Properties

Label 225.2.w
Level 225
Weight 2
Character orbit w
Rep. character \(\chi_{225}(2,\cdot)\)
Character field \(\Q(\zeta_{60})\)
Dimension 448
Newform subspaces 1
Sturm bound 60
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 225.w (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 225 \)
Character field: \(\Q(\zeta_{60})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(225, [\chi])\).

Total New Old
Modular forms 512 512 0
Cusp forms 448 448 0
Eisenstein series 64 64 0

Trace form

\( 448q - 24q^{2} - 14q^{3} - 10q^{4} - 24q^{5} - 12q^{6} - 8q^{7} - 20q^{9} + O(q^{10}) \) \( 448q - 24q^{2} - 14q^{3} - 10q^{4} - 24q^{5} - 12q^{6} - 8q^{7} - 20q^{9} - 32q^{10} - 18q^{11} - 14q^{12} - 8q^{13} - 30q^{14} - 14q^{15} - 50q^{16} - 56q^{18} - 40q^{19} - 48q^{20} - 12q^{21} - 48q^{23} + 16q^{25} - 38q^{27} - 24q^{28} - 30q^{29} - 50q^{30} - 6q^{31} - 60q^{32} - 8q^{33} - 10q^{34} + 4q^{36} - 44q^{37} - 60q^{39} - 16q^{40} - 18q^{41} + 174q^{42} - 8q^{43} - 64q^{45} - 24q^{46} - 18q^{47} - 100q^{48} + 24q^{50} - 32q^{51} + 24q^{52} - 150q^{54} - 24q^{55} - 18q^{56} - 94q^{57} - 4q^{58} + 202q^{60} - 6q^{61} - 46q^{63} - 40q^{64} - 96q^{65} + 12q^{66} - 14q^{67} + 288q^{68} + 50q^{69} - 28q^{70} + 102q^{72} - 32q^{73} + 18q^{75} - 32q^{76} + 216q^{77} + 182q^{78} - 10q^{79} - 32q^{81} - 72q^{82} + 36q^{83} + 100q^{84} - 32q^{85} - 18q^{86} + 48q^{87} - 28q^{88} + 106q^{90} - 24q^{91} + 30q^{92} + 8q^{93} - 130q^{94} + 6q^{95} - 60q^{96} - 38q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(225, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
225.2.w.a \(448\) \(1.797\) None \(-24\) \(-14\) \(-24\) \(-8\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database