Properties

Label 225.3.c.d.26.3
Level $225$
Weight $3$
Character 225.26
Analytic conductor $6.131$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(26,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 9x^{2} - 8x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.3
Root \(0.500000 + 0.0913379i\) of defining polynomial
Character \(\chi\) \(=\) 225.26
Dual form 225.3.c.d.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575i q^{2} -3.00000 q^{4} -11.2250 q^{7} +2.64575i q^{8} -4.24264i q^{11} -11.2250 q^{13} -29.6985i q^{14} -19.0000 q^{16} +10.5830i q^{17} -20.0000 q^{19} +11.2250 q^{22} +5.29150i q^{23} -29.6985i q^{26} +33.6749 q^{28} -8.48528i q^{29} +26.0000 q^{31} -39.6863i q^{32} -28.0000 q^{34} +33.6749 q^{37} -52.9150i q^{38} +55.1543i q^{41} -22.4499 q^{43} +12.7279i q^{44} -14.0000 q^{46} -21.1660i q^{47} +77.0000 q^{49} +33.6749 q^{52} +84.6640i q^{53} -29.6985i q^{56} +22.4499 q^{58} +46.6690i q^{59} -22.0000 q^{61} +68.7895i q^{62} +29.0000 q^{64} -89.7998 q^{67} -31.7490i q^{68} +50.9117i q^{71} -67.3498 q^{73} +89.0955i q^{74} +60.0000 q^{76} +47.6235i q^{77} -14.0000 q^{79} -145.925 q^{82} -74.0810i q^{83} -59.3970i q^{86} +11.2250 q^{88} +89.0955i q^{89} +126.000 q^{91} -15.8745i q^{92} +56.0000 q^{94} +22.4499 q^{97} +203.723i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{4} - 76 q^{16} - 80 q^{19} + 104 q^{31} - 112 q^{34} - 56 q^{46} + 308 q^{49} - 88 q^{61} + 116 q^{64} + 240 q^{76} - 56 q^{79} + 504 q^{91} + 224 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.64575i 1.32288i 0.750000 + 0.661438i \(0.230053\pi\)
−0.750000 + 0.661438i \(0.769947\pi\)
\(3\) 0 0
\(4\) −3.00000 −0.750000
\(5\) 0 0
\(6\) 0 0
\(7\) −11.2250 −1.60357 −0.801784 0.597614i \(-0.796115\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(8\) 2.64575i 0.330719i
\(9\) 0 0
\(10\) 0 0
\(11\) − 4.24264i − 0.385695i −0.981229 0.192847i \(-0.938228\pi\)
0.981229 0.192847i \(-0.0617722\pi\)
\(12\) 0 0
\(13\) −11.2250 −0.863459 −0.431730 0.902003i \(-0.642097\pi\)
−0.431730 + 0.902003i \(0.642097\pi\)
\(14\) − 29.6985i − 2.12132i
\(15\) 0 0
\(16\) −19.0000 −1.18750
\(17\) 10.5830i 0.622530i 0.950323 + 0.311265i \(0.100753\pi\)
−0.950323 + 0.311265i \(0.899247\pi\)
\(18\) 0 0
\(19\) −20.0000 −1.05263 −0.526316 0.850289i \(-0.676427\pi\)
−0.526316 + 0.850289i \(0.676427\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 11.2250 0.510226
\(23\) 5.29150i 0.230065i 0.993362 + 0.115033i \(0.0366973\pi\)
−0.993362 + 0.115033i \(0.963303\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 29.6985i − 1.14225i
\(27\) 0 0
\(28\) 33.6749 1.20268
\(29\) − 8.48528i − 0.292596i −0.989241 0.146298i \(-0.953264\pi\)
0.989241 0.146298i \(-0.0467358\pi\)
\(30\) 0 0
\(31\) 26.0000 0.838710 0.419355 0.907822i \(-0.362256\pi\)
0.419355 + 0.907822i \(0.362256\pi\)
\(32\) − 39.6863i − 1.24020i
\(33\) 0 0
\(34\) −28.0000 −0.823529
\(35\) 0 0
\(36\) 0 0
\(37\) 33.6749 0.910133 0.455066 0.890457i \(-0.349616\pi\)
0.455066 + 0.890457i \(0.349616\pi\)
\(38\) − 52.9150i − 1.39250i
\(39\) 0 0
\(40\) 0 0
\(41\) 55.1543i 1.34523i 0.739994 + 0.672614i \(0.234828\pi\)
−0.739994 + 0.672614i \(0.765172\pi\)
\(42\) 0 0
\(43\) −22.4499 −0.522092 −0.261046 0.965326i \(-0.584067\pi\)
−0.261046 + 0.965326i \(0.584067\pi\)
\(44\) 12.7279i 0.289271i
\(45\) 0 0
\(46\) −14.0000 −0.304348
\(47\) − 21.1660i − 0.450341i −0.974319 0.225170i \(-0.927706\pi\)
0.974319 0.225170i \(-0.0722939\pi\)
\(48\) 0 0
\(49\) 77.0000 1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 33.6749 0.647595
\(53\) 84.6640i 1.59743i 0.601706 + 0.798717i \(0.294488\pi\)
−0.601706 + 0.798717i \(0.705512\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 29.6985i − 0.530330i
\(57\) 0 0
\(58\) 22.4499 0.387068
\(59\) 46.6690i 0.791001i 0.918466 + 0.395500i \(0.129429\pi\)
−0.918466 + 0.395500i \(0.870571\pi\)
\(60\) 0 0
\(61\) −22.0000 −0.360656 −0.180328 0.983607i \(-0.557716\pi\)
−0.180328 + 0.983607i \(0.557716\pi\)
\(62\) 68.7895i 1.10951i
\(63\) 0 0
\(64\) 29.0000 0.453125
\(65\) 0 0
\(66\) 0 0
\(67\) −89.7998 −1.34030 −0.670148 0.742228i \(-0.733769\pi\)
−0.670148 + 0.742228i \(0.733769\pi\)
\(68\) − 31.7490i − 0.466897i
\(69\) 0 0
\(70\) 0 0
\(71\) 50.9117i 0.717066i 0.933517 + 0.358533i \(0.116723\pi\)
−0.933517 + 0.358533i \(0.883277\pi\)
\(72\) 0 0
\(73\) −67.3498 −0.922600 −0.461300 0.887244i \(-0.652617\pi\)
−0.461300 + 0.887244i \(0.652617\pi\)
\(74\) 89.0955i 1.20399i
\(75\) 0 0
\(76\) 60.0000 0.789474
\(77\) 47.6235i 0.618487i
\(78\) 0 0
\(79\) −14.0000 −0.177215 −0.0886076 0.996067i \(-0.528242\pi\)
−0.0886076 + 0.996067i \(0.528242\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −145.925 −1.77957
\(83\) − 74.0810i − 0.892543i −0.894898 0.446271i \(-0.852752\pi\)
0.894898 0.446271i \(-0.147248\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 59.3970i − 0.690662i
\(87\) 0 0
\(88\) 11.2250 0.127557
\(89\) 89.0955i 1.00107i 0.865716 + 0.500536i \(0.166864\pi\)
−0.865716 + 0.500536i \(0.833136\pi\)
\(90\) 0 0
\(91\) 126.000 1.38462
\(92\) − 15.8745i − 0.172549i
\(93\) 0 0
\(94\) 56.0000 0.595745
\(95\) 0 0
\(96\) 0 0
\(97\) 22.4499 0.231443 0.115721 0.993282i \(-0.463082\pi\)
0.115721 + 0.993282i \(0.463082\pi\)
\(98\) 203.723i 2.07880i
\(99\) 0 0
\(100\) 0 0
\(101\) 135.765i 1.34420i 0.740459 + 0.672101i \(0.234608\pi\)
−0.740459 + 0.672101i \(0.765392\pi\)
\(102\) 0 0
\(103\) 56.1249 0.544902 0.272451 0.962170i \(-0.412166\pi\)
0.272451 + 0.962170i \(0.412166\pi\)
\(104\) − 29.6985i − 0.285562i
\(105\) 0 0
\(106\) −224.000 −2.11321
\(107\) 10.5830i 0.0989066i 0.998776 + 0.0494533i \(0.0157479\pi\)
−0.998776 + 0.0494533i \(0.984252\pi\)
\(108\) 0 0
\(109\) 70.0000 0.642202 0.321101 0.947045i \(-0.395947\pi\)
0.321101 + 0.947045i \(0.395947\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 213.274 1.90424
\(113\) − 137.579i − 1.21751i −0.793357 0.608757i \(-0.791668\pi\)
0.793357 0.608757i \(-0.208332\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 25.4558i 0.219447i
\(117\) 0 0
\(118\) −123.475 −1.04640
\(119\) − 118.794i − 0.998268i
\(120\) 0 0
\(121\) 103.000 0.851240
\(122\) − 58.2065i − 0.477103i
\(123\) 0 0
\(124\) −78.0000 −0.629032
\(125\) 0 0
\(126\) 0 0
\(127\) 168.375 1.32578 0.662892 0.748715i \(-0.269329\pi\)
0.662892 + 0.748715i \(0.269329\pi\)
\(128\) − 82.0183i − 0.640768i
\(129\) 0 0
\(130\) 0 0
\(131\) − 148.492i − 1.13353i −0.823880 0.566765i \(-0.808195\pi\)
0.823880 0.566765i \(-0.191805\pi\)
\(132\) 0 0
\(133\) 224.499 1.68797
\(134\) − 237.588i − 1.77304i
\(135\) 0 0
\(136\) −28.0000 −0.205882
\(137\) − 211.660i − 1.54496i −0.635036 0.772482i \(-0.719015\pi\)
0.635036 0.772482i \(-0.280985\pi\)
\(138\) 0 0
\(139\) −206.000 −1.48201 −0.741007 0.671497i \(-0.765652\pi\)
−0.741007 + 0.671497i \(0.765652\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −134.700 −0.948589
\(143\) 47.6235i 0.333032i
\(144\) 0 0
\(145\) 0 0
\(146\) − 178.191i − 1.22049i
\(147\) 0 0
\(148\) −101.025 −0.682600
\(149\) 135.765i 0.911171i 0.890192 + 0.455586i \(0.150570\pi\)
−0.890192 + 0.455586i \(0.849430\pi\)
\(150\) 0 0
\(151\) −202.000 −1.33775 −0.668874 0.743376i \(-0.733224\pi\)
−0.668874 + 0.743376i \(0.733224\pi\)
\(152\) − 52.9150i − 0.348125i
\(153\) 0 0
\(154\) −126.000 −0.818182
\(155\) 0 0
\(156\) 0 0
\(157\) −56.1249 −0.357483 −0.178742 0.983896i \(-0.557203\pi\)
−0.178742 + 0.983896i \(0.557203\pi\)
\(158\) − 37.0405i − 0.234434i
\(159\) 0 0
\(160\) 0 0
\(161\) − 59.3970i − 0.368925i
\(162\) 0 0
\(163\) 202.049 1.23957 0.619784 0.784773i \(-0.287220\pi\)
0.619784 + 0.784773i \(0.287220\pi\)
\(164\) − 165.463i − 1.00892i
\(165\) 0 0
\(166\) 196.000 1.18072
\(167\) 185.203i 1.10900i 0.832185 + 0.554499i \(0.187090\pi\)
−0.832185 + 0.554499i \(0.812910\pi\)
\(168\) 0 0
\(169\) −43.0000 −0.254438
\(170\) 0 0
\(171\) 0 0
\(172\) 67.3498 0.391569
\(173\) 21.1660i 0.122347i 0.998127 + 0.0611734i \(0.0194843\pi\)
−0.998127 + 0.0611734i \(0.980516\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 80.6102i 0.458012i
\(177\) 0 0
\(178\) −235.724 −1.32429
\(179\) − 241.831i − 1.35101i −0.737356 0.675504i \(-0.763926\pi\)
0.737356 0.675504i \(-0.236074\pi\)
\(180\) 0 0
\(181\) 74.0000 0.408840 0.204420 0.978883i \(-0.434469\pi\)
0.204420 + 0.978883i \(0.434469\pi\)
\(182\) 333.365i 1.83167i
\(183\) 0 0
\(184\) −14.0000 −0.0760870
\(185\) 0 0
\(186\) 0 0
\(187\) 44.8999 0.240106
\(188\) 63.4980i 0.337755i
\(189\) 0 0
\(190\) 0 0
\(191\) 161.220i 0.844086i 0.906576 + 0.422043i \(0.138687\pi\)
−0.906576 + 0.422043i \(0.861313\pi\)
\(192\) 0 0
\(193\) −179.600 −0.930568 −0.465284 0.885162i \(-0.654048\pi\)
−0.465284 + 0.885162i \(0.654048\pi\)
\(194\) 59.3970i 0.306170i
\(195\) 0 0
\(196\) −231.000 −1.17857
\(197\) − 37.0405i − 0.188023i −0.995571 0.0940115i \(-0.970031\pi\)
0.995571 0.0940115i \(-0.0299690\pi\)
\(198\) 0 0
\(199\) 250.000 1.25628 0.628141 0.778100i \(-0.283816\pi\)
0.628141 + 0.778100i \(0.283816\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −359.199 −1.77821
\(203\) 95.2470i 0.469197i
\(204\) 0 0
\(205\) 0 0
\(206\) 148.492i 0.720837i
\(207\) 0 0
\(208\) 213.274 1.02536
\(209\) 84.8528i 0.405994i
\(210\) 0 0
\(211\) −154.000 −0.729858 −0.364929 0.931035i \(-0.618907\pi\)
−0.364929 + 0.931035i \(0.618907\pi\)
\(212\) − 253.992i − 1.19808i
\(213\) 0 0
\(214\) −28.0000 −0.130841
\(215\) 0 0
\(216\) 0 0
\(217\) −291.849 −1.34493
\(218\) 185.203i 0.849553i
\(219\) 0 0
\(220\) 0 0
\(221\) − 118.794i − 0.537529i
\(222\) 0 0
\(223\) −392.874 −1.76177 −0.880883 0.473333i \(-0.843051\pi\)
−0.880883 + 0.473333i \(0.843051\pi\)
\(224\) 445.477i 1.98874i
\(225\) 0 0
\(226\) 364.000 1.61062
\(227\) − 21.1660i − 0.0932423i −0.998913 0.0466212i \(-0.985155\pi\)
0.998913 0.0466212i \(-0.0148454\pi\)
\(228\) 0 0
\(229\) 118.000 0.515284 0.257642 0.966240i \(-0.417055\pi\)
0.257642 + 0.966240i \(0.417055\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 22.4499 0.0967670
\(233\) − 391.571i − 1.68056i −0.542150 0.840282i \(-0.682390\pi\)
0.542150 0.840282i \(-0.317610\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 140.007i − 0.593251i
\(237\) 0 0
\(238\) 314.299 1.32058
\(239\) − 347.897i − 1.45563i −0.685771 0.727817i \(-0.740535\pi\)
0.685771 0.727817i \(-0.259465\pi\)
\(240\) 0 0
\(241\) −40.0000 −0.165975 −0.0829876 0.996551i \(-0.526446\pi\)
−0.0829876 + 0.996551i \(0.526446\pi\)
\(242\) 272.512i 1.12608i
\(243\) 0 0
\(244\) 66.0000 0.270492
\(245\) 0 0
\(246\) 0 0
\(247\) 224.499 0.908905
\(248\) 68.7895i 0.277377i
\(249\) 0 0
\(250\) 0 0
\(251\) − 241.831i − 0.963468i −0.876317 0.481734i \(-0.840007\pi\)
0.876317 0.481734i \(-0.159993\pi\)
\(252\) 0 0
\(253\) 22.4499 0.0887350
\(254\) 445.477i 1.75385i
\(255\) 0 0
\(256\) 333.000 1.30078
\(257\) 232.826i 0.905938i 0.891526 + 0.452969i \(0.149635\pi\)
−0.891526 + 0.452969i \(0.850365\pi\)
\(258\) 0 0
\(259\) −378.000 −1.45946
\(260\) 0 0
\(261\) 0 0
\(262\) 392.874 1.49952
\(263\) 164.037i 0.623713i 0.950129 + 0.311857i \(0.100951\pi\)
−0.950129 + 0.311857i \(0.899049\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 593.970i 2.23297i
\(267\) 0 0
\(268\) 269.399 1.00522
\(269\) 534.573i 1.98726i 0.112695 + 0.993630i \(0.464052\pi\)
−0.112695 + 0.993630i \(0.535948\pi\)
\(270\) 0 0
\(271\) −286.000 −1.05535 −0.527675 0.849446i \(-0.676936\pi\)
−0.527675 + 0.849446i \(0.676936\pi\)
\(272\) − 201.077i − 0.739254i
\(273\) 0 0
\(274\) 560.000 2.04380
\(275\) 0 0
\(276\) 0 0
\(277\) 190.825 0.688897 0.344449 0.938805i \(-0.388066\pi\)
0.344449 + 0.938805i \(0.388066\pi\)
\(278\) − 545.025i − 1.96052i
\(279\) 0 0
\(280\) 0 0
\(281\) − 80.6102i − 0.286869i −0.989660 0.143434i \(-0.954185\pi\)
0.989660 0.143434i \(-0.0458146\pi\)
\(282\) 0 0
\(283\) 89.7998 0.317314 0.158657 0.987334i \(-0.449284\pi\)
0.158657 + 0.987334i \(0.449284\pi\)
\(284\) − 152.735i − 0.537800i
\(285\) 0 0
\(286\) −126.000 −0.440559
\(287\) − 619.106i − 2.15716i
\(288\) 0 0
\(289\) 177.000 0.612457
\(290\) 0 0
\(291\) 0 0
\(292\) 202.049 0.691950
\(293\) 576.774i 1.96851i 0.176751 + 0.984256i \(0.443441\pi\)
−0.176751 + 0.984256i \(0.556559\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 89.0955i 0.300998i
\(297\) 0 0
\(298\) −359.199 −1.20537
\(299\) − 59.3970i − 0.198652i
\(300\) 0 0
\(301\) 252.000 0.837209
\(302\) − 534.442i − 1.76967i
\(303\) 0 0
\(304\) 380.000 1.25000
\(305\) 0 0
\(306\) 0 0
\(307\) −269.399 −0.877522 −0.438761 0.898604i \(-0.644583\pi\)
−0.438761 + 0.898604i \(0.644583\pi\)
\(308\) − 142.871i − 0.463865i
\(309\) 0 0
\(310\) 0 0
\(311\) − 59.3970i − 0.190987i −0.995430 0.0954935i \(-0.969557\pi\)
0.995430 0.0954935i \(-0.0304429\pi\)
\(312\) 0 0
\(313\) 179.600 0.573800 0.286900 0.957960i \(-0.407375\pi\)
0.286900 + 0.957960i \(0.407375\pi\)
\(314\) − 148.492i − 0.472906i
\(315\) 0 0
\(316\) 42.0000 0.132911
\(317\) 312.199i 0.984854i 0.870354 + 0.492427i \(0.163890\pi\)
−0.870354 + 0.492427i \(0.836110\pi\)
\(318\) 0 0
\(319\) −36.0000 −0.112853
\(320\) 0 0
\(321\) 0 0
\(322\) 157.150 0.488042
\(323\) − 211.660i − 0.655294i
\(324\) 0 0
\(325\) 0 0
\(326\) 534.573i 1.63979i
\(327\) 0 0
\(328\) −145.925 −0.444892
\(329\) 237.588i 0.722152i
\(330\) 0 0
\(331\) −112.000 −0.338369 −0.169184 0.985584i \(-0.554113\pi\)
−0.169184 + 0.985584i \(0.554113\pi\)
\(332\) 222.243i 0.669407i
\(333\) 0 0
\(334\) −490.000 −1.46707
\(335\) 0 0
\(336\) 0 0
\(337\) 112.250 0.333085 0.166543 0.986034i \(-0.446740\pi\)
0.166543 + 0.986034i \(0.446740\pi\)
\(338\) − 113.767i − 0.336590i
\(339\) 0 0
\(340\) 0 0
\(341\) − 110.309i − 0.323486i
\(342\) 0 0
\(343\) −314.299 −0.916324
\(344\) − 59.3970i − 0.172666i
\(345\) 0 0
\(346\) −56.0000 −0.161850
\(347\) 518.567i 1.49443i 0.664582 + 0.747215i \(0.268610\pi\)
−0.664582 + 0.747215i \(0.731390\pi\)
\(348\) 0 0
\(349\) −122.000 −0.349570 −0.174785 0.984607i \(-0.555923\pi\)
−0.174785 + 0.984607i \(0.555923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −168.375 −0.478337
\(353\) 402.154i 1.13925i 0.821906 + 0.569624i \(0.192911\pi\)
−0.821906 + 0.569624i \(0.807089\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 267.286i − 0.750804i
\(357\) 0 0
\(358\) 639.823 1.78722
\(359\) − 636.396i − 1.77269i −0.463024 0.886346i \(-0.653236\pi\)
0.463024 0.886346i \(-0.346764\pi\)
\(360\) 0 0
\(361\) 39.0000 0.108033
\(362\) 195.786i 0.540844i
\(363\) 0 0
\(364\) −378.000 −1.03846
\(365\) 0 0
\(366\) 0 0
\(367\) −684.723 −1.86573 −0.932866 0.360225i \(-0.882700\pi\)
−0.932866 + 0.360225i \(0.882700\pi\)
\(368\) − 100.539i − 0.273203i
\(369\) 0 0
\(370\) 0 0
\(371\) − 950.352i − 2.56159i
\(372\) 0 0
\(373\) −145.925 −0.391219 −0.195609 0.980682i \(-0.562668\pi\)
−0.195609 + 0.980682i \(0.562668\pi\)
\(374\) 118.794i 0.317631i
\(375\) 0 0
\(376\) 56.0000 0.148936
\(377\) 95.2470i 0.252645i
\(378\) 0 0
\(379\) −362.000 −0.955145 −0.477573 0.878592i \(-0.658483\pi\)
−0.477573 + 0.878592i \(0.658483\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −426.549 −1.11662
\(383\) − 42.3320i − 0.110527i −0.998472 0.0552637i \(-0.982400\pi\)
0.998472 0.0552637i \(-0.0176000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 475.176i − 1.23103i
\(387\) 0 0
\(388\) −67.3498 −0.173582
\(389\) − 263.044i − 0.676205i −0.941109 0.338102i \(-0.890215\pi\)
0.941109 0.338102i \(-0.109785\pi\)
\(390\) 0 0
\(391\) −56.0000 −0.143223
\(392\) 203.723i 0.519701i
\(393\) 0 0
\(394\) 98.0000 0.248731
\(395\) 0 0
\(396\) 0 0
\(397\) −33.6749 −0.0848235 −0.0424117 0.999100i \(-0.513504\pi\)
−0.0424117 + 0.999100i \(0.513504\pi\)
\(398\) 661.438i 1.66190i
\(399\) 0 0
\(400\) 0 0
\(401\) 462.448i 1.15324i 0.817014 + 0.576618i \(0.195628\pi\)
−0.817014 + 0.576618i \(0.804372\pi\)
\(402\) 0 0
\(403\) −291.849 −0.724192
\(404\) − 407.294i − 1.00815i
\(405\) 0 0
\(406\) −252.000 −0.620690
\(407\) − 142.871i − 0.351033i
\(408\) 0 0
\(409\) 82.0000 0.200489 0.100244 0.994963i \(-0.468038\pi\)
0.100244 + 0.994963i \(0.468038\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −168.375 −0.408676
\(413\) − 523.859i − 1.26842i
\(414\) 0 0
\(415\) 0 0
\(416\) 445.477i 1.07086i
\(417\) 0 0
\(418\) −224.499 −0.537080
\(419\) − 207.889i − 0.496156i −0.968740 0.248078i \(-0.920201\pi\)
0.968740 0.248078i \(-0.0797989\pi\)
\(420\) 0 0
\(421\) −490.000 −1.16390 −0.581948 0.813226i \(-0.697709\pi\)
−0.581948 + 0.813226i \(0.697709\pi\)
\(422\) − 407.446i − 0.965511i
\(423\) 0 0
\(424\) −224.000 −0.528302
\(425\) 0 0
\(426\) 0 0
\(427\) 246.949 0.578336
\(428\) − 31.7490i − 0.0741799i
\(429\) 0 0
\(430\) 0 0
\(431\) 687.308i 1.59468i 0.603529 + 0.797341i \(0.293761\pi\)
−0.603529 + 0.797341i \(0.706239\pi\)
\(432\) 0 0
\(433\) −202.049 −0.466627 −0.233314 0.972402i \(-0.574957\pi\)
−0.233314 + 0.972402i \(0.574957\pi\)
\(434\) − 772.161i − 1.77917i
\(435\) 0 0
\(436\) −210.000 −0.481651
\(437\) − 105.830i − 0.242174i
\(438\) 0 0
\(439\) −302.000 −0.687927 −0.343964 0.938983i \(-0.611770\pi\)
−0.343964 + 0.938983i \(0.611770\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 314.299 0.711084
\(443\) − 264.575i − 0.597235i −0.954373 0.298618i \(-0.903475\pi\)
0.954373 0.298618i \(-0.0965255\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 1039.45i − 2.33060i
\(447\) 0 0
\(448\) −325.524 −0.726617
\(449\) 216.375i 0.481904i 0.970537 + 0.240952i \(0.0774596\pi\)
−0.970537 + 0.240952i \(0.922540\pi\)
\(450\) 0 0
\(451\) 234.000 0.518847
\(452\) 412.737i 0.913135i
\(453\) 0 0
\(454\) 56.0000 0.123348
\(455\) 0 0
\(456\) 0 0
\(457\) 561.249 1.22812 0.614058 0.789261i \(-0.289536\pi\)
0.614058 + 0.789261i \(0.289536\pi\)
\(458\) 312.199i 0.681656i
\(459\) 0 0
\(460\) 0 0
\(461\) 237.588i 0.515375i 0.966228 + 0.257688i \(0.0829605\pi\)
−0.966228 + 0.257688i \(0.917039\pi\)
\(462\) 0 0
\(463\) 729.623 1.57586 0.787930 0.615765i \(-0.211153\pi\)
0.787930 + 0.615765i \(0.211153\pi\)
\(464\) 161.220i 0.347458i
\(465\) 0 0
\(466\) 1036.00 2.22318
\(467\) − 465.652i − 0.997114i −0.866857 0.498557i \(-0.833863\pi\)
0.866857 0.498557i \(-0.166137\pi\)
\(468\) 0 0
\(469\) 1008.00 2.14925
\(470\) 0 0
\(471\) 0 0
\(472\) −123.475 −0.261599
\(473\) 95.2470i 0.201368i
\(474\) 0 0
\(475\) 0 0
\(476\) 356.382i 0.748701i
\(477\) 0 0
\(478\) 920.448 1.92562
\(479\) 475.176i 0.992016i 0.868318 + 0.496008i \(0.165201\pi\)
−0.868318 + 0.496008i \(0.834799\pi\)
\(480\) 0 0
\(481\) −378.000 −0.785863
\(482\) − 105.830i − 0.219564i
\(483\) 0 0
\(484\) −309.000 −0.638430
\(485\) 0 0
\(486\) 0 0
\(487\) 505.124 1.03722 0.518608 0.855012i \(-0.326451\pi\)
0.518608 + 0.855012i \(0.326451\pi\)
\(488\) − 58.2065i − 0.119276i
\(489\) 0 0
\(490\) 0 0
\(491\) − 275.772i − 0.561653i −0.959759 0.280827i \(-0.909391\pi\)
0.959759 0.280827i \(-0.0906086\pi\)
\(492\) 0 0
\(493\) 89.7998 0.182150
\(494\) 593.970i 1.20237i
\(495\) 0 0
\(496\) −494.000 −0.995968
\(497\) − 571.482i − 1.14986i
\(498\) 0 0
\(499\) −368.000 −0.737475 −0.368737 0.929534i \(-0.620210\pi\)
−0.368737 + 0.929534i \(0.620210\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 639.823 1.27455
\(503\) 275.158i 0.547034i 0.961867 + 0.273517i \(0.0881870\pi\)
−0.961867 + 0.273517i \(0.911813\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 59.3970i 0.117385i
\(507\) 0 0
\(508\) −505.124 −0.994338
\(509\) − 118.794i − 0.233387i −0.993168 0.116693i \(-0.962770\pi\)
0.993168 0.116693i \(-0.0372295\pi\)
\(510\) 0 0
\(511\) 756.000 1.47945
\(512\) 552.962i 1.08000i
\(513\) 0 0
\(514\) −616.000 −1.19844
\(515\) 0 0
\(516\) 0 0
\(517\) −89.7998 −0.173694
\(518\) − 1000.09i − 1.93068i
\(519\) 0 0
\(520\) 0 0
\(521\) − 89.0955i − 0.171009i −0.996338 0.0855043i \(-0.972750\pi\)
0.996338 0.0855043i \(-0.0272501\pi\)
\(522\) 0 0
\(523\) 875.548 1.67409 0.837044 0.547136i \(-0.184282\pi\)
0.837044 + 0.547136i \(0.184282\pi\)
\(524\) 445.477i 0.850147i
\(525\) 0 0
\(526\) −434.000 −0.825095
\(527\) 275.158i 0.522122i
\(528\) 0 0
\(529\) 501.000 0.947070
\(530\) 0 0
\(531\) 0 0
\(532\) −673.498 −1.26597
\(533\) − 619.106i − 1.16155i
\(534\) 0 0
\(535\) 0 0
\(536\) − 237.588i − 0.443261i
\(537\) 0 0
\(538\) −1414.35 −2.62890
\(539\) − 326.683i − 0.606092i
\(540\) 0 0
\(541\) 434.000 0.802218 0.401109 0.916030i \(-0.368625\pi\)
0.401109 + 0.916030i \(0.368625\pi\)
\(542\) − 756.685i − 1.39610i
\(543\) 0 0
\(544\) 420.000 0.772059
\(545\) 0 0
\(546\) 0 0
\(547\) −112.250 −0.205210 −0.102605 0.994722i \(-0.532718\pi\)
−0.102605 + 0.994722i \(0.532718\pi\)
\(548\) 634.980i 1.15872i
\(549\) 0 0
\(550\) 0 0
\(551\) 169.706i 0.307996i
\(552\) 0 0
\(553\) 157.150 0.284177
\(554\) 504.874i 0.911325i
\(555\) 0 0
\(556\) 618.000 1.11151
\(557\) − 465.652i − 0.836000i −0.908447 0.418000i \(-0.862731\pi\)
0.908447 0.418000i \(-0.137269\pi\)
\(558\) 0 0
\(559\) 252.000 0.450805
\(560\) 0 0
\(561\) 0 0
\(562\) 213.274 0.379492
\(563\) 52.9150i 0.0939876i 0.998895 + 0.0469938i \(0.0149641\pi\)
−0.998895 + 0.0469938i \(0.985036\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 237.588i 0.419767i
\(567\) 0 0
\(568\) −134.700 −0.237147
\(569\) 640.639i 1.12590i 0.826490 + 0.562951i \(0.190334\pi\)
−0.826490 + 0.562951i \(0.809666\pi\)
\(570\) 0 0
\(571\) −568.000 −0.994746 −0.497373 0.867537i \(-0.665702\pi\)
−0.497373 + 0.867537i \(0.665702\pi\)
\(572\) − 142.871i − 0.249774i
\(573\) 0 0
\(574\) 1638.00 2.85366
\(575\) 0 0
\(576\) 0 0
\(577\) −67.3498 −0.116724 −0.0583621 0.998295i \(-0.518588\pi\)
−0.0583621 + 0.998295i \(0.518588\pi\)
\(578\) 468.298i 0.810204i
\(579\) 0 0
\(580\) 0 0
\(581\) 831.558i 1.43125i
\(582\) 0 0
\(583\) 359.199 0.616122
\(584\) − 178.191i − 0.305121i
\(585\) 0 0
\(586\) −1526.00 −2.60410
\(587\) 1026.55i 1.74881i 0.485197 + 0.874405i \(0.338748\pi\)
−0.485197 + 0.874405i \(0.661252\pi\)
\(588\) 0 0
\(589\) −520.000 −0.882852
\(590\) 0 0
\(591\) 0 0
\(592\) −639.823 −1.08078
\(593\) 656.146i 1.10649i 0.833020 + 0.553243i \(0.186610\pi\)
−0.833020 + 0.553243i \(0.813390\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 407.294i − 0.683378i
\(597\) 0 0
\(598\) 157.150 0.262792
\(599\) 924.896i 1.54407i 0.635582 + 0.772033i \(0.280760\pi\)
−0.635582 + 0.772033i \(0.719240\pi\)
\(600\) 0 0
\(601\) 788.000 1.31115 0.655574 0.755131i \(-0.272427\pi\)
0.655574 + 0.755131i \(0.272427\pi\)
\(602\) 666.729i 1.10752i
\(603\) 0 0
\(604\) 606.000 1.00331
\(605\) 0 0
\(606\) 0 0
\(607\) 11.2250 0.0184925 0.00924627 0.999957i \(-0.497057\pi\)
0.00924627 + 0.999957i \(0.497057\pi\)
\(608\) 793.725i 1.30547i
\(609\) 0 0
\(610\) 0 0
\(611\) 237.588i 0.388851i
\(612\) 0 0
\(613\) −572.474 −0.933888 −0.466944 0.884287i \(-0.654645\pi\)
−0.466944 + 0.884287i \(0.654645\pi\)
\(614\) − 712.764i − 1.16085i
\(615\) 0 0
\(616\) −126.000 −0.204545
\(617\) 423.320i 0.686094i 0.939318 + 0.343047i \(0.111459\pi\)
−0.939318 + 0.343047i \(0.888541\pi\)
\(618\) 0 0
\(619\) −194.000 −0.313409 −0.156704 0.987646i \(-0.550087\pi\)
−0.156704 + 0.987646i \(0.550087\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 157.150 0.252652
\(623\) − 1000.09i − 1.60529i
\(624\) 0 0
\(625\) 0 0
\(626\) 475.176i 0.759067i
\(627\) 0 0
\(628\) 168.375 0.268112
\(629\) 356.382i 0.566585i
\(630\) 0 0
\(631\) 1190.00 1.88590 0.942948 0.332941i \(-0.108041\pi\)
0.942948 + 0.332941i \(0.108041\pi\)
\(632\) − 37.0405i − 0.0586084i
\(633\) 0 0
\(634\) −826.000 −1.30284
\(635\) 0 0
\(636\) 0 0
\(637\) −864.323 −1.35686
\(638\) − 95.2470i − 0.149290i
\(639\) 0 0
\(640\) 0 0
\(641\) 708.521i 1.10534i 0.833401 + 0.552668i \(0.186390\pi\)
−0.833401 + 0.552668i \(0.813610\pi\)
\(642\) 0 0
\(643\) −651.048 −1.01252 −0.506258 0.862382i \(-0.668972\pi\)
−0.506258 + 0.862382i \(0.668972\pi\)
\(644\) 178.191i 0.276694i
\(645\) 0 0
\(646\) 560.000 0.866873
\(647\) 1058.30i 1.63570i 0.575429 + 0.817852i \(0.304835\pi\)
−0.575429 + 0.817852i \(0.695165\pi\)
\(648\) 0 0
\(649\) 198.000 0.305085
\(650\) 0 0
\(651\) 0 0
\(652\) −606.148 −0.929676
\(653\) − 470.944i − 0.721200i −0.932721 0.360600i \(-0.882572\pi\)
0.932721 0.360600i \(-0.117428\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 1047.93i − 1.59746i
\(657\) 0 0
\(658\) −628.598 −0.955317
\(659\) 80.6102i 0.122322i 0.998128 + 0.0611610i \(0.0194803\pi\)
−0.998128 + 0.0611610i \(0.980520\pi\)
\(660\) 0 0
\(661\) 170.000 0.257186 0.128593 0.991697i \(-0.458954\pi\)
0.128593 + 0.991697i \(0.458954\pi\)
\(662\) − 296.324i − 0.447620i
\(663\) 0 0
\(664\) 196.000 0.295181
\(665\) 0 0
\(666\) 0 0
\(667\) 44.8999 0.0673162
\(668\) − 555.608i − 0.831748i
\(669\) 0 0
\(670\) 0 0
\(671\) 93.3381i 0.139103i
\(672\) 0 0
\(673\) 1055.15 1.56783 0.783913 0.620870i \(-0.213221\pi\)
0.783913 + 0.620870i \(0.213221\pi\)
\(674\) 296.985i 0.440630i
\(675\) 0 0
\(676\) 129.000 0.190828
\(677\) − 830.766i − 1.22713i −0.789645 0.613564i \(-0.789735\pi\)
0.789645 0.613564i \(-0.210265\pi\)
\(678\) 0 0
\(679\) −252.000 −0.371134
\(680\) 0 0
\(681\) 0 0
\(682\) 291.849 0.427931
\(683\) 1037.13i 1.51850i 0.650800 + 0.759249i \(0.274434\pi\)
−0.650800 + 0.759249i \(0.725566\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 831.558i − 1.21218i
\(687\) 0 0
\(688\) 426.549 0.619984
\(689\) − 950.352i − 1.37932i
\(690\) 0 0
\(691\) −652.000 −0.943560 −0.471780 0.881716i \(-0.656388\pi\)
−0.471780 + 0.881716i \(0.656388\pi\)
\(692\) − 63.4980i − 0.0917602i
\(693\) 0 0
\(694\) −1372.00 −1.97695
\(695\) 0 0
\(696\) 0 0
\(697\) −583.699 −0.837444
\(698\) − 322.782i − 0.462438i
\(699\) 0 0
\(700\) 0 0
\(701\) − 763.675i − 1.08941i −0.838628 0.544704i \(-0.816642\pi\)
0.838628 0.544704i \(-0.183358\pi\)
\(702\) 0 0
\(703\) −673.498 −0.958035
\(704\) − 123.037i − 0.174768i
\(705\) 0 0
\(706\) −1064.00 −1.50708
\(707\) − 1523.95i − 2.15552i
\(708\) 0 0
\(709\) −158.000 −0.222849 −0.111425 0.993773i \(-0.535541\pi\)
−0.111425 + 0.993773i \(0.535541\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −235.724 −0.331074
\(713\) 137.579i 0.192958i
\(714\) 0 0
\(715\) 0 0
\(716\) 725.492i 1.01326i
\(717\) 0 0
\(718\) 1683.75 2.34505
\(719\) − 127.279i − 0.177023i −0.996075 0.0885113i \(-0.971789\pi\)
0.996075 0.0885113i \(-0.0282109\pi\)
\(720\) 0 0
\(721\) −630.000 −0.873786
\(722\) 103.184i 0.142915i
\(723\) 0 0
\(724\) −222.000 −0.306630
\(725\) 0 0
\(726\) 0 0
\(727\) 662.273 0.910967 0.455484 0.890244i \(-0.349466\pi\)
0.455484 + 0.890244i \(0.349466\pi\)
\(728\) 333.365i 0.457918i
\(729\) 0 0
\(730\) 0 0
\(731\) − 237.588i − 0.325018i
\(732\) 0 0
\(733\) −684.723 −0.934138 −0.467069 0.884221i \(-0.654690\pi\)
−0.467069 + 0.884221i \(0.654690\pi\)
\(734\) − 1811.61i − 2.46813i
\(735\) 0 0
\(736\) 210.000 0.285326
\(737\) 380.988i 0.516945i
\(738\) 0 0
\(739\) 1240.00 1.67794 0.838972 0.544175i \(-0.183157\pi\)
0.838972 + 0.544175i \(0.183157\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2514.39 3.38867
\(743\) − 42.3320i − 0.0569745i −0.999594 0.0284872i \(-0.990931\pi\)
0.999594 0.0284872i \(-0.00906899\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 386.080i − 0.517534i
\(747\) 0 0
\(748\) −134.700 −0.180080
\(749\) − 118.794i − 0.158603i
\(750\) 0 0
\(751\) −154.000 −0.205060 −0.102530 0.994730i \(-0.532694\pi\)
−0.102530 + 0.994730i \(0.532694\pi\)
\(752\) 402.154i 0.534780i
\(753\) 0 0
\(754\) −252.000 −0.334218
\(755\) 0 0
\(756\) 0 0
\(757\) 1313.32 1.73490 0.867452 0.497522i \(-0.165756\pi\)
0.867452 + 0.497522i \(0.165756\pi\)
\(758\) − 957.762i − 1.26354i
\(759\) 0 0
\(760\) 0 0
\(761\) − 504.874i − 0.663435i −0.943379 0.331718i \(-0.892372\pi\)
0.943379 0.331718i \(-0.107628\pi\)
\(762\) 0 0
\(763\) −785.748 −1.02981
\(764\) − 483.661i − 0.633064i
\(765\) 0 0
\(766\) 112.000 0.146214
\(767\) − 523.859i − 0.682997i
\(768\) 0 0
\(769\) −368.000 −0.478544 −0.239272 0.970953i \(-0.576909\pi\)
−0.239272 + 0.970953i \(0.576909\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 538.799 0.697926
\(773\) − 153.454i − 0.198517i −0.995062 0.0992585i \(-0.968353\pi\)
0.995062 0.0992585i \(-0.0316471\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 59.3970i 0.0765425i
\(777\) 0 0
\(778\) 695.948 0.894535
\(779\) − 1103.09i − 1.41603i
\(780\) 0 0
\(781\) 216.000 0.276569
\(782\) − 148.162i − 0.189466i
\(783\) 0 0
\(784\) −1463.00 −1.86607
\(785\) 0 0
\(786\) 0 0
\(787\) −426.549 −0.541994 −0.270997 0.962580i \(-0.587353\pi\)
−0.270997 + 0.962580i \(0.587353\pi\)
\(788\) 111.122i 0.141017i
\(789\) 0 0
\(790\) 0 0
\(791\) 1544.32i 1.95237i
\(792\) 0 0
\(793\) 246.949 0.311412
\(794\) − 89.0955i − 0.112211i
\(795\) 0 0
\(796\) −750.000 −0.942211
\(797\) 232.826i 0.292128i 0.989275 + 0.146064i \(0.0466606\pi\)
−0.989275 + 0.146064i \(0.953339\pi\)
\(798\) 0 0
\(799\) 224.000 0.280350
\(800\) 0 0
\(801\) 0 0
\(802\) −1223.52 −1.52559
\(803\) 285.741i 0.355842i
\(804\) 0 0
\(805\) 0 0
\(806\) − 772.161i − 0.958016i
\(807\) 0 0
\(808\) −359.199 −0.444553
\(809\) 420.021i 0.519186i 0.965718 + 0.259593i \(0.0835884\pi\)
−0.965718 + 0.259593i \(0.916412\pi\)
\(810\) 0 0
\(811\) −970.000 −1.19605 −0.598027 0.801476i \(-0.704049\pi\)
−0.598027 + 0.801476i \(0.704049\pi\)
\(812\) − 285.741i − 0.351898i
\(813\) 0 0
\(814\) 378.000 0.464373
\(815\) 0 0
\(816\) 0 0
\(817\) 448.999 0.549570
\(818\) 216.952i 0.265222i
\(819\) 0 0
\(820\) 0 0
\(821\) − 42.4264i − 0.0516765i −0.999666 0.0258383i \(-0.991775\pi\)
0.999666 0.0258383i \(-0.00822549\pi\)
\(822\) 0 0
\(823\) 392.874 0.477368 0.238684 0.971097i \(-0.423284\pi\)
0.238684 + 0.971097i \(0.423284\pi\)
\(824\) 148.492i 0.180209i
\(825\) 0 0
\(826\) 1386.00 1.67797
\(827\) − 560.899i − 0.678234i −0.940744 0.339117i \(-0.889872\pi\)
0.940744 0.339117i \(-0.110128\pi\)
\(828\) 0 0
\(829\) −1010.00 −1.21834 −0.609168 0.793041i \(-0.708496\pi\)
−0.609168 + 0.793041i \(0.708496\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −325.524 −0.391255
\(833\) 814.891i 0.978261i
\(834\) 0 0
\(835\) 0 0
\(836\) − 254.558i − 0.304496i
\(837\) 0 0
\(838\) 550.024 0.656353
\(839\) 449.720i 0.536019i 0.963416 + 0.268009i \(0.0863659\pi\)
−0.963416 + 0.268009i \(0.913634\pi\)
\(840\) 0 0
\(841\) 769.000 0.914388
\(842\) − 1296.42i − 1.53969i
\(843\) 0 0
\(844\) 462.000 0.547393
\(845\) 0 0
\(846\) 0 0
\(847\) −1156.17 −1.36502
\(848\) − 1608.62i − 1.89695i
\(849\) 0 0
\(850\) 0 0
\(851\) 178.191i 0.209390i
\(852\) 0 0
\(853\) −931.673 −1.09223 −0.546115 0.837710i \(-0.683894\pi\)
−0.546115 + 0.837710i \(0.683894\pi\)
\(854\) 653.367i 0.765066i
\(855\) 0 0
\(856\) −28.0000 −0.0327103
\(857\) 1312.29i 1.53126i 0.643279 + 0.765632i \(0.277573\pi\)
−0.643279 + 0.765632i \(0.722427\pi\)
\(858\) 0 0
\(859\) 694.000 0.807916 0.403958 0.914777i \(-0.367634\pi\)
0.403958 + 0.914777i \(0.367634\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1818.45 −2.10957
\(863\) 799.017i 0.925860i 0.886395 + 0.462930i \(0.153202\pi\)
−0.886395 + 0.462930i \(0.846798\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 534.573i − 0.617290i
\(867\) 0 0
\(868\) 875.548 1.00870
\(869\) 59.3970i 0.0683509i
\(870\) 0 0
\(871\) 1008.00 1.15729
\(872\) 185.203i 0.212388i
\(873\) 0 0
\(874\) 280.000 0.320366
\(875\) 0 0
\(876\) 0 0
\(877\) −796.973 −0.908749 −0.454375 0.890811i \(-0.650137\pi\)
−0.454375 + 0.890811i \(0.650137\pi\)
\(878\) − 799.017i − 0.910042i
\(879\) 0 0
\(880\) 0 0
\(881\) − 827.315i − 0.939063i −0.882916 0.469532i \(-0.844423\pi\)
0.882916 0.469532i \(-0.155577\pi\)
\(882\) 0 0
\(883\) −471.449 −0.533917 −0.266959 0.963708i \(-0.586019\pi\)
−0.266959 + 0.963708i \(0.586019\pi\)
\(884\) 356.382i 0.403147i
\(885\) 0 0
\(886\) 700.000 0.790068
\(887\) 1137.67i 1.28261i 0.767287 + 0.641304i \(0.221606\pi\)
−0.767287 + 0.641304i \(0.778394\pi\)
\(888\) 0 0
\(889\) −1890.00 −2.12598
\(890\) 0 0
\(891\) 0 0
\(892\) 1178.62 1.32133
\(893\) 423.320i 0.474043i
\(894\) 0 0
\(895\) 0 0
\(896\) 920.653i 1.02751i
\(897\) 0 0
\(898\) −572.474 −0.637498
\(899\) − 220.617i − 0.245403i
\(900\) 0 0
\(901\) −896.000 −0.994451
\(902\) 619.106i 0.686370i
\(903\) 0 0
\(904\) 364.000 0.402655
\(905\) 0 0
\(906\) 0 0
\(907\) 1234.75 1.36135 0.680676 0.732584i \(-0.261686\pi\)
0.680676 + 0.732584i \(0.261686\pi\)
\(908\) 63.4980i 0.0699318i
\(909\) 0 0
\(910\) 0 0
\(911\) 288.500i 0.316684i 0.987384 + 0.158342i \(0.0506149\pi\)
−0.987384 + 0.158342i \(0.949385\pi\)
\(912\) 0 0
\(913\) −314.299 −0.344249
\(914\) 1484.92i 1.62464i
\(915\) 0 0
\(916\) −354.000 −0.386463
\(917\) 1666.82i 1.81769i
\(918\) 0 0
\(919\) 1078.00 1.17301 0.586507 0.809944i \(-0.300503\pi\)
0.586507 + 0.809944i \(0.300503\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −628.598 −0.681777
\(923\) − 571.482i − 0.619157i
\(924\) 0 0
\(925\) 0 0
\(926\) 1930.40i 2.08467i
\(927\) 0 0
\(928\) −336.749 −0.362876
\(929\) − 1752.21i − 1.88613i −0.332615 0.943063i \(-0.607931\pi\)
0.332615 0.943063i \(-0.392069\pi\)
\(930\) 0 0
\(931\) −1540.00 −1.65414
\(932\) 1174.71i 1.26042i
\(933\) 0 0
\(934\) 1232.00 1.31906
\(935\) 0 0
\(936\) 0 0
\(937\) −942.898 −1.00629 −0.503147 0.864201i \(-0.667825\pi\)
−0.503147 + 0.864201i \(0.667825\pi\)
\(938\) 2666.92i 2.84320i
\(939\) 0 0
\(940\) 0 0
\(941\) − 1026.72i − 1.09109i −0.838080 0.545547i \(-0.816322\pi\)
0.838080 0.545547i \(-0.183678\pi\)
\(942\) 0 0
\(943\) −291.849 −0.309490
\(944\) − 886.712i − 0.939313i
\(945\) 0 0
\(946\) −252.000 −0.266385
\(947\) − 497.401i − 0.525239i −0.964899 0.262619i \(-0.915414\pi\)
0.964899 0.262619i \(-0.0845864\pi\)
\(948\) 0 0
\(949\) 756.000 0.796628
\(950\) 0 0
\(951\) 0 0
\(952\) 314.299 0.330146
\(953\) − 486.818i − 0.510827i −0.966832 0.255414i \(-0.917788\pi\)
0.966832 0.255414i \(-0.0822116\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1043.69i 1.09173i
\(957\) 0 0
\(958\) −1257.20 −1.31231
\(959\) 2375.88i 2.47745i
\(960\) 0 0
\(961\) −285.000 −0.296566
\(962\) − 1000.09i − 1.03960i
\(963\) 0 0
\(964\) 120.000 0.124481
\(965\) 0 0
\(966\) 0 0
\(967\) −662.273 −0.684874 −0.342437 0.939541i \(-0.611252\pi\)
−0.342437 + 0.939541i \(0.611252\pi\)
\(968\) 272.512i 0.281521i
\(969\) 0 0
\(970\) 0 0
\(971\) − 1641.90i − 1.69094i −0.534024 0.845470i \(-0.679321\pi\)
0.534024 0.845470i \(-0.320679\pi\)
\(972\) 0 0
\(973\) 2312.34 2.37651
\(974\) 1336.43i 1.37211i
\(975\) 0 0
\(976\) 418.000 0.428279
\(977\) − 1291.13i − 1.32152i −0.750597 0.660761i \(-0.770234\pi\)
0.750597 0.660761i \(-0.229766\pi\)
\(978\) 0 0
\(979\) 378.000 0.386108
\(980\) 0 0
\(981\) 0 0
\(982\) 729.623 0.742997
\(983\) 592.648i 0.602898i 0.953482 + 0.301449i \(0.0974702\pi\)
−0.953482 + 0.301449i \(0.902530\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 237.588i 0.240961i
\(987\) 0 0
\(988\) −673.498 −0.681678
\(989\) − 118.794i − 0.120115i
\(990\) 0 0
\(991\) 1694.00 1.70938 0.854692 0.519135i \(-0.173746\pi\)
0.854692 + 0.519135i \(0.173746\pi\)
\(992\) − 1031.84i − 1.04016i
\(993\) 0 0
\(994\) 1512.00 1.52113
\(995\) 0 0
\(996\) 0 0
\(997\) −954.123 −0.956994 −0.478497 0.878089i \(-0.658818\pi\)
−0.478497 + 0.878089i \(0.658818\pi\)
\(998\) − 973.636i − 0.975588i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.c.d.26.3 4
3.2 odd 2 inner 225.3.c.d.26.1 4
4.3 odd 2 3600.3.l.s.1601.4 4
5.2 odd 4 45.3.d.a.44.1 4
5.3 odd 4 45.3.d.a.44.3 yes 4
5.4 even 2 inner 225.3.c.d.26.2 4
12.11 even 2 3600.3.l.s.1601.3 4
15.2 even 4 45.3.d.a.44.4 yes 4
15.8 even 4 45.3.d.a.44.2 yes 4
15.14 odd 2 inner 225.3.c.d.26.4 4
20.3 even 4 720.3.c.a.449.1 4
20.7 even 4 720.3.c.a.449.3 4
20.19 odd 2 3600.3.l.s.1601.2 4
40.3 even 4 2880.3.c.g.449.4 4
40.13 odd 4 2880.3.c.b.449.4 4
40.27 even 4 2880.3.c.g.449.2 4
40.37 odd 4 2880.3.c.b.449.2 4
45.2 even 12 405.3.h.j.134.1 8
45.7 odd 12 405.3.h.j.134.4 8
45.13 odd 12 405.3.h.j.269.1 8
45.22 odd 12 405.3.h.j.269.3 8
45.23 even 12 405.3.h.j.269.4 8
45.32 even 12 405.3.h.j.269.2 8
45.38 even 12 405.3.h.j.134.3 8
45.43 odd 12 405.3.h.j.134.2 8
60.23 odd 4 720.3.c.a.449.4 4
60.47 odd 4 720.3.c.a.449.2 4
60.59 even 2 3600.3.l.s.1601.1 4
120.53 even 4 2880.3.c.b.449.1 4
120.77 even 4 2880.3.c.b.449.3 4
120.83 odd 4 2880.3.c.g.449.1 4
120.107 odd 4 2880.3.c.g.449.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.d.a.44.1 4 5.2 odd 4
45.3.d.a.44.2 yes 4 15.8 even 4
45.3.d.a.44.3 yes 4 5.3 odd 4
45.3.d.a.44.4 yes 4 15.2 even 4
225.3.c.d.26.1 4 3.2 odd 2 inner
225.3.c.d.26.2 4 5.4 even 2 inner
225.3.c.d.26.3 4 1.1 even 1 trivial
225.3.c.d.26.4 4 15.14 odd 2 inner
405.3.h.j.134.1 8 45.2 even 12
405.3.h.j.134.2 8 45.43 odd 12
405.3.h.j.134.3 8 45.38 even 12
405.3.h.j.134.4 8 45.7 odd 12
405.3.h.j.269.1 8 45.13 odd 12
405.3.h.j.269.2 8 45.32 even 12
405.3.h.j.269.3 8 45.22 odd 12
405.3.h.j.269.4 8 45.23 even 12
720.3.c.a.449.1 4 20.3 even 4
720.3.c.a.449.2 4 60.47 odd 4
720.3.c.a.449.3 4 20.7 even 4
720.3.c.a.449.4 4 60.23 odd 4
2880.3.c.b.449.1 4 120.53 even 4
2880.3.c.b.449.2 4 40.37 odd 4
2880.3.c.b.449.3 4 120.77 even 4
2880.3.c.b.449.4 4 40.13 odd 4
2880.3.c.g.449.1 4 120.83 odd 4
2880.3.c.g.449.2 4 40.27 even 4
2880.3.c.g.449.3 4 120.107 odd 4
2880.3.c.g.449.4 4 40.3 even 4
3600.3.l.s.1601.1 4 60.59 even 2
3600.3.l.s.1601.2 4 20.19 odd 2
3600.3.l.s.1601.3 4 12.11 even 2
3600.3.l.s.1601.4 4 4.3 odd 2