Properties

Label 225.2.q.a.31.20
Level $225$
Weight $2$
Character 225.31
Analytic conductor $1.797$
Analytic rank $0$
Dimension $224$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,2,Mod(16,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.q (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 31.20
Character \(\chi\) \(=\) 225.31
Dual form 225.2.q.a.196.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.797750 - 0.885991i) q^{2} +(-1.56929 + 0.733023i) q^{3} +(0.0604816 + 0.575444i) q^{4} +(1.30610 - 1.81497i) q^{5} +(-0.602450 + 1.97515i) q^{6} +(0.157578 + 0.272934i) q^{7} +(2.48714 + 1.80701i) q^{8} +(1.92535 - 2.30066i) q^{9} +O(q^{10})\) \(q+(0.797750 - 0.885991i) q^{2} +(-1.56929 + 0.733023i) q^{3} +(0.0604816 + 0.575444i) q^{4} +(1.30610 - 1.81497i) q^{5} +(-0.602450 + 1.97515i) q^{6} +(0.157578 + 0.272934i) q^{7} +(2.48714 + 1.80701i) q^{8} +(1.92535 - 2.30066i) q^{9} +(-0.566103 - 2.60508i) q^{10} +(1.93450 - 2.14848i) q^{11} +(-0.516727 - 0.858705i) q^{12} +(4.36810 + 4.85127i) q^{13} +(0.367525 + 0.0781199i) q^{14} +(-0.719240 + 3.80561i) q^{15} +(2.45317 - 0.521438i) q^{16} +(0.794350 + 0.577129i) q^{17} +(-0.502410 - 3.54119i) q^{18} +(-5.88399 - 4.27497i) q^{19} +(1.12341 + 0.641816i) q^{20} +(-0.447354 - 0.312804i) q^{21} +(-0.360286 - 3.42790i) q^{22} +(1.28104 + 0.272294i) q^{23} +(-5.22763 - 1.01260i) q^{24} +(-1.58820 - 4.74106i) q^{25} +7.78284 q^{26} +(-1.33501 + 5.02173i) q^{27} +(-0.147528 + 0.107185i) q^{28} +(-3.94048 - 1.75442i) q^{29} +(2.79797 + 3.67317i) q^{30} +(-7.91741 + 3.52506i) q^{31} +(-1.57924 + 2.73533i) q^{32} +(-1.46091 + 4.78962i) q^{33} +(1.14502 - 0.243382i) q^{34} +(0.701179 + 0.0704794i) q^{35} +(1.44035 + 0.968786i) q^{36} +(0.00738727 - 0.0227357i) q^{37} +(-8.48155 + 1.80281i) q^{38} +(-10.4109 - 4.41114i) q^{39} +(6.52812 - 2.15393i) q^{40} +(3.06561 + 3.40470i) q^{41} +(-0.634018 + 0.146812i) q^{42} +(-1.34599 - 2.33132i) q^{43} +(1.35333 + 0.983252i) q^{44} +(-1.66091 - 6.49934i) q^{45} +(1.26320 - 0.917772i) q^{46} +(-4.76261 - 2.12045i) q^{47} +(-3.46752 + 2.61652i) q^{48} +(3.45034 - 5.97616i) q^{49} +(-5.46752 - 2.37504i) q^{50} +(-1.66962 - 0.323407i) q^{51} +(-2.52745 + 2.80701i) q^{52} +(-3.44104 + 2.50006i) q^{53} +(3.38421 + 5.18889i) q^{54} +(-1.37277 - 6.31717i) q^{55} +(-0.101275 + 0.963571i) q^{56} +(12.3674 + 2.39557i) q^{57} +(-4.69792 + 2.09165i) q^{58} +(3.46632 + 3.84974i) q^{59} +(-2.23342 - 0.183713i) q^{60} +(-4.95936 + 5.50792i) q^{61} +(-3.19295 + 9.82688i) q^{62} +(0.931321 + 0.162961i) q^{63} +(2.71365 + 8.35176i) q^{64} +(14.5101 - 1.59172i) q^{65} +(3.07812 + 5.11527i) q^{66} +(-2.27694 + 1.01376i) q^{67} +(-0.284062 + 0.492010i) q^{68} +(-2.20993 + 0.511726i) q^{69} +(0.621810 - 0.565014i) q^{70} +(9.63629 - 7.00118i) q^{71} +(8.94593 - 2.24291i) q^{72} +(-0.283594 - 0.872814i) q^{73} +(-0.0142504 - 0.0246825i) q^{74} +(5.96766 + 6.27591i) q^{75} +(2.10413 - 3.64447i) q^{76} +(0.891228 + 0.189436i) q^{77} +(-12.2135 + 5.70500i) q^{78} +(-10.3980 - 4.62948i) q^{79} +(2.25770 - 5.13348i) q^{80} +(-1.58603 - 8.85915i) q^{81} +5.46212 q^{82} +(1.03926 - 9.88793i) q^{83} +(0.152945 - 0.276346i) q^{84} +(2.08497 - 0.687930i) q^{85} +(-3.13929 - 0.667278i) q^{86} +(7.46979 - 0.135276i) q^{87} +(8.69369 - 1.84790i) q^{88} +(3.78718 + 11.6557i) q^{89} +(-7.08335 - 3.71330i) q^{90} +(-0.635757 + 1.95666i) q^{91} +(-0.0792106 + 0.753639i) q^{92} +(9.84078 - 11.3355i) q^{93} +(-5.67808 + 2.52804i) q^{94} +(-15.4440 + 5.09571i) q^{95} +(0.473233 - 5.45015i) q^{96} +(-6.75362 - 3.00691i) q^{97} +(-2.54232 - 7.82445i) q^{98} +(-1.21831 - 8.58719i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9} - 20 q^{10} - 11 q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - 48 q^{15} + 23 q^{16} - 24 q^{17} - 12 q^{19} + q^{20} + 15 q^{21} - 11 q^{22} + q^{23} - 30 q^{24} - 16 q^{25} - 136 q^{26} + 7 q^{27} + 4 q^{28} - 15 q^{29} - 24 q^{30} + 3 q^{31} + 12 q^{32} - 5 q^{33} + q^{34} + 14 q^{35} + 38 q^{36} - 24 q^{37} + 55 q^{38} + 20 q^{39} + q^{40} - 19 q^{41} - 38 q^{42} - 8 q^{43} + 4 q^{44} - 38 q^{45} - 20 q^{46} - 10 q^{47} - 25 q^{48} - 72 q^{49} - 3 q^{50} - 26 q^{51} - 25 q^{52} - 12 q^{53} + 53 q^{54} - 20 q^{55} - 60 q^{56} + 38 q^{57} - 23 q^{58} - 30 q^{59} - 33 q^{60} - 3 q^{61} - 44 q^{62} + 46 q^{63} - 44 q^{64} + 51 q^{65} - 134 q^{66} - 12 q^{67} - 156 q^{68} + 4 q^{69} - 16 q^{70} + 42 q^{71} + 74 q^{72} - 12 q^{73} + 90 q^{74} + 67 q^{75} - 8 q^{76} + 31 q^{77} - 92 q^{78} - 15 q^{79} + 298 q^{80} - 104 q^{81} + 8 q^{82} + 59 q^{83} + 115 q^{84} - 11 q^{85} + 9 q^{86} - 59 q^{87} - 23 q^{88} + 106 q^{89} + 107 q^{90} + 30 q^{91} + 11 q^{92} + 32 q^{93} + 25 q^{94} + 7 q^{95} + 35 q^{96} - 21 q^{97} + 146 q^{98} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.797750 0.885991i 0.564095 0.626491i −0.391853 0.920028i \(-0.628166\pi\)
0.955948 + 0.293537i \(0.0948325\pi\)
\(3\) −1.56929 + 0.733023i −0.906031 + 0.423211i
\(4\) 0.0604816 + 0.575444i 0.0302408 + 0.287722i
\(5\) 1.30610 1.81497i 0.584106 0.811678i
\(6\) −0.602450 + 1.97515i −0.245949 + 0.806351i
\(7\) 0.157578 + 0.272934i 0.0595591 + 0.103159i 0.894268 0.447533i \(-0.147697\pi\)
−0.834708 + 0.550692i \(0.814364\pi\)
\(8\) 2.48714 + 1.80701i 0.879336 + 0.638875i
\(9\) 1.92535 2.30066i 0.641784 0.766885i
\(10\) −0.566103 2.60508i −0.179017 0.823800i
\(11\) 1.93450 2.14848i 0.583273 0.647790i −0.377210 0.926128i \(-0.623117\pi\)
0.960483 + 0.278337i \(0.0897833\pi\)
\(12\) −0.516727 0.858705i −0.149166 0.247887i
\(13\) 4.36810 + 4.85127i 1.21149 + 1.34550i 0.921455 + 0.388486i \(0.127002\pi\)
0.290039 + 0.957015i \(0.406332\pi\)
\(14\) 0.367525 + 0.0781199i 0.0982253 + 0.0208784i
\(15\) −0.719240 + 3.80561i −0.185707 + 0.982605i
\(16\) 2.45317 0.521438i 0.613293 0.130359i
\(17\) 0.794350 + 0.577129i 0.192658 + 0.139974i 0.679933 0.733274i \(-0.262009\pi\)
−0.487275 + 0.873249i \(0.662009\pi\)
\(18\) −0.502410 3.54119i −0.118419 0.834668i
\(19\) −5.88399 4.27497i −1.34988 0.980746i −0.999017 0.0443190i \(-0.985888\pi\)
−0.350863 0.936427i \(-0.614112\pi\)
\(20\) 1.12341 + 0.641816i 0.251201 + 0.143514i
\(21\) −0.447354 0.312804i −0.0976206 0.0682595i
\(22\) −0.360286 3.42790i −0.0768133 0.730830i
\(23\) 1.28104 + 0.272294i 0.267116 + 0.0567773i 0.339523 0.940598i \(-0.389734\pi\)
−0.0724063 + 0.997375i \(0.523068\pi\)
\(24\) −5.22763 1.01260i −1.06709 0.206696i
\(25\) −1.58820 4.74106i −0.317641 0.948211i
\(26\) 7.78284 1.52634
\(27\) −1.33501 + 5.02173i −0.256922 + 0.966432i
\(28\) −0.147528 + 0.107185i −0.0278801 + 0.0202561i
\(29\) −3.94048 1.75442i −0.731729 0.325787i 0.00682892 0.999977i \(-0.497826\pi\)
−0.738558 + 0.674190i \(0.764493\pi\)
\(30\) 2.79797 + 3.67317i 0.510837 + 0.670626i
\(31\) −7.91741 + 3.52506i −1.42201 + 0.633120i −0.966396 0.257058i \(-0.917247\pi\)
−0.455614 + 0.890178i \(0.650580\pi\)
\(32\) −1.57924 + 2.73533i −0.279173 + 0.483542i
\(33\) −1.46091 + 4.78962i −0.254311 + 0.833766i
\(34\) 1.14502 0.243382i 0.196370 0.0417397i
\(35\) 0.701179 + 0.0704794i 0.118521 + 0.0119132i
\(36\) 1.44035 + 0.968786i 0.240058 + 0.161464i
\(37\) 0.00738727 0.0227357i 0.00121446 0.00373772i −0.950447 0.310885i \(-0.899375\pi\)
0.951662 + 0.307148i \(0.0993745\pi\)
\(38\) −8.48155 + 1.80281i −1.37589 + 0.292454i
\(39\) −10.4109 4.41114i −1.66708 0.706347i
\(40\) 6.52812 2.15393i 1.03219 0.340567i
\(41\) 3.06561 + 3.40470i 0.478767 + 0.531725i 0.933344 0.358983i \(-0.116876\pi\)
−0.454577 + 0.890707i \(0.650210\pi\)
\(42\) −0.634018 + 0.146812i −0.0978311 + 0.0226535i
\(43\) −1.34599 2.33132i −0.205261 0.355523i 0.744955 0.667115i \(-0.232471\pi\)
−0.950216 + 0.311592i \(0.899138\pi\)
\(44\) 1.35333 + 0.983252i 0.204022 + 0.148231i
\(45\) −1.66091 6.49934i −0.247593 0.968864i
\(46\) 1.26320 0.917772i 0.186249 0.135318i
\(47\) −4.76261 2.12045i −0.694698 0.309300i 0.0288398 0.999584i \(-0.490819\pi\)
−0.723538 + 0.690284i \(0.757485\pi\)
\(48\) −3.46752 + 2.61652i −0.500493 + 0.377662i
\(49\) 3.45034 5.97616i 0.492905 0.853737i
\(50\) −5.46752 2.37504i −0.773225 0.335882i
\(51\) −1.66962 0.323407i −0.233793 0.0452860i
\(52\) −2.52745 + 2.80701i −0.350494 + 0.389263i
\(53\) −3.44104 + 2.50006i −0.472663 + 0.343410i −0.798478 0.602024i \(-0.794361\pi\)
0.325815 + 0.945433i \(0.394361\pi\)
\(54\) 3.38421 + 5.18889i 0.460532 + 0.706118i
\(55\) −1.37277 6.31717i −0.185104 0.851808i
\(56\) −0.101275 + 0.963571i −0.0135335 + 0.128763i
\(57\) 12.3674 + 2.39557i 1.63810 + 0.317301i
\(58\) −4.69792 + 2.09165i −0.616867 + 0.274647i
\(59\) 3.46632 + 3.84974i 0.451276 + 0.501193i 0.925256 0.379342i \(-0.123850\pi\)
−0.473980 + 0.880536i \(0.657183\pi\)
\(60\) −2.23342 0.183713i −0.288333 0.0237172i
\(61\) −4.95936 + 5.50792i −0.634980 + 0.705217i −0.971655 0.236404i \(-0.924031\pi\)
0.336674 + 0.941621i \(0.390698\pi\)
\(62\) −3.19295 + 9.82688i −0.405505 + 1.24801i
\(63\) 0.931321 + 0.162961i 0.117335 + 0.0205311i
\(64\) 2.71365 + 8.35176i 0.339207 + 1.04397i
\(65\) 14.5101 1.59172i 1.79975 0.197428i
\(66\) 3.07812 + 5.11527i 0.378891 + 0.629646i
\(67\) −2.27694 + 1.01376i −0.278173 + 0.123851i −0.541081 0.840970i \(-0.681985\pi\)
0.262908 + 0.964821i \(0.415318\pi\)
\(68\) −0.284062 + 0.492010i −0.0344476 + 0.0596649i
\(69\) −2.20993 + 0.511726i −0.266044 + 0.0616046i
\(70\) 0.621810 0.565014i 0.0743205 0.0675321i
\(71\) 9.63629 7.00118i 1.14362 0.830887i 0.155999 0.987757i \(-0.450140\pi\)
0.987619 + 0.156870i \(0.0501405\pi\)
\(72\) 8.94593 2.24291i 1.05429 0.264330i
\(73\) −0.283594 0.872814i −0.0331922 0.102155i 0.933088 0.359649i \(-0.117103\pi\)
−0.966280 + 0.257493i \(0.917103\pi\)
\(74\) −0.0142504 0.0246825i −0.00165658 0.00286928i
\(75\) 5.96766 + 6.27591i 0.689086 + 0.724679i
\(76\) 2.10413 3.64447i 0.241361 0.418049i
\(77\) 0.891228 + 0.189436i 0.101565 + 0.0215883i
\(78\) −12.2135 + 5.70500i −1.38291 + 0.645964i
\(79\) −10.3980 4.62948i −1.16986 0.520857i −0.272503 0.962155i \(-0.587851\pi\)
−0.897361 + 0.441298i \(0.854518\pi\)
\(80\) 2.25770 5.13348i 0.252418 0.573940i
\(81\) −1.58603 8.85915i −0.176225 0.984350i
\(82\) 5.46212 0.603191
\(83\) 1.03926 9.88793i 0.114074 1.08534i −0.776379 0.630266i \(-0.782946\pi\)
0.890453 0.455075i \(-0.150388\pi\)
\(84\) 0.152945 0.276346i 0.0166876 0.0301518i
\(85\) 2.08497 0.687930i 0.226147 0.0746165i
\(86\) −3.13929 0.667278i −0.338519 0.0719544i
\(87\) 7.46979 0.135276i 0.800846 0.0145031i
\(88\) 8.69369 1.84790i 0.926750 0.196987i
\(89\) 3.78718 + 11.6557i 0.401440 + 1.23551i 0.923831 + 0.382800i \(0.125040\pi\)
−0.522391 + 0.852706i \(0.674960\pi\)
\(90\) −7.08335 3.71330i −0.746650 0.391416i
\(91\) −0.635757 + 1.95666i −0.0666455 + 0.205114i
\(92\) −0.0792106 + 0.753639i −0.00825828 + 0.0785723i
\(93\) 9.84078 11.3355i 1.02044 1.17544i
\(94\) −5.67808 + 2.52804i −0.585649 + 0.260748i
\(95\) −15.4440 + 5.09571i −1.58452 + 0.522809i
\(96\) 0.473233 5.45015i 0.0482991 0.556254i
\(97\) −6.75362 3.00691i −0.685726 0.305305i 0.0341407 0.999417i \(-0.489131\pi\)
−0.719867 + 0.694112i \(0.755797\pi\)
\(98\) −2.54232 7.82445i −0.256813 0.790389i
\(99\) −1.21831 8.58719i −0.122445 0.863045i
\(100\) 2.63216 1.20067i 0.263216 0.120067i
\(101\) −5.77262 9.99848i −0.574397 0.994885i −0.996107 0.0881544i \(-0.971903\pi\)
0.421709 0.906731i \(-0.361430\pi\)
\(102\) −1.61847 + 1.22127i −0.160253 + 0.120923i
\(103\) 1.71092 + 16.2783i 0.168582 + 1.60395i 0.672433 + 0.740158i \(0.265249\pi\)
−0.503851 + 0.863790i \(0.668084\pi\)
\(104\) 2.09778 + 19.9590i 0.205704 + 1.95714i
\(105\) −1.15202 + 0.403378i −0.112425 + 0.0393657i
\(106\) −0.530057 + 5.04315i −0.0514837 + 0.489834i
\(107\) −10.1611 −0.982314 −0.491157 0.871071i \(-0.663426\pi\)
−0.491157 + 0.871071i \(0.663426\pi\)
\(108\) −2.97047 0.464500i −0.285833 0.0446965i
\(109\) 3.42411 10.5383i 0.327970 1.00939i −0.642112 0.766611i \(-0.721942\pi\)
0.970082 0.242777i \(-0.0780584\pi\)
\(110\) −6.69209 3.82327i −0.638065 0.364534i
\(111\) 0.00507301 + 0.0410940i 0.000481508 + 0.00390047i
\(112\) 0.528885 + 0.587387i 0.0499750 + 0.0555028i
\(113\) −9.81486 10.9005i −0.923305 1.02543i −0.999598 0.0283484i \(-0.990975\pi\)
0.0762934 0.997085i \(-0.475691\pi\)
\(114\) 11.9885 9.04630i 1.12283 0.847264i
\(115\) 2.16738 1.96941i 0.202109 0.183648i
\(116\) 0.771242 2.37364i 0.0716080 0.220387i
\(117\) 19.5712 0.709090i 1.80936 0.0655554i
\(118\) 6.17609 0.568555
\(119\) −0.0323456 + 0.307748i −0.00296512 + 0.0282112i
\(120\) −8.66564 + 8.16541i −0.791061 + 0.745397i
\(121\) 0.276140 + 2.62729i 0.0251036 + 0.238845i
\(122\) 0.923645 + 8.78789i 0.0836229 + 0.795618i
\(123\) −7.30655 3.09581i −0.658810 0.279140i
\(124\) −2.50733 4.34283i −0.225165 0.389998i
\(125\) −10.6792 3.30976i −0.955178 0.296034i
\(126\) 0.887343 0.695141i 0.0790508 0.0619281i
\(127\) 4.75644 + 14.6388i 0.422066 + 1.29899i 0.905776 + 0.423757i \(0.139289\pi\)
−0.483710 + 0.875228i \(0.660711\pi\)
\(128\) 3.79357 + 1.68900i 0.335307 + 0.149288i
\(129\) 3.82116 + 2.67188i 0.336435 + 0.235246i
\(130\) 10.1652 14.1256i 0.891544 1.23890i
\(131\) 3.04960 1.35777i 0.266445 0.118629i −0.269166 0.963094i \(-0.586748\pi\)
0.535611 + 0.844465i \(0.320081\pi\)
\(132\) −2.84452 0.550987i −0.247583 0.0479572i
\(133\) 0.239594 2.27959i 0.0207754 0.197665i
\(134\) −0.918249 + 2.82608i −0.0793247 + 0.244136i
\(135\) 7.37061 + 8.98187i 0.634361 + 0.773037i
\(136\) 0.932779 + 2.87080i 0.0799851 + 0.246169i
\(137\) 8.26092 1.75591i 0.705778 0.150018i 0.158979 0.987282i \(-0.449180\pi\)
0.546799 + 0.837264i \(0.315846\pi\)
\(138\) −1.30959 + 2.36621i −0.111480 + 0.201425i
\(139\) 1.39912 + 0.297391i 0.118671 + 0.0252244i 0.266864 0.963734i \(-0.414012\pi\)
−0.148193 + 0.988958i \(0.547346\pi\)
\(140\) 0.00185147 + 0.407752i 0.000156477 + 0.0344613i
\(141\) 9.02827 0.163499i 0.760317 0.0137691i
\(142\) 1.48437 14.1229i 0.124566 1.18516i
\(143\) 18.8729 1.57823
\(144\) 3.52358 6.64786i 0.293631 0.553988i
\(145\) −8.33087 + 4.86040i −0.691841 + 0.403634i
\(146\) −0.999543 0.445025i −0.0827228 0.0368305i
\(147\) −1.03392 + 11.9075i −0.0852764 + 0.982116i
\(148\) 0.0135299 + 0.00287587i 0.00111215 + 0.000236395i
\(149\) 10.3534 17.9326i 0.848181 1.46909i −0.0346486 0.999400i \(-0.511031\pi\)
0.882830 0.469693i \(-0.155635\pi\)
\(150\) 10.3211 0.280689i 0.842715 0.0229182i
\(151\) 10.6562 + 18.4570i 0.867186 + 1.50201i 0.864860 + 0.502014i \(0.167407\pi\)
0.00232675 + 0.999997i \(0.499259\pi\)
\(152\) −6.90938 21.2649i −0.560425 1.72481i
\(153\) 2.85718 0.716348i 0.230989 0.0579133i
\(154\) 0.878816 0.638497i 0.0708170 0.0514516i
\(155\) −3.94307 + 18.9739i −0.316715 + 1.52402i
\(156\) 1.90869 6.25770i 0.152818 0.501017i
\(157\) −6.98186 + 12.0929i −0.557213 + 0.965122i 0.440514 + 0.897746i \(0.354796\pi\)
−0.997728 + 0.0673760i \(0.978537\pi\)
\(158\) −12.3967 + 5.51935i −0.986226 + 0.439096i
\(159\) 3.56739 6.44568i 0.282912 0.511176i
\(160\) 2.90188 + 6.43889i 0.229414 + 0.509039i
\(161\) 0.127547 + 0.392548i 0.0100521 + 0.0309371i
\(162\) −9.11438 5.66218i −0.716094 0.444863i
\(163\) −0.190245 + 0.585515i −0.0149012 + 0.0458611i −0.958231 0.285997i \(-0.907675\pi\)
0.943329 + 0.331858i \(0.107675\pi\)
\(164\) −1.77380 + 1.97001i −0.138511 + 0.153832i
\(165\) 6.78491 + 8.90722i 0.528204 + 0.693426i
\(166\) −7.93155 8.80888i −0.615608 0.683702i
\(167\) −4.93325 + 2.19642i −0.381746 + 0.169964i −0.588633 0.808401i \(-0.700334\pi\)
0.206887 + 0.978365i \(0.433667\pi\)
\(168\) −0.547389 1.58636i −0.0422320 0.122390i
\(169\) −3.09563 + 29.4529i −0.238125 + 2.26561i
\(170\) 1.05378 2.39606i 0.0808216 0.183769i
\(171\) −21.1640 + 5.30621i −1.61845 + 0.405776i
\(172\) 1.26014 0.915544i 0.0960846 0.0698096i
\(173\) −0.243366 + 0.270286i −0.0185028 + 0.0205494i −0.752325 0.658792i \(-0.771068\pi\)
0.733822 + 0.679341i \(0.237734\pi\)
\(174\) 5.83918 6.72609i 0.442667 0.509903i
\(175\) 1.04373 1.18056i 0.0788984 0.0892422i
\(176\) 3.62536 6.27931i 0.273272 0.473321i
\(177\) −8.26161 3.50047i −0.620981 0.263111i
\(178\) 13.3481 + 5.94296i 1.00048 + 0.445444i
\(179\) 12.2855 8.92591i 0.918259 0.667154i −0.0248313 0.999692i \(-0.507905\pi\)
0.943090 + 0.332538i \(0.107905\pi\)
\(180\) 3.63955 1.34885i 0.271276 0.100537i
\(181\) 0.0462635 + 0.0336124i 0.00343874 + 0.00249839i 0.589503 0.807766i \(-0.299324\pi\)
−0.586065 + 0.810264i \(0.699324\pi\)
\(182\) 1.22641 + 2.12420i 0.0909074 + 0.157456i
\(183\) 3.74524 12.2789i 0.276856 0.907680i
\(184\) 2.69410 + 2.99210i 0.198611 + 0.220580i
\(185\) −0.0316160 0.0431027i −0.00232445 0.00316898i
\(186\) −2.19267 17.7617i −0.160774 1.30235i
\(187\) 2.77662 0.590188i 0.203046 0.0431588i
\(188\) 0.932151 2.86887i 0.0679841 0.209234i
\(189\) −1.58097 + 0.426948i −0.114999 + 0.0310559i
\(190\) −7.80571 + 17.7484i −0.566286 + 1.28760i
\(191\) −2.34418 + 0.498271i −0.169619 + 0.0360536i −0.291938 0.956437i \(-0.594300\pi\)
0.122319 + 0.992491i \(0.460967\pi\)
\(192\) −10.3805 11.1172i −0.749152 0.802313i
\(193\) 2.94773 5.10562i 0.212182 0.367511i −0.740215 0.672370i \(-0.765276\pi\)
0.952397 + 0.304860i \(0.0986095\pi\)
\(194\) −8.05179 + 3.58489i −0.578085 + 0.257380i
\(195\) −21.6038 + 13.1341i −1.54708 + 0.940552i
\(196\) 3.64763 + 1.62403i 0.260545 + 0.116002i
\(197\) −12.8434 + 9.33130i −0.915057 + 0.664828i −0.942289 0.334801i \(-0.891331\pi\)
0.0272318 + 0.999629i \(0.491331\pi\)
\(198\) −8.58009 5.77102i −0.609760 0.410128i
\(199\) 4.61006 0.326798 0.163399 0.986560i \(-0.447754\pi\)
0.163399 + 0.986560i \(0.447754\pi\)
\(200\) 4.61706 14.6616i 0.326475 1.03673i
\(201\) 2.83008 3.25994i 0.199618 0.229938i
\(202\) −13.4637 2.86179i −0.947301 0.201355i
\(203\) −0.142096 1.35195i −0.00997316 0.0948882i
\(204\) 0.0851214 0.980330i 0.00595969 0.0686369i
\(205\) 10.1834 1.11709i 0.711240 0.0780211i
\(206\) 15.7873 + 11.4702i 1.09995 + 0.799164i
\(207\) 3.09292 2.42298i 0.214973 0.168409i
\(208\) 13.2453 + 9.62331i 0.918400 + 0.667256i
\(209\) −20.5673 + 4.37170i −1.42267 + 0.302397i
\(210\) −0.561633 + 1.34247i −0.0387564 + 0.0926394i
\(211\) −0.144843 0.0307873i −0.00997140 0.00211949i 0.202923 0.979195i \(-0.434956\pi\)
−0.212895 + 0.977075i \(0.568289\pi\)
\(212\) −1.64676 1.82892i −0.113100 0.125611i
\(213\) −9.99013 + 18.0505i −0.684512 + 1.23680i
\(214\) −8.10605 + 9.00268i −0.554118 + 0.615410i
\(215\) −5.98927 0.602015i −0.408465 0.0410571i
\(216\) −12.3947 + 10.0774i −0.843351 + 0.685678i
\(217\) −2.20972 1.60546i −0.150006 0.108986i
\(218\) −6.60528 11.4407i −0.447366 0.774861i
\(219\) 1.08484 + 1.16182i 0.0733064 + 0.0785084i
\(220\) 3.55215 1.17202i 0.239486 0.0790178i
\(221\) 0.669994 + 6.37456i 0.0450686 + 0.428800i
\(222\) 0.0404559 + 0.0282881i 0.00271522 + 0.00189857i
\(223\) −1.10187 + 1.22375i −0.0737867 + 0.0819485i −0.778908 0.627139i \(-0.784226\pi\)
0.705121 + 0.709087i \(0.250893\pi\)
\(224\) −0.995419 −0.0665092
\(225\) −13.9654 5.47430i −0.931026 0.364953i
\(226\) −17.4876 −1.16326
\(227\) −2.45055 + 2.72161i −0.162648 + 0.180639i −0.818960 0.573851i \(-0.805449\pi\)
0.656312 + 0.754490i \(0.272116\pi\)
\(228\) −0.630521 + 7.26161i −0.0417572 + 0.480912i
\(229\) 0.0884967 + 0.841990i 0.00584803 + 0.0556403i 0.997057 0.0766674i \(-0.0244280\pi\)
−0.991209 + 0.132308i \(0.957761\pi\)
\(230\) −0.0158532 3.49138i −0.00104533 0.230214i
\(231\) −1.53746 + 0.356010i −0.101157 + 0.0234237i
\(232\) −6.63027 11.4840i −0.435299 0.753960i
\(233\) 9.04329 + 6.57033i 0.592445 + 0.430437i 0.843189 0.537617i \(-0.180675\pi\)
−0.250744 + 0.968053i \(0.580675\pi\)
\(234\) 14.9847 17.9056i 0.979582 1.17053i
\(235\) −10.0690 + 5.87446i −0.656829 + 0.383207i
\(236\) −2.00566 + 2.22751i −0.130557 + 0.144999i
\(237\) 19.7110 0.356959i 1.28037 0.0231870i
\(238\) 0.246858 + 0.274164i 0.0160015 + 0.0177714i
\(239\) 15.9775 + 3.39613i 1.03350 + 0.219677i 0.693280 0.720669i \(-0.256165\pi\)
0.340220 + 0.940346i \(0.389498\pi\)
\(240\) 0.219972 + 9.71087i 0.0141992 + 0.626834i
\(241\) −2.04979 + 0.435696i −0.132038 + 0.0280656i −0.273457 0.961884i \(-0.588167\pi\)
0.141418 + 0.989950i \(0.454834\pi\)
\(242\) 2.54805 + 1.85127i 0.163795 + 0.119004i
\(243\) 8.98290 + 12.7400i 0.576254 + 0.817271i
\(244\) −3.46945 2.52070i −0.222109 0.161372i
\(245\) −6.34004 14.0677i −0.405050 0.898753i
\(246\) −8.57166 + 4.00386i −0.546509 + 0.255277i
\(247\) −4.96285 47.2184i −0.315779 3.00443i
\(248\) −26.0615 5.53955i −1.65491 0.351762i
\(249\) 5.61718 + 16.2789i 0.355974 + 1.03163i
\(250\) −11.4518 + 6.82133i −0.724273 + 0.431419i
\(251\) −15.8673 −1.00154 −0.500769 0.865581i \(-0.666949\pi\)
−0.500769 + 0.865581i \(0.666949\pi\)
\(252\) −0.0374469 + 0.545779i −0.00235893 + 0.0343809i
\(253\) 3.06320 2.22554i 0.192582 0.139919i
\(254\) 16.7643 + 7.46396i 1.05189 + 0.468330i
\(255\) −2.76766 + 2.60789i −0.173317 + 0.163313i
\(256\) −11.5220 + 5.12990i −0.720122 + 0.320619i
\(257\) −1.09760 + 1.90109i −0.0684661 + 0.118587i −0.898226 0.439533i \(-0.855144\pi\)
0.829760 + 0.558120i \(0.188477\pi\)
\(258\) 5.41560 1.25402i 0.337160 0.0780721i
\(259\) 0.00736942 0.00156642i 0.000457913 9.73325e-5i
\(260\) 1.79354 + 8.25347i 0.111230 + 0.511858i
\(261\) −11.6231 + 5.68782i −0.719453 + 0.352067i
\(262\) 1.22985 3.78508i 0.0759801 0.233843i
\(263\) 29.0145 6.16721i 1.78911 0.380287i 0.810454 0.585802i \(-0.199220\pi\)
0.978654 + 0.205515i \(0.0658869\pi\)
\(264\) −12.2884 + 9.27257i −0.756297 + 0.570687i
\(265\) 0.0431849 + 9.51070i 0.00265283 + 0.584237i
\(266\) −1.82856 2.03082i −0.112116 0.124517i
\(267\) −14.4871 15.5152i −0.886597 0.949512i
\(268\) −0.721076 1.24894i −0.0440467 0.0762912i
\(269\) −20.4742 14.8754i −1.24833 0.906968i −0.250210 0.968192i \(-0.580500\pi\)
−0.998124 + 0.0612238i \(0.980500\pi\)
\(270\) 13.8378 + 0.634991i 0.842140 + 0.0386443i
\(271\) −15.2201 + 11.0580i −0.924555 + 0.671728i −0.944654 0.328070i \(-0.893602\pi\)
0.0200987 + 0.999798i \(0.493602\pi\)
\(272\) 2.24961 + 1.00159i 0.136403 + 0.0607305i
\(273\) −0.436589 3.53659i −0.0264235 0.214044i
\(274\) 5.03443 8.71989i 0.304141 0.526788i
\(275\) −13.2584 5.75934i −0.799513 0.347301i
\(276\) −0.428130 1.24074i −0.0257704 0.0746839i
\(277\) 15.1456 16.8209i 0.910012 1.01067i −0.0898796 0.995953i \(-0.528648\pi\)
0.999892 0.0147182i \(-0.00468511\pi\)
\(278\) 1.37963 1.00236i 0.0827447 0.0601176i
\(279\) −7.13387 + 25.0022i −0.427094 + 1.49684i
\(280\) 1.61657 + 1.44233i 0.0966087 + 0.0861958i
\(281\) 0.0980168 0.932568i 0.00584719 0.0556323i −0.991209 0.132304i \(-0.957763\pi\)
0.997056 + 0.0766714i \(0.0244292\pi\)
\(282\) 7.05744 8.12940i 0.420265 0.484099i
\(283\) 10.5924 4.71605i 0.629653 0.280340i −0.0669940 0.997753i \(-0.521341\pi\)
0.696648 + 0.717414i \(0.254674\pi\)
\(284\) 4.61161 + 5.12171i 0.273648 + 0.303917i
\(285\) 20.5009 19.3175i 1.21437 1.14427i
\(286\) 15.0559 16.7213i 0.890273 0.988748i
\(287\) −0.446185 + 1.37322i −0.0263375 + 0.0810583i
\(288\) 3.25245 + 8.89977i 0.191652 + 0.524424i
\(289\) −4.95538 15.2511i −0.291493 0.897122i
\(290\) −2.33968 + 11.2585i −0.137391 + 0.661120i
\(291\) 12.8025 0.231850i 0.750498 0.0135913i
\(292\) 0.485103 0.215982i 0.0283885 0.0126394i
\(293\) 11.8547 20.5330i 0.692561 1.19955i −0.278435 0.960455i \(-0.589816\pi\)
0.970996 0.239096i \(-0.0768509\pi\)
\(294\) 9.72515 + 10.4153i 0.567182 + 0.607431i
\(295\) 11.5145 1.26311i 0.670400 0.0735411i
\(296\) 0.0594568 0.0431979i 0.00345586 0.00251083i
\(297\) 8.20650 + 12.5828i 0.476189 + 0.730125i
\(298\) −7.62869 23.4787i −0.441918 1.36008i
\(299\) 4.27476 + 7.40411i 0.247216 + 0.428190i
\(300\) −3.25050 + 3.81363i −0.187668 + 0.220180i
\(301\) 0.424198 0.734732i 0.0244504 0.0423493i
\(302\) 24.8537 + 5.28282i 1.43017 + 0.303992i
\(303\) 16.3880 + 11.4591i 0.941469 + 0.658306i
\(304\) −16.6636 7.41911i −0.955722 0.425515i
\(305\) 3.51928 + 16.1950i 0.201513 + 0.927321i
\(306\) 1.64464 3.10290i 0.0940176 0.177381i
\(307\) −12.6269 −0.720652 −0.360326 0.932826i \(-0.617335\pi\)
−0.360326 + 0.932826i \(0.617335\pi\)
\(308\) −0.0551071 + 0.524309i −0.00314002 + 0.0298753i
\(309\) −14.6173 24.2913i −0.831549 1.38188i
\(310\) 13.6651 + 18.6300i 0.776128 + 1.05811i
\(311\) 13.8540 + 2.94477i 0.785590 + 0.166982i 0.583207 0.812324i \(-0.301798\pi\)
0.202384 + 0.979306i \(0.435131\pi\)
\(312\) −17.9224 29.7838i −1.01466 1.68617i
\(313\) −2.73979 + 0.582360i −0.154862 + 0.0329169i −0.284690 0.958620i \(-0.591891\pi\)
0.129828 + 0.991537i \(0.458557\pi\)
\(314\) 5.14446 + 15.8330i 0.290319 + 0.893509i
\(315\) 1.51217 1.47747i 0.0852009 0.0832462i
\(316\) 2.03512 6.26345i 0.114484 0.352347i
\(317\) −3.11752 + 29.6613i −0.175098 + 1.66594i 0.455805 + 0.890080i \(0.349351\pi\)
−0.630902 + 0.775862i \(0.717315\pi\)
\(318\) −2.86494 8.30272i −0.160658 0.465594i
\(319\) −11.3922 + 5.07212i −0.637839 + 0.283984i
\(320\) 18.7025 + 5.98305i 1.04550 + 0.334463i
\(321\) 15.9458 7.44835i 0.890007 0.415726i
\(322\) 0.449545 + 0.200150i 0.0250522 + 0.0111539i
\(323\) −2.20674 6.79164i −0.122786 0.377897i
\(324\) 5.00202 1.44849i 0.277890 0.0804715i
\(325\) 16.0627 28.4142i 0.890998 1.57614i
\(326\) 0.366993 + 0.635650i 0.0203259 + 0.0352054i
\(327\) 2.35141 + 19.0477i 0.130033 + 1.05334i
\(328\) 1.47225 + 14.0075i 0.0812916 + 0.773437i
\(329\) −0.171742 1.63402i −0.00946844 0.0900862i
\(330\) 13.3044 + 1.09437i 0.732382 + 0.0602430i
\(331\) 2.12974 20.2631i 0.117061 1.11376i −0.765458 0.643486i \(-0.777487\pi\)
0.882519 0.470277i \(-0.155846\pi\)
\(332\) 5.75281 0.315726
\(333\) −0.0380839 0.0607698i −0.00208698 0.00333017i
\(334\) −1.98949 + 6.12301i −0.108860 + 0.335036i
\(335\) −1.13398 + 5.45665i −0.0619557 + 0.298129i
\(336\) −1.26054 0.534096i −0.0687683 0.0291373i
\(337\) 17.7807 + 19.7475i 0.968576 + 1.07571i 0.997099 + 0.0761198i \(0.0242532\pi\)
−0.0285223 + 0.999593i \(0.509080\pi\)
\(338\) 23.6255 + 26.2388i 1.28506 + 1.42720i
\(339\) 23.3927 + 9.91156i 1.27052 + 0.538322i
\(340\) 0.521967 + 1.15818i 0.0283077 + 0.0628109i
\(341\) −7.74271 + 23.8296i −0.419291 + 1.29045i
\(342\) −12.1823 + 22.9842i −0.658745 + 1.24284i
\(343\) 4.38089 0.236546
\(344\) 0.865065 8.23054i 0.0466412 0.443761i
\(345\) −1.95763 + 4.67932i −0.105395 + 0.251926i
\(346\) 0.0453252 + 0.431241i 0.00243670 + 0.0231837i
\(347\) −2.14059 20.3664i −0.114913 1.09332i −0.888260 0.459341i \(-0.848086\pi\)
0.773347 0.633983i \(-0.218581\pi\)
\(348\) 0.529629 + 4.29027i 0.0283911 + 0.229982i
\(349\) 2.88806 + 5.00227i 0.154594 + 0.267766i 0.932911 0.360106i \(-0.117260\pi\)
−0.778317 + 0.627872i \(0.783926\pi\)
\(350\) −0.213335 1.86653i −0.0114032 0.0997701i
\(351\) −30.1932 + 15.4589i −1.61159 + 0.825138i
\(352\) 2.82175 + 8.68445i 0.150400 + 0.462883i
\(353\) 12.6340 + 5.62502i 0.672440 + 0.299390i 0.714408 0.699729i \(-0.246696\pi\)
−0.0419678 + 0.999119i \(0.513363\pi\)
\(354\) −9.69209 + 4.52722i −0.515129 + 0.240619i
\(355\) −0.120935 26.6338i −0.00641857 1.41357i
\(356\) −6.47817 + 2.88427i −0.343342 + 0.152866i
\(357\) −0.174827 0.506657i −0.00925281 0.0268151i
\(358\) 1.89245 18.0055i 0.100019 0.951618i
\(359\) 0.158269 0.487102i 0.00835313 0.0257083i −0.946793 0.321843i \(-0.895698\pi\)
0.955146 + 0.296135i \(0.0956977\pi\)
\(360\) 7.61347 19.1660i 0.401265 1.01014i
\(361\) 10.4747 + 32.2377i 0.551299 + 1.69672i
\(362\) 0.0666870 0.0141748i 0.00350499 0.000745008i
\(363\) −2.35921 3.92057i −0.123826 0.205777i
\(364\) −1.16440 0.247501i −0.0610311 0.0129726i
\(365\) −1.95453 0.625268i −0.102305 0.0327280i
\(366\) −7.89120 13.1137i −0.412480 0.685465i
\(367\) 2.04367 19.4442i 0.106679 1.01498i −0.801955 0.597385i \(-0.796207\pi\)
0.908633 0.417595i \(-0.137127\pi\)
\(368\) 3.28461 0.171222
\(369\) 13.7354 0.497651i 0.715037 0.0259067i
\(370\) −0.0634103 0.00637373i −0.00329655 0.000331354i
\(371\) −1.22458 0.545220i −0.0635773 0.0283064i
\(372\) 7.11813 + 4.97723i 0.369058 + 0.258057i
\(373\) −24.2570 5.15599i −1.25598 0.266967i −0.468587 0.883417i \(-0.655237\pi\)
−0.787394 + 0.616450i \(0.788570\pi\)
\(374\) 1.69214 2.93088i 0.0874987 0.151552i
\(375\) 19.1849 2.63414i 0.990705 0.136026i
\(376\) −8.01359 13.8800i −0.413270 0.715804i
\(377\) −8.70129 26.7798i −0.448139 1.37923i
\(378\) −0.882946 + 1.74132i −0.0454138 + 0.0895639i
\(379\) 15.1691 11.0210i 0.779184 0.566110i −0.125550 0.992087i \(-0.540070\pi\)
0.904734 + 0.425977i \(0.140070\pi\)
\(380\) −3.86637 8.57897i −0.198341 0.440092i
\(381\) −18.1948 19.4860i −0.932150 0.998298i
\(382\) −1.42861 + 2.47442i −0.0730938 + 0.126602i
\(383\) 5.00833 2.22985i 0.255914 0.113940i −0.274770 0.961510i \(-0.588602\pi\)
0.530684 + 0.847570i \(0.321935\pi\)
\(384\) −7.19129 + 0.130232i −0.366979 + 0.00664587i
\(385\) 1.50785 1.37013i 0.0768473 0.0698280i
\(386\) −2.17198 6.68468i −0.110551 0.340241i
\(387\) −7.95507 1.39196i −0.404379 0.0707574i
\(388\) 1.32184 4.06819i 0.0671061 0.206531i
\(389\) −1.04925 + 1.16531i −0.0531990 + 0.0590835i −0.769157 0.639060i \(-0.779324\pi\)
0.715958 + 0.698143i \(0.245990\pi\)
\(390\) −5.59773 + 29.6185i −0.283452 + 1.49979i
\(391\) 0.860448 + 0.955625i 0.0435148 + 0.0483280i
\(392\) 19.3805 8.62874i 0.978861 0.435817i
\(393\) −3.79043 + 4.36616i −0.191202 + 0.220244i
\(394\) −1.97840 + 18.8232i −0.0996704 + 0.948300i
\(395\) −21.9831 + 12.8254i −1.10609 + 0.645317i
\(396\) 4.86776 1.22044i 0.244614 0.0613294i
\(397\) 7.83333 5.69125i 0.393143 0.285635i −0.373599 0.927590i \(-0.621876\pi\)
0.766742 + 0.641955i \(0.221876\pi\)
\(398\) 3.67768 4.08447i 0.184345 0.204736i
\(399\) 1.29500 + 3.75296i 0.0648309 + 0.187883i
\(400\) −6.36831 10.8025i −0.318415 0.540124i
\(401\) −0.505309 + 0.875221i −0.0252339 + 0.0437064i −0.878367 0.477988i \(-0.841366\pi\)
0.853133 + 0.521694i \(0.174700\pi\)
\(402\) −0.630582 5.10804i −0.0314506 0.254766i
\(403\) −51.6851 23.0117i −2.57462 1.14629i
\(404\) 5.40443 3.92655i 0.268880 0.195353i
\(405\) −18.1506 8.69235i −0.901909 0.431926i
\(406\) −1.31117 0.952622i −0.0650724 0.0472779i
\(407\) −0.0345565 0.0598535i −0.00171290 0.00296683i
\(408\) −3.56816 3.82137i −0.176650 0.189186i
\(409\) 5.36444 + 5.95782i 0.265255 + 0.294595i 0.861028 0.508557i \(-0.169821\pi\)
−0.595773 + 0.803153i \(0.703154\pi\)
\(410\) 7.13408 9.91357i 0.352327 0.489596i
\(411\) −11.6767 + 8.81099i −0.575968 + 0.434614i
\(412\) −9.26377 + 1.96908i −0.456393 + 0.0970094i
\(413\) −0.504507 + 1.55271i −0.0248251 + 0.0764040i
\(414\) 0.320639 4.67323i 0.0157585 0.229677i
\(415\) −16.5889 14.8009i −0.814316 0.726546i
\(416\) −20.1681 + 4.28687i −0.988823 + 0.210181i
\(417\) −2.41361 + 0.558891i −0.118195 + 0.0273690i
\(418\) −12.5342 + 21.7099i −0.613070 + 1.06187i
\(419\) 22.8670 10.1810i 1.11713 0.497377i 0.236711 0.971580i \(-0.423931\pi\)
0.880415 + 0.474204i \(0.157264\pi\)
\(420\) −0.301797 0.638525i −0.0147262 0.0311568i
\(421\) 30.1379 + 13.4182i 1.46883 + 0.653965i 0.976318 0.216340i \(-0.0694120\pi\)
0.492512 + 0.870305i \(0.336079\pi\)
\(422\) −0.142826 + 0.103769i −0.00695265 + 0.00505140i
\(423\) −14.0481 + 6.87451i −0.683044 + 0.334250i
\(424\) −13.0760 −0.635026
\(425\) 1.47461 4.68265i 0.0715291 0.227142i
\(426\) 8.02298 + 23.2510i 0.388714 + 1.12651i
\(427\) −2.28479 0.485646i −0.110569 0.0235021i
\(428\) −0.614562 5.84717i −0.0297060 0.282633i
\(429\) −29.6171 + 13.8343i −1.42993 + 0.667926i
\(430\) −5.31132 + 4.82618i −0.256135 + 0.232739i
\(431\) 4.71468 + 3.42542i 0.227098 + 0.164997i 0.695516 0.718511i \(-0.255176\pi\)
−0.468418 + 0.883507i \(0.655176\pi\)
\(432\) −0.656483 + 13.0153i −0.0315851 + 0.626198i
\(433\) −1.68629 1.22516i −0.0810381 0.0588776i 0.546529 0.837440i \(-0.315949\pi\)
−0.627567 + 0.778563i \(0.715949\pi\)
\(434\) −3.18523 + 0.677041i −0.152896 + 0.0324990i
\(435\) 9.51078 13.7341i 0.456007 0.658500i
\(436\) 6.27131 + 1.33301i 0.300341 + 0.0638395i
\(437\) −6.37361 7.07861i −0.304891 0.338616i
\(438\) 1.89479 0.0343140i 0.0905365 0.00163959i
\(439\) 15.2474 16.9340i 0.727721 0.808216i −0.259807 0.965661i \(-0.583659\pi\)
0.987528 + 0.157445i \(0.0503256\pi\)
\(440\) 8.00095 18.1923i 0.381430 0.867284i
\(441\) −7.10597 19.4443i −0.338379 0.925917i
\(442\) 6.18230 + 4.49170i 0.294062 + 0.213648i
\(443\) 4.50211 + 7.79787i 0.213901 + 0.370488i 0.952932 0.303184i \(-0.0980495\pi\)
−0.739031 + 0.673672i \(0.764716\pi\)
\(444\) −0.0233405 + 0.00540466i −0.00110769 + 0.000256494i
\(445\) 26.1012 + 8.34996i 1.23732 + 0.395826i
\(446\) 0.205216 + 1.95250i 0.00971724 + 0.0924534i
\(447\) −3.10247 + 35.7307i −0.146742 + 1.69000i
\(448\) −1.85187 + 2.05671i −0.0874925 + 0.0971702i
\(449\) −2.14345 −0.101156 −0.0505779 0.998720i \(-0.516106\pi\)
−0.0505779 + 0.998720i \(0.516106\pi\)
\(450\) −15.9911 + 8.00609i −0.753826 + 0.377411i
\(451\) 13.2453 0.623698
\(452\) 5.67902 6.30719i 0.267118 0.296665i
\(453\) −30.2521 21.1532i −1.42137 0.993865i
\(454\) 0.456397 + 4.34233i 0.0214198 + 0.203795i
\(455\) 2.72091 + 3.70947i 0.127558 + 0.173903i
\(456\) 26.4305 + 28.3061i 1.23772 + 1.32555i
\(457\) 9.78295 + 16.9446i 0.457627 + 0.792634i 0.998835 0.0482552i \(-0.0153661\pi\)
−0.541208 + 0.840889i \(0.682033\pi\)
\(458\) 0.816594 + 0.593290i 0.0381569 + 0.0277226i
\(459\) −3.95865 + 3.21854i −0.184774 + 0.150228i
\(460\) 1.26437 + 1.12809i 0.0589516 + 0.0525976i
\(461\) −2.55207 + 2.83436i −0.118862 + 0.132009i −0.799639 0.600482i \(-0.794976\pi\)
0.680777 + 0.732491i \(0.261642\pi\)
\(462\) −0.911085 + 1.64618i −0.0423875 + 0.0765873i
\(463\) 6.05576 + 6.72560i 0.281435 + 0.312565i 0.867243 0.497884i \(-0.165890\pi\)
−0.585808 + 0.810450i \(0.699223\pi\)
\(464\) −10.5815 2.24917i −0.491234 0.104415i
\(465\) −7.72050 32.6660i −0.358030 1.51485i
\(466\) 13.0355 2.77079i 0.603860 0.128354i
\(467\) 24.8972 + 18.0889i 1.15211 + 0.837053i 0.988759 0.149515i \(-0.0477713\pi\)
0.163346 + 0.986569i \(0.447771\pi\)
\(468\) 1.59174 + 11.2193i 0.0735783 + 0.518611i
\(469\) −0.635487 0.461708i −0.0293441 0.0213197i
\(470\) −2.82782 + 13.6074i −0.130438 + 0.627662i
\(471\) 2.09217 24.0952i 0.0964021 1.11025i
\(472\) 1.66469 + 15.8385i 0.0766238 + 0.729027i
\(473\) −7.61260 1.61811i −0.350028 0.0744007i
\(474\) 15.4082 17.7485i 0.707721 0.815216i
\(475\) −10.9229 + 34.6859i −0.501177 + 1.59150i
\(476\) −0.179048 −0.00820666
\(477\) −0.873437 + 12.7301i −0.0399919 + 0.582873i
\(478\) 15.7550 11.4467i 0.720617 0.523559i
\(479\) 11.2505 + 5.00905i 0.514049 + 0.228870i 0.647331 0.762209i \(-0.275885\pi\)
−0.133282 + 0.991078i \(0.542552\pi\)
\(480\) −9.27375 7.97734i −0.423287 0.364114i
\(481\) 0.142565 0.0634742i 0.00650042 0.00289417i
\(482\) −1.24920 + 2.16367i −0.0568993 + 0.0985524i
\(483\) −0.487905 0.522528i −0.0222005 0.0237759i
\(484\) −1.49516 + 0.317806i −0.0679618 + 0.0144457i
\(485\) −14.2783 + 8.33027i −0.648346 + 0.378258i
\(486\) 18.4536 + 2.20456i 0.837074 + 0.100001i
\(487\) 1.53444 4.72251i 0.0695320 0.213997i −0.910252 0.414054i \(-0.864113\pi\)
0.979784 + 0.200056i \(0.0641125\pi\)
\(488\) −22.2875 + 4.73735i −1.00891 + 0.214450i
\(489\) −0.130646 1.05830i −0.00590800 0.0478579i
\(490\) −17.5216 5.60530i −0.791547 0.253221i
\(491\) −12.7546 14.1654i −0.575605 0.639274i 0.383090 0.923711i \(-0.374860\pi\)
−0.958695 + 0.284437i \(0.908193\pi\)
\(492\) 1.33955 4.39175i 0.0603917 0.197996i
\(493\) −2.11760 3.66778i −0.0953718 0.165189i
\(494\) −45.7942 33.2714i −2.06038 1.49695i
\(495\) −17.1767 9.00453i −0.772035 0.404724i
\(496\) −17.5847 + 12.7760i −0.789576 + 0.573660i
\(497\) 3.42933 + 1.52684i 0.153827 + 0.0684880i
\(498\) 18.9040 + 8.00969i 0.847110 + 0.358923i
\(499\) −2.50922 + 4.34610i −0.112328 + 0.194558i −0.916709 0.399557i \(-0.869164\pi\)
0.804380 + 0.594115i \(0.202497\pi\)
\(500\) 1.25868 6.34547i 0.0562900 0.283778i
\(501\) 6.13167 7.06301i 0.273943 0.315552i
\(502\) −12.6582 + 14.0583i −0.564962 + 0.627453i
\(503\) −5.48055 + 3.98186i −0.244366 + 0.177542i −0.703226 0.710966i \(-0.748258\pi\)
0.458860 + 0.888508i \(0.348258\pi\)
\(504\) 2.02185 + 2.08821i 0.0900605 + 0.0930164i
\(505\) −25.6865 2.58190i −1.14304 0.114893i
\(506\) 0.471854 4.48939i 0.0209765 0.199578i
\(507\) −16.7317 48.4894i −0.743083 2.15349i
\(508\) −8.13615 + 3.62245i −0.360983 + 0.160720i
\(509\) −6.65406 7.39008i −0.294936 0.327559i 0.577405 0.816458i \(-0.304065\pi\)
−0.872341 + 0.488899i \(0.837399\pi\)
\(510\) 0.102673 + 4.53257i 0.00454642 + 0.200705i
\(511\) 0.193532 0.214939i 0.00856136 0.00950835i
\(512\) −7.21302 + 22.1994i −0.318774 + 0.981084i
\(513\) 29.3229 23.8407i 1.29464 1.05259i
\(514\) 0.808743 + 2.48906i 0.0356721 + 0.109788i
\(515\) 31.7792 + 18.1558i 1.40036 + 0.800041i
\(516\) −1.30641 + 2.36047i −0.0575115 + 0.103914i
\(517\) −13.7690 + 6.13035i −0.605560 + 0.269613i
\(518\) 0.00449112 0.00777885i 0.000197329 0.000341783i
\(519\) 0.183787 0.602550i 0.00806736 0.0264490i
\(520\) 38.9648 + 22.2611i 1.70872 + 0.976212i
\(521\) 15.4969 11.2591i 0.678930 0.493272i −0.194072 0.980987i \(-0.562170\pi\)
0.873003 + 0.487715i \(0.162170\pi\)
\(522\) −4.23299 + 14.8354i −0.185273 + 0.649330i
\(523\) 0.0808887 + 0.248950i 0.00353702 + 0.0108858i 0.952809 0.303569i \(-0.0981783\pi\)
−0.949272 + 0.314455i \(0.898178\pi\)
\(524\) 0.965764 + 1.67275i 0.0421896 + 0.0730745i
\(525\) −0.772533 + 2.61773i −0.0337161 + 0.114247i
\(526\) 17.6822 30.6265i 0.770980 1.33538i
\(527\) −8.32361 1.76924i −0.362582 0.0770692i
\(528\) −1.08637 + 12.5115i −0.0472781 + 0.544495i
\(529\) −19.4446 8.65730i −0.845418 0.376404i
\(530\) 8.46084 + 7.54890i 0.367516 + 0.327903i
\(531\) 15.5308 0.562700i 0.673980 0.0244191i
\(532\) 1.32626 0.0575009
\(533\) −3.12624 + 29.7442i −0.135412 + 1.28836i
\(534\) −25.3034 + 0.458236i −1.09498 + 0.0198298i
\(535\) −13.2715 + 18.4421i −0.573775 + 0.797322i
\(536\) −7.49495 1.59310i −0.323733 0.0688115i
\(537\) −12.7366 + 23.0129i −0.549624 + 0.993080i
\(538\) −29.5128 + 6.27313i −1.27239 + 0.270454i
\(539\) −6.16497 18.9738i −0.265544 0.817261i
\(540\) −4.72278 + 4.78462i −0.203236 + 0.205897i
\(541\) 6.23922 19.2023i 0.268245 0.825573i −0.722683 0.691180i \(-0.757091\pi\)
0.990928 0.134394i \(-0.0429087\pi\)
\(542\) −2.34450 + 22.3064i −0.100705 + 0.958143i
\(543\) −0.0972395 0.0188354i −0.00417295 0.000808305i
\(544\) −2.83311 + 1.26138i −0.121468 + 0.0540813i
\(545\) −14.6545 19.9787i −0.627729 0.855795i
\(546\) −3.48168 2.43451i −0.149002 0.104187i
\(547\) −6.86422 3.05615i −0.293493 0.130671i 0.254708 0.967018i \(-0.418021\pi\)
−0.548201 + 0.836346i \(0.684687\pi\)
\(548\) 1.51006 + 4.64750i 0.0645067 + 0.198531i
\(549\) 3.12332 + 22.0145i 0.133300 + 0.939554i
\(550\) −15.6796 + 7.15234i −0.668582 + 0.304977i
\(551\) 15.6857 + 27.1684i 0.668233 + 1.15741i
\(552\) −6.42110 2.72064i −0.273300 0.115798i
\(553\) −0.374956 3.56747i −0.0159447 0.151704i
\(554\) −2.82076 26.8378i −0.119843 1.14023i
\(555\) 0.0812100 + 0.0444655i 0.00344717 + 0.00188746i
\(556\) −0.0865112 + 0.823099i −0.00366889 + 0.0349072i
\(557\) 17.2753 0.731980 0.365990 0.930619i \(-0.380730\pi\)
0.365990 + 0.930619i \(0.380730\pi\)
\(558\) 16.4607 + 26.2661i 0.696837 + 1.11193i
\(559\) 5.43045 16.7132i 0.229684 0.706894i
\(560\) 1.75686 0.192723i 0.0742411 0.00814404i
\(561\) −3.92470 + 2.96150i −0.165701 + 0.125035i
\(562\) −0.748054 0.830798i −0.0315548 0.0350451i
\(563\) 1.80844 + 2.00848i 0.0762167 + 0.0846473i 0.780047 0.625721i \(-0.215195\pi\)
−0.703830 + 0.710368i \(0.748528\pi\)
\(564\) 0.640129 + 5.18538i 0.0269543 + 0.218344i
\(565\) −32.6033 + 3.57649i −1.37163 + 0.150464i
\(566\) 4.27172 13.1470i 0.179554 0.552610i
\(567\) 2.16804 1.82889i 0.0910490 0.0768063i
\(568\) 36.6180 1.53646
\(569\) 4.46837 42.5137i 0.187324 1.78227i −0.347877 0.937540i \(-0.613097\pi\)
0.535201 0.844725i \(-0.320236\pi\)
\(570\) −0.760528 33.5741i −0.0318550 1.40627i
\(571\) −3.16839 30.1452i −0.132593 1.26154i −0.835194 0.549955i \(-0.814645\pi\)
0.702601 0.711584i \(-0.252022\pi\)
\(572\) 1.14147 + 10.8603i 0.0477271 + 0.454093i
\(573\) 3.31346 2.50027i 0.138422 0.104450i
\(574\) 0.860713 + 1.49080i 0.0359255 + 0.0622247i
\(575\) −0.743598 6.50596i −0.0310102 0.271317i
\(576\) 24.4393 + 9.83692i 1.01830 + 0.409872i
\(577\) 11.8163 + 36.3667i 0.491917 + 1.51396i 0.821707 + 0.569910i \(0.193022\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(578\) −17.4655 7.77613i −0.726468 0.323444i
\(579\) −0.883312 + 10.1730i −0.0367092 + 0.422774i
\(580\) −3.30075 4.49999i −0.137056 0.186852i
\(581\) 2.86252 1.27448i 0.118757 0.0528741i
\(582\) 10.0078 11.5279i 0.414837 0.477847i
\(583\) −1.28536 + 12.2294i −0.0532340 + 0.506488i
\(584\) 0.871846 2.68327i 0.0360773 0.111034i
\(585\) 24.2750 36.4473i 1.00365 1.50691i
\(586\) −8.73494 26.8834i −0.360837 1.11054i
\(587\) −18.3047 + 3.89078i −0.755515 + 0.160590i −0.569539 0.821964i \(-0.692878\pi\)
−0.185976 + 0.982554i \(0.559545\pi\)
\(588\) −6.91465 + 0.125222i −0.285155 + 0.00516407i
\(589\) 61.6556 + 13.1053i 2.54047 + 0.539994i
\(590\) 8.06659 11.2094i 0.332096 0.461484i
\(591\) 13.3150 24.0581i 0.547707 0.989617i
\(592\) 0.00626701 0.0596266i 0.000257572 0.00245064i
\(593\) −42.4830 −1.74457 −0.872284 0.489000i \(-0.837362\pi\)
−0.872284 + 0.489000i \(0.837362\pi\)
\(594\) 17.6949 + 2.76701i 0.726033 + 0.113532i
\(595\) 0.516306 + 0.460656i 0.0211665 + 0.0188851i
\(596\) 10.9454 + 4.87320i 0.448340 + 0.199614i
\(597\) −7.23453 + 3.37928i −0.296089 + 0.138305i
\(598\) 9.97017 + 2.11922i 0.407710 + 0.0866615i
\(599\) −22.9566 + 39.7621i −0.937983 + 1.62463i −0.168757 + 0.985658i \(0.553975\pi\)
−0.769226 + 0.638977i \(0.779358\pi\)
\(600\) 3.50176 + 26.3927i 0.142959 + 1.07748i
\(601\) 13.8303 + 23.9548i 0.564150 + 0.977136i 0.997128 + 0.0757320i \(0.0241293\pi\)
−0.432978 + 0.901404i \(0.642537\pi\)
\(602\) −0.312563 0.961968i −0.0127391 0.0392069i
\(603\) −2.05161 + 7.19031i −0.0835479 + 0.292812i
\(604\) −9.97648 + 7.24834i −0.405937 + 0.294931i
\(605\) 5.12911 + 2.93032i 0.208528 + 0.119135i
\(606\) 23.2262 5.37820i 0.943500 0.218474i
\(607\) −7.77177 + 13.4611i −0.315446 + 0.546369i −0.979532 0.201287i \(-0.935488\pi\)
0.664086 + 0.747656i \(0.268821\pi\)
\(608\) 20.9857 9.34344i 0.851083 0.378926i
\(609\) 1.21400 + 2.01744i 0.0491938 + 0.0817509i
\(610\) 17.1561 + 9.80148i 0.694630 + 0.396850i
\(611\) −10.5167 32.3671i −0.425460 1.30943i
\(612\) 0.585025 + 1.60082i 0.0236482 + 0.0647093i
\(613\) −12.9646 + 39.9011i −0.523637 + 1.61159i 0.243359 + 0.969936i \(0.421751\pi\)
−0.766996 + 0.641652i \(0.778249\pi\)
\(614\) −10.0731 + 11.1873i −0.406516 + 0.451482i
\(615\) −15.1619 + 9.21772i −0.611386 + 0.371694i
\(616\) 1.87429 + 2.08161i 0.0755174 + 0.0838706i
\(617\) −8.46425 + 3.76852i −0.340758 + 0.151715i −0.569979 0.821659i \(-0.693049\pi\)
0.229221 + 0.973374i \(0.426382\pi\)
\(618\) −33.1828 6.42755i −1.33481 0.258554i
\(619\) −1.08260 + 10.3002i −0.0435132 + 0.414001i 0.950984 + 0.309240i \(0.100074\pi\)
−0.994497 + 0.104761i \(0.966592\pi\)
\(620\) −11.1569 1.12144i −0.448073 0.0450383i
\(621\) −3.07759 + 6.06954i −0.123500 + 0.243562i
\(622\) 13.6611 9.92537i 0.547760 0.397971i
\(623\) −2.58447 + 2.87034i −0.103545 + 0.114998i
\(624\) −27.8399 5.39263i −1.11449 0.215878i
\(625\) −19.9552 + 15.0595i −0.798208 + 0.602381i
\(626\) −1.66970 + 2.89201i −0.0667347 + 0.115588i
\(627\) 29.0715 21.9368i 1.16100 0.876070i
\(628\) −7.38109 3.28627i −0.294537 0.131136i
\(629\) 0.0189895 0.0137967i 0.000757161 0.000550110i
\(630\) −0.102698 2.51842i −0.00409157 0.100336i
\(631\) 29.6450 + 21.5383i 1.18015 + 0.857428i 0.992188 0.124749i \(-0.0398126\pi\)
0.187960 + 0.982177i \(0.439813\pi\)
\(632\) −17.4957 30.3034i −0.695941 1.20541i
\(633\) 0.249869 0.0578590i 0.00993139 0.00229969i
\(634\) 23.7926 + 26.4244i 0.944925 + 1.04945i
\(635\) 32.7814 + 10.4870i 1.30089 + 0.416163i
\(636\) 3.92489 + 1.66299i 0.155632 + 0.0659418i
\(637\) 44.0634 9.36597i 1.74586 0.371093i
\(638\) −4.59425 + 14.1397i −0.181888 + 0.559794i
\(639\) 2.44598 35.6495i 0.0967613 1.41027i
\(640\) 8.02026 4.67918i 0.317029 0.184961i
\(641\) 25.7650 5.47651i 1.01766 0.216309i 0.331261 0.943539i \(-0.392526\pi\)
0.686394 + 0.727230i \(0.259193\pi\)
\(642\) 6.12158 20.0698i 0.241600 0.792090i
\(643\) 24.3415 42.1606i 0.959934 1.66265i 0.237282 0.971441i \(-0.423743\pi\)
0.722651 0.691213i \(-0.242923\pi\)
\(644\) −0.218175 + 0.0971380i −0.00859732 + 0.00382777i
\(645\) 9.84020 3.44554i 0.387457 0.135668i
\(646\) −7.77776 3.46288i −0.306012 0.136245i
\(647\) 10.6167 7.71348i 0.417386 0.303248i −0.359199 0.933261i \(-0.616950\pi\)
0.776585 + 0.630012i \(0.216950\pi\)
\(648\) 12.0639 24.8999i 0.473915 0.978161i
\(649\) 14.9767 0.587885
\(650\) −12.3607 36.8989i −0.484828 1.44729i
\(651\) 4.64454 + 0.899653i 0.182034 + 0.0352602i
\(652\) −0.348437 0.0740627i −0.0136459 0.00290052i
\(653\) 5.05266 + 48.0729i 0.197726 + 1.88124i 0.421835 + 0.906673i \(0.361386\pi\)
−0.224109 + 0.974564i \(0.571947\pi\)
\(654\) 18.7519 + 13.1119i 0.733257 + 0.512717i
\(655\) 1.51878 7.30830i 0.0593435 0.285559i
\(656\) 9.29580 + 6.75379i 0.362940 + 0.263691i
\(657\) −2.55406 1.02802i −0.0996435 0.0401070i
\(658\) −1.58473 1.15137i −0.0617792 0.0448853i
\(659\) −29.3437 + 6.23721i −1.14307 + 0.242967i −0.740263 0.672318i \(-0.765299\pi\)
−0.402807 + 0.915285i \(0.631966\pi\)
\(660\) −4.71525 + 4.44306i −0.183541 + 0.172946i
\(661\) −11.7271 2.49266i −0.456130 0.0969533i −0.0258835 0.999665i \(-0.508240\pi\)
−0.430246 + 0.902712i \(0.641573\pi\)
\(662\) −16.2540 18.0519i −0.631729 0.701606i
\(663\) −5.72412 9.51243i −0.222306 0.369432i
\(664\) 20.4524 22.7147i 0.793707 0.881501i
\(665\) −3.82444 3.41222i −0.148305 0.132320i
\(666\) −0.0842229 0.0147371i −0.00326357 0.000571053i
\(667\) −4.57022 3.32046i −0.176959 0.128569i
\(668\) −1.56229 2.70596i −0.0604468 0.104697i
\(669\) 0.832119 2.72812i 0.0321716 0.105475i
\(670\) 3.92992 + 5.35774i 0.151826 + 0.206987i
\(671\) 2.23978 + 21.3101i 0.0864659 + 0.822668i
\(672\) 1.56210 0.729665i 0.0602594 0.0281474i
\(673\) −17.3708 + 19.2922i −0.669593 + 0.743659i −0.978231 0.207521i \(-0.933460\pi\)
0.308637 + 0.951180i \(0.400127\pi\)
\(674\) 31.6806 1.22029
\(675\) 25.9286 1.64619i 0.997991 0.0633619i
\(676\) −17.1357 −0.659067
\(677\) 26.3010 29.2103i 1.01083 1.12264i 0.0184004 0.999831i \(-0.494143\pi\)
0.992430 0.122810i \(-0.0391907\pi\)
\(678\) 27.4431 12.8188i 1.05395 0.492303i
\(679\) −0.243539 2.31712i −0.00934616 0.0889227i
\(680\) 6.42871 + 2.05659i 0.246530 + 0.0788666i
\(681\) 1.85062 6.06730i 0.0709159 0.232500i
\(682\) 14.9361 + 25.8700i 0.571932 + 0.990615i
\(683\) −26.3578 19.1501i −1.00855 0.732757i −0.0446482 0.999003i \(-0.514217\pi\)
−0.963905 + 0.266246i \(0.914217\pi\)
\(684\) −4.33346 11.8578i −0.165694 0.453393i
\(685\) 7.60267 17.2867i 0.290483 0.660491i
\(686\) 3.49486 3.88143i 0.133434 0.148194i
\(687\) −0.756076 1.25646i −0.0288461 0.0479369i
\(688\) −4.51758 5.01729i −0.172231 0.191282i
\(689\) −27.1593 5.77288i −1.03469 0.219929i
\(690\) 2.58414 + 5.46737i 0.0983764 + 0.208139i
\(691\) −32.6488 + 6.93971i −1.24202 + 0.263999i −0.781643 0.623726i \(-0.785618\pi\)
−0.460375 + 0.887725i \(0.652285\pi\)
\(692\) −0.170254 0.123696i −0.00647207 0.00470223i
\(693\) 2.15176 1.68568i 0.0817384 0.0640335i
\(694\) −19.7521 14.3507i −0.749779 0.544746i
\(695\) 2.36714 2.15092i 0.0897907 0.0815892i
\(696\) 18.8229 + 13.1616i 0.713479 + 0.498888i
\(697\) 0.470212 + 4.47377i 0.0178106 + 0.169456i
\(698\) 6.73592 + 1.43176i 0.254958 + 0.0541931i
\(699\) −19.0078 3.68183i −0.718940 0.139260i
\(700\) 0.742475 + 0.529205i 0.0280629 + 0.0200021i
\(701\) −47.0156 −1.77575 −0.887877 0.460081i \(-0.847820\pi\)
−0.887877 + 0.460081i \(0.847820\pi\)
\(702\) −10.3901 + 39.0833i −0.392151 + 1.47510i
\(703\) −0.140661 + 0.102196i −0.00530513 + 0.00385441i
\(704\) 23.1931 + 10.3262i 0.874124 + 0.389185i
\(705\) 11.4951 16.5995i 0.432930 0.625175i
\(706\) 15.0625 6.70626i 0.566885 0.252393i
\(707\) 1.81928 3.15109i 0.0684211 0.118509i
\(708\) 1.51465 4.96581i 0.0569240 0.186627i
\(709\) 2.86671 0.609338i 0.107661 0.0228842i −0.153766 0.988107i \(-0.549140\pi\)
0.261427 + 0.965223i \(0.415807\pi\)
\(710\) −23.6938 21.1400i −0.889212 0.793369i
\(711\) −30.6706 + 15.0088i −1.15024 + 0.562873i
\(712\) −11.6428 + 35.8329i −0.436333 + 1.34289i
\(713\) −11.1024 + 2.35989i −0.415789 + 0.0883786i
\(714\) −0.588361 0.249290i −0.0220189 0.00932946i
\(715\) 24.6499 34.2537i 0.921855 1.28102i
\(716\) 5.87941 + 6.52975i 0.219724 + 0.244028i
\(717\) −27.5628 + 6.38238i −1.02935 + 0.238354i
\(718\) −0.305309 0.528811i −0.0113940 0.0197351i
\(719\) 13.9385 + 10.1269i 0.519820 + 0.377671i 0.816536 0.577295i \(-0.195892\pi\)
−0.296716 + 0.954966i \(0.595892\pi\)
\(720\) −7.46349 15.0779i −0.278148 0.561922i
\(721\) −4.17330 + 3.03208i −0.155422 + 0.112920i
\(722\) 36.9185 + 16.4372i 1.37397 + 0.611729i
\(723\) 2.89734 2.18628i 0.107753 0.0813084i
\(724\) −0.0165440 + 0.0286550i −0.000614851 + 0.00106495i
\(725\) −2.05949 + 21.4684i −0.0764875 + 0.797317i
\(726\) −5.35565 1.03740i −0.198767 0.0385014i
\(727\) −0.116229 + 0.129085i −0.00431069 + 0.00478751i −0.745296 0.666733i \(-0.767692\pi\)
0.740986 + 0.671521i \(0.234359\pi\)
\(728\) −5.11692 + 3.71766i −0.189646 + 0.137786i
\(729\) −23.4355 13.4081i −0.867982 0.496596i
\(730\) −2.11321 + 1.23289i −0.0782134 + 0.0456313i
\(731\) 0.276287 2.62869i 0.0102188 0.0972257i
\(732\) 7.29232 + 1.41253i 0.269532 + 0.0522087i
\(733\) −48.4219 + 21.5588i −1.78851 + 0.796294i −0.811104 + 0.584902i \(0.801133\pi\)
−0.977401 + 0.211392i \(0.932200\pi\)
\(734\) −15.5971 17.3223i −0.575698 0.639378i
\(735\) 20.2613 + 17.4289i 0.747351 + 0.642876i
\(736\) −2.76790 + 3.07406i −0.102026 + 0.113311i
\(737\) −2.22670 + 6.85308i −0.0820216 + 0.252436i
\(738\) 10.5165 12.5665i 0.387118 0.462578i
\(739\) −1.32714 4.08451i −0.0488195 0.150251i 0.923675 0.383177i \(-0.125170\pi\)
−0.972494 + 0.232926i \(0.925170\pi\)
\(740\) 0.0228910 0.0208002i 0.000841491 0.000764629i
\(741\) 42.4003 + 70.4615i 1.55761 + 2.58847i
\(742\) −1.45997 + 0.650022i −0.0535973 + 0.0238631i
\(743\) −15.1680 + 26.2718i −0.556461 + 0.963820i 0.441327 + 0.897346i \(0.354508\pi\)
−0.997788 + 0.0664731i \(0.978825\pi\)
\(744\) 44.9588 10.4105i 1.64827 0.381669i
\(745\) −19.0245 42.2127i −0.697002 1.54656i
\(746\) −23.9192 + 17.3783i −0.875745 + 0.636266i
\(747\) −20.7478 21.4288i −0.759121 0.784037i
\(748\) 0.507554 + 1.56209i 0.0185580 + 0.0571157i
\(749\) −1.60118 2.77332i −0.0585057 0.101335i
\(750\) 12.9710 19.0991i 0.473632 0.697399i
\(751\) 13.8299 23.9541i 0.504661 0.874099i −0.495324 0.868708i \(-0.664951\pi\)
0.999985 0.00539081i \(-0.00171596\pi\)
\(752\) −12.7892 2.71843i −0.466374 0.0991308i
\(753\) 24.9005 11.6311i 0.907424 0.423862i
\(754\) −30.6681 13.6543i −1.11687 0.497262i
\(755\) 47.4169 + 4.76614i 1.72568 + 0.173457i
\(756\) −0.341304 0.883937i −0.0124131 0.0321485i
\(757\) 31.2908 1.13729 0.568643 0.822585i \(-0.307469\pi\)
0.568643 + 0.822585i \(0.307469\pi\)
\(758\) 2.33664 22.2317i 0.0848707 0.807491i
\(759\) −3.17567 + 5.73792i −0.115270 + 0.208273i
\(760\) −47.6194 15.2338i −1.72734 0.552587i
\(761\) 18.0350 + 3.83346i 0.653769 + 0.138963i 0.522843 0.852429i \(-0.324872\pi\)
0.130926 + 0.991392i \(0.458205\pi\)
\(762\) −31.7794 + 0.575514i −1.15125 + 0.0208487i
\(763\) 3.41583 0.726057i 0.123661 0.0262850i
\(764\) −0.428507 1.31881i −0.0155028 0.0477128i
\(765\) 2.43161 6.12130i 0.0879152 0.221316i
\(766\) 2.01977 6.21620i 0.0729771 0.224601i