Defining parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(225, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 12 | 60 |
Cusp forms | 48 | 12 | 36 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(225, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
225.3.d.a | $4$ | $6.131$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_{3} q^{2}-2 q^{4}+9\beta_1 q^{7}-6\beta_{3} q^{8}+\cdots\) |
225.3.d.b | $8$ | $6.131$ | 8.0.40960000.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{4}q^{2}+(3-\beta _{6})q^{4}+(2\beta _{1}-\beta _{3})q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(225, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)