Properties

Label 225.3.d.b.224.5
Level $225$
Weight $3$
Character 225.224
Analytic conductor $6.131$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(224,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.224");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 224.5
Root \(1.14412 - 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 225.224
Dual form 225.3.d.b.224.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.821854 q^{2} -3.32456 q^{4} -0.837722i q^{7} -6.01972 q^{8} -14.3716i q^{11} -21.8114i q^{13} -0.688486i q^{14} +8.35089 q^{16} -23.5454 q^{17} +6.32456 q^{19} -11.8114i q^{22} -38.8723 q^{23} -17.9258i q^{26} +2.78505i q^{28} -0.266737i q^{29} +30.2719 q^{31} +30.9421 q^{32} -19.3509 q^{34} -9.53950i q^{37} +5.19786 q^{38} +19.3028i q^{41} +19.6228i q^{43} +47.7793i q^{44} -31.9473 q^{46} -22.1684 q^{47} +48.2982 q^{49} +72.5132i q^{52} +49.0012 q^{53} +5.04285i q^{56} -0.219219i q^{58} -73.2351i q^{59} -48.3246 q^{61} +24.8791 q^{62} -7.97367 q^{64} -77.2982i q^{67} +78.2780 q^{68} +104.044i q^{71} +47.6754i q^{73} -7.84008i q^{74} -21.0263 q^{76} -12.0394 q^{77} -68.2192 q^{79} +15.8641i q^{82} +28.2098 q^{83} +16.1271i q^{86} +86.5132i q^{88} -53.7774i q^{89} -18.2719 q^{91} +129.233 q^{92} -18.2192 q^{94} +114.921i q^{97} +39.6941 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{4} + 168 q^{16} - 112 q^{31} - 256 q^{34} + 48 q^{46} + 184 q^{49} - 336 q^{61} + 88 q^{64} - 320 q^{76} + 112 q^{79} + 208 q^{91} + 512 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.821854 0.410927 0.205464 0.978665i \(-0.434130\pi\)
0.205464 + 0.978665i \(0.434130\pi\)
\(3\) 0 0
\(4\) −3.32456 −0.831139
\(5\) 0 0
\(6\) 0 0
\(7\) − 0.837722i − 0.119675i −0.998208 0.0598373i \(-0.980942\pi\)
0.998208 0.0598373i \(-0.0190582\pi\)
\(8\) −6.01972 −0.752465
\(9\) 0 0
\(10\) 0 0
\(11\) − 14.3716i − 1.30651i −0.757137 0.653256i \(-0.773403\pi\)
0.757137 0.653256i \(-0.226597\pi\)
\(12\) 0 0
\(13\) − 21.8114i − 1.67780i −0.544286 0.838900i \(-0.683199\pi\)
0.544286 0.838900i \(-0.316801\pi\)
\(14\) − 0.688486i − 0.0491776i
\(15\) 0 0
\(16\) 8.35089 0.521931
\(17\) −23.5454 −1.38502 −0.692512 0.721407i \(-0.743496\pi\)
−0.692512 + 0.721407i \(0.743496\pi\)
\(18\) 0 0
\(19\) 6.32456 0.332871 0.166436 0.986052i \(-0.446774\pi\)
0.166436 + 0.986052i \(0.446774\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 11.8114i − 0.536881i
\(23\) −38.8723 −1.69010 −0.845049 0.534689i \(-0.820429\pi\)
−0.845049 + 0.534689i \(0.820429\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 17.9258i − 0.689453i
\(27\) 0 0
\(28\) 2.78505i 0.0994662i
\(29\) − 0.266737i − 0.00919784i −0.999989 0.00459892i \(-0.998536\pi\)
0.999989 0.00459892i \(-0.00146389\pi\)
\(30\) 0 0
\(31\) 30.2719 0.976512 0.488256 0.872700i \(-0.337633\pi\)
0.488256 + 0.872700i \(0.337633\pi\)
\(32\) 30.9421 0.966940
\(33\) 0 0
\(34\) −19.3509 −0.569144
\(35\) 0 0
\(36\) 0 0
\(37\) − 9.53950i − 0.257824i −0.991656 0.128912i \(-0.958851\pi\)
0.991656 0.128912i \(-0.0411485\pi\)
\(38\) 5.19786 0.136786
\(39\) 0 0
\(40\) 0 0
\(41\) 19.3028i 0.470799i 0.971899 + 0.235399i \(0.0756398\pi\)
−0.971899 + 0.235399i \(0.924360\pi\)
\(42\) 0 0
\(43\) 19.6228i 0.456344i 0.973621 + 0.228172i \(0.0732748\pi\)
−0.973621 + 0.228172i \(0.926725\pi\)
\(44\) 47.7793i 1.08589i
\(45\) 0 0
\(46\) −31.9473 −0.694507
\(47\) −22.1684 −0.471669 −0.235834 0.971793i \(-0.575782\pi\)
−0.235834 + 0.971793i \(0.575782\pi\)
\(48\) 0 0
\(49\) 48.2982 0.985678
\(50\) 0 0
\(51\) 0 0
\(52\) 72.5132i 1.39448i
\(53\) 49.0012 0.924552 0.462276 0.886736i \(-0.347033\pi\)
0.462276 + 0.886736i \(0.347033\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.04285i 0.0900509i
\(57\) 0 0
\(58\) − 0.219219i − 0.00377964i
\(59\) − 73.2351i − 1.24127i −0.784098 0.620637i \(-0.786874\pi\)
0.784098 0.620637i \(-0.213126\pi\)
\(60\) 0 0
\(61\) −48.3246 −0.792206 −0.396103 0.918206i \(-0.629638\pi\)
−0.396103 + 0.918206i \(0.629638\pi\)
\(62\) 24.8791 0.401276
\(63\) 0 0
\(64\) −7.97367 −0.124589
\(65\) 0 0
\(66\) 0 0
\(67\) − 77.2982i − 1.15370i −0.816848 0.576852i \(-0.804281\pi\)
0.816848 0.576852i \(-0.195719\pi\)
\(68\) 78.2780 1.15115
\(69\) 0 0
\(70\) 0 0
\(71\) 104.044i 1.46541i 0.680548 + 0.732703i \(0.261742\pi\)
−0.680548 + 0.732703i \(0.738258\pi\)
\(72\) 0 0
\(73\) 47.6754i 0.653088i 0.945182 + 0.326544i \(0.105884\pi\)
−0.945182 + 0.326544i \(0.894116\pi\)
\(74\) − 7.84008i − 0.105947i
\(75\) 0 0
\(76\) −21.0263 −0.276662
\(77\) −12.0394 −0.156356
\(78\) 0 0
\(79\) −68.2192 −0.863534 −0.431767 0.901985i \(-0.642110\pi\)
−0.431767 + 0.901985i \(0.642110\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 15.8641i 0.193464i
\(83\) 28.2098 0.339877 0.169938 0.985455i \(-0.445643\pi\)
0.169938 + 0.985455i \(0.445643\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 16.1271i 0.187524i
\(87\) 0 0
\(88\) 86.5132i 0.983104i
\(89\) − 53.7774i − 0.604240i −0.953270 0.302120i \(-0.902306\pi\)
0.953270 0.302120i \(-0.0976943\pi\)
\(90\) 0 0
\(91\) −18.2719 −0.200790
\(92\) 129.233 1.40471
\(93\) 0 0
\(94\) −18.2192 −0.193821
\(95\) 0 0
\(96\) 0 0
\(97\) 114.921i 1.18475i 0.805661 + 0.592376i \(0.201810\pi\)
−0.805661 + 0.592376i \(0.798190\pi\)
\(98\) 39.6941 0.405042
\(99\) 0 0
\(100\) 0 0
\(101\) − 17.5473i − 0.173736i −0.996220 0.0868679i \(-0.972314\pi\)
0.996220 0.0868679i \(-0.0276858\pi\)
\(102\) 0 0
\(103\) − 71.5395i − 0.694558i −0.937762 0.347279i \(-0.887106\pi\)
0.937762 0.347279i \(-0.112894\pi\)
\(104\) 131.298i 1.26248i
\(105\) 0 0
\(106\) 40.2719 0.379923
\(107\) −76.3675 −0.713715 −0.356858 0.934159i \(-0.616152\pi\)
−0.356858 + 0.934159i \(0.616152\pi\)
\(108\) 0 0
\(109\) 126.921 1.16441 0.582206 0.813041i \(-0.302190\pi\)
0.582206 + 0.813041i \(0.302190\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 6.99573i − 0.0624618i
\(113\) 15.0601 0.133275 0.0666377 0.997777i \(-0.478773\pi\)
0.0666377 + 0.997777i \(0.478773\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.886783i 0.00764468i
\(117\) 0 0
\(118\) − 60.1886i − 0.510073i
\(119\) 19.7245i 0.165752i
\(120\) 0 0
\(121\) −85.5438 −0.706973
\(122\) −39.7157 −0.325539
\(123\) 0 0
\(124\) −100.641 −0.811617
\(125\) 0 0
\(126\) 0 0
\(127\) − 158.031i − 1.24434i −0.782884 0.622168i \(-0.786252\pi\)
0.782884 0.622168i \(-0.213748\pi\)
\(128\) −130.322 −1.01814
\(129\) 0 0
\(130\) 0 0
\(131\) − 211.220i − 1.61237i −0.591665 0.806184i \(-0.701529\pi\)
0.591665 0.806184i \(-0.298471\pi\)
\(132\) 0 0
\(133\) − 5.29822i − 0.0398363i
\(134\) − 63.5279i − 0.474089i
\(135\) 0 0
\(136\) 141.737 1.04218
\(137\) −69.2592 −0.505542 −0.252771 0.967526i \(-0.581342\pi\)
−0.252771 + 0.967526i \(0.581342\pi\)
\(138\) 0 0
\(139\) 159.842 1.14994 0.574971 0.818174i \(-0.305013\pi\)
0.574971 + 0.818174i \(0.305013\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 85.5089i 0.602175i
\(143\) −313.465 −2.19206
\(144\) 0 0
\(145\) 0 0
\(146\) 39.1823i 0.268372i
\(147\) 0 0
\(148\) 31.7146i 0.214288i
\(149\) 9.81897i 0.0658991i 0.999457 + 0.0329496i \(0.0104901\pi\)
−0.999457 + 0.0329496i \(0.989510\pi\)
\(150\) 0 0
\(151\) 210.649 1.39503 0.697514 0.716572i \(-0.254290\pi\)
0.697514 + 0.716572i \(0.254290\pi\)
\(152\) −38.0720 −0.250474
\(153\) 0 0
\(154\) −9.89466 −0.0642511
\(155\) 0 0
\(156\) 0 0
\(157\) − 211.276i − 1.34571i −0.739775 0.672854i \(-0.765068\pi\)
0.739775 0.672854i \(-0.234932\pi\)
\(158\) −56.0663 −0.354850
\(159\) 0 0
\(160\) 0 0
\(161\) 32.5642i 0.202262i
\(162\) 0 0
\(163\) − 222.763i − 1.36664i −0.730117 0.683322i \(-0.760535\pi\)
0.730117 0.683322i \(-0.239465\pi\)
\(164\) − 64.1731i − 0.391299i
\(165\) 0 0
\(166\) 23.1843 0.139665
\(167\) −33.3644 −0.199787 −0.0998933 0.994998i \(-0.531850\pi\)
−0.0998933 + 0.994998i \(0.531850\pi\)
\(168\) 0 0
\(169\) −306.737 −1.81501
\(170\) 0 0
\(171\) 0 0
\(172\) − 65.2370i − 0.379285i
\(173\) 29.8102 0.172313 0.0861567 0.996282i \(-0.472541\pi\)
0.0861567 + 0.996282i \(0.472541\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 120.016i − 0.681909i
\(177\) 0 0
\(178\) − 44.1972i − 0.248299i
\(179\) 111.841i 0.624808i 0.949949 + 0.312404i \(0.101134\pi\)
−0.949949 + 0.312404i \(0.898866\pi\)
\(180\) 0 0
\(181\) −49.0790 −0.271155 −0.135577 0.990767i \(-0.543289\pi\)
−0.135577 + 0.990767i \(0.543289\pi\)
\(182\) −15.0168 −0.0825101
\(183\) 0 0
\(184\) 234.000 1.27174
\(185\) 0 0
\(186\) 0 0
\(187\) 338.386i 1.80955i
\(188\) 73.7002 0.392022
\(189\) 0 0
\(190\) 0 0
\(191\) − 278.947i − 1.46046i −0.683203 0.730229i \(-0.739414\pi\)
0.683203 0.730229i \(-0.260586\pi\)
\(192\) 0 0
\(193\) 89.8947i 0.465775i 0.972504 + 0.232888i \(0.0748175\pi\)
−0.972504 + 0.232888i \(0.925183\pi\)
\(194\) 94.4483i 0.486847i
\(195\) 0 0
\(196\) −160.570 −0.819235
\(197\) 212.709 1.07974 0.539870 0.841748i \(-0.318473\pi\)
0.539870 + 0.841748i \(0.318473\pi\)
\(198\) 0 0
\(199\) −96.4911 −0.484880 −0.242440 0.970166i \(-0.577948\pi\)
−0.242440 + 0.970166i \(0.577948\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 14.4213i − 0.0713928i
\(203\) −0.223452 −0.00110075
\(204\) 0 0
\(205\) 0 0
\(206\) − 58.7951i − 0.285413i
\(207\) 0 0
\(208\) − 182.144i − 0.875695i
\(209\) − 90.8942i − 0.434900i
\(210\) 0 0
\(211\) −65.7893 −0.311798 −0.155899 0.987773i \(-0.549827\pi\)
−0.155899 + 0.987773i \(0.549827\pi\)
\(212\) −162.907 −0.768431
\(213\) 0 0
\(214\) −62.7630 −0.293285
\(215\) 0 0
\(216\) 0 0
\(217\) − 25.3594i − 0.116864i
\(218\) 104.311 0.478489
\(219\) 0 0
\(220\) 0 0
\(221\) 513.558i 2.32379i
\(222\) 0 0
\(223\) 102.302i 0.458756i 0.973337 + 0.229378i \(0.0736691\pi\)
−0.973337 + 0.229378i \(0.926331\pi\)
\(224\) − 25.9209i − 0.115718i
\(225\) 0 0
\(226\) 12.3772 0.0547665
\(227\) 12.5296 0.0551966 0.0275983 0.999619i \(-0.491214\pi\)
0.0275983 + 0.999619i \(0.491214\pi\)
\(228\) 0 0
\(229\) −23.2982 −0.101739 −0.0508695 0.998705i \(-0.516199\pi\)
−0.0508695 + 0.998705i \(0.516199\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.60568i 0.00692105i
\(233\) 356.382 1.52954 0.764768 0.644306i \(-0.222854\pi\)
0.764768 + 0.644306i \(0.222854\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 243.474i 1.03167i
\(237\) 0 0
\(238\) 16.2107i 0.0681121i
\(239\) − 175.524i − 0.734408i −0.930140 0.367204i \(-0.880315\pi\)
0.930140 0.367204i \(-0.119685\pi\)
\(240\) 0 0
\(241\) 104.438 0.433355 0.216677 0.976243i \(-0.430478\pi\)
0.216677 + 0.976243i \(0.430478\pi\)
\(242\) −70.3045 −0.290515
\(243\) 0 0
\(244\) 160.658 0.658433
\(245\) 0 0
\(246\) 0 0
\(247\) − 137.947i − 0.558491i
\(248\) −182.228 −0.734791
\(249\) 0 0
\(250\) 0 0
\(251\) − 130.945i − 0.521694i −0.965380 0.260847i \(-0.915998\pi\)
0.965380 0.260847i \(-0.0840018\pi\)
\(252\) 0 0
\(253\) 558.658i 2.20813i
\(254\) − 129.878i − 0.511331i
\(255\) 0 0
\(256\) −75.2107 −0.293792
\(257\) 425.641 1.65619 0.828095 0.560587i \(-0.189425\pi\)
0.828095 + 0.560587i \(0.189425\pi\)
\(258\) 0 0
\(259\) −7.99145 −0.0308550
\(260\) 0 0
\(261\) 0 0
\(262\) − 173.592i − 0.662566i
\(263\) 74.5004 0.283271 0.141636 0.989919i \(-0.454764\pi\)
0.141636 + 0.989919i \(0.454764\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 4.35437i − 0.0163698i
\(267\) 0 0
\(268\) 256.982i 0.958889i
\(269\) 205.067i 0.762331i 0.924507 + 0.381165i \(0.124477\pi\)
−0.924507 + 0.381165i \(0.875523\pi\)
\(270\) 0 0
\(271\) −233.351 −0.861073 −0.430537 0.902573i \(-0.641676\pi\)
−0.430537 + 0.902573i \(0.641676\pi\)
\(272\) −196.625 −0.722886
\(273\) 0 0
\(274\) −56.9210 −0.207741
\(275\) 0 0
\(276\) 0 0
\(277\) 423.715i 1.52966i 0.644235 + 0.764828i \(0.277176\pi\)
−0.644235 + 0.764828i \(0.722824\pi\)
\(278\) 131.367 0.472543
\(279\) 0 0
\(280\) 0 0
\(281\) 402.604i 1.43275i 0.697713 + 0.716377i \(0.254201\pi\)
−0.697713 + 0.716377i \(0.745799\pi\)
\(282\) 0 0
\(283\) − 272.333i − 0.962308i −0.876636 0.481154i \(-0.840218\pi\)
0.876636 0.481154i \(-0.159782\pi\)
\(284\) − 345.900i − 1.21796i
\(285\) 0 0
\(286\) −257.623 −0.900779
\(287\) 16.1704 0.0563427
\(288\) 0 0
\(289\) 265.386 0.918290
\(290\) 0 0
\(291\) 0 0
\(292\) − 158.500i − 0.542807i
\(293\) 443.188 1.51259 0.756294 0.654232i \(-0.227008\pi\)
0.756294 + 0.654232i \(0.227008\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 57.4251i 0.194004i
\(297\) 0 0
\(298\) 8.06976i 0.0270797i
\(299\) 847.858i 2.83564i
\(300\) 0 0
\(301\) 16.4384 0.0546128
\(302\) 173.123 0.573255
\(303\) 0 0
\(304\) 52.8157 0.173736
\(305\) 0 0
\(306\) 0 0
\(307\) 390.824i 1.27304i 0.771259 + 0.636522i \(0.219627\pi\)
−0.771259 + 0.636522i \(0.780373\pi\)
\(308\) 40.0258 0.129954
\(309\) 0 0
\(310\) 0 0
\(311\) − 2.97739i − 0.00957362i −0.999989 0.00478681i \(-0.998476\pi\)
0.999989 0.00478681i \(-0.00152369\pi\)
\(312\) 0 0
\(313\) 130.105i 0.415672i 0.978164 + 0.207836i \(0.0666420\pi\)
−0.978164 + 0.207836i \(0.933358\pi\)
\(314\) − 173.638i − 0.552988i
\(315\) 0 0
\(316\) 226.799 0.717717
\(317\) 131.677 0.415384 0.207692 0.978194i \(-0.433405\pi\)
0.207692 + 0.978194i \(0.433405\pi\)
\(318\) 0 0
\(319\) −3.83345 −0.0120171
\(320\) 0 0
\(321\) 0 0
\(322\) 26.7630i 0.0831149i
\(323\) −148.914 −0.461035
\(324\) 0 0
\(325\) 0 0
\(326\) − 183.079i − 0.561591i
\(327\) 0 0
\(328\) − 116.197i − 0.354260i
\(329\) 18.5710i 0.0564468i
\(330\) 0 0
\(331\) 160.483 0.484842 0.242421 0.970171i \(-0.422059\pi\)
0.242421 + 0.970171i \(0.422059\pi\)
\(332\) −93.7850 −0.282485
\(333\) 0 0
\(334\) −27.4207 −0.0820978
\(335\) 0 0
\(336\) 0 0
\(337\) 128.114i 0.380160i 0.981769 + 0.190080i \(0.0608747\pi\)
−0.981769 + 0.190080i \(0.939125\pi\)
\(338\) −252.093 −0.745837
\(339\) 0 0
\(340\) 0 0
\(341\) − 435.056i − 1.27583i
\(342\) 0 0
\(343\) − 81.5089i − 0.237635i
\(344\) − 118.124i − 0.343383i
\(345\) 0 0
\(346\) 24.4997 0.0708082
\(347\) −219.637 −0.632959 −0.316480 0.948599i \(-0.602501\pi\)
−0.316480 + 0.948599i \(0.602501\pi\)
\(348\) 0 0
\(349\) −403.465 −1.15606 −0.578030 0.816016i \(-0.696178\pi\)
−0.578030 + 0.816016i \(0.696178\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 444.688i − 1.26332i
\(353\) −54.8192 −0.155295 −0.0776475 0.996981i \(-0.524741\pi\)
−0.0776475 + 0.996981i \(0.524741\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 178.786i 0.502207i
\(357\) 0 0
\(358\) 91.9167i 0.256751i
\(359\) − 480.460i − 1.33833i −0.743114 0.669165i \(-0.766652\pi\)
0.743114 0.669165i \(-0.233348\pi\)
\(360\) 0 0
\(361\) −321.000 −0.889197
\(362\) −40.3358 −0.111425
\(363\) 0 0
\(364\) 60.7459 0.166884
\(365\) 0 0
\(366\) 0 0
\(367\) − 522.364i − 1.42333i −0.702517 0.711667i \(-0.747940\pi\)
0.702517 0.711667i \(-0.252060\pi\)
\(368\) −324.618 −0.882114
\(369\) 0 0
\(370\) 0 0
\(371\) − 41.0494i − 0.110645i
\(372\) 0 0
\(373\) − 233.285i − 0.625428i −0.949847 0.312714i \(-0.898762\pi\)
0.949847 0.312714i \(-0.101238\pi\)
\(374\) 278.104i 0.743593i
\(375\) 0 0
\(376\) 133.448 0.354914
\(377\) −5.81791 −0.0154321
\(378\) 0 0
\(379\) −248.596 −0.655927 −0.327964 0.944690i \(-0.606362\pi\)
−0.327964 + 0.944690i \(0.606362\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 229.254i − 0.600142i
\(383\) −468.291 −1.22269 −0.611346 0.791364i \(-0.709372\pi\)
−0.611346 + 0.791364i \(0.709372\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 73.8803i 0.191400i
\(387\) 0 0
\(388\) − 382.061i − 0.984694i
\(389\) − 484.238i − 1.24483i −0.782688 0.622414i \(-0.786152\pi\)
0.782688 0.622414i \(-0.213848\pi\)
\(390\) 0 0
\(391\) 915.263 2.34083
\(392\) −290.742 −0.741688
\(393\) 0 0
\(394\) 174.816 0.443695
\(395\) 0 0
\(396\) 0 0
\(397\) 298.943i 0.753005i 0.926416 + 0.376503i \(0.122873\pi\)
−0.926416 + 0.376503i \(0.877127\pi\)
\(398\) −79.3016 −0.199250
\(399\) 0 0
\(400\) 0 0
\(401\) − 467.509i − 1.16586i −0.812523 0.582929i \(-0.801907\pi\)
0.812523 0.582929i \(-0.198093\pi\)
\(402\) 0 0
\(403\) − 660.272i − 1.63839i
\(404\) 58.3370i 0.144399i
\(405\) 0 0
\(406\) −0.183645 −0.000452327 0
\(407\) −137.098 −0.336851
\(408\) 0 0
\(409\) 184.158 0.450264 0.225132 0.974328i \(-0.427719\pi\)
0.225132 + 0.974328i \(0.427719\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 237.837i 0.577274i
\(413\) −61.3507 −0.148549
\(414\) 0 0
\(415\) 0 0
\(416\) − 674.890i − 1.62233i
\(417\) 0 0
\(418\) − 74.7018i − 0.178712i
\(419\) 429.840i 1.02587i 0.858427 + 0.512936i \(0.171442\pi\)
−0.858427 + 0.512936i \(0.828558\pi\)
\(420\) 0 0
\(421\) −305.035 −0.724548 −0.362274 0.932072i \(-0.618000\pi\)
−0.362274 + 0.932072i \(0.618000\pi\)
\(422\) −54.0692 −0.128126
\(423\) 0 0
\(424\) −294.974 −0.695693
\(425\) 0 0
\(426\) 0 0
\(427\) 40.4826i 0.0948069i
\(428\) 253.888 0.593196
\(429\) 0 0
\(430\) 0 0
\(431\) − 128.880i − 0.299025i −0.988760 0.149512i \(-0.952230\pi\)
0.988760 0.149512i \(-0.0477704\pi\)
\(432\) 0 0
\(433\) 243.886i 0.563247i 0.959525 + 0.281624i \(0.0908730\pi\)
−0.959525 + 0.281624i \(0.909127\pi\)
\(434\) − 20.8418i − 0.0480225i
\(435\) 0 0
\(436\) −421.956 −0.967789
\(437\) −245.850 −0.562585
\(438\) 0 0
\(439\) 259.614 0.591376 0.295688 0.955285i \(-0.404451\pi\)
0.295688 + 0.955285i \(0.404451\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 422.070i 0.954909i
\(443\) −541.011 −1.22124 −0.610622 0.791923i \(-0.709080\pi\)
−0.610622 + 0.791923i \(0.709080\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 84.0778i 0.188515i
\(447\) 0 0
\(448\) 6.67972i 0.0149101i
\(449\) 791.947i 1.76380i 0.471436 + 0.881900i \(0.343736\pi\)
−0.471436 + 0.881900i \(0.656264\pi\)
\(450\) 0 0
\(451\) 277.412 0.615104
\(452\) −50.0682 −0.110770
\(453\) 0 0
\(454\) 10.2975 0.0226818
\(455\) 0 0
\(456\) 0 0
\(457\) − 611.359i − 1.33777i −0.743367 0.668883i \(-0.766773\pi\)
0.743367 0.668883i \(-0.233227\pi\)
\(458\) −19.1477 −0.0418073
\(459\) 0 0
\(460\) 0 0
\(461\) 586.991i 1.27330i 0.771153 + 0.636650i \(0.219680\pi\)
−0.771153 + 0.636650i \(0.780320\pi\)
\(462\) 0 0
\(463\) 195.285i 0.421781i 0.977510 + 0.210891i \(0.0676364\pi\)
−0.977510 + 0.210891i \(0.932364\pi\)
\(464\) − 2.22749i − 0.00480063i
\(465\) 0 0
\(466\) 292.894 0.628528
\(467\) 753.763 1.61405 0.807027 0.590515i \(-0.201075\pi\)
0.807027 + 0.590515i \(0.201075\pi\)
\(468\) 0 0
\(469\) −64.7544 −0.138069
\(470\) 0 0
\(471\) 0 0
\(472\) 440.855i 0.934014i
\(473\) 282.011 0.596218
\(474\) 0 0
\(475\) 0 0
\(476\) − 65.5752i − 0.137763i
\(477\) 0 0
\(478\) − 144.255i − 0.301788i
\(479\) − 614.848i − 1.28361i −0.766869 0.641803i \(-0.778186\pi\)
0.766869 0.641803i \(-0.221814\pi\)
\(480\) 0 0
\(481\) −208.070 −0.432577
\(482\) 85.8332 0.178077
\(483\) 0 0
\(484\) 284.395 0.587593
\(485\) 0 0
\(486\) 0 0
\(487\) − 478.197i − 0.981924i −0.871181 0.490962i \(-0.836645\pi\)
0.871181 0.490962i \(-0.163355\pi\)
\(488\) 290.900 0.596107
\(489\) 0 0
\(490\) 0 0
\(491\) − 617.223i − 1.25707i −0.777780 0.628537i \(-0.783654\pi\)
0.777780 0.628537i \(-0.216346\pi\)
\(492\) 0 0
\(493\) 6.28043i 0.0127392i
\(494\) − 113.373i − 0.229499i
\(495\) 0 0
\(496\) 252.797 0.509672
\(497\) 87.1599 0.175372
\(498\) 0 0
\(499\) −783.096 −1.56933 −0.784665 0.619919i \(-0.787165\pi\)
−0.784665 + 0.619919i \(0.787165\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 107.618i − 0.214378i
\(503\) −369.395 −0.734383 −0.367191 0.930145i \(-0.619681\pi\)
−0.367191 + 0.930145i \(0.619681\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 459.135i 0.907382i
\(507\) 0 0
\(508\) 525.381i 1.03422i
\(509\) − 225.635i − 0.443291i −0.975127 0.221645i \(-0.928857\pi\)
0.975127 0.221645i \(-0.0711427\pi\)
\(510\) 0 0
\(511\) 39.9388 0.0781581
\(512\) 459.474 0.897410
\(513\) 0 0
\(514\) 349.815 0.680574
\(515\) 0 0
\(516\) 0 0
\(517\) 318.596i 0.616241i
\(518\) −6.56781 −0.0126792
\(519\) 0 0
\(520\) 0 0
\(521\) 1007.73i 1.93422i 0.254367 + 0.967108i \(0.418133\pi\)
−0.254367 + 0.967108i \(0.581867\pi\)
\(522\) 0 0
\(523\) 935.517i 1.78875i 0.447316 + 0.894376i \(0.352380\pi\)
−0.447316 + 0.894376i \(0.647620\pi\)
\(524\) 702.213i 1.34010i
\(525\) 0 0
\(526\) 61.2285 0.116404
\(527\) −712.764 −1.35249
\(528\) 0 0
\(529\) 982.052 1.85643
\(530\) 0 0
\(531\) 0 0
\(532\) 17.6142i 0.0331095i
\(533\) 421.020 0.789906
\(534\) 0 0
\(535\) 0 0
\(536\) 465.314i 0.868122i
\(537\) 0 0
\(538\) 168.535i 0.313263i
\(539\) − 694.124i − 1.28780i
\(540\) 0 0
\(541\) −399.149 −0.737798 −0.368899 0.929469i \(-0.620265\pi\)
−0.368899 + 0.929469i \(0.620265\pi\)
\(542\) −191.780 −0.353838
\(543\) 0 0
\(544\) −728.544 −1.33923
\(545\) 0 0
\(546\) 0 0
\(547\) − 480.833i − 0.879036i −0.898234 0.439518i \(-0.855149\pi\)
0.898234 0.439518i \(-0.144851\pi\)
\(548\) 230.256 0.420175
\(549\) 0 0
\(550\) 0 0
\(551\) − 1.68699i − 0.00306170i
\(552\) 0 0
\(553\) 57.1488i 0.103343i
\(554\) 348.232i 0.628577i
\(555\) 0 0
\(556\) −531.404 −0.955762
\(557\) −751.542 −1.34927 −0.674634 0.738152i \(-0.735699\pi\)
−0.674634 + 0.738152i \(0.735699\pi\)
\(558\) 0 0
\(559\) 428.000 0.765653
\(560\) 0 0
\(561\) 0 0
\(562\) 330.882i 0.588758i
\(563\) 670.820 1.19151 0.595755 0.803166i \(-0.296853\pi\)
0.595755 + 0.803166i \(0.296853\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 223.818i − 0.395438i
\(567\) 0 0
\(568\) − 626.315i − 1.10267i
\(569\) − 275.325i − 0.483875i −0.970292 0.241937i \(-0.922217\pi\)
0.970292 0.241937i \(-0.0777829\pi\)
\(570\) 0 0
\(571\) −900.289 −1.57669 −0.788344 0.615235i \(-0.789061\pi\)
−0.788344 + 0.615235i \(0.789061\pi\)
\(572\) 1042.13 1.82191
\(573\) 0 0
\(574\) 13.2897 0.0231527
\(575\) 0 0
\(576\) 0 0
\(577\) 596.236i 1.03334i 0.856185 + 0.516669i \(0.172828\pi\)
−0.856185 + 0.516669i \(0.827172\pi\)
\(578\) 218.108 0.377350
\(579\) 0 0
\(580\) 0 0
\(581\) − 23.6320i − 0.0406746i
\(582\) 0 0
\(583\) − 704.228i − 1.20794i
\(584\) − 286.993i − 0.491426i
\(585\) 0 0
\(586\) 364.236 0.621564
\(587\) 497.431 0.847412 0.423706 0.905800i \(-0.360729\pi\)
0.423706 + 0.905800i \(0.360729\pi\)
\(588\) 0 0
\(589\) 191.456 0.325053
\(590\) 0 0
\(591\) 0 0
\(592\) − 79.6633i − 0.134566i
\(593\) 898.856 1.51578 0.757889 0.652384i \(-0.226231\pi\)
0.757889 + 0.652384i \(0.226231\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 32.6437i − 0.0547713i
\(597\) 0 0
\(598\) 696.816i 1.16524i
\(599\) − 28.5701i − 0.0476964i −0.999716 0.0238482i \(-0.992408\pi\)
0.999716 0.0238482i \(-0.00759183\pi\)
\(600\) 0 0
\(601\) −20.2107 −0.0336284 −0.0168142 0.999859i \(-0.505352\pi\)
−0.0168142 + 0.999859i \(0.505352\pi\)
\(602\) 13.5100 0.0224419
\(603\) 0 0
\(604\) −700.315 −1.15946
\(605\) 0 0
\(606\) 0 0
\(607\) 713.626i 1.17566i 0.808984 + 0.587831i \(0.200018\pi\)
−0.808984 + 0.587831i \(0.799982\pi\)
\(608\) 195.695 0.321867
\(609\) 0 0
\(610\) 0 0
\(611\) 483.524i 0.791365i
\(612\) 0 0
\(613\) − 76.1530i − 0.124230i −0.998069 0.0621150i \(-0.980215\pi\)
0.998069 0.0621150i \(-0.0197846\pi\)
\(614\) 321.201i 0.523128i
\(615\) 0 0
\(616\) 72.4740 0.117653
\(617\) 201.599 0.326741 0.163371 0.986565i \(-0.447763\pi\)
0.163371 + 0.986565i \(0.447763\pi\)
\(618\) 0 0
\(619\) 204.263 0.329989 0.164995 0.986294i \(-0.447239\pi\)
0.164995 + 0.986294i \(0.447239\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 2.44699i − 0.00393406i
\(623\) −45.0505 −0.0723122
\(624\) 0 0
\(625\) 0 0
\(626\) 106.928i 0.170811i
\(627\) 0 0
\(628\) 702.399i 1.11847i
\(629\) 224.611i 0.357093i
\(630\) 0 0
\(631\) −639.903 −1.01411 −0.507055 0.861914i \(-0.669266\pi\)
−0.507055 + 0.861914i \(0.669266\pi\)
\(632\) 410.660 0.649779
\(633\) 0 0
\(634\) 108.219 0.170693
\(635\) 0 0
\(636\) 0 0
\(637\) − 1053.45i − 1.65377i
\(638\) −3.15054 −0.00493815
\(639\) 0 0
\(640\) 0 0
\(641\) − 570.709i − 0.890342i −0.895446 0.445171i \(-0.853143\pi\)
0.895446 0.445171i \(-0.146857\pi\)
\(642\) 0 0
\(643\) 453.693i 0.705587i 0.935701 + 0.352794i \(0.114768\pi\)
−0.935701 + 0.352794i \(0.885232\pi\)
\(644\) − 108.261i − 0.168108i
\(645\) 0 0
\(646\) −122.386 −0.189452
\(647\) −983.536 −1.52015 −0.760074 0.649837i \(-0.774837\pi\)
−0.760074 + 0.649837i \(0.774837\pi\)
\(648\) 0 0
\(649\) −1052.51 −1.62174
\(650\) 0 0
\(651\) 0 0
\(652\) 740.588i 1.13587i
\(653\) −544.478 −0.833811 −0.416905 0.908950i \(-0.636885\pi\)
−0.416905 + 0.908950i \(0.636885\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 161.195i 0.245724i
\(657\) 0 0
\(658\) 15.2626i 0.0231955i
\(659\) 107.933i 0.163783i 0.996641 + 0.0818916i \(0.0260961\pi\)
−0.996641 + 0.0818916i \(0.973904\pi\)
\(660\) 0 0
\(661\) 345.728 0.523038 0.261519 0.965198i \(-0.415777\pi\)
0.261519 + 0.965198i \(0.415777\pi\)
\(662\) 131.893 0.199235
\(663\) 0 0
\(664\) −169.815 −0.255745
\(665\) 0 0
\(666\) 0 0
\(667\) 10.3687i 0.0155452i
\(668\) 110.922 0.166050
\(669\) 0 0
\(670\) 0 0
\(671\) 694.503i 1.03503i
\(672\) 0 0
\(673\) − 1204.78i − 1.79016i −0.445902 0.895082i \(-0.647117\pi\)
0.445902 0.895082i \(-0.352883\pi\)
\(674\) 105.291i 0.156218i
\(675\) 0 0
\(676\) 1019.76 1.50853
\(677\) 574.598 0.848742 0.424371 0.905488i \(-0.360495\pi\)
0.424371 + 0.905488i \(0.360495\pi\)
\(678\) 0 0
\(679\) 96.2719 0.141785
\(680\) 0 0
\(681\) 0 0
\(682\) − 357.553i − 0.524271i
\(683\) −334.387 −0.489585 −0.244792 0.969575i \(-0.578720\pi\)
−0.244792 + 0.969575i \(0.578720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 66.9884i − 0.0976508i
\(687\) 0 0
\(688\) 163.868i 0.238180i
\(689\) − 1068.79i − 1.55121i
\(690\) 0 0
\(691\) 901.149 1.30412 0.652061 0.758166i \(-0.273904\pi\)
0.652061 + 0.758166i \(0.273904\pi\)
\(692\) −99.1057 −0.143216
\(693\) 0 0
\(694\) −180.510 −0.260100
\(695\) 0 0
\(696\) 0 0
\(697\) − 454.491i − 0.652068i
\(698\) −331.589 −0.475056
\(699\) 0 0
\(700\) 0 0
\(701\) − 887.934i − 1.26667i −0.773879 0.633334i \(-0.781686\pi\)
0.773879 0.633334i \(-0.218314\pi\)
\(702\) 0 0
\(703\) − 60.3331i − 0.0858223i
\(704\) 114.595i 0.162776i
\(705\) 0 0
\(706\) −45.0534 −0.0638150
\(707\) −14.6998 −0.0207918
\(708\) 0 0
\(709\) 1026.35 1.44760 0.723801 0.690008i \(-0.242393\pi\)
0.723801 + 0.690008i \(0.242393\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 323.725i 0.454669i
\(713\) −1176.74 −1.65040
\(714\) 0 0
\(715\) 0 0
\(716\) − 371.820i − 0.519302i
\(717\) 0 0
\(718\) − 394.868i − 0.549956i
\(719\) 740.080i 1.02932i 0.857395 + 0.514659i \(0.172081\pi\)
−0.857395 + 0.514659i \(0.827919\pi\)
\(720\) 0 0
\(721\) −59.9302 −0.0831210
\(722\) −263.815 −0.365395
\(723\) 0 0
\(724\) 163.166 0.225367
\(725\) 0 0
\(726\) 0 0
\(727\) − 1063.75i − 1.46321i −0.681731 0.731603i \(-0.738773\pi\)
0.681731 0.731603i \(-0.261227\pi\)
\(728\) 109.992 0.151087
\(729\) 0 0
\(730\) 0 0
\(731\) − 462.026i − 0.632047i
\(732\) 0 0
\(733\) 134.749i 0.183833i 0.995767 + 0.0919164i \(0.0292993\pi\)
−0.995767 + 0.0919164i \(0.970701\pi\)
\(734\) − 429.307i − 0.584887i
\(735\) 0 0
\(736\) −1202.79 −1.63422
\(737\) −1110.90 −1.50733
\(738\) 0 0
\(739\) 711.429 0.962692 0.481346 0.876531i \(-0.340148\pi\)
0.481346 + 0.876531i \(0.340148\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 33.7367i − 0.0454672i
\(743\) −466.330 −0.627631 −0.313816 0.949484i \(-0.601607\pi\)
−0.313816 + 0.949484i \(0.601607\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 191.726i − 0.257005i
\(747\) 0 0
\(748\) − 1124.98i − 1.50399i
\(749\) 63.9748i 0.0854136i
\(750\) 0 0
\(751\) 227.359 0.302742 0.151371 0.988477i \(-0.451631\pi\)
0.151371 + 0.988477i \(0.451631\pi\)
\(752\) −185.126 −0.246178
\(753\) 0 0
\(754\) −4.78147 −0.00634148
\(755\) 0 0
\(756\) 0 0
\(757\) 552.258i 0.729535i 0.931099 + 0.364768i \(0.118852\pi\)
−0.931099 + 0.364768i \(0.881148\pi\)
\(758\) −204.310 −0.269538
\(759\) 0 0
\(760\) 0 0
\(761\) − 303.051i − 0.398228i −0.979976 0.199114i \(-0.936194\pi\)
0.979976 0.199114i \(-0.0638064\pi\)
\(762\) 0 0
\(763\) − 106.325i − 0.139351i
\(764\) 927.376i 1.21384i
\(765\) 0 0
\(766\) −384.867 −0.502437
\(767\) −1597.36 −2.08261
\(768\) 0 0
\(769\) −739.684 −0.961878 −0.480939 0.876754i \(-0.659704\pi\)
−0.480939 + 0.876754i \(0.659704\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 298.860i − 0.387124i
\(773\) −603.479 −0.780697 −0.390348 0.920667i \(-0.627645\pi\)
−0.390348 + 0.920667i \(0.627645\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 691.792i − 0.891485i
\(777\) 0 0
\(778\) − 397.973i − 0.511533i
\(779\) 122.081i 0.156715i
\(780\) 0 0
\(781\) 1495.28 1.91457
\(782\) 752.213 0.961909
\(783\) 0 0
\(784\) 403.333 0.514455
\(785\) 0 0
\(786\) 0 0
\(787\) 660.483i 0.839241i 0.907700 + 0.419620i \(0.137837\pi\)
−0.907700 + 0.419620i \(0.862163\pi\)
\(788\) −707.162 −0.897414
\(789\) 0 0
\(790\) 0 0
\(791\) − 12.6162i − 0.0159497i
\(792\) 0 0
\(793\) 1054.03i 1.32916i
\(794\) 245.688i 0.309430i
\(795\) 0 0
\(796\) 320.790 0.403003
\(797\) 634.969 0.796699 0.398349 0.917234i \(-0.369583\pi\)
0.398349 + 0.917234i \(0.369583\pi\)
\(798\) 0 0
\(799\) 521.964 0.653272
\(800\) 0 0
\(801\) 0 0
\(802\) − 384.224i − 0.479083i
\(803\) 685.174 0.853268
\(804\) 0 0
\(805\) 0 0
\(806\) − 542.647i − 0.673260i
\(807\) 0 0
\(808\) 105.630i 0.130730i
\(809\) − 405.048i − 0.500677i −0.968158 0.250339i \(-0.919458\pi\)
0.968158 0.250339i \(-0.0805419\pi\)
\(810\) 0 0
\(811\) 406.034 0.500659 0.250329 0.968161i \(-0.419461\pi\)
0.250329 + 0.968161i \(0.419461\pi\)
\(812\) 0.742878 0.000914874 0
\(813\) 0 0
\(814\) −112.675 −0.138421
\(815\) 0 0
\(816\) 0 0
\(817\) 124.105i 0.151904i
\(818\) 151.351 0.185026
\(819\) 0 0
\(820\) 0 0
\(821\) 550.073i 0.670003i 0.942218 + 0.335002i \(0.108737\pi\)
−0.942218 + 0.335002i \(0.891263\pi\)
\(822\) 0 0
\(823\) − 1472.51i − 1.78920i −0.446868 0.894600i \(-0.647460\pi\)
0.446868 0.894600i \(-0.352540\pi\)
\(824\) 430.648i 0.522631i
\(825\) 0 0
\(826\) −50.4213 −0.0610428
\(827\) 1510.47 1.82644 0.913220 0.407466i \(-0.133587\pi\)
0.913220 + 0.407466i \(0.133587\pi\)
\(828\) 0 0
\(829\) −712.692 −0.859701 −0.429850 0.902900i \(-0.641434\pi\)
−0.429850 + 0.902900i \(0.641434\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 173.917i 0.209035i
\(833\) −1137.20 −1.36519
\(834\) 0 0
\(835\) 0 0
\(836\) 302.183i 0.361463i
\(837\) 0 0
\(838\) 353.266i 0.421559i
\(839\) − 530.579i − 0.632394i −0.948694 0.316197i \(-0.897594\pi\)
0.948694 0.316197i \(-0.102406\pi\)
\(840\) 0 0
\(841\) 840.929 0.999915
\(842\) −250.694 −0.297737
\(843\) 0 0
\(844\) 218.720 0.259147
\(845\) 0 0
\(846\) 0 0
\(847\) 71.6619i 0.0846068i
\(848\) 409.204 0.482552
\(849\) 0 0
\(850\) 0 0
\(851\) 370.822i 0.435748i
\(852\) 0 0
\(853\) 215.232i 0.252324i 0.992010 + 0.126162i \(0.0402659\pi\)
−0.992010 + 0.126162i \(0.959734\pi\)
\(854\) 33.2708i 0.0389587i
\(855\) 0 0
\(856\) 459.711 0.537046
\(857\) −4.97441 −0.00580445 −0.00290222 0.999996i \(-0.500924\pi\)
−0.00290222 + 0.999996i \(0.500924\pi\)
\(858\) 0 0
\(859\) −1652.28 −1.92349 −0.961746 0.273941i \(-0.911673\pi\)
−0.961746 + 0.273941i \(0.911673\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 105.920i − 0.122877i
\(863\) 379.077 0.439255 0.219627 0.975584i \(-0.429516\pi\)
0.219627 + 0.975584i \(0.429516\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 200.439i 0.231454i
\(867\) 0 0
\(868\) 84.3088i 0.0971300i
\(869\) 980.421i 1.12822i
\(870\) 0 0
\(871\) −1685.98 −1.93568
\(872\) −764.029 −0.876180
\(873\) 0 0
\(874\) −202.053 −0.231182
\(875\) 0 0
\(876\) 0 0
\(877\) − 1101.60i − 1.25610i −0.778173 0.628051i \(-0.783853\pi\)
0.778173 0.628051i \(-0.216147\pi\)
\(878\) 213.365 0.243013
\(879\) 0 0
\(880\) 0 0
\(881\) − 184.877i − 0.209850i −0.994480 0.104925i \(-0.966540\pi\)
0.994480 0.104925i \(-0.0334602\pi\)
\(882\) 0 0
\(883\) 978.236i 1.10786i 0.832565 + 0.553928i \(0.186872\pi\)
−0.832565 + 0.553928i \(0.813128\pi\)
\(884\) − 1707.35i − 1.93139i
\(885\) 0 0
\(886\) −444.632 −0.501842
\(887\) 667.937 0.753029 0.376514 0.926411i \(-0.377123\pi\)
0.376514 + 0.926411i \(0.377123\pi\)
\(888\) 0 0
\(889\) −132.386 −0.148915
\(890\) 0 0
\(891\) 0 0
\(892\) − 340.110i − 0.381290i
\(893\) −140.205 −0.157005
\(894\) 0 0
\(895\) 0 0
\(896\) 109.173i 0.121845i
\(897\) 0 0
\(898\) 650.865i 0.724794i
\(899\) − 8.07464i − 0.00898180i
\(900\) 0 0
\(901\) −1153.75 −1.28053
\(902\) 227.992 0.252763
\(903\) 0 0
\(904\) −90.6577 −0.100285
\(905\) 0 0
\(906\) 0 0
\(907\) 832.622i 0.917996i 0.888437 + 0.458998i \(0.151791\pi\)
−0.888437 + 0.458998i \(0.848209\pi\)
\(908\) −41.6554 −0.0458760
\(909\) 0 0
\(910\) 0 0
\(911\) − 565.263i − 0.620486i −0.950657 0.310243i \(-0.899590\pi\)
0.950657 0.310243i \(-0.100410\pi\)
\(912\) 0 0
\(913\) − 405.421i − 0.444053i
\(914\) − 502.448i − 0.549725i
\(915\) 0 0
\(916\) 77.4562 0.0845592
\(917\) −176.944 −0.192959
\(918\) 0 0
\(919\) 1185.75 1.29026 0.645128 0.764075i \(-0.276804\pi\)
0.645128 + 0.764075i \(0.276804\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 482.421i 0.523234i
\(923\) 2269.34 2.45866
\(924\) 0 0
\(925\) 0 0
\(926\) 160.496i 0.173321i
\(927\) 0 0
\(928\) − 8.25341i − 0.00889376i
\(929\) 942.995i 1.01506i 0.861633 + 0.507532i \(0.169442\pi\)
−0.861633 + 0.507532i \(0.830558\pi\)
\(930\) 0 0
\(931\) 305.465 0.328104
\(932\) −1184.81 −1.27126
\(933\) 0 0
\(934\) 619.483 0.663258
\(935\) 0 0
\(936\) 0 0
\(937\) 531.281i 0.567002i 0.958972 + 0.283501i \(0.0914960\pi\)
−0.958972 + 0.283501i \(0.908504\pi\)
\(938\) −53.2187 −0.0567364
\(939\) 0 0
\(940\) 0 0
\(941\) 595.650i 0.632996i 0.948593 + 0.316498i \(0.102507\pi\)
−0.948593 + 0.316498i \(0.897493\pi\)
\(942\) 0 0
\(943\) − 750.342i − 0.795696i
\(944\) − 611.578i − 0.647859i
\(945\) 0 0
\(946\) 231.772 0.245002
\(947\) 782.246 0.826026 0.413013 0.910725i \(-0.364476\pi\)
0.413013 + 0.910725i \(0.364476\pi\)
\(948\) 0 0
\(949\) 1039.87 1.09575
\(950\) 0 0
\(951\) 0 0
\(952\) − 118.736i − 0.124723i
\(953\) 426.708 0.447752 0.223876 0.974618i \(-0.428129\pi\)
0.223876 + 0.974618i \(0.428129\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 583.538i 0.610395i
\(957\) 0 0
\(958\) − 505.315i − 0.527469i
\(959\) 58.0200i 0.0605005i
\(960\) 0 0
\(961\) −44.6128 −0.0464234
\(962\) −171.003 −0.177758
\(963\) 0 0
\(964\) −347.211 −0.360178
\(965\) 0 0
\(966\) 0 0
\(967\) 1210.91i 1.25223i 0.779730 + 0.626116i \(0.215356\pi\)
−0.779730 + 0.626116i \(0.784644\pi\)
\(968\) 514.949 0.531973
\(969\) 0 0
\(970\) 0 0
\(971\) 1193.69i 1.22934i 0.788784 + 0.614670i \(0.210711\pi\)
−0.788784 + 0.614670i \(0.789289\pi\)
\(972\) 0 0
\(973\) − 133.903i − 0.137619i
\(974\) − 393.008i − 0.403499i
\(975\) 0 0
\(976\) −403.553 −0.413476
\(977\) −909.475 −0.930886 −0.465443 0.885078i \(-0.654105\pi\)
−0.465443 + 0.885078i \(0.654105\pi\)
\(978\) 0 0
\(979\) −772.868 −0.789447
\(980\) 0 0
\(981\) 0 0
\(982\) − 507.268i − 0.516566i
\(983\) 1560.88 1.58788 0.793938 0.607999i \(-0.208028\pi\)
0.793938 + 0.607999i \(0.208028\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.16160i 0.00523489i
\(987\) 0 0
\(988\) 458.614i 0.464184i
\(989\) − 762.782i − 0.771265i
\(990\) 0 0
\(991\) −1692.63 −1.70800 −0.854001 0.520271i \(-0.825831\pi\)
−0.854001 + 0.520271i \(0.825831\pi\)
\(992\) 936.675 0.944229
\(993\) 0 0
\(994\) 71.6327 0.0720651
\(995\) 0 0
\(996\) 0 0
\(997\) − 16.5744i − 0.0166243i −0.999965 0.00831213i \(-0.997354\pi\)
0.999965 0.00831213i \(-0.00264586\pi\)
\(998\) −643.591 −0.644881
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.d.b.224.5 8
3.2 odd 2 inner 225.3.d.b.224.3 8
4.3 odd 2 3600.3.c.i.449.6 8
5.2 odd 4 45.3.c.a.26.3 yes 4
5.3 odd 4 225.3.c.c.26.2 4
5.4 even 2 inner 225.3.d.b.224.4 8
12.11 even 2 3600.3.c.i.449.5 8
15.2 even 4 45.3.c.a.26.2 4
15.8 even 4 225.3.c.c.26.3 4
15.14 odd 2 inner 225.3.d.b.224.6 8
20.3 even 4 3600.3.l.v.1601.2 4
20.7 even 4 720.3.l.a.161.4 4
20.19 odd 2 3600.3.c.i.449.4 8
40.27 even 4 2880.3.l.c.1601.2 4
40.37 odd 4 2880.3.l.g.1601.1 4
45.2 even 12 405.3.i.d.296.2 8
45.7 odd 12 405.3.i.d.296.3 8
45.22 odd 12 405.3.i.d.26.2 8
45.32 even 12 405.3.i.d.26.3 8
60.23 odd 4 3600.3.l.v.1601.1 4
60.47 odd 4 720.3.l.a.161.2 4
60.59 even 2 3600.3.c.i.449.3 8
120.77 even 4 2880.3.l.g.1601.3 4
120.107 odd 4 2880.3.l.c.1601.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.c.a.26.2 4 15.2 even 4
45.3.c.a.26.3 yes 4 5.2 odd 4
225.3.c.c.26.2 4 5.3 odd 4
225.3.c.c.26.3 4 15.8 even 4
225.3.d.b.224.3 8 3.2 odd 2 inner
225.3.d.b.224.4 8 5.4 even 2 inner
225.3.d.b.224.5 8 1.1 even 1 trivial
225.3.d.b.224.6 8 15.14 odd 2 inner
405.3.i.d.26.2 8 45.22 odd 12
405.3.i.d.26.3 8 45.32 even 12
405.3.i.d.296.2 8 45.2 even 12
405.3.i.d.296.3 8 45.7 odd 12
720.3.l.a.161.2 4 60.47 odd 4
720.3.l.a.161.4 4 20.7 even 4
2880.3.l.c.1601.2 4 40.27 even 4
2880.3.l.c.1601.4 4 120.107 odd 4
2880.3.l.g.1601.1 4 40.37 odd 4
2880.3.l.g.1601.3 4 120.77 even 4
3600.3.c.i.449.3 8 60.59 even 2
3600.3.c.i.449.4 8 20.19 odd 2
3600.3.c.i.449.5 8 12.11 even 2
3600.3.c.i.449.6 8 4.3 odd 2
3600.3.l.v.1601.1 4 60.23 odd 4
3600.3.l.v.1601.2 4 20.3 even 4