Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [225,3,Mod(82,225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(225, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("225.82");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.g (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.13080594811\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(i, \sqrt{30})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 225 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 82.1 | ||
Root | \(-2.73861 - 2.73861i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 225.82 |
Dual form | 225.3.g.c.118.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(1\) | \(e\left(\frac{1}{4}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | −2.73861 | − | 2.73861i | −1.36931 | − | 1.36931i | −0.861430 | − | 0.507877i | \(-0.830431\pi\) |
−0.507877 | − | 0.861430i | \(-0.669569\pi\) | |||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 11.0000i | 2.75000i | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(8\) | 19.1703 | − | 19.1703i | 2.39629 | − | 2.39629i | ||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −61.0000 | −3.81250 | ||||||||
\(17\) | −21.9089 | − | 21.9089i | −1.28876 | − | 1.28876i | −0.935541 | − | 0.353218i | \(-0.885087\pi\) |
−0.353218 | − | 0.935541i | \(-0.614913\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − | 22.0000i | − | 1.15789i | −0.815365 | − | 0.578947i | \(-0.803464\pi\) | ||
0.815365 | − | 0.578947i | \(-0.196536\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −21.9089 | + | 21.9089i | −0.952561 | + | 0.952561i | −0.998925 | − | 0.0463637i | \(-0.985237\pi\) |
0.0463637 | + | 0.998925i | \(0.485237\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −2.00000 | −0.0645161 | −0.0322581 | − | 0.999480i | \(-0.510270\pi\) | ||||
−0.0322581 | + | 0.999480i | \(0.510270\pi\) | |||||||
\(32\) | 90.3742 | + | 90.3742i | 2.82419 | + | 2.82419i | ||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 120.000i | 3.52941i | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(38\) | −60.2495 | + | 60.2495i | −1.58551 | + | 1.58551i | ||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 120.000 | 2.60870 | ||||||||
\(47\) | −65.7267 | − | 65.7267i | −1.39844 | − | 1.39844i | −0.804534 | − | 0.593907i | \(-0.797585\pi\) |
−0.593907 | − | 0.804534i | \(-0.702415\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | − | 49.0000i | − | 1.00000i | ||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −43.8178 | + | 43.8178i | −0.826751 | + | 0.826751i | −0.987066 | − | 0.160315i | \(-0.948749\pi\) |
0.160315 | + | 0.987066i | \(0.448749\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −118.000 | −1.93443 | −0.967213 | − | 0.253966i | \(-0.918265\pi\) | ||||
−0.967213 | + | 0.253966i | \(0.918265\pi\) | |||||||
\(62\) | 5.47723 | + | 5.47723i | 0.0883423 | + | 0.0883423i | ||||
\(63\) | 0 | 0 | ||||||||
\(64\) | − | 251.000i | − | 3.92188i | ||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(68\) | 240.998 | − | 240.998i | 3.54409 | − | 3.54409i | ||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 242.000 | 3.18421 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − | 98.0000i | − | 1.24051i | −0.784402 | − | 0.620253i | \(-0.787030\pi\) | ||
0.784402 | − | 0.620253i | \(-0.212970\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 43.8178 | − | 43.8178i | 0.527925 | − | 0.527925i | −0.392028 | − | 0.919953i | \(-0.628226\pi\) |
0.919953 | + | 0.392028i | \(0.128226\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | −240.998 | − | 240.998i | −2.61954 | − | 2.61954i | ||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 360.000i | 3.82979i | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(98\) | −134.192 | + | 134.192i | −1.36931 | + | 1.36931i | ||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 240.000 | 2.26415 | ||||||||
\(107\) | 131.453 | + | 131.453i | 1.22854 | + | 1.22854i | 0.964517 | + | 0.264019i | \(0.0850482\pi\) |
0.264019 | + | 0.964517i | \(0.414952\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 22.0000i | 0.201835i | 0.994895 | + | 0.100917i | \(0.0321778\pi\) | ||||
−0.994895 | + | 0.100917i | \(0.967822\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 65.7267 | − | 65.7267i | 0.581652 | − | 0.581652i | −0.353705 | − | 0.935357i | \(-0.615078\pi\) |
0.935357 | + | 0.353705i | \(0.115078\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −121.000 | −1.00000 | ||||||||
\(122\) | 323.156 | + | 323.156i | 2.64882 | + | 2.64882i | ||||
\(123\) | 0 | 0 | ||||||||
\(124\) | − | 22.0000i | − | 0.177419i | ||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(128\) | −325.895 | + | 325.895i | −2.54605 | + | 2.54605i | ||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | −840.000 | −6.17647 | ||||||||
\(137\) | 109.545 | + | 109.545i | 0.799595 | + | 0.799595i | 0.983032 | − | 0.183437i | \(-0.0587222\pi\) |
−0.183437 | + | 0.983032i | \(0.558722\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − | 262.000i | − | 1.88489i | −0.334358 | − | 0.942446i | \(-0.608520\pi\) | ||
0.334358 | − | 0.942446i | \(-0.391480\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 238.000 | 1.57616 | 0.788079 | − | 0.615574i | \(-0.211076\pi\) | ||||
0.788079 | + | 0.615574i | \(0.211076\pi\) | |||||||
\(152\) | −421.746 | − | 421.746i | −2.77465 | − | 2.77465i | ||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(158\) | −268.384 | + | 268.384i | −1.69863 | + | 1.69863i | ||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | −240.000 | −1.44578 | ||||||||
\(167\) | 153.362 | + | 153.362i | 0.918337 | + | 0.918337i | 0.996908 | − | 0.0785713i | \(-0.0250358\pi\) |
−0.0785713 | + | 0.996908i | \(0.525036\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 169.000i | 1.00000i | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 219.089 | − | 219.089i | 1.26641 | − | 1.26641i | 0.318481 | − | 0.947929i | \(-0.396827\pi\) |
0.947929 | − | 0.318481i | \(-0.103173\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −122.000 | −0.674033 | −0.337017 | − | 0.941499i | \(-0.609418\pi\) | ||||
−0.337017 | + | 0.941499i | \(0.609418\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 840.000i | 4.56522i | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 722.994 | − | 722.994i | 3.84571 | − | 3.84571i | ||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 539.000 | 2.75000 | ||||||||
\(197\) | 87.6356 | + | 87.6356i | 0.444851 | + | 0.444851i | 0.893638 | − | 0.448788i | \(-0.148144\pi\) |
−0.448788 | + | 0.893638i | \(0.648144\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 142.000i | 0.713568i | 0.934187 | + | 0.356784i | \(0.116127\pi\) | ||||
−0.934187 | + | 0.356784i | \(0.883873\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 362.000 | 1.71564 | 0.857820 | − | 0.513950i | \(-0.171818\pi\) | ||||
0.857820 | + | 0.513950i | \(0.171818\pi\) | |||||||
\(212\) | −481.996 | − | 481.996i | −2.27357 | − | 2.27357i | ||||
\(213\) | 0 | 0 | ||||||||
\(214\) | − | 720.000i | − | 3.36449i | ||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 60.2495 | − | 60.2495i | 0.276374 | − | 0.276374i | ||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | −360.000 | −1.59292 | ||||||||
\(227\) | −306.725 | − | 306.725i | −1.35121 | − | 1.35121i | −0.884310 | − | 0.466899i | \(-0.845371\pi\) |
−0.466899 | − | 0.884310i | \(-0.654629\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 218.000i | 0.951965i | 0.879455 | + | 0.475983i | \(0.157907\pi\) | ||||
−0.879455 | + | 0.475983i | \(0.842093\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −328.634 | + | 328.634i | −1.41044 | + | 1.41044i | −0.653631 | + | 0.756814i | \(0.726755\pi\) |
−0.756814 | + | 0.653631i | \(0.773245\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −478.000 | −1.98340 | −0.991701 | − | 0.128564i | \(-0.958963\pi\) | ||||
−0.991701 | + | 0.128564i | \(0.958963\pi\) | |||||||
\(242\) | 331.372 | + | 331.372i | 1.36931 | + | 1.36931i | ||||
\(243\) | 0 | 0 | ||||||||
\(244\) | − | 1298.00i | − | 5.31967i | ||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | −38.3406 | + | 38.3406i | −0.154599 | + | 0.154599i | ||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 781.000 | 3.05078 | ||||||||
\(257\) | −153.362 | − | 153.362i | −0.596741 | − | 0.596741i | 0.342703 | − | 0.939444i | \(-0.388657\pi\) |
−0.939444 | + | 0.342703i | \(0.888657\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 197.180 | − | 197.180i | 0.749734 | − | 0.749734i | −0.224695 | − | 0.974429i | \(-0.572139\pi\) |
0.974429 | + | 0.224695i | \(0.0721385\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 482.000 | 1.77860 | 0.889299 | − | 0.457326i | \(-0.151193\pi\) | ||||
0.889299 | + | 0.457326i | \(0.151193\pi\) | |||||||
\(272\) | 1336.44 | + | 1336.44i | 4.91339 | + | 4.91339i | ||||
\(273\) | 0 | 0 | ||||||||
\(274\) | − | 600.000i | − | 2.18978i | ||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(278\) | −717.517 | + | 717.517i | −2.58099 | + | 2.58099i | ||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 671.000i | 2.32180i | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −306.725 | + | 306.725i | −1.04684 | + | 1.04684i | −0.0479941 | + | 0.998848i | \(0.515283\pi\) |
−0.998848 | + | 0.0479941i | \(0.984717\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | −651.790 | − | 651.790i | −2.15824 | − | 2.15824i | ||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 1342.00i | 4.41447i | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 1078.00 | 3.41139 | ||||||||
\(317\) | −438.178 | − | 438.178i | −1.38227 | − | 1.38227i | −0.840584 | − | 0.541681i | \(-0.817788\pi\) |
−0.541681 | − | 0.840584i | \(-0.682212\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −481.996 | + | 481.996i | −1.49225 | + | 1.49225i | ||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 122.000 | 0.368580 | 0.184290 | − | 0.982872i | \(-0.441001\pi\) | ||||
0.184290 | + | 0.982872i | \(0.441001\pi\) | |||||||
\(332\) | 481.996 | + | 481.996i | 1.45179 | + | 1.45179i | ||||
\(333\) | 0 | 0 | ||||||||
\(334\) | − | 840.000i | − | 2.51497i | ||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(338\) | 462.826 | − | 462.826i | 1.36931 | − | 1.36931i | ||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | −1200.00 | −3.46821 | ||||||||
\(347\) | −262.907 | − | 262.907i | −0.757657 | − | 0.757657i | 0.218239 | − | 0.975895i | \(-0.429969\pi\) |
−0.975895 | + | 0.218239i | \(0.929969\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 458.000i | 1.31232i | 0.754621 | + | 0.656160i | \(0.227821\pi\) | ||||
−0.754621 | + | 0.656160i | \(0.772179\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 460.087 | − | 460.087i | 1.30336 | − | 1.30336i | 0.377252 | − | 0.926111i | \(-0.376869\pi\) |
0.926111 | − | 0.377252i | \(-0.123131\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −123.000 | −0.340720 | ||||||||
\(362\) | 334.111 | + | 334.111i | 0.922958 | + | 0.922958i | ||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(368\) | 1336.44 | − | 1336.44i | 3.63164 | − | 3.63164i | ||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | −2520.00 | −6.70213 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − | 742.000i | − | 1.95778i | −0.204379 | − | 0.978892i | \(-0.565518\pi\) | ||
0.204379 | − | 0.978892i | \(-0.434482\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −240.998 | + | 240.998i | −0.629237 | + | 0.629237i | −0.947876 | − | 0.318639i | \(-0.896774\pi\) |
0.318639 | + | 0.947876i | \(0.396774\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 960.000 | 2.45524 | ||||||||
\(392\) | −939.344 | − | 939.344i | −2.39629 | − | 2.39629i | ||||
\(393\) | 0 | 0 | ||||||||
\(394\) | − | 480.000i | − | 1.21827i | ||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(398\) | 388.883 | − | 388.883i | 0.977093 | − | 0.977093i | ||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | − | 142.000i | − | 0.347188i | −0.984817 | − | 0.173594i | \(-0.944462\pi\) | ||
0.984817 | − | 0.173594i | \(-0.0555381\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −602.000 | −1.42993 | −0.714964 | − | 0.699161i | \(-0.753557\pi\) | ||||
−0.714964 | + | 0.699161i | \(0.753557\pi\) | |||||||
\(422\) | −991.378 | − | 991.378i | −2.34924 | − | 2.34924i | ||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 1680.00i | 3.96226i | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | −1445.99 | + | 1445.99i | −3.37848 | + | 3.37848i | ||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | −242.000 | −0.555046 | ||||||||
\(437\) | 481.996 | + | 481.996i | 1.10297 | + | 1.10297i | ||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 622.000i | 1.41686i | 0.705783 | + | 0.708428i | \(0.250595\pi\) | ||||
−0.705783 | + | 0.708428i | \(0.749405\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 481.996 | − | 481.996i | 1.08803 | − | 1.08803i | 0.0922950 | − | 0.995732i | \(-0.470580\pi\) |
0.995732 | − | 0.0922950i | \(-0.0294203\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 722.994 | + | 722.994i | 1.59954 | + | 1.59954i | ||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 1680.00i | 3.70044i | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(458\) | 597.018 | − | 597.018i | 1.30353 | − | 1.30353i | ||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 1800.00 | 3.86266 | ||||||||
\(467\) | 613.449 | + | 613.449i | 1.31360 | + | 1.31360i | 0.918745 | + | 0.394850i | \(0.129204\pi\) |
0.394850 | + | 0.918745i | \(0.370796\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 1309.06 | + | 1309.06i | 2.71589 | + | 2.71589i | ||||
\(483\) | 0 | 0 | ||||||||
\(484\) | − | 1331.00i | − | 2.75000i | ||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(488\) | −2262.09 | + | 2262.09i | −4.63544 | + | 4.63544i | ||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 122.000 | 0.245968 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − | 938.000i | − | 1.87976i | −0.341506 | − | 0.939880i | \(-0.610937\pi\) | ||
0.341506 | − | 0.939880i | \(-0.389063\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 109.545 | − | 109.545i | 0.217782 | − | 0.217782i | −0.589781 | − | 0.807563i | \(-0.700786\pi\) |
0.807563 | + | 0.589781i | \(0.200786\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | −835.277 | − | 835.277i | −1.63140 | − | 1.63140i | ||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 840.000i | 1.63424i | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | −1080.00 | −2.05323 | ||||||||
\(527\) | 43.8178 | + | 43.8178i | 0.0831457 | + | 0.0831457i | ||||
\(528\) | 0 | 0 | ||||||||
\(529\) | − | 431.000i | − | 0.814745i | ||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −1078.00 | −1.99261 | −0.996303 | − | 0.0859072i | \(-0.972621\pi\) | ||||
−0.996303 | + | 0.0859072i | \(0.972621\pi\) | |||||||
\(542\) | −1320.01 | − | 1320.01i | −2.43545 | − | 2.43545i | ||||
\(543\) | 0 | 0 | ||||||||
\(544\) | − | 3960.00i | − | 7.27941i | ||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(548\) | −1204.99 | + | 1204.99i | −2.19889 | + | 2.19889i | ||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 2882.00 | 5.18345 | ||||||||
\(557\) | 657.267 | + | 657.267i | 1.18001 | + | 1.18001i | 0.979740 | + | 0.200272i | \(0.0641827\pi\) |
0.200272 | + | 0.979740i | \(0.435817\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 788.720 | − | 788.720i | 1.40092 | − | 1.40092i | 0.603753 | − | 0.797171i | \(-0.293671\pi\) |
0.797171 | − | 0.603753i | \(-0.206329\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −358.000 | −0.626970 | −0.313485 | − | 0.949593i | \(-0.601497\pi\) | ||||
−0.313485 | + | 0.949593i | \(0.601497\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(578\) | 1837.61 | − | 1837.61i | 3.17925 | − | 3.17925i | ||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 1680.00 | 2.86689 | ||||||||
\(587\) | 569.631 | + | 569.631i | 0.970411 | + | 0.970411i | 0.999575 | − | 0.0291633i | \(-0.00928429\pi\) |
−0.0291633 | + | 0.999575i | \(0.509284\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 44.0000i | 0.0747029i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −153.362 | + | 153.362i | −0.258621 | + | 0.258621i | −0.824493 | − | 0.565872i | \(-0.808540\pi\) |
0.565872 | + | 0.824493i | \(0.308540\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −242.000 | −0.402662 | −0.201331 | − | 0.979523i | \(-0.564527\pi\) | ||||
−0.201331 | + | 0.979523i | \(0.564527\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 2618.00i | 4.33444i | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(608\) | 1988.23 | − | 1988.23i | 3.27012 | − | 3.27012i | ||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 240.998 | + | 240.998i | 0.390596 | + | 0.390596i | 0.874900 | − | 0.484304i | \(-0.160927\pi\) |
−0.484304 | + | 0.874900i | \(0.660927\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − | 698.000i | − | 1.12763i | −0.825903 | − | 0.563813i | \(-0.809334\pi\) | ||
0.825903 | − | 0.563813i | \(-0.190666\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −238.000 | −0.377179 | −0.188590 | − | 0.982056i | \(-0.560392\pi\) | ||||
−0.188590 | + | 0.982056i | \(0.560392\pi\) | |||||||
\(632\) | −1878.69 | − | 1878.69i | −2.97261 | − | 2.97261i | ||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 2400.00i | 3.78549i | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 2640.00 | 4.08669 | ||||||||
\(647\) | −766.812 | − | 766.812i | −1.18518 | − | 1.18518i | −0.978384 | − | 0.206796i | \(-0.933696\pi\) |
−0.206796 | − | 0.978384i | \(-0.566304\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 481.996 | − | 481.996i | 0.738125 | − | 0.738125i | −0.234090 | − | 0.972215i | \(-0.575211\pi\) |
0.972215 | + | 0.234090i | \(0.0752109\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 838.000 | 1.26778 | 0.633888 | − | 0.773425i | \(-0.281458\pi\) | ||||
0.633888 | + | 0.773425i | \(0.281458\pi\) | |||||||
\(662\) | −334.111 | − | 334.111i | −0.504699 | − | 0.504699i | ||||
\(663\) | 0 | 0 | ||||||||
\(664\) | − | 1680.00i | − | 2.53012i | ||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | −1686.99 | + | 1686.99i | −2.52543 | + | 2.52543i | ||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | −1859.00 | −2.75000 | ||||||||
\(677\) | −920.174 | − | 920.174i | −1.35919 | − | 1.35919i | −0.874913 | − | 0.484281i | \(-0.839081\pi\) |
−0.484281 | − | 0.874913i | \(-0.660919\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −963.992 | + | 963.992i | −1.41141 | + | 1.41141i | −0.661186 | + | 0.750222i | \(0.729947\pi\) |
−0.750222 | + | 0.661186i | \(0.770053\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −1322.00 | −1.91317 | −0.956585 | − | 0.291455i | \(-0.905861\pi\) | ||||
−0.956585 | + | 0.291455i | \(0.905861\pi\) | |||||||
\(692\) | 2409.98 | + | 2409.98i | 3.48263 | + | 3.48263i | ||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 1440.00i | 2.07493i | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 1254.28 | − | 1254.28i | 1.79697 | − | 1.79697i | ||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | −2520.00 | −3.56941 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − | 742.000i | − | 1.04654i | −0.852166 | − | 0.523272i | \(-0.824711\pi\) | ||
0.852166 | − | 0.523272i | \(-0.175289\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 43.8178 | − | 43.8178i | 0.0614555 | − | 0.0614555i | ||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 336.849 | + | 336.849i | 0.466550 | + | 0.466550i | ||||
\(723\) | 0 | 0 | ||||||||
\(724\) | − | 1342.00i | − | 1.85359i | ||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | −3960.00 | −5.38043 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − | 1462.00i | − | 1.97835i | −0.146744 | − | 0.989175i | \(-0.546879\pi\) | ||
0.146744 | − | 0.989175i | \(-0.453121\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −985.901 | + | 985.901i | −1.32692 | + | 1.32692i | −0.418875 | + | 0.908044i | \(0.637575\pi\) |
−0.908044 | + | 0.418875i | \(0.862425\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 1438.00 | 1.91478 | 0.957390 | − | 0.288798i | \(-0.0932555\pi\) | ||||
0.957390 | + | 0.288798i | \(0.0932555\pi\) | |||||||
\(752\) | 4009.33 | + | 4009.33i | 5.33155 | + | 5.33155i | ||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(758\) | −2032.05 | + | 2032.05i | −2.68081 | + | 2.68081i | ||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 1320.00 | 1.72324 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | − | 578.000i | − | 0.751625i | −0.926696 | − | 0.375813i | \(-0.877364\pi\) | ||
0.926696 | − | 0.375813i | \(-0.122636\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 175.271 | − | 175.271i | 0.226742 | − | 0.226742i | −0.584588 | − | 0.811330i | \(-0.698744\pi\) |
0.811330 | + | 0.584588i | \(0.198744\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | −2629.07 | − | 2629.07i | −3.36198 | − | 3.36198i | ||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 2989.00i | 3.81250i | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(788\) | −963.992 | + | 963.992i | −1.22334 | + | 1.22334i | ||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | −1562.00 | −1.96231 | ||||||||
\(797\) | −963.992 | − | 963.992i | −1.20953 | − | 1.20953i | −0.971181 | − | 0.238345i | \(-0.923395\pi\) |
−0.238345 | − | 0.971181i | \(-0.576605\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 2880.00i | 3.60451i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −1082.00 | −1.33416 | −0.667078 | − | 0.744988i | \(-0.732455\pi\) | ||||
−0.667078 | + | 0.744988i | \(0.732455\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | −388.883 | + | 388.883i | −0.475407 | + | 0.475407i | ||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −1139.26 | − | 1139.26i | −1.37759 | − | 1.37759i | −0.848683 | − | 0.528903i | \(-0.822604\pi\) |
−0.528903 | − | 0.848683i | \(-0.677396\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − | 502.000i | − | 0.605549i | −0.953062 | − | 0.302774i | \(-0.902087\pi\) | ||
0.953062 | − | 0.302774i | \(-0.0979129\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −1073.54 | + | 1073.54i | −1.28876 | + | 1.28876i | ||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 841.000 | 1.00000 | ||||||||
\(842\) | 1648.64 | + | 1648.64i | 1.95801 | + | 1.95801i | ||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 3982.00i | 4.71801i | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 2672.89 | − | 2672.89i | 3.15199 | − | 3.15199i | ||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 5040.00 | 5.88785 | ||||||||
\(857\) | −284.816 | − | 284.816i | −0.332340 | − | 0.332340i | 0.521134 | − | 0.853475i | \(-0.325509\pi\) |
−0.853475 | + | 0.521134i | \(0.825509\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − | 218.000i | − | 0.253783i | −0.991917 | − | 0.126892i | \(-0.959500\pi\) | ||
0.991917 | − | 0.126892i | \(-0.0405001\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 1204.99 | − | 1204.99i | 1.39628 | − | 1.39628i | 0.585888 | − | 0.810392i | \(-0.300746\pi\) |
0.810392 | − | 0.585888i | \(-0.199254\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 421.746 | + | 421.746i | 0.483654 | + | 0.483654i | ||||
\(873\) | 0 | 0 | ||||||||
\(874\) | − | 2640.00i | − | 3.02059i | ||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(878\) | 1703.42 | − | 1703.42i | 1.94011 | − | 1.94011i | ||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | −2640.00 | −2.97968 | ||||||||
\(887\) | 372.451 | + | 372.451i | 0.419900 | + | 0.419900i | 0.885169 | − | 0.465269i | \(-0.154042\pi\) |
−0.465269 | + | 0.885169i | \(0.654042\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −1445.99 | + | 1445.99i | −1.61925 | + | 1.61925i | ||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 1920.00 | 2.13097 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | − | 2520.00i | − | 2.78761i | ||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(908\) | 3373.97 | − | 3373.97i | 3.71583 | − | 3.71583i | ||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | −2398.00 | −2.61790 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 1298.00i | 1.41240i | 0.708010 | + | 0.706202i | \(0.249593\pi\) | ||||
−0.708010 | + | 0.706202i | \(0.750407\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −1078.00 | −1.15789 | ||||||||
\(932\) | −3614.97 | − | 3614.97i | −3.87872 | − | 3.87872i | ||||
\(933\) | 0 | 0 | ||||||||
\(934\) | − | 3360.00i | − | 3.59743i | ||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −744.903 | − | 744.903i | −0.786592 | − | 0.786592i | 0.194342 | − | 0.980934i | \(-0.437743\pi\) |
−0.980934 | + | 0.194342i | \(0.937743\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 854.447 | − | 854.447i | 0.896587 | − | 0.896587i | −0.0985458 | − | 0.995133i | \(-0.531419\pi\) |
0.995133 | + | 0.0985458i | \(0.0314191\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −957.000 | −0.995838 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | − | 5258.00i | − | 5.45436i | ||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(968\) | −2319.61 | + | 2319.61i | −2.39629 | + | 2.39629i | ||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 7198.00 | 7.37500 | ||||||||
\(977\) | 197.180 | + | 197.180i | 0.201822 | + | 0.201822i | 0.800780 | − | 0.598958i | \(-0.204418\pi\) |
−0.598958 | + | 0.800780i | \(0.704418\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −153.362 | + | 153.362i | −0.156015 | + | 0.156015i | −0.780798 | − | 0.624783i | \(-0.785187\pi\) |
0.624783 | + | 0.780798i | \(0.285187\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −958.000 | −0.966700 | −0.483350 | − | 0.875427i | \(-0.660580\pi\) | ||||
−0.483350 | + | 0.875427i | \(0.660580\pi\) | |||||||
\(992\) | −180.748 | − | 180.748i | −0.182206 | − | 0.182206i | ||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(998\) | −2568.82 | + | 2568.82i | −2.57397 | + | 2.57397i | ||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 225.3.g.c.82.1 | ✓ | 4 | |
3.2 | odd | 2 | inner | 225.3.g.c.82.2 | yes | 4 | |
5.2 | odd | 4 | inner | 225.3.g.c.118.2 | yes | 4 | |
5.3 | odd | 4 | inner | 225.3.g.c.118.1 | yes | 4 | |
5.4 | even | 2 | inner | 225.3.g.c.82.2 | yes | 4 | |
15.2 | even | 4 | inner | 225.3.g.c.118.1 | yes | 4 | |
15.8 | even | 4 | inner | 225.3.g.c.118.2 | yes | 4 | |
15.14 | odd | 2 | CM | 225.3.g.c.82.1 | ✓ | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
225.3.g.c.82.1 | ✓ | 4 | 1.1 | even | 1 | trivial | |
225.3.g.c.82.1 | ✓ | 4 | 15.14 | odd | 2 | CM | |
225.3.g.c.82.2 | yes | 4 | 3.2 | odd | 2 | inner | |
225.3.g.c.82.2 | yes | 4 | 5.4 | even | 2 | inner | |
225.3.g.c.118.1 | yes | 4 | 5.3 | odd | 4 | inner | |
225.3.g.c.118.1 | yes | 4 | 15.2 | even | 4 | inner | |
225.3.g.c.118.2 | yes | 4 | 5.2 | odd | 4 | inner | |
225.3.g.c.118.2 | yes | 4 | 15.8 | even | 4 | inner |