Properties

Label 225.3.d.b.224.1
Level $225$
Weight $3$
Character 225.224
Analytic conductor $6.131$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(224,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.224");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 224.1
Root \(-0.437016 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 225.224
Dual form 225.3.d.b.224.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.65028 q^{2} +9.32456 q^{4} -7.16228i q^{7} -19.4361 q^{8} -5.42736i q^{11} +9.81139i q^{13} +26.1443i q^{14} +33.6491 q^{16} +12.2317 q^{17} -6.32456 q^{19} +19.8114i q^{22} -12.0394 q^{23} -35.8143i q^{26} -66.7851i q^{28} -44.9881i q^{29} -58.2719 q^{31} -45.0842 q^{32} -44.6491 q^{34} -66.4605i q^{37} +23.0864 q^{38} -16.4743i q^{41} -43.6228i q^{43} -50.6077i q^{44} +43.9473 q^{46} -40.0570 q^{47} -2.29822 q^{49} +91.4868i q^{52} +13.2242 q^{53} +139.207i q^{56} +164.219i q^{58} +25.1519i q^{59} -35.6754 q^{61} +212.709 q^{62} +29.9737 q^{64} -26.7018i q^{67} +114.055 q^{68} -92.7301i q^{71} +60.3246i q^{73} +242.600i q^{74} -58.9737 q^{76} -38.8723 q^{77} +96.2192 q^{79} +60.1359i q^{82} -79.1215 q^{83} +159.235i q^{86} +105.487i q^{88} -107.443i q^{89} +70.2719 q^{91} -112.262 q^{92} +146.219 q^{94} +1.07900i q^{97} +8.38915 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{4} + 168 q^{16} - 112 q^{31} - 256 q^{34} + 48 q^{46} + 184 q^{49} - 336 q^{61} + 88 q^{64} - 320 q^{76} + 112 q^{79} + 208 q^{91} + 512 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.65028 −1.82514 −0.912570 0.408920i \(-0.865906\pi\)
−0.912570 + 0.408920i \(0.865906\pi\)
\(3\) 0 0
\(4\) 9.32456 2.33114
\(5\) 0 0
\(6\) 0 0
\(7\) − 7.16228i − 1.02318i −0.859229 0.511591i \(-0.829056\pi\)
0.859229 0.511591i \(-0.170944\pi\)
\(8\) −19.4361 −2.42952
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.42736i − 0.493396i −0.969092 0.246698i \(-0.920654\pi\)
0.969092 0.246698i \(-0.0793456\pi\)
\(12\) 0 0
\(13\) 9.81139i 0.754722i 0.926066 + 0.377361i \(0.123168\pi\)
−0.926066 + 0.377361i \(0.876832\pi\)
\(14\) 26.1443i 1.86745i
\(15\) 0 0
\(16\) 33.6491 2.10307
\(17\) 12.2317 0.719511 0.359756 0.933047i \(-0.382860\pi\)
0.359756 + 0.933047i \(0.382860\pi\)
\(18\) 0 0
\(19\) −6.32456 −0.332871 −0.166436 0.986052i \(-0.553226\pi\)
−0.166436 + 0.986052i \(0.553226\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 19.8114i 0.900518i
\(23\) −12.0394 −0.523454 −0.261727 0.965142i \(-0.584292\pi\)
−0.261727 + 0.965142i \(0.584292\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 35.8143i − 1.37747i
\(27\) 0 0
\(28\) − 66.7851i − 2.38518i
\(29\) − 44.9881i − 1.55131i −0.631155 0.775657i \(-0.717419\pi\)
0.631155 0.775657i \(-0.282581\pi\)
\(30\) 0 0
\(31\) −58.2719 −1.87974 −0.939869 0.341535i \(-0.889053\pi\)
−0.939869 + 0.341535i \(0.889053\pi\)
\(32\) −45.0842 −1.40888
\(33\) 0 0
\(34\) −44.6491 −1.31321
\(35\) 0 0
\(36\) 0 0
\(37\) − 66.4605i − 1.79623i −0.439761 0.898115i \(-0.644937\pi\)
0.439761 0.898115i \(-0.355063\pi\)
\(38\) 23.0864 0.607537
\(39\) 0 0
\(40\) 0 0
\(41\) − 16.4743i − 0.401813i −0.979610 0.200906i \(-0.935611\pi\)
0.979610 0.200906i \(-0.0643887\pi\)
\(42\) 0 0
\(43\) − 43.6228i − 1.01448i −0.861804 0.507242i \(-0.830665\pi\)
0.861804 0.507242i \(-0.169335\pi\)
\(44\) − 50.6077i − 1.15018i
\(45\) 0 0
\(46\) 43.9473 0.955377
\(47\) −40.0570 −0.852276 −0.426138 0.904658i \(-0.640126\pi\)
−0.426138 + 0.904658i \(0.640126\pi\)
\(48\) 0 0
\(49\) −2.29822 −0.0469025
\(50\) 0 0
\(51\) 0 0
\(52\) 91.4868i 1.75936i
\(53\) 13.2242 0.249512 0.124756 0.992187i \(-0.460185\pi\)
0.124756 + 0.992187i \(0.460185\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 139.207i 2.48584i
\(57\) 0 0
\(58\) 164.219i 2.83137i
\(59\) 25.1519i 0.426303i 0.977019 + 0.213151i \(0.0683728\pi\)
−0.977019 + 0.213151i \(0.931627\pi\)
\(60\) 0 0
\(61\) −35.6754 −0.584843 −0.292422 0.956289i \(-0.594461\pi\)
−0.292422 + 0.956289i \(0.594461\pi\)
\(62\) 212.709 3.43079
\(63\) 0 0
\(64\) 29.9737 0.468339
\(65\) 0 0
\(66\) 0 0
\(67\) − 26.7018i − 0.398534i −0.979945 0.199267i \(-0.936144\pi\)
0.979945 0.199267i \(-0.0638561\pi\)
\(68\) 114.055 1.67728
\(69\) 0 0
\(70\) 0 0
\(71\) − 92.7301i − 1.30606i −0.757333 0.653029i \(-0.773498\pi\)
0.757333 0.653029i \(-0.226502\pi\)
\(72\) 0 0
\(73\) 60.3246i 0.826364i 0.910649 + 0.413182i \(0.135583\pi\)
−0.910649 + 0.413182i \(0.864417\pi\)
\(74\) 242.600i 3.27837i
\(75\) 0 0
\(76\) −58.9737 −0.775969
\(77\) −38.8723 −0.504834
\(78\) 0 0
\(79\) 96.2192 1.21796 0.608982 0.793184i \(-0.291578\pi\)
0.608982 + 0.793184i \(0.291578\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 60.1359i 0.733365i
\(83\) −79.1215 −0.953271 −0.476635 0.879101i \(-0.658144\pi\)
−0.476635 + 0.879101i \(0.658144\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 159.235i 1.85157i
\(87\) 0 0
\(88\) 105.487i 1.19871i
\(89\) − 107.443i − 1.20722i −0.797278 0.603612i \(-0.793728\pi\)
0.797278 0.603612i \(-0.206272\pi\)
\(90\) 0 0
\(91\) 70.2719 0.772219
\(92\) −112.262 −1.22024
\(93\) 0 0
\(94\) 146.219 1.55552
\(95\) 0 0
\(96\) 0 0
\(97\) 1.07900i 0.0111237i 0.999985 + 0.00556187i \(0.00177041\pi\)
−0.999985 + 0.00556187i \(0.998230\pi\)
\(98\) 8.38915 0.0856036
\(99\) 0 0
\(100\) 0 0
\(101\) 170.282i 1.68596i 0.537942 + 0.842982i \(0.319202\pi\)
−0.537942 + 0.842982i \(0.680798\pi\)
\(102\) 0 0
\(103\) − 128.460i − 1.24719i −0.781748 0.623595i \(-0.785672\pi\)
0.781748 0.623595i \(-0.214328\pi\)
\(104\) − 190.695i − 1.83361i
\(105\) 0 0
\(106\) −48.2719 −0.455395
\(107\) −76.3675 −0.713715 −0.356858 0.934159i \(-0.616152\pi\)
−0.356858 + 0.934159i \(0.616152\pi\)
\(108\) 0 0
\(109\) 13.0790 0.119991 0.0599954 0.998199i \(-0.480891\pi\)
0.0599954 + 0.998199i \(0.480891\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 241.004i − 2.15182i
\(113\) −20.7170 −0.183336 −0.0916680 0.995790i \(-0.529220\pi\)
−0.0916680 + 0.995790i \(0.529220\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 419.494i − 3.61633i
\(117\) 0 0
\(118\) − 91.8114i − 0.778063i
\(119\) − 87.6068i − 0.736191i
\(120\) 0 0
\(121\) 91.5438 0.756560
\(122\) 130.225 1.06742
\(123\) 0 0
\(124\) −543.359 −4.38193
\(125\) 0 0
\(126\) 0 0
\(127\) 38.0306i 0.299454i 0.988727 + 0.149727i \(0.0478394\pi\)
−0.988727 + 0.149727i \(0.952161\pi\)
\(128\) 70.9246 0.554098
\(129\) 0 0
\(130\) 0 0
\(131\) 83.9409i 0.640770i 0.947287 + 0.320385i \(0.103812\pi\)
−0.947287 + 0.320385i \(0.896188\pi\)
\(132\) 0 0
\(133\) 45.2982i 0.340588i
\(134\) 97.4690i 0.727381i
\(135\) 0 0
\(136\) −237.737 −1.74806
\(137\) −15.5936 −0.113822 −0.0569109 0.998379i \(-0.518125\pi\)
−0.0569109 + 0.998379i \(0.518125\pi\)
\(138\) 0 0
\(139\) −67.8420 −0.488072 −0.244036 0.969766i \(-0.578471\pi\)
−0.244036 + 0.969766i \(0.578471\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 338.491i 2.38374i
\(143\) 53.2499 0.372377
\(144\) 0 0
\(145\) 0 0
\(146\) − 220.202i − 1.50823i
\(147\) 0 0
\(148\) − 619.715i − 4.18726i
\(149\) 233.426i 1.56662i 0.621634 + 0.783308i \(0.286469\pi\)
−0.621634 + 0.783308i \(0.713531\pi\)
\(150\) 0 0
\(151\) 185.351 1.22749 0.613745 0.789505i \(-0.289662\pi\)
0.613745 + 0.789505i \(0.289662\pi\)
\(152\) 122.925 0.808716
\(153\) 0 0
\(154\) 141.895 0.921394
\(155\) 0 0
\(156\) 0 0
\(157\) 111.276i 0.708765i 0.935100 + 0.354383i \(0.115309\pi\)
−0.935100 + 0.354383i \(0.884691\pi\)
\(158\) −351.227 −2.22296
\(159\) 0 0
\(160\) 0 0
\(161\) 86.2298i 0.535589i
\(162\) 0 0
\(163\) 118.763i 0.728607i 0.931280 + 0.364304i \(0.118693\pi\)
−0.931280 + 0.364304i \(0.881307\pi\)
\(164\) − 153.616i − 0.936682i
\(165\) 0 0
\(166\) 288.816 1.73985
\(167\) −221.194 −1.32452 −0.662258 0.749276i \(-0.730402\pi\)
−0.662258 + 0.749276i \(0.730402\pi\)
\(168\) 0 0
\(169\) 72.7367 0.430394
\(170\) 0 0
\(171\) 0 0
\(172\) − 406.763i − 2.36490i
\(173\) 190.807 1.10293 0.551466 0.834198i \(-0.314069\pi\)
0.551466 + 0.834198i \(0.314069\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 182.626i − 1.03765i
\(177\) 0 0
\(178\) 392.197i 2.20335i
\(179\) − 58.1005i − 0.324584i −0.986743 0.162292i \(-0.948111\pi\)
0.986743 0.162292i \(-0.0518886\pi\)
\(180\) 0 0
\(181\) −162.921 −0.900116 −0.450058 0.892999i \(-0.648597\pi\)
−0.450058 + 0.892999i \(0.648597\pi\)
\(182\) −256.512 −1.40941
\(183\) 0 0
\(184\) 234.000 1.27174
\(185\) 0 0
\(186\) 0 0
\(187\) − 66.3858i − 0.355004i
\(188\) −373.513 −1.98677
\(189\) 0 0
\(190\) 0 0
\(191\) − 100.062i − 0.523884i −0.965084 0.261942i \(-0.915637\pi\)
0.965084 0.261942i \(-0.0843630\pi\)
\(192\) 0 0
\(193\) − 61.8947i − 0.320698i −0.987060 0.160349i \(-0.948738\pi\)
0.987060 0.160349i \(-0.0512619\pi\)
\(194\) − 3.93866i − 0.0203024i
\(195\) 0 0
\(196\) −21.4299 −0.109336
\(197\) 24.8791 0.126290 0.0631449 0.998004i \(-0.479887\pi\)
0.0631449 + 0.998004i \(0.479887\pi\)
\(198\) 0 0
\(199\) 156.491 0.786387 0.393194 0.919456i \(-0.371370\pi\)
0.393194 + 0.919456i \(0.371370\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 621.579i − 3.07712i
\(203\) −322.217 −1.58728
\(204\) 0 0
\(205\) 0 0
\(206\) 468.917i 2.27630i
\(207\) 0 0
\(208\) 330.144i 1.58723i
\(209\) 34.3256i 0.164237i
\(210\) 0 0
\(211\) 237.789 1.12696 0.563482 0.826128i \(-0.309461\pi\)
0.563482 + 0.826128i \(0.309461\pi\)
\(212\) 123.309 0.581648
\(213\) 0 0
\(214\) 278.763 1.30263
\(215\) 0 0
\(216\) 0 0
\(217\) 417.359i 1.92332i
\(218\) −47.7420 −0.219000
\(219\) 0 0
\(220\) 0 0
\(221\) 120.010i 0.543031i
\(222\) 0 0
\(223\) − 182.302i − 0.817500i −0.912646 0.408750i \(-0.865965\pi\)
0.912646 0.408750i \(-0.134035\pi\)
\(224\) 322.906i 1.44154i
\(225\) 0 0
\(226\) 75.6228 0.334614
\(227\) 406.078 1.78889 0.894444 0.447180i \(-0.147572\pi\)
0.894444 + 0.447180i \(0.147572\pi\)
\(228\) 0 0
\(229\) 27.2982 0.119206 0.0596031 0.998222i \(-0.481016\pi\)
0.0596031 + 0.998222i \(0.481016\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 874.394i 3.76894i
\(233\) 356.382 1.52954 0.764768 0.644306i \(-0.222854\pi\)
0.764768 + 0.644306i \(0.222854\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 234.530i 0.993771i
\(237\) 0 0
\(238\) 319.789i 1.34365i
\(239\) 271.690i 1.13678i 0.822760 + 0.568389i \(0.192433\pi\)
−0.822760 + 0.568389i \(0.807567\pi\)
\(240\) 0 0
\(241\) −224.438 −0.931280 −0.465640 0.884974i \(-0.654176\pi\)
−0.465640 + 0.884974i \(0.654176\pi\)
\(242\) −334.161 −1.38083
\(243\) 0 0
\(244\) −332.658 −1.36335
\(245\) 0 0
\(246\) 0 0
\(247\) − 62.0527i − 0.251225i
\(248\) 1132.58 4.56685
\(249\) 0 0
\(250\) 0 0
\(251\) − 318.775i − 1.27002i −0.772504 0.635010i \(-0.780996\pi\)
0.772504 0.635010i \(-0.219004\pi\)
\(252\) 0 0
\(253\) 65.3423i 0.258270i
\(254\) − 138.822i − 0.546545i
\(255\) 0 0
\(256\) −378.789 −1.47965
\(257\) 371.975 1.44738 0.723688 0.690128i \(-0.242446\pi\)
0.723688 + 0.690128i \(0.242446\pi\)
\(258\) 0 0
\(259\) −476.009 −1.83787
\(260\) 0 0
\(261\) 0 0
\(262\) − 306.408i − 1.16950i
\(263\) −238.549 −0.907031 −0.453515 0.891248i \(-0.649830\pi\)
−0.453515 + 0.891248i \(0.649830\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 165.351i − 0.621621i
\(267\) 0 0
\(268\) − 248.982i − 0.929038i
\(269\) − 125.871i − 0.467922i −0.972246 0.233961i \(-0.924831\pi\)
0.972246 0.233961i \(-0.0751688\pi\)
\(270\) 0 0
\(271\) −258.649 −0.954425 −0.477212 0.878788i \(-0.658353\pi\)
−0.477212 + 0.878788i \(0.658353\pi\)
\(272\) 411.585 1.51318
\(273\) 0 0
\(274\) 56.9210 0.207741
\(275\) 0 0
\(276\) 0 0
\(277\) − 227.715i − 0.822074i −0.911619 0.411037i \(-0.865167\pi\)
0.911619 0.411037i \(-0.134833\pi\)
\(278\) 247.642 0.890800
\(279\) 0 0
\(280\) 0 0
\(281\) − 241.384i − 0.859016i −0.903063 0.429508i \(-0.858687\pi\)
0.903063 0.429508i \(-0.141313\pi\)
\(282\) 0 0
\(283\) 208.333i 0.736159i 0.929794 + 0.368080i \(0.119985\pi\)
−0.929794 + 0.368080i \(0.880015\pi\)
\(284\) − 864.667i − 3.04460i
\(285\) 0 0
\(286\) −194.377 −0.679641
\(287\) −117.994 −0.411128
\(288\) 0 0
\(289\) −139.386 −0.482304
\(290\) 0 0
\(291\) 0 0
\(292\) 562.500i 1.92637i
\(293\) 201.693 0.688372 0.344186 0.938901i \(-0.388155\pi\)
0.344186 + 0.938901i \(0.388155\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1291.73i 4.36397i
\(297\) 0 0
\(298\) − 852.070i − 2.85929i
\(299\) − 118.124i − 0.395062i
\(300\) 0 0
\(301\) −312.438 −1.03800
\(302\) −676.583 −2.24034
\(303\) 0 0
\(304\) −212.816 −0.700052
\(305\) 0 0
\(306\) 0 0
\(307\) − 342.824i − 1.11669i −0.829608 0.558346i \(-0.811436\pi\)
0.829608 0.558346i \(-0.188564\pi\)
\(308\) −362.466 −1.17684
\(309\) 0 0
\(310\) 0 0
\(311\) − 217.640i − 0.699807i −0.936786 0.349903i \(-0.886214\pi\)
0.936786 0.349903i \(-0.113786\pi\)
\(312\) 0 0
\(313\) 281.895i 0.900622i 0.892872 + 0.450311i \(0.148687\pi\)
−0.892872 + 0.450311i \(0.851313\pi\)
\(314\) − 406.189i − 1.29360i
\(315\) 0 0
\(316\) 897.201 2.83925
\(317\) 15.4013 0.0485847 0.0242923 0.999705i \(-0.492267\pi\)
0.0242923 + 0.999705i \(0.492267\pi\)
\(318\) 0 0
\(319\) −244.167 −0.765412
\(320\) 0 0
\(321\) 0 0
\(322\) − 314.763i − 0.977525i
\(323\) −77.3600 −0.239505
\(324\) 0 0
\(325\) 0 0
\(326\) − 433.518i − 1.32981i
\(327\) 0 0
\(328\) 320.197i 0.976211i
\(329\) 286.899i 0.872034i
\(330\) 0 0
\(331\) 375.517 1.13449 0.567247 0.823548i \(-0.308009\pi\)
0.567247 + 0.823548i \(0.308009\pi\)
\(332\) −737.773 −2.22221
\(333\) 0 0
\(334\) 807.421 2.41743
\(335\) 0 0
\(336\) 0 0
\(337\) − 188.114i − 0.558201i −0.960262 0.279101i \(-0.909964\pi\)
0.960262 0.279101i \(-0.0900363\pi\)
\(338\) −265.509 −0.785530
\(339\) 0 0
\(340\) 0 0
\(341\) 316.262i 0.927456i
\(342\) 0 0
\(343\) − 334.491i − 0.975193i
\(344\) 847.858i 2.46470i
\(345\) 0 0
\(346\) −696.500 −2.01300
\(347\) 513.793 1.48067 0.740336 0.672237i \(-0.234666\pi\)
0.740336 + 0.672237i \(0.234666\pi\)
\(348\) 0 0
\(349\) −112.535 −0.322451 −0.161225 0.986918i \(-0.551545\pi\)
−0.161225 + 0.986918i \(0.551545\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 244.688i 0.695137i
\(353\) 428.172 1.21295 0.606475 0.795102i \(-0.292583\pi\)
0.606475 + 0.795102i \(0.292583\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 1001.86i − 2.81421i
\(357\) 0 0
\(358\) 212.083i 0.592411i
\(359\) 56.1961i 0.156535i 0.996932 + 0.0782676i \(0.0249389\pi\)
−0.996932 + 0.0782676i \(0.975061\pi\)
\(360\) 0 0
\(361\) −321.000 −0.889197
\(362\) 594.708 1.64284
\(363\) 0 0
\(364\) 655.254 1.80015
\(365\) 0 0
\(366\) 0 0
\(367\) 154.364i 0.420610i 0.977636 + 0.210305i \(0.0674456\pi\)
−0.977636 + 0.210305i \(0.932554\pi\)
\(368\) −405.116 −1.10086
\(369\) 0 0
\(370\) 0 0
\(371\) − 94.7151i − 0.255297i
\(372\) 0 0
\(373\) 557.285i 1.49406i 0.664790 + 0.747030i \(0.268521\pi\)
−0.664790 + 0.747030i \(0.731479\pi\)
\(374\) 242.327i 0.647932i
\(375\) 0 0
\(376\) 778.552 2.07062
\(377\) 441.396 1.17081
\(378\) 0 0
\(379\) −147.404 −0.388928 −0.194464 0.980910i \(-0.562297\pi\)
−0.194464 + 0.980910i \(0.562297\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 365.254i 0.956163i
\(383\) −736.619 −1.92329 −0.961644 0.274302i \(-0.911553\pi\)
−0.961644 + 0.274302i \(0.911553\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 225.933i 0.585319i
\(387\) 0 0
\(388\) 10.0612i 0.0259310i
\(389\) − 296.408i − 0.761975i −0.924580 0.380987i \(-0.875584\pi\)
0.924580 0.380987i \(-0.124416\pi\)
\(390\) 0 0
\(391\) −147.263 −0.376631
\(392\) 44.6685 0.113950
\(393\) 0 0
\(394\) −90.8157 −0.230497
\(395\) 0 0
\(396\) 0 0
\(397\) 457.057i 1.15128i 0.817704 + 0.575638i \(0.195246\pi\)
−0.817704 + 0.575638i \(0.804754\pi\)
\(398\) −571.237 −1.43527
\(399\) 0 0
\(400\) 0 0
\(401\) 391.141i 0.975415i 0.873007 + 0.487707i \(0.162167\pi\)
−0.873007 + 0.487707i \(0.837833\pi\)
\(402\) 0 0
\(403\) − 571.728i − 1.41868i
\(404\) 1587.81i 3.93022i
\(405\) 0 0
\(406\) 1176.18 2.89700
\(407\) −360.705 −0.886253
\(408\) 0 0
\(409\) 411.842 1.00695 0.503474 0.864010i \(-0.332055\pi\)
0.503474 + 0.864010i \(0.332055\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 1197.84i − 2.90737i
\(413\) 180.145 0.436186
\(414\) 0 0
\(415\) 0 0
\(416\) − 442.339i − 1.06331i
\(417\) 0 0
\(418\) − 125.298i − 0.299757i
\(419\) 653.447i 1.55954i 0.626066 + 0.779770i \(0.284664\pi\)
−0.626066 + 0.779770i \(0.715336\pi\)
\(420\) 0 0
\(421\) 125.035 0.296995 0.148497 0.988913i \(-0.452556\pi\)
0.148497 + 0.988913i \(0.452556\pi\)
\(422\) −867.998 −2.05687
\(423\) 0 0
\(424\) −257.026 −0.606194
\(425\) 0 0
\(426\) 0 0
\(427\) 255.517i 0.598401i
\(428\) −712.093 −1.66377
\(429\) 0 0
\(430\) 0 0
\(431\) − 397.208i − 0.921596i −0.887505 0.460798i \(-0.847563\pi\)
0.887505 0.460798i \(-0.152437\pi\)
\(432\) 0 0
\(433\) 560.114i 1.29357i 0.762674 + 0.646783i \(0.223886\pi\)
−0.762674 + 0.646783i \(0.776114\pi\)
\(434\) − 1523.48i − 3.51032i
\(435\) 0 0
\(436\) 121.956 0.279715
\(437\) 76.1441 0.174243
\(438\) 0 0
\(439\) 664.386 1.51341 0.756704 0.653758i \(-0.226809\pi\)
0.756704 + 0.653758i \(0.226809\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 438.070i − 0.991108i
\(443\) 371.305 0.838160 0.419080 0.907949i \(-0.362353\pi\)
0.419080 + 0.907949i \(0.362353\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 665.455i 1.49205i
\(447\) 0 0
\(448\) − 214.680i − 0.479196i
\(449\) − 585.471i − 1.30395i −0.758243 0.651973i \(-0.773942\pi\)
0.758243 0.651973i \(-0.226058\pi\)
\(450\) 0 0
\(451\) −89.4121 −0.198253
\(452\) −193.177 −0.427382
\(453\) 0 0
\(454\) −1482.30 −3.26497
\(455\) 0 0
\(456\) 0 0
\(457\) − 168.641i − 0.369017i −0.982831 0.184508i \(-0.940931\pi\)
0.982831 0.184508i \(-0.0590693\pi\)
\(458\) −99.6462 −0.217568
\(459\) 0 0
\(460\) 0 0
\(461\) − 298.492i − 0.647487i −0.946145 0.323744i \(-0.895058\pi\)
0.946145 0.323744i \(-0.104942\pi\)
\(462\) 0 0
\(463\) − 595.285i − 1.28571i −0.765987 0.642856i \(-0.777749\pi\)
0.765987 0.642856i \(-0.222251\pi\)
\(464\) − 1513.81i − 3.26252i
\(465\) 0 0
\(466\) −1300.89 −2.79162
\(467\) −623.655 −1.33545 −0.667725 0.744408i \(-0.732732\pi\)
−0.667725 + 0.744408i \(0.732732\pi\)
\(468\) 0 0
\(469\) −191.246 −0.407773
\(470\) 0 0
\(471\) 0 0
\(472\) − 488.855i − 1.03571i
\(473\) −236.756 −0.500542
\(474\) 0 0
\(475\) 0 0
\(476\) − 816.894i − 1.71616i
\(477\) 0 0
\(478\) − 991.745i − 2.07478i
\(479\) − 131.857i − 0.275276i −0.990483 0.137638i \(-0.956049\pi\)
0.990483 0.137638i \(-0.0439510\pi\)
\(480\) 0 0
\(481\) 652.070 1.35565
\(482\) 819.263 1.69972
\(483\) 0 0
\(484\) 853.605 1.76365
\(485\) 0 0
\(486\) 0 0
\(487\) − 41.8028i − 0.0858375i −0.999079 0.0429187i \(-0.986334\pi\)
0.999079 0.0429187i \(-0.0136657\pi\)
\(488\) 693.392 1.42089
\(489\) 0 0
\(490\) 0 0
\(491\) 178.817i 0.364189i 0.983281 + 0.182095i \(0.0582877\pi\)
−0.983281 + 0.182095i \(0.941712\pi\)
\(492\) 0 0
\(493\) − 550.280i − 1.11619i
\(494\) 226.510i 0.458522i
\(495\) 0 0
\(496\) −1960.80 −3.95322
\(497\) −664.159 −1.33634
\(498\) 0 0
\(499\) 39.0961 0.0783489 0.0391744 0.999232i \(-0.487527\pi\)
0.0391744 + 0.999232i \(0.487527\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1163.62i 2.31796i
\(503\) 578.698 1.15049 0.575247 0.817980i \(-0.304906\pi\)
0.575247 + 0.817980i \(0.304906\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 238.518i − 0.471379i
\(507\) 0 0
\(508\) 354.619i 0.698068i
\(509\) 355.743i 0.698905i 0.936954 + 0.349453i \(0.113632\pi\)
−0.936954 + 0.349453i \(0.886368\pi\)
\(510\) 0 0
\(511\) 432.061 0.845521
\(512\) 1098.99 2.14646
\(513\) 0 0
\(514\) −1357.81 −2.64166
\(515\) 0 0
\(516\) 0 0
\(517\) 217.404i 0.420510i
\(518\) 1737.57 3.35437
\(519\) 0 0
\(520\) 0 0
\(521\) 810.952i 1.55653i 0.627936 + 0.778265i \(0.283900\pi\)
−0.627936 + 0.778265i \(0.716100\pi\)
\(522\) 0 0
\(523\) 720.483i 1.37760i 0.724953 + 0.688798i \(0.241861\pi\)
−0.724953 + 0.688798i \(0.758139\pi\)
\(524\) 782.711i 1.49372i
\(525\) 0 0
\(526\) 870.772 1.65546
\(527\) −712.764 −1.35249
\(528\) 0 0
\(529\) −384.052 −0.725996
\(530\) 0 0
\(531\) 0 0
\(532\) 422.386i 0.793958i
\(533\) 161.636 0.303257
\(534\) 0 0
\(535\) 0 0
\(536\) 518.979i 0.968245i
\(537\) 0 0
\(538\) 459.465i 0.854024i
\(539\) 12.4733i 0.0231415i
\(540\) 0 0
\(541\) 347.149 0.641680 0.320840 0.947133i \(-0.396035\pi\)
0.320840 + 0.947133i \(0.396035\pi\)
\(542\) 944.142 1.74196
\(543\) 0 0
\(544\) −551.456 −1.01371
\(545\) 0 0
\(546\) 0 0
\(547\) 720.833i 1.31779i 0.752234 + 0.658896i \(0.228976\pi\)
−0.752234 + 0.658896i \(0.771024\pi\)
\(548\) −145.403 −0.265334
\(549\) 0 0
\(550\) 0 0
\(551\) 284.530i 0.516388i
\(552\) 0 0
\(553\) − 689.149i − 1.24620i
\(554\) 831.222i 1.50040i
\(555\) 0 0
\(556\) −632.596 −1.13776
\(557\) 429.102 0.770380 0.385190 0.922837i \(-0.374136\pi\)
0.385190 + 0.922837i \(0.374136\pi\)
\(558\) 0 0
\(559\) 428.000 0.765653
\(560\) 0 0
\(561\) 0 0
\(562\) 881.118i 1.56783i
\(563\) −670.820 −1.19151 −0.595755 0.803166i \(-0.703147\pi\)
−0.595755 + 0.803166i \(0.703147\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 760.474i − 1.34359i
\(567\) 0 0
\(568\) 1802.31i 3.17309i
\(569\) 368.663i 0.647914i 0.946072 + 0.323957i \(0.105013\pi\)
−0.946072 + 0.323957i \(0.894987\pi\)
\(570\) 0 0
\(571\) 124.289 0.217669 0.108834 0.994060i \(-0.465288\pi\)
0.108834 + 0.994060i \(0.465288\pi\)
\(572\) 496.532 0.868063
\(573\) 0 0
\(574\) 430.710 0.750366
\(575\) 0 0
\(576\) 0 0
\(577\) − 504.236i − 0.873893i −0.899487 0.436947i \(-0.856060\pi\)
0.899487 0.436947i \(-0.143940\pi\)
\(578\) 508.797 0.880272
\(579\) 0 0
\(580\) 0 0
\(581\) 566.690i 0.975370i
\(582\) 0 0
\(583\) − 71.7722i − 0.123108i
\(584\) − 1172.48i − 2.00766i
\(585\) 0 0
\(586\) −736.236 −1.25638
\(587\) −39.2256 −0.0668238 −0.0334119 0.999442i \(-0.510637\pi\)
−0.0334119 + 0.999442i \(0.510637\pi\)
\(588\) 0 0
\(589\) 368.544 0.625711
\(590\) 0 0
\(591\) 0 0
\(592\) − 2236.34i − 3.77760i
\(593\) −621.670 −1.04835 −0.524174 0.851611i \(-0.675626\pi\)
−0.524174 + 0.851611i \(0.675626\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2176.59i 3.65200i
\(597\) 0 0
\(598\) 431.184i 0.721044i
\(599\) − 1119.77i − 1.86940i −0.355436 0.934701i \(-0.615668\pi\)
0.355436 0.934701i \(-0.384332\pi\)
\(600\) 0 0
\(601\) −323.789 −0.538751 −0.269375 0.963035i \(-0.586817\pi\)
−0.269375 + 0.963035i \(0.586817\pi\)
\(602\) 1140.49 1.89450
\(603\) 0 0
\(604\) 1728.31 2.86145
\(605\) 0 0
\(606\) 0 0
\(607\) − 1025.63i − 1.68966i −0.535031 0.844832i \(-0.679700\pi\)
0.535031 0.844832i \(-0.320300\pi\)
\(608\) 285.138 0.468976
\(609\) 0 0
\(610\) 0 0
\(611\) − 393.014i − 0.643232i
\(612\) 0 0
\(613\) 904.153i 1.47496i 0.675367 + 0.737482i \(0.263985\pi\)
−0.675367 + 0.737482i \(0.736015\pi\)
\(614\) 1251.40i 2.03812i
\(615\) 0 0
\(616\) 755.526 1.22650
\(617\) −710.716 −1.15189 −0.575945 0.817488i \(-0.695366\pi\)
−0.575945 + 0.817488i \(0.695366\pi\)
\(618\) 0 0
\(619\) 583.737 0.943032 0.471516 0.881858i \(-0.343707\pi\)
0.471516 + 0.881858i \(0.343707\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 794.447i 1.27725i
\(623\) −769.537 −1.23521
\(624\) 0 0
\(625\) 0 0
\(626\) − 1028.99i − 1.64376i
\(627\) 0 0
\(628\) 1037.60i 1.65223i
\(629\) − 812.924i − 1.29241i
\(630\) 0 0
\(631\) −20.0968 −0.0318491 −0.0159246 0.999873i \(-0.505069\pi\)
−0.0159246 + 0.999873i \(0.505069\pi\)
\(632\) −1870.13 −2.95906
\(633\) 0 0
\(634\) −56.2192 −0.0886738
\(635\) 0 0
\(636\) 0 0
\(637\) − 22.5487i − 0.0353983i
\(638\) 891.277 1.39699
\(639\) 0 0
\(640\) 0 0
\(641\) 341.607i 0.532928i 0.963845 + 0.266464i \(0.0858553\pi\)
−0.963845 + 0.266464i \(0.914145\pi\)
\(642\) 0 0
\(643\) − 469.693i − 0.730471i −0.930915 0.365235i \(-0.880989\pi\)
0.930915 0.365235i \(-0.119011\pi\)
\(644\) 804.054i 1.24853i
\(645\) 0 0
\(646\) 282.386 0.437130
\(647\) −572.099 −0.884234 −0.442117 0.896957i \(-0.645772\pi\)
−0.442117 + 0.896957i \(0.645772\pi\)
\(648\) 0 0
\(649\) 136.508 0.210336
\(650\) 0 0
\(651\) 0 0
\(652\) 1107.41i 1.69848i
\(653\) −213.540 −0.327014 −0.163507 0.986542i \(-0.552281\pi\)
−0.163507 + 0.986542i \(0.552281\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 554.347i − 0.845040i
\(657\) 0 0
\(658\) − 1047.26i − 1.59158i
\(659\) 420.983i 0.638820i 0.947617 + 0.319410i \(0.103485\pi\)
−0.947617 + 0.319410i \(0.896515\pi\)
\(660\) 0 0
\(661\) 434.272 0.656992 0.328496 0.944505i \(-0.393458\pi\)
0.328496 + 0.944505i \(0.393458\pi\)
\(662\) −1370.74 −2.07061
\(663\) 0 0
\(664\) 1537.81 2.31599
\(665\) 0 0
\(666\) 0 0
\(667\) 541.631i 0.812041i
\(668\) −2062.54 −3.08763
\(669\) 0 0
\(670\) 0 0
\(671\) 193.623i 0.288560i
\(672\) 0 0
\(673\) 72.7801i 0.108143i 0.998537 + 0.0540714i \(0.0172199\pi\)
−0.998537 + 0.0540714i \(0.982780\pi\)
\(674\) 686.669i 1.01880i
\(675\) 0 0
\(676\) 678.237 1.00331
\(677\) 172.106 0.254219 0.127109 0.991889i \(-0.459430\pi\)
0.127109 + 0.991889i \(0.459430\pi\)
\(678\) 0 0
\(679\) 7.72811 0.0113816
\(680\) 0 0
\(681\) 0 0
\(682\) − 1154.45i − 1.69274i
\(683\) 792.592 1.16046 0.580228 0.814454i \(-0.302963\pi\)
0.580228 + 0.814454i \(0.302963\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1220.99i 1.77986i
\(687\) 0 0
\(688\) − 1467.87i − 2.13353i
\(689\) 129.747i 0.188313i
\(690\) 0 0
\(691\) 154.851 0.224097 0.112049 0.993703i \(-0.464259\pi\)
0.112049 + 0.993703i \(0.464259\pi\)
\(692\) 1779.19 2.57109
\(693\) 0 0
\(694\) −1875.49 −2.70244
\(695\) 0 0
\(696\) 0 0
\(697\) − 201.509i − 0.289109i
\(698\) 410.785 0.588518
\(699\) 0 0
\(700\) 0 0
\(701\) − 950.544i − 1.35598i −0.735070 0.677991i \(-0.762851\pi\)
0.735070 0.677991i \(-0.237149\pi\)
\(702\) 0 0
\(703\) 420.333i 0.597913i
\(704\) − 162.678i − 0.231076i
\(705\) 0 0
\(706\) −1562.95 −2.21381
\(707\) 1219.61 1.72505
\(708\) 0 0
\(709\) −390.350 −0.550564 −0.275282 0.961363i \(-0.588771\pi\)
−0.275282 + 0.961363i \(0.588771\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2088.28i 2.93297i
\(713\) 701.561 0.983956
\(714\) 0 0
\(715\) 0 0
\(716\) − 541.762i − 0.756650i
\(717\) 0 0
\(718\) − 205.132i − 0.285699i
\(719\) − 655.227i − 0.911303i −0.890158 0.455651i \(-0.849406\pi\)
0.890158 0.455651i \(-0.150594\pi\)
\(720\) 0 0
\(721\) −920.070 −1.27610
\(722\) 1171.74 1.62291
\(723\) 0 0
\(724\) −1519.17 −2.09830
\(725\) 0 0
\(726\) 0 0
\(727\) − 1424.25i − 1.95908i −0.201254 0.979539i \(-0.564502\pi\)
0.201254 0.979539i \(-0.435498\pi\)
\(728\) −1365.81 −1.87612
\(729\) 0 0
\(730\) 0 0
\(731\) − 533.580i − 0.729932i
\(732\) 0 0
\(733\) − 946.749i − 1.29161i −0.763503 0.645805i \(-0.776522\pi\)
0.763503 0.645805i \(-0.223478\pi\)
\(734\) − 563.471i − 0.767672i
\(735\) 0 0
\(736\) 542.789 0.737485
\(737\) −144.920 −0.196635
\(738\) 0 0
\(739\) −591.429 −0.800310 −0.400155 0.916447i \(-0.631044\pi\)
−0.400155 + 0.916447i \(0.631044\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 345.737i 0.465952i
\(743\) 732.202 0.985467 0.492734 0.870180i \(-0.335998\pi\)
0.492734 + 0.870180i \(0.335998\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 2034.25i − 2.72687i
\(747\) 0 0
\(748\) − 619.018i − 0.827564i
\(749\) 546.965i 0.730261i
\(750\) 0 0
\(751\) −215.359 −0.286764 −0.143382 0.989667i \(-0.545798\pi\)
−0.143382 + 0.989667i \(0.545798\pi\)
\(752\) −1347.88 −1.79240
\(753\) 0 0
\(754\) −1611.22 −2.13689
\(755\) 0 0
\(756\) 0 0
\(757\) − 276.258i − 0.364938i −0.983212 0.182469i \(-0.941591\pi\)
0.983212 0.182469i \(-0.0584090\pi\)
\(758\) 538.064 0.709848
\(759\) 0 0
\(760\) 0 0
\(761\) − 893.373i − 1.17395i −0.809606 0.586973i \(-0.800319\pi\)
0.809606 0.586973i \(-0.199681\pi\)
\(762\) 0 0
\(763\) − 93.6754i − 0.122773i
\(764\) − 933.033i − 1.22125i
\(765\) 0 0
\(766\) 2688.87 3.51027
\(767\) −246.775 −0.321740
\(768\) 0 0
\(769\) −284.316 −0.369722 −0.184861 0.982765i \(-0.559183\pi\)
−0.184861 + 0.982765i \(0.559183\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 577.140i − 0.747591i
\(773\) −1059.64 −1.37081 −0.685405 0.728162i \(-0.740375\pi\)
−0.685405 + 0.728162i \(0.740375\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 20.9716i − 0.0270253i
\(777\) 0 0
\(778\) 1081.97i 1.39071i
\(779\) 104.193i 0.133752i
\(780\) 0 0
\(781\) −503.280 −0.644404
\(782\) 537.550 0.687404
\(783\) 0 0
\(784\) −77.3331 −0.0986392
\(785\) 0 0
\(786\) 0 0
\(787\) 875.517i 1.11247i 0.831024 + 0.556237i \(0.187755\pi\)
−0.831024 + 0.556237i \(0.812245\pi\)
\(788\) 231.986 0.294399
\(789\) 0 0
\(790\) 0 0
\(791\) 148.381i 0.187586i
\(792\) 0 0
\(793\) − 350.026i − 0.441394i
\(794\) − 1668.39i − 2.10124i
\(795\) 0 0
\(796\) 1459.21 1.83318
\(797\) −742.449 −0.931555 −0.465777 0.884902i \(-0.654225\pi\)
−0.465777 + 0.884902i \(0.654225\pi\)
\(798\) 0 0
\(799\) −489.964 −0.613222
\(800\) 0 0
\(801\) 0 0
\(802\) − 1427.78i − 1.78027i
\(803\) 327.403 0.407725
\(804\) 0 0
\(805\) 0 0
\(806\) 2086.97i 2.58929i
\(807\) 0 0
\(808\) − 3309.63i − 4.09608i
\(809\) 113.720i 0.140568i 0.997527 + 0.0702842i \(0.0223906\pi\)
−0.997527 + 0.0702842i \(0.977609\pi\)
\(810\) 0 0
\(811\) −1466.03 −1.80769 −0.903844 0.427863i \(-0.859267\pi\)
−0.903844 + 0.427863i \(0.859267\pi\)
\(812\) −3004.53 −3.70016
\(813\) 0 0
\(814\) 1316.67 1.61754
\(815\) 0 0
\(816\) 0 0
\(817\) 275.895i 0.337692i
\(818\) −1503.34 −1.83782
\(819\) 0 0
\(820\) 0 0
\(821\) − 550.073i − 0.670003i −0.942218 0.335002i \(-0.891263\pi\)
0.942218 0.335002i \(-0.108737\pi\)
\(822\) 0 0
\(823\) 1392.51i 1.69199i 0.533187 + 0.845997i \(0.320994\pi\)
−0.533187 + 0.845997i \(0.679006\pi\)
\(824\) 2496.77i 3.03007i
\(825\) 0 0
\(826\) −657.579 −0.796100
\(827\) 955.922 1.15589 0.577945 0.816075i \(-0.303855\pi\)
0.577945 + 0.816075i \(0.303855\pi\)
\(828\) 0 0
\(829\) 1652.69 1.99360 0.996798 0.0799552i \(-0.0254777\pi\)
0.996798 + 0.0799552i \(0.0254777\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 294.083i 0.353465i
\(833\) −28.1111 −0.0337469
\(834\) 0 0
\(835\) 0 0
\(836\) 320.071i 0.382860i
\(837\) 0 0
\(838\) − 2385.27i − 2.84638i
\(839\) − 1568.11i − 1.86903i −0.355927 0.934514i \(-0.615835\pi\)
0.355927 0.934514i \(-0.384165\pi\)
\(840\) 0 0
\(841\) −1182.93 −1.40657
\(842\) −456.413 −0.542058
\(843\) 0 0
\(844\) 2217.28 2.62711
\(845\) 0 0
\(846\) 0 0
\(847\) − 655.662i − 0.774099i
\(848\) 444.981 0.524742
\(849\) 0 0
\(850\) 0 0
\(851\) 800.147i 0.940243i
\(852\) 0 0
\(853\) − 651.232i − 0.763461i −0.924274 0.381730i \(-0.875328\pi\)
0.924274 0.381730i \(-0.124672\pi\)
\(854\) − 932.711i − 1.09217i
\(855\) 0 0
\(856\) 1484.29 1.73398
\(857\) 299.131 0.349044 0.174522 0.984653i \(-0.444162\pi\)
0.174522 + 0.984653i \(0.444162\pi\)
\(858\) 0 0
\(859\) −1095.72 −1.27558 −0.637788 0.770212i \(-0.720150\pi\)
−0.637788 + 0.770212i \(0.720150\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1449.92i 1.68204i
\(863\) −1221.95 −1.41593 −0.707965 0.706247i \(-0.750387\pi\)
−0.707965 + 0.706247i \(0.750387\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 2044.57i − 2.36094i
\(867\) 0 0
\(868\) 3891.69i 4.48352i
\(869\) − 522.216i − 0.600939i
\(870\) 0 0
\(871\) 261.982 0.300782
\(872\) −254.205 −0.291520
\(873\) 0 0
\(874\) −277.947 −0.318018
\(875\) 0 0
\(876\) 0 0
\(877\) − 766.399i − 0.873887i −0.899489 0.436944i \(-0.856061\pi\)
0.899489 0.436944i \(-0.143939\pi\)
\(878\) −2425.20 −2.76218
\(879\) 0 0
\(880\) 0 0
\(881\) − 310.097i − 0.351983i −0.984392 0.175992i \(-0.943687\pi\)
0.984392 0.175992i \(-0.0563132\pi\)
\(882\) 0 0
\(883\) − 122.236i − 0.138433i −0.997602 0.0692165i \(-0.977950\pi\)
0.997602 0.0692165i \(-0.0220499\pi\)
\(884\) 1119.04i 1.26588i
\(885\) 0 0
\(886\) −1355.37 −1.52976
\(887\) 265.444 0.299261 0.149630 0.988742i \(-0.452192\pi\)
0.149630 + 0.988742i \(0.452192\pi\)
\(888\) 0 0
\(889\) 272.386 0.306396
\(890\) 0 0
\(891\) 0 0
\(892\) − 1699.89i − 1.90571i
\(893\) 253.343 0.283698
\(894\) 0 0
\(895\) 0 0
\(896\) − 507.981i − 0.566944i
\(897\) 0 0
\(898\) 2137.14i 2.37988i
\(899\) 2621.54i 2.91606i
\(900\) 0 0
\(901\) 161.754 0.179527
\(902\) 326.379 0.361840
\(903\) 0 0
\(904\) 402.658 0.445418
\(905\) 0 0
\(906\) 0 0
\(907\) − 672.622i − 0.741590i −0.928715 0.370795i \(-0.879085\pi\)
0.928715 0.370795i \(-0.120915\pi\)
\(908\) 3786.49 4.17015
\(909\) 0 0
\(910\) 0 0
\(911\) 1402.48i 1.53949i 0.638350 + 0.769746i \(0.279617\pi\)
−0.638350 + 0.769746i \(0.720383\pi\)
\(912\) 0 0
\(913\) 429.421i 0.470340i
\(914\) 615.586i 0.673507i
\(915\) 0 0
\(916\) 254.544 0.277886
\(917\) 601.208 0.655625
\(918\) 0 0
\(919\) 338.255 0.368068 0.184034 0.982920i \(-0.441084\pi\)
0.184034 + 0.982920i \(0.441084\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1089.58i 1.18176i
\(923\) 909.811 0.985711
\(924\) 0 0
\(925\) 0 0
\(926\) 2172.96i 2.34661i
\(927\) 0 0
\(928\) 2028.25i 2.18562i
\(929\) − 148.207i − 0.159533i −0.996814 0.0797667i \(-0.974582\pi\)
0.996814 0.0797667i \(-0.0254175\pi\)
\(930\) 0 0
\(931\) 14.5352 0.0156125
\(932\) 3323.10 3.56556
\(933\) 0 0
\(934\) 2276.52 2.43738
\(935\) 0 0
\(936\) 0 0
\(937\) 1416.72i 1.51197i 0.654587 + 0.755987i \(0.272843\pi\)
−0.654587 + 0.755987i \(0.727157\pi\)
\(938\) 698.100 0.744243
\(939\) 0 0
\(940\) 0 0
\(941\) − 1398.92i − 1.48663i −0.668939 0.743317i \(-0.733251\pi\)
0.668939 0.743317i \(-0.266749\pi\)
\(942\) 0 0
\(943\) 198.342i 0.210330i
\(944\) 846.338i 0.896544i
\(945\) 0 0
\(946\) 864.228 0.913560
\(947\) 1050.57 1.10937 0.554686 0.832060i \(-0.312839\pi\)
0.554686 + 0.832060i \(0.312839\pi\)
\(948\) 0 0
\(949\) −591.868 −0.623675
\(950\) 0 0
\(951\) 0 0
\(952\) 1702.74i 1.78859i
\(953\) 551.928 0.579148 0.289574 0.957156i \(-0.406486\pi\)
0.289574 + 0.957156i \(0.406486\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 2533.39i 2.64999i
\(957\) 0 0
\(958\) 481.315i 0.502417i
\(959\) 111.686i 0.116461i
\(960\) 0 0
\(961\) 2434.61 2.53342
\(962\) −2380.24 −2.47426
\(963\) 0 0
\(964\) −2092.79 −2.17094
\(965\) 0 0
\(966\) 0 0
\(967\) 357.093i 0.369279i 0.982806 + 0.184639i \(0.0591117\pi\)
−0.982806 + 0.184639i \(0.940888\pi\)
\(968\) −1779.26 −1.83807
\(969\) 0 0
\(970\) 0 0
\(971\) 308.206i 0.317411i 0.987326 + 0.158705i \(0.0507320\pi\)
−0.987326 + 0.158705i \(0.949268\pi\)
\(972\) 0 0
\(973\) 485.903i 0.499387i
\(974\) 152.592i 0.156665i
\(975\) 0 0
\(976\) −1200.45 −1.22997
\(977\) 253.280 0.259243 0.129621 0.991564i \(-0.458624\pi\)
0.129621 + 0.991564i \(0.458624\pi\)
\(978\) 0 0
\(979\) −583.132 −0.595640
\(980\) 0 0
\(981\) 0 0
\(982\) − 652.732i − 0.664697i
\(983\) −1068.73 −1.08722 −0.543609 0.839339i \(-0.682942\pi\)
−0.543609 + 0.839339i \(0.682942\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2008.68i 2.03720i
\(987\) 0 0
\(988\) − 578.614i − 0.585641i
\(989\) 525.194i 0.531035i
\(990\) 0 0
\(991\) 280.631 0.283179 0.141590 0.989925i \(-0.454779\pi\)
0.141590 + 0.989925i \(0.454779\pi\)
\(992\) 2627.14 2.64833
\(993\) 0 0
\(994\) 2424.37 2.43900
\(995\) 0 0
\(996\) 0 0
\(997\) 356.574i 0.357647i 0.983881 + 0.178824i \(0.0572292\pi\)
−0.983881 + 0.178824i \(0.942771\pi\)
\(998\) −142.712 −0.142998
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.d.b.224.1 8
3.2 odd 2 inner 225.3.d.b.224.7 8
4.3 odd 2 3600.3.c.i.449.8 8
5.2 odd 4 45.3.c.a.26.1 4
5.3 odd 4 225.3.c.c.26.4 4
5.4 even 2 inner 225.3.d.b.224.8 8
12.11 even 2 3600.3.c.i.449.7 8
15.2 even 4 45.3.c.a.26.4 yes 4
15.8 even 4 225.3.c.c.26.1 4
15.14 odd 2 inner 225.3.d.b.224.2 8
20.3 even 4 3600.3.l.v.1601.4 4
20.7 even 4 720.3.l.a.161.1 4
20.19 odd 2 3600.3.c.i.449.2 8
40.27 even 4 2880.3.l.c.1601.3 4
40.37 odd 4 2880.3.l.g.1601.4 4
45.2 even 12 405.3.i.d.296.4 8
45.7 odd 12 405.3.i.d.296.1 8
45.22 odd 12 405.3.i.d.26.4 8
45.32 even 12 405.3.i.d.26.1 8
60.23 odd 4 3600.3.l.v.1601.3 4
60.47 odd 4 720.3.l.a.161.3 4
60.59 even 2 3600.3.c.i.449.1 8
120.77 even 4 2880.3.l.g.1601.2 4
120.107 odd 4 2880.3.l.c.1601.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.c.a.26.1 4 5.2 odd 4
45.3.c.a.26.4 yes 4 15.2 even 4
225.3.c.c.26.1 4 15.8 even 4
225.3.c.c.26.4 4 5.3 odd 4
225.3.d.b.224.1 8 1.1 even 1 trivial
225.3.d.b.224.2 8 15.14 odd 2 inner
225.3.d.b.224.7 8 3.2 odd 2 inner
225.3.d.b.224.8 8 5.4 even 2 inner
405.3.i.d.26.1 8 45.32 even 12
405.3.i.d.26.4 8 45.22 odd 12
405.3.i.d.296.1 8 45.7 odd 12
405.3.i.d.296.4 8 45.2 even 12
720.3.l.a.161.1 4 20.7 even 4
720.3.l.a.161.3 4 60.47 odd 4
2880.3.l.c.1601.1 4 120.107 odd 4
2880.3.l.c.1601.3 4 40.27 even 4
2880.3.l.g.1601.2 4 120.77 even 4
2880.3.l.g.1601.4 4 40.37 odd 4
3600.3.c.i.449.1 8 60.59 even 2
3600.3.c.i.449.2 8 20.19 odd 2
3600.3.c.i.449.7 8 12.11 even 2
3600.3.c.i.449.8 8 4.3 odd 2
3600.3.l.v.1601.3 4 60.23 odd 4
3600.3.l.v.1601.4 4 20.3 even 4