Properties

Label 225.3.d
Level $225$
Weight $3$
Character orbit 225.d
Rep. character $\chi_{225}(224,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $2$
Sturm bound $90$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(90\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(225, [\chi])\).

Total New Old
Modular forms 72 12 60
Cusp forms 48 12 36
Eisenstein series 24 0 24

Trace form

\( 12 q + 16 q^{4} + 152 q^{16} - 100 q^{19} - 268 q^{31} - 104 q^{34} + 72 q^{46} + 56 q^{49} - 44 q^{61} + 312 q^{64} - 120 q^{76} + 208 q^{79} + 172 q^{91} + 328 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(225, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
225.3.d.a 225.d 15.d $4$ $6.131$ \(\Q(\zeta_{8})\) None 225.3.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{2}-2 q^{4}+9\beta_1 q^{7}-6\beta_{3} q^{8}+\cdots\)
225.3.d.b 225.d 15.d $8$ $6.131$ 8.0.40960000.1 None 45.3.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{2}+(3-\beta _{6})q^{4}+(2\beta _{1}-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(225, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)