0 0
\(184\) 240.000i 1.30435i
\(185\) 0 0
\(186\) 0 0
\(187\) −88.1816 + 88.1816i −0.471560 + 0.471560i
\(188\) 44.0908 + 44.0908i 0.234526 + 0.234526i
\(189\) 0 0
\(190\) 0 0
\(191\) −252.000 −1.31937 −0.659686 0.751541i \(-0.729311\pi\)
−0.659686 + 0.751541i \(0.729311\pi\)
\(192\) 0 0
\(193\) 264.545 + 264.545i 1.37070 + 1.37070i 0.859407 + 0.511292i \(0.170833\pi\)
0.511292 + 0.859407i \(0.329167\pi\)
\(194\) 252.000i 1.29897i
\(195\) 0 0
\(196\) 59.0000 0.301020
\(197\) −127.373 + 127.373i −0.646566 + 0.646566i −0.952161 0.305596i \(-0.901144\pi\)
0.305596 + 0.952161i \(0.401144\pi\)
\(198\) 0 0
\(199\) 290.000i 1.45729i 0.684893 + 0.728643i \(0.259849\pi\)
−0.684893 + 0.728643i \(0.740151\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 132.272 132.272i 0.654814 0.654814i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −162.000 −0.786408
\(207\) 0 0
\(208\) 80.8332 + 80.8332i 0.388621 + 0.388621i
\(209\) 180.000i 0.861244i
\(210\) 0 0
\(211\) 122.000 0.578199 0.289100 0.957299i \(-0.406644\pi\)
0.289100 + 0.957299i \(0.406644\pi\)
\(212\) −4.89898 + 4.89898i −0.0231084 + 0.0231084i
\(213\) 0 0
\(214\) 108.000i 0.504673i
\(215\) 0 0
\(216\) 0 0
\(217\) −161.666 + 161.666i −0.745006 + 0.745006i
\(218\) 208.207 + 208.207i 0.955076 + 0.955076i
\(219\) 0 0
\(220\) 0 0
\(221\) −72.0000 −0.325792
\(222\) 0 0
\(223\) 80.8332 + 80.8332i 0.362481 + 0.362481i 0.864725 0.502245i \(-0.167492\pi\)
−0.502245 + 0.864725i \(0.667492\pi\)
\(224\) 162.000i 0.723214i
\(225\) 0 0
\(226\) −108.000 −0.477876
\(227\) −53.8888 + 53.8888i −0.237395 + 0.237395i −0.815771 0.578375i \(-0.803687\pi\)
0.578375 + 0.815771i \(0.303687\pi\)
\(228\) 0 0
\(229\) 50.0000i 0.218341i −0.994023 0.109170i \(-0.965181\pi\)
0.994023 0.109170i \(-0.0348194\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −44.0908 44.0908i −0.189231 0.189231i 0.606133 0.795364i \(-0.292720\pi\)
−0.795364 + 0.606133i \(0.792720\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 90.0000 0.381356
\(237\) 0 0
\(238\) −88.1816 88.1816i −0.370511 0.370511i
\(239\) 180.000i 0.753138i −0.926389 0.376569i \(-0.877104\pi\)
0.926389 0.376569i \(-0.122896\pi\)
\(240\) 0 0
\(241\) −178.000 −0.738589 −0.369295 0.929312i \(-0.620401\pi\)
−0.369295 + 0.929312i \(0.620401\pi\)
\(242\) 248.623 248.623i 1.02737 1.02737i
\(243\) 0 0
\(244\) 2.00000i 0.00819672i
\(245\) 0 0
\(246\) 0 0
\(247\) −73.4847 + 73.4847i −0.297509 + 0.297509i
\(248\) 134.722 + 134.722i 0.543234 + 0.543234i
\(249\) 0 0
\(250\) 0 0
\(251\) −342.000 −1.36255 −0.681275 0.732028i \(-0.738574\pi\)
−0.681275 + 0.732028i \(0.738574\pi\)
\(252\) 0 0
\(253\) −352.727 352.727i −1.39418 1.39418i
\(254\) 18.0000i 0.0708661i
\(255\) 0 0
\(256\) −179.000 −0.699219
\(257\) 289.040 289.040i 1.12467 1.12467i 0.133638 0.991030i \(-0.457334\pi\)
0.991030 0.133638i \(-0.0426660\pi\)
\(258\) 0 0
\(259\) 108.000i 0.416988i
\(260\) 0 0
\(261\) 0 0
\(262\) 22.0454 22.0454i 0.0841428 0.0841428i
\(263\) −264.545 264.545i −1.00587 1.00587i −0.999983 0.00589147i \(-0.998125\pi\)
−0.00589147 0.999983i \(-0.501875\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −180.000 −0.676692
\(267\) 0 0
\(268\) −44.0908 44.0908i −0.164518 0.164518i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) −478.000 −1.76384 −0.881919 0.471401i \(-0.843748\pi\)
−0.881919 + 0.471401i \(0.843748\pi\)
\(272\) −53.8888 + 53.8888i −0.198120 + 0.198120i
\(273\) 0 0
\(274\) 348.000i 1.27007i
\(275\) 0 0
\(276\) 0 0
\(277\) −80.8332 + 80.8332i −0.291816 + 0.291816i −0.837798 0.545981i \(-0.816157\pi\)
0.545981 + 0.837798i \(0.316157\pi\)
\(278\) −208.207 208.207i −0.748945 0.748945i
\(279\) 0 0
\(280\) 0 0
\(281\) −162.000 −0.576512 −0.288256 0.957553i \(-0.593075\pi\)
−0.288256 + 0.957553i \(0.593075\pi\)
\(282\) 0 0
\(283\) −249.848 249.848i −0.882855 0.882855i 0.110969 0.993824i \(-0.464605\pi\)
−0.993824 + 0.110969i \(0.964605\pi\)
\(284\) 72.0000i 0.253521i
\(285\) 0 0
\(286\) 324.000 1.13287
\(287\) −132.272 + 132.272i −0.460880 + 0.460880i
\(288\) 0 0
\(289\) 241.000i 0.833910i
\(290\) 0 0
\(291\) 0 0
\(292\) −44.0908 + 44.0908i −0.150996 + 0.150996i
\(293\) 372.322 + 372.322i 1.27073 + 1.27073i 0.945708 + 0.325017i \(0.105370\pi\)
0.325017 + 0.945708i \(0.394630\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −90.0000 −0.304054
\(297\) 0 0
\(298\) 220.454 + 220.454i 0.739779 + 0.739779i
\(299\) 288.000i 0.963211i
\(300\) 0 0
\(301\) 432.000 1.43522
\(302\) 26.9444 26.9444i 0.0892198 0.0892198i
\(303\) 0 0
\(304\) 110.000i 0.361842i
\(305\) 0 0
\(306\) 0 0
\(307\) 396.817 396.817i 1.29256 1.29256i 0.359369 0.933195i \(-0.382992\pi\)
0.933195 0.359369i \(-0.117008\pi\)
\(308\) −132.272 132.272i −0.429456 0.429456i
\(309\) 0 0
\(310\) 0 0
\(311\) −252.000 −0.810289 −0.405145 0.914253i \(-0.632779\pi\)
−0.405145 + 0.914253i \(0.632779\pi\)
\(312\) 0 0
\(313\) 117.576 + 117.576i 0.375641 + 0.375641i 0.869527 0.493886i \(-0.164424\pi\)
−0.493886 + 0.869527i \(0.664424\pi\)
\(314\) 342.000i 1.08917i
\(315\) 0 0
\(316\) 70.0000 0.221519
\(317\) −274.343 + 274.343i −0.865435 + 0.865435i −0.991963 0.126528i \(-0.959617\pi\)
0.126528 + 0.991963i \(0.459617\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 352.727 352.727i 1.09542 1.09542i
\(323\) −48.9898 48.9898i −0.151671 0.151671i
\(324\) 0 0
\(325\) 0 0
\(326\) 288.000 0.883436
\(327\) 0 0
\(328\) 110.227 + 110.227i 0.336058 + 0.336058i
\(329\) 648.000i 1.96960i
\(330\) 0 0
\(331\) −418.000 −1.26284 −0.631420 0.775441i \(-0.717528\pi\)
−0.631420 + 0.775441i \(0.717528\pi\)
\(332\) −53.8888 + 53.8888i −0.162316 + 0.162316i
\(333\) 0 0
\(334\) 48.0000i 0.143713i
\(335\) 0 0
\(336\) 0 0
\(337\) −191.060 + 191.060i −0.566944 + 0.566944i −0.931271 0.364327i \(-0.881299\pi\)
0.364327 + 0.931271i \(0.381299\pi\)
\(338\) −74.7094 74.7094i −0.221034 0.221034i
\(339\) 0 0
\(340\) 0 0
\(341\) 396.000 1.16129
\(342\) 0 0
\(343\) 73.4847 + 73.4847i 0.214241 + 0.214241i
\(344\) 360.000i 1.04651i
\(345\) 0 0
\(346\) −348.000 −1.00578
\(347\) 44.0908 44.0908i 0.127063 0.127063i −0.640716 0.767778i \(-0.721362\pi\)
0.767778 + 0.640716i \(0.221362\pi\)
\(348\) 0 0
\(349\) 70.0000i 0.200573i 0.994959 + 0.100287i \(0.0319759\pi\)
−0.994959 + 0.100287i \(0.968024\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −198.409 + 198.409i −0.563661 + 0.563661i
\(353\) −44.0908 44.0908i −0.124903 0.124903i 0.641892 0.766795i \(-0.278150\pi\)
−0.766795 + 0.641892i \(0.778150\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 90.0000 0.252809
\(357\) 0 0
\(358\) 110.227 + 110.227i 0.307897 + 0.307897i
\(359\) 540.000i 1.50418i 0.659061 + 0.752089i \(0.270954\pi\)
−0.659061 + 0.752089i \(0.729046\pi\)
\(360\) 0 0
\(361\) 261.000 0.722992
\(362\) −120.025 + 120.025i −0.331561 + 0.331561i
\(363\) 0 0
\(364\) 108.000i 0.296703i
\(365\) 0 0
\(366\) 0 0
\(367\) 66.1362 66.1362i 0.180208 0.180208i −0.611239 0.791446i \(-0.709328\pi\)
0.791446 + 0.611239i \(0.209328\pi\)
\(368\) −215.555 215.555i −0.585748 0.585748i
\(369\) 0 0
\(370\) 0 0
\(371\) −72.0000 −0.194070
\(372\) 0 0
\(373\) −213.106 213.106i −0.571329 0.571329i 0.361171 0.932500i \(-0.382377\pi\)
−0.932500 + 0.361171i \(0.882377\pi\)
\(374\) 216.000i 0.577540i
\(375\) 0 0
\(376\) 540.000 1.43617
\(377\) 0 0
\(378\) 0 0
\(379\) 170.000i 0.448549i −0.974526 0.224274i \(-0.927999\pi\)
0.974526 0.224274i \(-0.0720012\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −308.636 + 308.636i −0.807947 + 0.807947i
\(383\) 151.868 + 151.868i 0.396523 + 0.396523i 0.877005 0.480482i \(-0.159538\pi\)
−0.480482 + 0.877005i \(0.659538\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 648.000 1.67876
\(387\) 0 0
\(388\) 102.879 + 102.879i 0.265151 + 0.265151i
\(389\) 360.000i 0.925450i 0.886502 + 0.462725i \(0.153128\pi\)
−0.886502 + 0.462725i \(0.846872\pi\)
\(390\) 0 0
\(391\) 192.000 0.491049
\(392\) 361.300 361.300i 0.921683 0.921683i
\(393\) 0 0
\(394\) 312.000i 0.791878i
\(395\) 0 0
\(396\) 0 0
\(397\) −301.287 + 301.287i −0.758910 + 0.758910i −0.976124 0.217214i \(-0.930303\pi\)
0.217214 + 0.976124i \(0.430303\pi\)
\(398\) 355.176 + 355.176i 0.892402 + 0.892402i
\(399\) 0 0
\(400\) 0 0
\(401\) 558.000 1.39152 0.695761 0.718274i \(-0.255067\pi\)
0.695761 + 0.718274i \(0.255067\pi\)
\(402\) 0 0
\(403\) 161.666 + 161.666i 0.401157 + 0.401157i
\(404\) 108.000i 0.267327i
\(405\) 0 0
\(406\) 0 0
\(407\) −132.272 + 132.272i −0.324994 + 0.324994i
\(408\) 0 0
\(409\) 670.000i 1.63814i 0.573692 + 0.819071i \(0.305511\pi\)
−0.573692 + 0.819071i \(0.694489\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 66.1362 66.1362i 0.160525 0.160525i
\(413\) 661.362 + 661.362i 1.60136 + 1.60136i
\(414\) 0 0
\(415\) 0 0
\(416\) −162.000 −0.389423
\(417\) 0 0
\(418\) 220.454 + 220.454i 0.527402 + 0.527402i
\(419\) 630.000i 1.50358i −0.659403 0.751790i \(-0.729191\pi\)
0.659403 0.751790i \(-0.270809\pi\)
\(420\) 0 0
\(421\) 142.000 0.337292 0.168646 0.985677i \(-0.446061\pi\)
0.168646 + 0.985677i \(0.446061\pi\)
\(422\) 149.419 149.419i 0.354073 0.354073i
\(423\) 0 0
\(424\) 60.0000i 0.141509i
\(425\) 0 0
\(426\) 0 0
\(427\) −14.6969 + 14.6969i −0.0344191 + 0.0344191i
\(428\) 44.0908 + 44.0908i 0.103016 + 0.103016i
\(429\) 0 0
\(430\) 0 0
\(431\) −612.000 −1.41995 −0.709977 0.704225i \(-0.751295\pi\)
−0.709977 + 0.704225i \(0.751295\pi\)
\(432\) 0 0
\(433\) −102.879 102.879i −0.237595 0.237595i 0.578259 0.815853i \(-0.303732\pi\)
−0.815853 + 0.578259i \(0.803732\pi\)
\(434\) 396.000i 0.912442i
\(435\) 0 0
\(436\) −170.000 −0.389908
\(437\) 195.959 195.959i 0.448419 0.448419i
\(438\) 0 0
\(439\) 430.000i 0.979499i −0.871863 0.489749i \(-0.837088\pi\)
0.871863 0.489749i \(-0.162912\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −88.1816 + 88.1816i −0.199506 + 0.199506i
\(443\) −582.979 582.979i −1.31598 1.31598i −0.916930 0.399049i \(-0.869340\pi\)
−0.399049 0.916930i \(-0.630660\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 198.000 0.443946
\(447\) 0 0
\(448\) −521.741 521.741i −1.16460 1.16460i
\(449\) 90.0000i 0.200445i −0.994965 0.100223i \(-0.968044\pi\)
0.994965 0.100223i \(-0.0319555\pi\)
\(450\) 0 0
\(451\) 324.000 0.718404
\(452\) 44.0908 44.0908i 0.0975461 0.0975461i
\(453\) 0 0
\(454\) 132.000i 0.290749i
\(455\) 0 0
\(456\) 0 0
\(457\) −191.060 + 191.060i −0.418075 + 0.418075i −0.884540 0.466465i \(-0.845527\pi\)
0.466465 + 0.884540i \(0.345527\pi\)
\(458\) −61.2372 61.2372i −0.133706 0.133706i
\(459\) 0 0
\(460\) 0 0
\(461\) 828.000 1.79610 0.898048 0.439898i \(-0.144985\pi\)
0.898048 + 0.439898i \(0.144985\pi\)
\(462\) 0 0
\(463\) 7.34847 + 7.34847i 0.0158714 + 0.0158714i 0.714998 0.699127i \(-0.246428\pi\)
−0.699127 + 0.714998i \(0.746428\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −108.000 −0.231760
\(467\) −347.828 + 347.828i −0.744813 + 0.744813i −0.973500 0.228687i \(-0.926557\pi\)
0.228687 + 0.973500i \(0.426557\pi\)
\(468\) 0 0
\(469\) 648.000i 1.38166i
\(470\) 0 0
\(471\) 0 0
\(472\) 551.135 551.135i 1.16766 1.16766i
\(473\) −529.090 529.090i −1.11858 1.11858i
\(474\) 0 0
\(475\) 0 0
\(476\) 72.0000 0.151261
\(477\) 0 0
\(478\) −220.454 220.454i −0.461201 0.461201i
\(479\) 360.000i 0.751566i 0.926708 + 0.375783i \(0.122626\pi\)
−0.926708 + 0.375783i \(0.877374\pi\)
\(480\) 0 0
\(481\) −108.000 −0.224532
\(482\) −218.005 + 218.005i −0.452292 + 0.452292i
\(483\) 0 0
\(484\) 203.000i 0.419421i
\(485\) 0 0
\(486\) 0 0
\(487\) 580.529 580.529i 1.19205 1.19205i 0.215561 0.976490i \(-0.430842\pi\)
0.976490 0.215561i \(-0.0691581\pi\)
\(488\) 12.2474 + 12.2474i 0.0250972 + 0.0250972i
\(489\) 0 0
\(490\) 0 0
\(491\) 18.0000 0.0366599 0.0183299 0.999832i \(-0.494165\pi\)
0.0183299 + 0.999832i \(0.494165\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 180.000i 0.364372i
\(495\) 0 0
\(496\) 242.000 0.487903
\(497\) 529.090 529.090i 1.06457 1.06457i
\(498\) 0 0
\(499\) 590.000i 1.18236i 0.806538 + 0.591182i \(0.201339\pi\)
−0.806538 + 0.591182i \(0.798661\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −418.863 + 418.863i −0.834388 + 0.834388i
\(503\) −93.0806 93.0806i −0.185051 0.185051i 0.608502 0.793553i \(-0.291771\pi\)
−0.793553 + 0.608502i \(0.791771\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −864.000 −1.70751
\(507\) 0 0
\(508\) −7.34847 7.34847i −0.0144655 0.0144655i
\(509\) 540.000i 1.06090i −0.847715 0.530452i \(-0.822022\pi\)
0.847715 0.530452i \(-0.177978\pi\)
\(510\) 0 0
\(511\) −648.000 −1.26810
\(512\) −390.694 + 390.694i −0.763073 + 0.763073i
\(513\) 0 0
\(514\) 708.000i 1.37743i
\(515\) 0 0
\(516\) 0 0
\(517\) 793.635 793.635i 1.53508 1.53508i
\(518\) −132.272 132.272i −0.255352 0.255352i
\(519\) 0 0
\(520\) 0 0
\(521\) −342.000 −0.656430 −0.328215 0.944603i \(-0.606447\pi\)
−0.328215 + 0.944603i \(0.606447\pi\)
\(522\) 0 0
\(523\) 264.545 + 264.545i 0.505822 + 0.505822i 0.913241 0.407419i \(-0.133571\pi\)
−0.407419 + 0.913241i \(0.633571\pi\)
\(524\) 18.0000i 0.0343511i
\(525\) 0 0
\(526\) −648.000 −1.23194
\(527\) −107.778 + 107.778i −0.204511 + 0.204511i
\(528\) 0 0
\(529\) 239.000i 0.451796i
\(530\) 0 0
\(531\) 0 0
\(532\) 73.4847 73.4847i 0.138129 0.138129i
\(533\) 132.272 + 132.272i 0.248166 + 0.248166i
\(534\) 0 0
\(535\) 0 0
\(536\) −540.000 −1.00746
\(537\) 0 0
\(538\) 0 0
\(539\) 1062.00i 1.97032i
\(540\) 0 0
\(541\) 2.00000 0.00369686 0.00184843 0.999998i \(-0.499412\pi\)
0.00184843 + 0.999998i \(0.499412\pi\)
\(542\) −585.428 + 585.428i −1.08013 + 1.08013i
\(543\) 0 0
\(544\) 108.000i 0.198529i
\(545\) 0 0
\(546\) 0 0
\(547\) −264.545 + 264.545i −0.483629 + 0.483629i −0.906288 0.422660i \(-0.861097\pi\)
0.422660 + 0.906288i \(0.361097\pi\)
\(548\) 142.070 + 142.070i 0.259253 + 0.259253i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 514.393 + 514.393i 0.930186 + 0.930186i
\(554\) 198.000i 0.357401i
\(555\) 0 0
\(556\) 170.000 0.305755
\(557\) 484.999 484.999i 0.870734 0.870734i −0.121818 0.992552i \(-0.538872\pi\)
0.992552 + 0.121818i \(0.0388725\pi\)
\(558\) 0 0
\(559\) 432.000i 0.772809i
\(560\) 0 0
\(561\) 0 0
\(562\) −198.409 + 198.409i −0.353040 + 0.353040i
\(563\) 396.817 + 396.817i 0.704827 + 0.704827i 0.965443 0.260616i \(-0.0839256\pi\)
−0.260616 + 0.965443i \(0.583926\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −612.000 −1.08127
\(567\) 0 0
\(568\) −440.908 440.908i −0.776247 0.776247i
\(569\) 630.000i 1.10721i −0.832781 0.553603i \(-0.813253\pi\)
0.832781 0.553603i \(-0.186747\pi\)
\(570\) 0 0
\(571\) 302.000 0.528897 0.264448 0.964400i \(-0.414810\pi\)
0.264448 + 0.964400i \(0.414810\pi\)
\(572\) −132.272 + 132.272i −0.231246 + 0.231246i
\(573\) 0 0
\(574\) 324.000i 0.564460i
\(575\) 0 0
\(576\) 0 0
\(577\) −484.999 + 484.999i −0.840553 + 0.840553i −0.988931 0.148378i \(-0.952595\pi\)
0.148378 + 0.988931i \(0.452595\pi\)
\(578\) 295.164 + 295.164i 0.510664 + 0.510664i
\(579\) 0 0
\(580\) 0 0
\(581\) −792.000 −1.36317
\(582\) 0 0
\(583\) 88.1816 + 88.1816i 0.151255 + 0.151255i
\(584\) 540.000i 0.924658i
\(585\) 0 0
\(586\) 912.000 1.55631
\(587\) 582.979 582.979i 0.993149 0.993149i −0.00682753 0.999977i \(-0.502173\pi\)
0.999977 + 0.00682753i \(0.00217329\pi\)
\(588\) 0 0
\(589\) 220.000i 0.373514i
\(590\) 0 0
\(591\) 0 0
\(592\) −80.8332 + 80.8332i −0.136543 + 0.136543i
\(593\) −533.989 533.989i −0.900487 0.900487i 0.0949912 0.995478i \(-0.469718\pi\)
−0.995478 + 0.0949912i \(0.969718\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −180.000 −0.302013
\(597\) 0 0
\(598\) −352.727 352.727i −0.589844 0.589844i
\(599\) 540.000i 0.901503i 0.892650 + 0.450751i \(0.148844\pi\)
−0.892650 + 0.450751i \(0.851156\pi\)
\(600\) 0 0
\(601\) −758.000 −1.26123 −0.630616 0.776095i \(-0.717198\pi\)
−0.630616 + 0.776095i \(0.717198\pi\)
\(602\) 529.090 529.090i 0.878887 0.878887i
\(603\) 0 0
\(604\) 22.0000i 0.0364238i
\(605\) 0 0
\(606\) 0 0
\(607\) −668.711 + 668.711i −1.10167 + 1.10167i −0.107455 + 0.994210i \(0.534270\pi\)
−0.994210 + 0.107455i \(0.965730\pi\)
\(608\) −110.227 110.227i −0.181294 0.181294i
\(609\) 0 0
\(610\) 0 0
\(611\) 648.000 1.06056
\(612\) 0 0
\(613\) −66.1362 66.1362i −0.107889 0.107889i 0.651101 0.758991i \(-0.274307\pi\)
−0.758991 + 0.651101i \(0.774307\pi\)
\(614\) 972.000i 1.58306i
\(615\) 0 0
\(616\) −1620.00 −2.62987
\(617\) −592.777 + 592.777i −0.960740 + 0.960740i −0.999258 0.0385180i \(-0.987736\pi\)
0.0385180 + 0.999258i \(0.487736\pi\)
\(618\) 0 0
\(619\) 1030.00i 1.66397i −0.554795 0.831987i \(-0.687203\pi\)
0.554795 0.831987i \(-0.312797\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −308.636 + 308.636i −0.496199 + 0.496199i
\(623\) 661.362 + 661.362i 1.06158 + 1.06158i
\(624\) 0 0
\(625\) 0 0
\(626\) 288.000 0.460064
\(627\) 0 0
\(628\) 139.621 + 139.621i 0.222326 + 0.222326i
\(629\) 72.0000i 0.114467i
\(630\) 0 0
\(631\) 242.000 0.383518 0.191759 0.981442i \(-0.438581\pi\)
0.191759 + 0.981442i \(0.438581\pi\)
\(632\) 428.661 428.661i 0.678261 0.678261i
\(633\) 0 0
\(634\) 672.000i 1.05994i
\(635\) 0 0
\(636\) 0 0
\(637\) 433.560 433.560i 0.680627 0.680627i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −162.000 −0.252730 −0.126365 0.991984i \(-0.540331\pi\)
−0.126365 + 0.991984i \(0.540331\pi\)
\(642\) 0 0
\(643\) 264.545 + 264.545i 0.411423 + 0.411423i 0.882234 0.470811i \(-0.156039\pi\)
−0.470811 + 0.882234i \(0.656039\pi\)
\(644\) 288.000i 0.447205i
\(645\) 0 0
\(646\) −120.000 −0.185759
\(647\) 93.0806 93.0806i 0.143865 0.143865i −0.631506 0.775371i \(-0.717563\pi\)
0.775371 + 0.631506i \(0.217563\pi\)
\(648\) 0 0
\(649\) 1620.00i 2.49615i
\(650\) 0 0
\(651\) 0 0
\(652\) −117.576 + 117.576i −0.180331 + 0.180331i
\(653\) −68.5857 68.5857i −0.105032 0.105032i 0.652638 0.757670i \(-0.273662\pi\)
−0.757670 + 0.652638i \(0.773662\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 198.000 0.301829
\(657\) 0 0
\(658\) 793.635 + 793.635i 1.20613 + 1.20613i
\(659\) 630.000i 0.955994i −0.878361 0.477997i \(-0.841363\pi\)
0.878361 0.477997i \(-0.158637\pi\)
\(660\) 0 0
\(661\) 622.000 0.940998 0.470499 0.882400i \(-0.344074\pi\)
0.470499 + 0.882400i \(0.344074\pi\)
\(662\) −511.943 + 511.943i −0.773328 + 0.773328i
\(663\) 0 0
\(664\) 660.000i 0.993976i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 19.5959 + 19.5959i 0.0293352 + 0.0293352i
\(669\) 0 0
\(670\) 0 0
\(671\) 36.0000 0.0536513
\(672\) 0 0
\(673\) −102.879 102.879i −0.152866 0.152866i 0.626531 0.779397i \(-0.284474\pi\)
−0.779397 + 0.626531i \(0.784474\pi\)
\(674\) 468.000i 0.694362i
\(675\) 0 0
\(676\) 61.0000 0.0902367
\(677\) −176.363 + 176.363i −0.260507 + 0.260507i −0.825260 0.564753i \(-0.808971\pi\)
0.564753 + 0.825260i \(0.308971\pi\)
\(678\) 0 0
\(679\) 1512.00i 2.22680i
\(680\) 0 0
\(681\) 0 0
\(682\) 484.999 484.999i 0.711142 0.711142i
\(683\) 445.807 + 445.807i 0.652719 + 0.652719i 0.953647 0.300928i \(-0.0972963\pi\)
−0.300928 + 0.953647i \(0.597296\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 180.000 0.262391
\(687\) 0 0
\(688\) −323.333 323.333i −0.469960 0.469960i
\(689\) 72.0000i 0.104499i
\(690\) 0 0
\(691\) 682.000 0.986975 0.493488 0.869753i \(-0.335722\pi\)
0.493488 + 0.869753i \(0.335722\pi\)
\(692\) 142.070 142.070i 0.205304 0.205304i
\(693\) 0 0
\(694\) 108.000i 0.155620i
\(695\) 0 0
\(696\) 0 0
\(697\) −88.1816 + 88.1816i −0.126516 + 0.126516i
\(698\) 85.7321 + 85.7321i 0.122825 + 0.122825i
\(699\) 0 0
\(700\) 0 0
\(701\) 468.000 0.667618 0.333809 0.942641i \(-0.391666\pi\)
0.333809 + 0.942641i \(0.391666\pi\)
\(702\) 0 0
\(703\) −73.4847 73.4847i −0.104530 0.104530i
\(704\) 1278.00i 1.81534i
\(705\) 0 0
\(706\) −108.000 −0.152975
\(707\) −793.635 + 793.635i −1.12254 + 1.12254i
\(708\) 0 0
\(709\) 310.000i 0.437236i 0.975811 + 0.218618i \(0.0701548\pi\)
−0.975811 + 0.218618i \(0.929845\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 551.135 551.135i 0.774066 0.774066i
\(713\) −431.110 431.110i −0.604643 0.604643i
\(714\) 0 0
\(715\) 0 0
\(716\) −90.0000 −0.125698
\(717\) 0 0
\(718\) 661.362 + 661.362i 0.921117 + 0.921117i
\(719\) 180.000i 0.250348i −0.992135 0.125174i \(-0.960051\pi\)
0.992135 0.125174i \(-0.0399489\pi\)
\(720\) 0 0
\(721\) 972.000 1.34813
\(722\) 319.658 319.658i 0.442740 0.442740i
\(723\) 0 0
\(724\) 98.0000i 0.135359i
\(725\) 0 0
\(726\) 0 0
\(727\) 507.044 507.044i 0.697448 0.697448i −0.266412 0.963859i \(-0.585838\pi\)
0.963859 + 0.266412i \(0.0858381\pi\)
\(728\) −661.362 661.362i −0.908465 0.908465i
\(729\) 0 0
\(730\) 0 0
\(731\) 288.000 0.393981
\(732\) 0 0
\(733\) −800.983 800.983i −1.09275 1.09275i −0.995234 0.0975121i \(-0.968912\pi\)
−0.0975121 0.995234i \(-0.531088\pi\)
\(734\) 162.000i 0.220708i
\(735\) 0 0
\(736\) 432.000 0.586957
\(737\) −793.635 + 793.635i −1.07684 + 1.07684i
\(738\) 0 0
\(739\) 350.000i 0.473613i −0.971557 0.236806i \(-0.923899\pi\)
0.971557 0.236806i \(-0.0761007\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −88.1816 + 88.1816i −0.118843 + 0.118843i
\(743\) −925.907 925.907i −1.24617 1.24617i −0.957396 0.288778i \(-0.906751\pi\)
−0.288778 0.957396i \(-0.593249\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −522.000 −0.699732
\(747\) 0 0
\(748\) −88.1816 88.1816i −0.117890 0.117890i
\(749\) 648.000i 0.865154i
\(750\) 0 0
\(751\) −338.000 −0.450067 −0.225033 0.974351i \(-0.572249\pi\)
−0.225033 + 0.974351i \(0.572249\pi\)
\(752\) 484.999 484.999i 0.644945 0.644945i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 286.590 286.590i 0.378587 0.378587i −0.492005 0.870592i \(-0.663736\pi\)
0.870592 + 0.492005i \(0.163736\pi\)
\(758\) −208.207 208.207i −0.274679 0.274679i
\(759\) 0 0
\(760\) 0 0
\(761\) 1278.00 1.67937 0.839685 0.543074i \(-0.182740\pi\)
0.839685 + 0.543074i \(0.182740\pi\)
\(762\) 0 0
\(763\) −1249.24 1249.24i −1.63727 1.63727i
\(764\) 252.000i 0.329843i
\(765\) 0 0
\(766\) 372.000 0.485640
\(767\) 661.362 661.362i 0.862271 0.862271i
\(768\) 0 0
\(769\) 590.000i 0.767230i 0.923493 + 0.383615i \(0.125321\pi\)
−0.923493 + 0.383615i \(0.874679\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −264.545 + 264.545i −0.342675 + 0.342675i
\(773\) 127.373 + 127.373i 0.164778 + 0.164778i 0.784680 0.619902i \(-0.212827\pi\)
−0.619902 + 0.784680i \(0.712827\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1260.00 1.62371
\(777\) 0 0
\(778\) 440.908 + 440.908i 0.566720 + 0.566720i
\(779\) 180.000i 0.231065i
\(780\) 0 0
\(781\) −1296.00 −1.65941
\(782\) 235.151 235.151i 0.300705 0.300705i
\(783\) 0 0
\(784\) 649.000i 0.827806i
\(785\) 0 0
\(786\) 0 0
\(787\) −264.545 + 264.545i −0.336143 + 0.336143i −0.854914 0.518770i \(-0.826390\pi\)
0.518770 + 0.854914i \(0.326390\pi\)
\(788\) −127.373 127.373i −0.161641 0.161641i
\(789\) 0 0
\(790\) 0 0
\(791\) 648.000 0.819216
\(792\) 0 0
\(793\) 14.6969 + 14.6969i 0.0185333 + 0.0185333i
\(794\) 738.000i 0.929471i
\(795\) 0 0
\(796\) −290.000 −0.364322
\(797\) −200.858 + 200.858i −0.252018 + 0.252018i −0.821797 0.569780i \(-0.807029\pi\)
0.569780 + 0.821797i \(0.307029\pi\)
\(798\) 0 0
\(799\) 432.000i 0.540676i
\(800\) 0 0
\(801\) 0 0
\(802\) 683.408 683.408i 0.852129 0.852129i
\(803\) 793.635 + 793.635i 0.988337 + 0.988337i
\(804\) 0 0
\(805\) 0 0
\(806\) 396.000 0.491315
\(807\) 0 0
\(808\) 661.362 + 661.362i 0.818518 + 0.818518i
\(809\) 630.000i 0.778739i 0.921082 + 0.389370i \(0.127307\pi\)
−0.921082 + 0.389370i \(0.872693\pi\)
\(810\) 0 0
\(811\) −218.000 −0.268804 −0.134402 0.990927i \(-0.542911\pi\)
−0.134402 + 0.990927i \(0.542911\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 324.000i 0.398034i
\(815\) 0 0
\(816\) 0 0
\(817\) 293.939 293.939i 0.359778 0.359778i
\(818\) 820.579 + 820.579i 1.00315 + 1.00315i
\(819\) 0 0
\(820\) 0 0
\(821\) −432.000 −0.526188 −0.263094 0.964770i \(-0.584743\pi\)
−0.263094 + 0.964770i \(0.584743\pi\)
\(822\) 0 0
\(823\) −360.075 360.075i −0.437515 0.437515i 0.453660 0.891175i \(-0.350118\pi\)
−0.891175 + 0.453660i \(0.850118\pi\)
\(824\) 810.000i 0.983010i
\(825\) 0 0
\(826\) 1620.00 1.96126
\(827\) 876.917 876.917i 1.06036 1.06036i 0.0623022 0.998057i \(-0.480156\pi\)
0.998057 0.0623022i \(-0.0198443\pi\)
\(828\) 0 0
\(829\) 70.0000i 0.0844391i 0.999108 + 0.0422195i \(0.0134429\pi\)
−0.999108 + 0.0422195i \(0.986557\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −521.741 + 521.741i −0.627093 + 0.627093i
\(833\) 289.040 + 289.040i 0.346987 + 0.346987i
\(834\) 0 0
\(835\) 0 0
\(836\) −180.000 −0.215311
\(837\) 0 0
\(838\) −771.589 771.589i −0.920751 0.920751i
\(839\) 540.000i 0.643623i 0.946804 + 0.321812i \(0.104292\pi\)
−0.946804 + 0.321812i \(0.895708\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 173.914 173.914i 0.206548 0.206548i
\(843\) 0 0
\(844\) 122.000i 0.144550i
\(845\) 0 0
\(846\) 0 0
\(847\) −1491.74 + 1491.74i −1.76120 + 1.76120i
\(848\) 53.8888 + 53.8888i 0.0635481 + 0.0635481i
\(849\) 0 0
\(850\) 0 0
\(851\) 288.000 0.338425
\(852\) 0 0
\(853\) 815.680 + 815.680i 0.956249 + 0.956249i 0.999082 0.0428336i \(-0.0136385\pi\)
−0.0428336 + 0.999082i \(0.513639\pi\)
\(854\) 36.0000i 0.0421546i
\(855\) 0 0
\(856\) 540.000 0.630841
\(857\) −298.838 + 298.838i −0.348702 + 0.348702i −0.859626 0.510924i \(-0.829303\pi\)
0.510924 + 0.859626i \(0.329303\pi\)
\(858\) 0 0
\(859\) 310.000i 0.360885i −0.983586 0.180442i \(-0.942247\pi\)
0.983586 0.180442i \(-0.0577529\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −749.544 + 749.544i −0.869540 + 0.869540i
\(863\) 225.353 + 225.353i 0.261128 + 0.261128i 0.825512 0.564385i \(-0.190886\pi\)
−0.564385 + 0.825512i \(0.690886\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −252.000 −0.290993
\(867\) 0 0
\(868\) −161.666 161.666i −0.186252 0.186252i
\(869\) 1260.00i 1.44994i
\(870\) 0 0
\(871\) −648.000 −0.743972
\(872\) −1041.03 + 1041.03i −1.19385 + 1.19385i
\(873\) 0 0
\(874\) 480.000i 0.549199i
\(875\) 0 0
\(876\) 0 0
\(877\) 213.106 213.106i 0.242994 0.242994i −0.575094 0.818088i \(-0.695034\pi\)
0.818088 + 0.575094i \(0.195034\pi\)
\(878\) −526.640 526.640i −0.599818 0.599818i
\(879\) 0 0
\(880\) 0 0
\(881\) −1062.00 −1.20545 −0.602724 0.797950i \(-0.705918\pi\)
−0.602724 + 0.797950i \(0.705918\pi\)
\(882\) 0 0
\(883\) 117.576 + 117.576i 0.133155 + 0.133155i 0.770543 0.637388i \(-0.219985\pi\)
−0.637388 + 0.770543i \(0.719985\pi\)
\(884\) 72.0000i 0.0814480i
\(885\) 0 0
\(886\) −1428.00 −1.61174
\(887\) 509.494 509.494i 0.574401 0.574401i −0.358954 0.933355i \(-0.616867\pi\)
0.933355 + 0.358954i \(0.116867\pi\)
\(888\) 0 0
\(889\) 108.000i 0.121485i
\(890\) 0 0
\(891\) 0 0
\(892\) −80.8332 + 80.8332i −0.0906201 + 0.0906201i
\(893\) 440.908 + 440.908i 0.493738 + 0.493738i
\(894\) 0 0
\(895\) 0 0
\(896\) −630.000 −0.703125
\(897\) 0 0
\(898\) −110.227 110.227i −0.122747 0.122747i
\(899\) 0 0
\(900\) 0 0
\(901\) −48.0000 −0.0532741
\(902\) 396.817 396.817i 0.439931 0.439931i
\(903\) 0 0
\(904\) 540.000i 0.597345i
\(905\) 0 0
\(906\) 0 0
\(907\) −411.514 + 411.514i −0.453709 + 0.453709i −0.896584 0.442874i \(-0.853959\pi\)
0.442874 + 0.896584i \(0.353959\pi\)
\(908\) −53.8888 53.8888i −0.0593489 0.0593489i
\(909\) 0 0
\(910\) 0 0
\(911\) −792.000 −0.869374 −0.434687 0.900582i \(-0.643141\pi\)
−0.434687 + 0.900582i \(0.643141\pi\)
\(912\) 0 0
\(913\) 969.998 + 969.998i 1.06243 + 1.06243i
\(914\) 468.000i 0.512035i
\(915\) 0 0
\(916\) 50.0000 0.0545852
\(917\) −132.272 + 132.272i −0.144245 + 0.144245i
\(918\) 0 0
\(919\) 430.000i 0.467900i 0.972249 + 0.233950i \(0.0751652\pi\)
−0.972249 + 0.233950i \(0.924835\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1014.09 1014.09i 1.09988 1.09988i
\(923\) −529.090 529.090i −0.573228 0.573228i
\(924\) 0 0
\(925\) 0 0
\(926\) 18.0000 0.0194384
\(927\) 0 0
\(928\) 0 0
\(929\) 1530.00i 1.64693i −0.567365 0.823466i \(-0.692037\pi\)
0.567365 0.823466i \(-0.307963\pi\)
\(930\) 0 0
\(931\) 590.000 0.633727
\(932\) 44.0908 44.0908i 0.0473077 0.0473077i
\(933\) 0 0
\(934\) 852.000i 0.912206i
\(935\) 0 0
\(936\) 0 0
\(937\) 323.333 323.333i 0.345072 0.345072i −0.513198 0.858270i \(-0.671539\pi\)
0.858270 + 0.513198i \(0.171539\pi\)
\(938\) −793.635 793.635i −0.846092 0.846092i
\(939\) 0 0
\(940\) 0 0
\(941\) −1152.00 −1.22423 −0.612115 0.790769i \(-0.709681\pi\)
−0.612115 + 0.790769i \(0.709681\pi\)
\(942\) 0 0
\(943\) −352.727 352.727i −0.374047 0.374047i
\(944\) 990.000i 1.04873i
\(945\) 0 0
\(946\) −1296.00 −1.36998
\(947\) −739.746 + 739.746i −0.781147 + 0.781147i −0.980024 0.198878i \(-0.936270\pi\)
0.198878 + 0.980024i \(0.436270\pi\)
\(948\) 0 0
\(949\) 648.000i 0.682824i
\(950\) 0 0
\(951\) 0 0
\(952\) 440.908 440.908i 0.463139 0.463139i
\(953\) −44.0908 44.0908i −0.0462653 0.0462653i 0.683596 0.729861i \(-0.260415\pi\)
−0.729861 + 0.683596i \(0.760415\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 180.000 0.188285
\(957\) 0 0
\(958\) 440.908 + 440.908i 0.460238 + 0.460238i
\(959\) 2088.00i 2.17727i
\(960\) 0 0
\(961\) −477.000 −0.496358
\(962\) −132.272 + 132.272i −0.137497 + 0.137497i
\(963\) 0 0
\(964\) 178.000i 0.184647i
\(965\) 0 0
\(966\) 0 0
\(967\) 727.498 727.498i 0.752325 0.752325i −0.222588 0.974913i \(-0.571450\pi\)
0.974913 + 0.222588i \(0.0714503\pi\)
\(968\) 1243.12 + 1243.12i 1.28421 + 1.28421i
\(969\) 0 0
\(970\) 0 0
\(971\) 1278.00 1.31617 0.658084 0.752944i \(-0.271367\pi\)
0.658084 + 0.752944i \(0.271367\pi\)
\(972\) 0 0
\(973\) 1249.24 + 1249.24i 1.28391 + 1.28391i
\(974\) 1422.00i 1.45996i
\(975\) 0 0
\(976\) 22.0000 0.0225410
\(977\) −396.817 + 396.817i −0.406159 + 0.406159i −0.880397 0.474238i \(-0.842724\pi\)
0.474238 + 0.880397i \(0.342724\pi\)
\(978\) 0 0
\(979\) 1620.00i 1.65475i
\(980\) 0 0
\(981\) 0 0
\(982\) 22.0454 22.0454i 0.0224495 0.0224495i
\(983\) −827.928 827.928i −0.842246 0.842246i 0.146905 0.989151i \(-0.453069\pi\)
−0.989151 + 0.146905i \(0.953069\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −73.4847 73.4847i −0.0743772 0.0743772i
\(989\) 1152.00i 1.16481i
\(990\) 0 0
\(991\) −118.000 −0.119072 −0.0595358 0.998226i \(-0.518962\pi\)
−0.0595358 + 0.998226i \(0.518962\pi\)
\(992\) −242.499 + 242.499i −0.244455 + 0.244455i
\(993\) 0 0
\(994\) 1296.00i 1.30382i
\(995\) 0 0
\(996\) 0 0
\(997\) −815.680 + 815.680i −0.818134 + 0.818134i −0.985838 0.167703i \(-0.946365\pi\)
0.167703 + 0.985838i \(0.446365\pi\)
\(998\) 722.599 + 722.599i 0.724048 + 0.724048i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.g.f.118.2 4
3.2 odd 2 75.3.f.a.43.1 yes 4
5.2 odd 4 inner 225.3.g.f.82.2 4
5.3 odd 4 inner 225.3.g.f.82.1 4
5.4 even 2 inner 225.3.g.f.118.1 4
12.11 even 2 1200.3.bg.j.193.2 4
15.2 even 4 75.3.f.a.7.1 4
15.8 even 4 75.3.f.a.7.2 yes 4
15.14 odd 2 75.3.f.a.43.2 yes 4
60.23 odd 4 1200.3.bg.j.1057.1 4
60.47 odd 4 1200.3.bg.j.1057.2 4
60.59 even 2 1200.3.bg.j.193.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.f.a.7.1 4 15.2 even 4
75.3.f.a.7.2 yes 4 15.8 even 4
75.3.f.a.43.1 yes 4 3.2 odd 2
75.3.f.a.43.2 yes 4 15.14 odd 2
225.3.g.f.82.1 4 5.3 odd 4 inner
225.3.g.f.82.2 4 5.2 odd 4 inner
225.3.g.f.118.1 4 5.4 even 2 inner
225.3.g.f.118.2 4 1.1 even 1 trivial
1200.3.bg.j.193.1 4 60.59 even 2
1200.3.bg.j.193.2 4 12.11 even 2
1200.3.bg.j.1057.1 4 60.23 odd 4
1200.3.bg.j.1057.2 4 60.47 odd 4