Properties

Label 225.2.q.a.31.18
Level $225$
Weight $2$
Character 225.31
Analytic conductor $1.797$
Analytic rank $0$
Dimension $224$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,2,Mod(16,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.q (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 31.18
Character \(\chi\) \(=\) 225.31
Dual form 225.2.q.a.196.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.513717 - 0.570540i) q^{2} +(-0.202951 + 1.72012i) q^{3} +(0.147446 + 1.40285i) q^{4} +(-1.29212 + 1.82494i) q^{5} +(0.877138 + 0.999445i) q^{6} +(-1.54115 - 2.66935i) q^{7} +(2.11835 + 1.53907i) q^{8} +(-2.91762 - 0.698199i) q^{9} +O(q^{10})\) \(q+(0.513717 - 0.570540i) q^{2} +(-0.202951 + 1.72012i) q^{3} +(0.147446 + 1.40285i) q^{4} +(-1.29212 + 1.82494i) q^{5} +(0.877138 + 0.999445i) q^{6} +(-1.54115 - 2.66935i) q^{7} +(2.11835 + 1.53907i) q^{8} +(-2.91762 - 0.698199i) q^{9} +(0.377417 + 1.67471i) q^{10} +(-1.43921 + 1.59840i) q^{11} +(-2.44300 - 0.0310856i) q^{12} +(1.36160 + 1.51221i) q^{13} +(-2.31469 - 0.492002i) q^{14} +(-2.87688 - 2.59298i) q^{15} +(-0.793173 + 0.168594i) q^{16} +(6.22843 + 4.52522i) q^{17} +(-1.89718 + 1.30594i) q^{18} +(-2.68599 - 1.95149i) q^{19} +(-2.75064 - 1.54358i) q^{20} +(4.90439 - 2.10922i) q^{21} +(0.172608 + 1.64225i) q^{22} +(5.69309 + 1.21010i) q^{23} +(-3.07731 + 3.33147i) q^{24} +(-1.66083 - 4.71610i) q^{25} +1.56225 q^{26} +(1.79312 - 4.87696i) q^{27} +(3.51747 - 2.55559i) q^{28} +(3.34479 + 1.48919i) q^{29} +(-2.95730 + 0.309319i) q^{30} +(8.69981 - 3.87340i) q^{31} +(-2.92971 + 5.07440i) q^{32} +(-2.45736 - 2.80001i) q^{33} +(5.78146 - 1.22889i) q^{34} +(6.86278 + 0.636623i) q^{35} +(0.549279 - 4.19594i) q^{36} +(-1.42994 + 4.40091i) q^{37} +(-2.49324 + 0.529954i) q^{38} +(-2.87752 + 2.03521i) q^{39} +(-5.54590 + 1.87720i) q^{40} +(-5.79162 - 6.43224i) q^{41} +(1.31607 - 3.88169i) q^{42} +(0.735688 + 1.27425i) q^{43} +(-2.45453 - 1.78332i) q^{44} +(5.04410 - 4.42233i) q^{45} +(3.61505 - 2.62649i) q^{46} +(1.06255 + 0.473076i) q^{47} +(-0.129027 - 1.39857i) q^{48} +(-1.25030 + 2.16559i) q^{49} +(-3.54392 - 1.47517i) q^{50} +(-9.04798 + 9.79524i) q^{51} +(-1.92065 + 2.13309i) q^{52} +(-5.64868 + 4.10401i) q^{53} +(-1.86135 - 3.52842i) q^{54} +(-1.05736 - 4.69181i) q^{55} +(0.843628 - 8.02659i) q^{56} +(3.90191 - 4.22417i) q^{57} +(2.56792 - 1.14331i) q^{58} +(0.132243 + 0.146871i) q^{59} +(3.21339 - 4.41816i) q^{60} +(0.160833 - 0.178623i) q^{61} +(2.25930 - 6.95342i) q^{62} +(2.63276 + 8.86420i) q^{63} +(0.888950 + 2.73591i) q^{64} +(-4.51906 + 0.530879i) q^{65} +(-2.85990 - 0.0363904i) q^{66} +(11.4014 - 5.07622i) q^{67} +(-5.42985 + 9.40478i) q^{68} +(-3.23694 + 9.54721i) q^{69} +(3.88874 - 3.58845i) q^{70} +(-5.29885 + 3.84984i) q^{71} +(-5.10598 - 5.96947i) q^{72} +(-2.49299 - 7.67263i) q^{73} +(1.77631 + 3.07666i) q^{74} +(8.44933 - 1.89969i) q^{75} +(2.34161 - 4.05579i) q^{76} +(6.48474 + 1.37837i) q^{77} +(-0.317061 + 2.68726i) q^{78} +(-10.3435 - 4.60524i) q^{79} +(0.717204 - 1.66534i) q^{80} +(8.02504 + 4.07416i) q^{81} -6.64510 q^{82} +(0.633262 - 6.02508i) q^{83} +(3.68205 + 6.56913i) q^{84} +(-16.3062 + 5.51938i) q^{85} +(1.10495 + 0.234863i) q^{86} +(-3.24042 + 5.45120i) q^{87} +(-5.50881 + 1.17093i) q^{88} +(-0.671050 - 2.06528i) q^{89} +(0.0681212 - 5.14969i) q^{90} +(1.93819 - 5.96515i) q^{91} +(-0.858175 + 8.16499i) q^{92} +(4.89709 + 15.7508i) q^{93} +(0.815757 - 0.363198i) q^{94} +(7.03199 - 2.38022i) q^{95} +(-8.13399 - 6.06930i) q^{96} +(14.4180 + 6.41929i) q^{97} +(0.593254 + 1.82585i) q^{98} +(5.31507 - 3.65868i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9} - 20 q^{10} - 11 q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - 48 q^{15} + 23 q^{16} - 24 q^{17} - 12 q^{19} + q^{20} + 15 q^{21} - 11 q^{22} + q^{23} - 30 q^{24} - 16 q^{25} - 136 q^{26} + 7 q^{27} + 4 q^{28} - 15 q^{29} - 24 q^{30} + 3 q^{31} + 12 q^{32} - 5 q^{33} + q^{34} + 14 q^{35} + 38 q^{36} - 24 q^{37} + 55 q^{38} + 20 q^{39} + q^{40} - 19 q^{41} - 38 q^{42} - 8 q^{43} + 4 q^{44} - 38 q^{45} - 20 q^{46} - 10 q^{47} - 25 q^{48} - 72 q^{49} - 3 q^{50} - 26 q^{51} - 25 q^{52} - 12 q^{53} + 53 q^{54} - 20 q^{55} - 60 q^{56} + 38 q^{57} - 23 q^{58} - 30 q^{59} - 33 q^{60} - 3 q^{61} - 44 q^{62} + 46 q^{63} - 44 q^{64} + 51 q^{65} - 134 q^{66} - 12 q^{67} - 156 q^{68} + 4 q^{69} - 16 q^{70} + 42 q^{71} + 74 q^{72} - 12 q^{73} + 90 q^{74} + 67 q^{75} - 8 q^{76} + 31 q^{77} - 92 q^{78} - 15 q^{79} + 298 q^{80} - 104 q^{81} + 8 q^{82} + 59 q^{83} + 115 q^{84} - 11 q^{85} + 9 q^{86} - 59 q^{87} - 23 q^{88} + 106 q^{89} + 107 q^{90} + 30 q^{91} + 11 q^{92} + 32 q^{93} + 25 q^{94} + 7 q^{95} + 35 q^{96} - 21 q^{97} + 146 q^{98} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.513717 0.570540i 0.363252 0.403433i −0.533618 0.845725i \(-0.679168\pi\)
0.896871 + 0.442293i \(0.145835\pi\)
\(3\) −0.202951 + 1.72012i −0.117174 + 0.993111i
\(4\) 0.147446 + 1.40285i 0.0737228 + 0.701426i
\(5\) −1.29212 + 1.82494i −0.577855 + 0.816139i
\(6\) 0.877138 + 0.999445i 0.358090 + 0.408022i
\(7\) −1.54115 2.66935i −0.582501 1.00892i −0.995182 0.0980456i \(-0.968741\pi\)
0.412681 0.910876i \(-0.364592\pi\)
\(8\) 2.11835 + 1.53907i 0.748951 + 0.544145i
\(9\) −2.91762 0.698199i −0.972541 0.232733i
\(10\) 0.377417 + 1.67471i 0.119350 + 0.529590i
\(11\) −1.43921 + 1.59840i −0.433938 + 0.481937i −0.919961 0.392009i \(-0.871780\pi\)
0.486024 + 0.873946i \(0.338447\pi\)
\(12\) −2.44300 0.0310856i −0.705233 0.00897364i
\(13\) 1.36160 + 1.51221i 0.377640 + 0.419412i 0.901763 0.432231i \(-0.142273\pi\)
−0.524123 + 0.851643i \(0.675607\pi\)
\(14\) −2.31469 0.492002i −0.618627 0.131493i
\(15\) −2.87688 2.59298i −0.742808 0.669505i
\(16\) −0.793173 + 0.168594i −0.198293 + 0.0421485i
\(17\) 6.22843 + 4.52522i 1.51062 + 1.09753i 0.965903 + 0.258903i \(0.0833609\pi\)
0.544712 + 0.838623i \(0.316639\pi\)
\(18\) −1.89718 + 1.30594i −0.447170 + 0.307814i
\(19\) −2.68599 1.95149i −0.616209 0.447702i 0.235386 0.971902i \(-0.424364\pi\)
−0.851595 + 0.524200i \(0.824364\pi\)
\(20\) −2.75064 1.54358i −0.615062 0.345155i
\(21\) 4.90439 2.10922i 1.07023 0.460269i
\(22\) 0.172608 + 1.64225i 0.0368001 + 0.350129i
\(23\) 5.69309 + 1.21010i 1.18709 + 0.252324i 0.758805 0.651318i \(-0.225784\pi\)
0.428287 + 0.903643i \(0.359117\pi\)
\(24\) −3.07731 + 3.33147i −0.628154 + 0.680032i
\(25\) −1.66083 4.71610i −0.332166 0.943221i
\(26\) 1.56225 0.306383
\(27\) 1.79312 4.87696i 0.345086 0.938571i
\(28\) 3.51747 2.55559i 0.664740 0.482962i
\(29\) 3.34479 + 1.48919i 0.621111 + 0.276537i 0.693069 0.720871i \(-0.256258\pi\)
−0.0719579 + 0.997408i \(0.522925\pi\)
\(30\) −2.95730 + 0.309319i −0.539927 + 0.0564736i
\(31\) 8.69981 3.87340i 1.56253 0.695684i 0.570456 0.821328i \(-0.306766\pi\)
0.992075 + 0.125644i \(0.0400997\pi\)
\(32\) −2.92971 + 5.07440i −0.517904 + 0.897035i
\(33\) −2.45736 2.80001i −0.427771 0.487419i
\(34\) 5.78146 1.22889i 0.991513 0.210753i
\(35\) 6.86278 + 0.636623i 1.16002 + 0.107609i
\(36\) 0.549279 4.19594i 0.0915465 0.699323i
\(37\) −1.42994 + 4.40091i −0.235081 + 0.723505i 0.762029 + 0.647542i \(0.224203\pi\)
−0.997111 + 0.0759630i \(0.975797\pi\)
\(38\) −2.49324 + 0.529954i −0.404457 + 0.0859700i
\(39\) −2.87752 + 2.03521i −0.460772 + 0.325895i
\(40\) −5.54590 + 1.87720i −0.876883 + 0.296811i
\(41\) −5.79162 6.43224i −0.904499 1.00455i −0.999958 0.00911425i \(-0.997099\pi\)
0.0954598 0.995433i \(-0.469568\pi\)
\(42\) 1.31607 3.88169i 0.203074 0.598958i
\(43\) 0.735688 + 1.27425i 0.112191 + 0.194321i 0.916654 0.399683i \(-0.130880\pi\)
−0.804462 + 0.594004i \(0.797546\pi\)
\(44\) −2.45453 1.78332i −0.370034 0.268845i
\(45\) 5.04410 4.42233i 0.751930 0.659242i
\(46\) 3.61505 2.62649i 0.533010 0.387254i
\(47\) 1.06255 + 0.473076i 0.154988 + 0.0690053i 0.482765 0.875750i \(-0.339633\pi\)
−0.327776 + 0.944755i \(0.606299\pi\)
\(48\) −0.129027 1.39857i −0.0186235 0.201866i
\(49\) −1.25030 + 2.16559i −0.178615 + 0.309370i
\(50\) −3.54392 1.47517i −0.501186 0.208621i
\(51\) −9.04798 + 9.79524i −1.26697 + 1.37161i
\(52\) −1.92065 + 2.13309i −0.266346 + 0.295807i
\(53\) −5.64868 + 4.10401i −0.775906 + 0.563729i −0.903747 0.428066i \(-0.859195\pi\)
0.127842 + 0.991795i \(0.459195\pi\)
\(54\) −1.86135 3.52842i −0.253297 0.480157i
\(55\) −1.05736 4.69181i −0.142574 0.632643i
\(56\) 0.843628 8.02659i 0.112735 1.07260i
\(57\) 3.90191 4.22417i 0.516821 0.559505i
\(58\) 2.56792 1.14331i 0.337184 0.150124i
\(59\) 0.132243 + 0.146871i 0.0172166 + 0.0191210i 0.751692 0.659515i \(-0.229238\pi\)
−0.734475 + 0.678636i \(0.762572\pi\)
\(60\) 3.21339 4.41816i 0.414846 0.570382i
\(61\) 0.160833 0.178623i 0.0205926 0.0228704i −0.732761 0.680487i \(-0.761768\pi\)
0.753353 + 0.657616i \(0.228435\pi\)
\(62\) 2.25930 6.95342i 0.286932 0.883085i
\(63\) 2.63276 + 8.86420i 0.331697 + 1.11678i
\(64\) 0.888950 + 2.73591i 0.111119 + 0.341988i
\(65\) −4.51906 + 0.530879i −0.560520 + 0.0658475i
\(66\) −2.85990 0.0363904i −0.352029 0.00447935i
\(67\) 11.4014 5.07622i 1.39290 0.620159i 0.433229 0.901284i \(-0.357374\pi\)
0.959671 + 0.281125i \(0.0907075\pi\)
\(68\) −5.42985 + 9.40478i −0.658467 + 1.14050i
\(69\) −3.23694 + 9.54721i −0.389682 + 1.14935i
\(70\) 3.88874 3.58845i 0.464794 0.428901i
\(71\) −5.29885 + 3.84984i −0.628858 + 0.456892i −0.856004 0.516969i \(-0.827060\pi\)
0.227146 + 0.973861i \(0.427060\pi\)
\(72\) −5.10598 5.96947i −0.601745 0.703509i
\(73\) −2.49299 7.67263i −0.291782 0.898013i −0.984283 0.176597i \(-0.943491\pi\)
0.692501 0.721417i \(-0.256509\pi\)
\(74\) 1.77631 + 3.07666i 0.206492 + 0.357655i
\(75\) 8.44933 1.89969i 0.975645 0.219357i
\(76\) 2.34161 4.05579i 0.268601 0.465231i
\(77\) 6.48474 + 1.37837i 0.739005 + 0.157080i
\(78\) −0.317061 + 2.68726i −0.0359000 + 0.304273i
\(79\) −10.3435 4.60524i −1.16374 0.518130i −0.268310 0.963333i \(-0.586465\pi\)
−0.895430 + 0.445202i \(0.853132\pi\)
\(80\) 0.717204 1.66534i 0.0801858 0.186191i
\(81\) 8.02504 + 4.07416i 0.891671 + 0.452685i
\(82\) −6.64510 −0.733829
\(83\) 0.633262 6.02508i 0.0695095 0.661339i −0.903185 0.429251i \(-0.858778\pi\)
0.972695 0.232088i \(-0.0745557\pi\)
\(84\) 3.68205 + 6.56913i 0.401745 + 0.716751i
\(85\) −16.3062 + 5.51938i −1.76865 + 0.598661i
\(86\) 1.10495 + 0.234863i 0.119149 + 0.0253260i
\(87\) −3.24042 + 5.45120i −0.347409 + 0.584430i
\(88\) −5.50881 + 1.17093i −0.587241 + 0.124822i
\(89\) −0.671050 2.06528i −0.0711312 0.218919i 0.909171 0.416423i \(-0.136716\pi\)
−0.980302 + 0.197504i \(0.936716\pi\)
\(90\) 0.0681212 5.14969i 0.00718060 0.542825i
\(91\) 1.93819 5.96515i 0.203178 0.625317i
\(92\) −0.858175 + 8.16499i −0.0894709 + 0.851259i
\(93\) 4.89709 + 15.7508i 0.507804 + 1.63328i
\(94\) 0.815757 0.363198i 0.0841389 0.0374610i
\(95\) 7.03199 2.38022i 0.721467 0.244205i
\(96\) −8.13399 6.06930i −0.830172 0.619445i
\(97\) 14.4180 + 6.41929i 1.46392 + 0.651780i 0.975334 0.220734i \(-0.0708453\pi\)
0.488588 + 0.872514i \(0.337512\pi\)
\(98\) 0.593254 + 1.82585i 0.0599277 + 0.184438i
\(99\) 5.31507 3.65868i 0.534184 0.367711i
\(100\) 6.37112 3.02527i 0.637112 0.302527i
\(101\) −3.00231 5.20015i −0.298741 0.517434i 0.677107 0.735884i \(-0.263233\pi\)
−0.975848 + 0.218450i \(0.929900\pi\)
\(102\) 0.940482 + 10.1942i 0.0931216 + 1.00938i
\(103\) −1.44466 13.7450i −0.142346 1.35434i −0.799539 0.600614i \(-0.794923\pi\)
0.657193 0.753723i \(-0.271744\pi\)
\(104\) 0.556948 + 5.29900i 0.0546132 + 0.519610i
\(105\) −2.48787 + 11.6756i −0.242792 + 1.13942i
\(106\) −0.560321 + 5.33109i −0.0544231 + 0.517802i
\(107\) 8.62739 0.834041 0.417021 0.908897i \(-0.363074\pi\)
0.417021 + 0.908897i \(0.363074\pi\)
\(108\) 7.10604 + 1.79639i 0.683779 + 0.172858i
\(109\) −5.90681 + 18.1793i −0.565770 + 1.74126i 0.0998844 + 0.994999i \(0.468153\pi\)
−0.665654 + 0.746261i \(0.731847\pi\)
\(110\) −3.22005 1.80699i −0.307019 0.172290i
\(111\) −7.27989 3.35284i −0.690976 0.318238i
\(112\) 1.67244 + 1.85743i 0.158031 + 0.175511i
\(113\) −2.09047 2.32171i −0.196655 0.218408i 0.636750 0.771070i \(-0.280278\pi\)
−0.833405 + 0.552663i \(0.813612\pi\)
\(114\) −0.405580 4.39622i −0.0379861 0.411744i
\(115\) −9.56455 + 8.82596i −0.891899 + 0.823025i
\(116\) −1.59595 + 4.91182i −0.148180 + 0.456051i
\(117\) −2.91681 5.36273i −0.269660 0.495785i
\(118\) 0.151731 0.0139680
\(119\) 2.48045 23.5999i 0.227383 2.16340i
\(120\) −2.10346 9.92059i −0.192019 0.905621i
\(121\) 0.666242 + 6.33887i 0.0605675 + 0.576261i
\(122\) −0.0192891 0.183523i −0.00174635 0.0166154i
\(123\) 12.2396 8.65685i 1.10361 0.780561i
\(124\) 6.71656 + 11.6334i 0.603165 + 1.04471i
\(125\) 10.7526 + 3.06287i 0.961743 + 0.273952i
\(126\) 6.40987 + 3.05159i 0.571037 + 0.271857i
\(127\) −0.645138 1.98553i −0.0572468 0.176187i 0.918344 0.395782i \(-0.129526\pi\)
−0.975591 + 0.219595i \(0.929526\pi\)
\(128\) −8.68806 3.86818i −0.767924 0.341902i
\(129\) −2.34117 + 1.00686i −0.206128 + 0.0886492i
\(130\) −2.01863 + 2.85102i −0.177045 + 0.250051i
\(131\) −0.863295 + 0.384364i −0.0754264 + 0.0335820i −0.444103 0.895976i \(-0.646478\pi\)
0.368677 + 0.929558i \(0.379811\pi\)
\(132\) 3.56567 3.86015i 0.310352 0.335983i
\(133\) −1.06969 + 10.1774i −0.0927537 + 0.882493i
\(134\) 2.96089 9.11268i 0.255782 0.787216i
\(135\) 6.58324 + 9.57397i 0.566595 + 0.823997i
\(136\) 6.22937 + 19.1720i 0.534164 + 1.64399i
\(137\) 6.43109 1.36697i 0.549445 0.116788i 0.0751797 0.997170i \(-0.476047\pi\)
0.474266 + 0.880382i \(0.342714\pi\)
\(138\) 3.78419 + 6.75136i 0.322132 + 0.574714i
\(139\) −5.82482 1.23810i −0.494054 0.105015i −0.0458550 0.998948i \(-0.514601\pi\)
−0.448199 + 0.893934i \(0.647935\pi\)
\(140\) 0.118800 + 9.72133i 0.0100404 + 0.821603i
\(141\) −1.02939 + 1.73170i −0.0866905 + 0.145835i
\(142\) −0.525619 + 5.00093i −0.0441090 + 0.419669i
\(143\) −4.37675 −0.366002
\(144\) 2.43189 + 0.0618986i 0.202658 + 0.00515821i
\(145\) −7.03957 + 4.17982i −0.584605 + 0.347115i
\(146\) −5.65823 2.51921i −0.468279 0.208491i
\(147\) −3.47132 2.59018i −0.286310 0.213634i
\(148\) −6.38467 1.35710i −0.524816 0.111553i
\(149\) −0.502162 + 0.869771i −0.0411387 + 0.0712544i −0.885862 0.463950i \(-0.846432\pi\)
0.844723 + 0.535204i \(0.179765\pi\)
\(150\) 3.25671 5.79658i 0.265909 0.473289i
\(151\) −2.55785 4.43032i −0.208155 0.360534i 0.742979 0.669315i \(-0.233412\pi\)
−0.951133 + 0.308781i \(0.900079\pi\)
\(152\) −2.68640 8.26788i −0.217896 0.670614i
\(153\) −15.0127 17.5516i −1.21370 1.41896i
\(154\) 4.11774 2.99171i 0.331817 0.241079i
\(155\) −4.17249 + 20.8816i −0.335143 + 1.67725i
\(156\) −3.27938 3.73666i −0.262561 0.299172i
\(157\) −9.66548 + 16.7411i −0.771390 + 1.33609i 0.165412 + 0.986225i \(0.447105\pi\)
−0.936801 + 0.349861i \(0.886229\pi\)
\(158\) −7.94113 + 3.53562i −0.631762 + 0.281279i
\(159\) −5.91298 10.5493i −0.468930 0.836615i
\(160\) −5.47494 11.9033i −0.432832 0.941038i
\(161\) −5.54373 17.0618i −0.436907 1.34466i
\(162\) 6.44707 2.48564i 0.506529 0.195290i
\(163\) 2.96080 9.11239i 0.231907 0.713738i −0.765609 0.643306i \(-0.777562\pi\)
0.997517 0.0704316i \(-0.0224377\pi\)
\(164\) 8.16954 9.07319i 0.637934 0.708497i
\(165\) 8.28506 0.866575i 0.644991 0.0674628i
\(166\) −3.11223 3.45649i −0.241556 0.268275i
\(167\) −13.5601 + 6.03734i −1.04931 + 0.467183i −0.857626 0.514273i \(-0.828062\pi\)
−0.191684 + 0.981457i \(0.561395\pi\)
\(168\) 13.6355 + 3.08014i 1.05200 + 0.237638i
\(169\) 0.926045 8.81072i 0.0712342 0.677748i
\(170\) −5.22772 + 12.1387i −0.400948 + 0.930997i
\(171\) 6.47418 + 7.56906i 0.495093 + 0.578820i
\(172\) −1.67911 + 1.21994i −0.128031 + 0.0930199i
\(173\) −3.00283 + 3.33498i −0.228301 + 0.253554i −0.846402 0.532545i \(-0.821236\pi\)
0.618101 + 0.786099i \(0.287902\pi\)
\(174\) 1.44547 + 4.64916i 0.109581 + 0.352452i
\(175\) −10.0294 + 11.7016i −0.758149 + 0.884557i
\(176\) 0.872060 1.51045i 0.0657340 0.113855i
\(177\) −0.279475 + 0.197667i −0.0210066 + 0.0148575i
\(178\) −1.52305 0.678107i −0.114158 0.0508263i
\(179\) −0.751808 + 0.546221i −0.0561928 + 0.0408265i −0.615527 0.788116i \(-0.711057\pi\)
0.559334 + 0.828942i \(0.311057\pi\)
\(180\) 6.94761 + 6.42408i 0.517844 + 0.478822i
\(181\) 0.784552 + 0.570010i 0.0583153 + 0.0423685i 0.616561 0.787307i \(-0.288525\pi\)
−0.558246 + 0.829676i \(0.688525\pi\)
\(182\) −2.40767 4.17021i −0.178469 0.309117i
\(183\) 0.274612 + 0.312904i 0.0202999 + 0.0231305i
\(184\) 10.1975 + 11.3255i 0.751773 + 0.834928i
\(185\) −6.18375 8.29609i −0.454638 0.609940i
\(186\) 11.5022 + 5.29747i 0.843381 + 0.388430i
\(187\) −16.1971 + 3.44280i −1.18445 + 0.251763i
\(188\) −0.506988 + 1.56035i −0.0369759 + 0.113800i
\(189\) −15.7818 + 2.72967i −1.14796 + 0.198554i
\(190\) 2.25444 5.23479i 0.163554 0.379771i
\(191\) 13.6870 2.90927i 0.990358 0.210507i 0.315878 0.948800i \(-0.397701\pi\)
0.674480 + 0.738293i \(0.264368\pi\)
\(192\) −4.88650 + 0.973846i −0.352653 + 0.0702813i
\(193\) 3.40138 5.89137i 0.244837 0.424070i −0.717249 0.696817i \(-0.754599\pi\)
0.962086 + 0.272747i \(0.0879323\pi\)
\(194\) 11.0692 4.92833i 0.794723 0.353833i
\(195\) 0.00397018 7.88106i 0.000284311 0.564375i
\(196\) −3.22235 1.43468i −0.230168 0.102477i
\(197\) 6.91644 5.02509i 0.492776 0.358023i −0.313475 0.949596i \(-0.601493\pi\)
0.806251 + 0.591574i \(0.201493\pi\)
\(198\) 0.643015 4.91198i 0.0456971 0.349080i
\(199\) 12.3769 0.877375 0.438688 0.898640i \(-0.355444\pi\)
0.438688 + 0.898640i \(0.355444\pi\)
\(200\) 3.74021 12.5465i 0.264473 0.887173i
\(201\) 6.41779 + 20.6420i 0.452676 + 1.45597i
\(202\) −4.50923 0.958467i −0.317268 0.0674375i
\(203\) −1.17964 11.2235i −0.0827943 0.787735i
\(204\) −15.0754 11.2487i −1.05549 0.787567i
\(205\) 19.2220 2.25811i 1.34252 0.157713i
\(206\) −8.58423 6.23680i −0.598091 0.434539i
\(207\) −15.7654 7.50554i −1.09577 0.521671i
\(208\) −1.33494 0.969888i −0.0925612 0.0672496i
\(209\) 6.98496 1.48470i 0.483160 0.102699i
\(210\) 5.38333 + 7.41738i 0.371485 + 0.511848i
\(211\) 10.6313 + 2.25975i 0.731887 + 0.155567i 0.558757 0.829331i \(-0.311278\pi\)
0.173130 + 0.984899i \(0.444612\pi\)
\(212\) −6.59019 7.31914i −0.452616 0.502681i
\(213\) −5.54678 9.89599i −0.380059 0.678062i
\(214\) 4.43203 4.92227i 0.302967 0.336479i
\(215\) −3.27603 0.303900i −0.223424 0.0207258i
\(216\) 11.3045 7.57138i 0.769171 0.515167i
\(217\) −23.7472 17.2534i −1.61207 1.17123i
\(218\) 7.33758 + 12.7091i 0.496964 + 0.860767i
\(219\) 13.7038 2.73107i 0.926016 0.184549i
\(220\) 6.42601 2.17510i 0.433241 0.146645i
\(221\) 1.63755 + 15.5802i 0.110153 + 1.04804i
\(222\) −5.65273 + 2.43106i −0.379386 + 0.163162i
\(223\) 13.7566 15.2783i 0.921211 1.02311i −0.0784460 0.996918i \(-0.524996\pi\)
0.999657 0.0261901i \(-0.00833752\pi\)
\(224\) 18.0605 1.20672
\(225\) 1.55290 + 14.9194i 0.103526 + 0.994627i
\(226\) −2.39854 −0.159548
\(227\) 12.3024 13.6632i 0.816540 0.906859i −0.180513 0.983573i \(-0.557776\pi\)
0.997053 + 0.0767131i \(0.0244426\pi\)
\(228\) 6.50121 + 4.85097i 0.430553 + 0.321264i
\(229\) −1.29808 12.3504i −0.0857794 0.816137i −0.949837 0.312744i \(-0.898752\pi\)
0.864058 0.503392i \(-0.167915\pi\)
\(230\) 0.122095 + 9.99100i 0.00805072 + 0.658787i
\(231\) −3.68705 + 10.8748i −0.242590 + 0.715509i
\(232\) 4.79346 + 8.30251i 0.314706 + 0.545087i
\(233\) 4.65048 + 3.37877i 0.304663 + 0.221351i 0.729603 0.683871i \(-0.239705\pi\)
−0.424940 + 0.905221i \(0.639705\pi\)
\(234\) −4.55807 1.09076i −0.297970 0.0713055i
\(235\) −2.23628 + 1.32781i −0.145879 + 0.0866170i
\(236\) −0.186540 + 0.207173i −0.0121427 + 0.0134858i
\(237\) 10.0208 16.8575i 0.650921 1.09501i
\(238\) −12.1905 13.5389i −0.790190 0.877595i
\(239\) −20.6905 4.39789i −1.33835 0.284476i −0.517534 0.855663i \(-0.673150\pi\)
−0.820820 + 0.571187i \(0.806483\pi\)
\(240\) 2.71903 + 1.57166i 0.175512 + 0.101450i
\(241\) −8.44591 + 1.79523i −0.544049 + 0.115641i −0.471734 0.881741i \(-0.656372\pi\)
−0.0723146 + 0.997382i \(0.523039\pi\)
\(242\) 3.95884 + 2.87627i 0.254484 + 0.184893i
\(243\) −8.63673 + 12.9772i −0.554046 + 0.832486i
\(244\) 0.274296 + 0.199288i 0.0175600 + 0.0127581i
\(245\) −2.33653 5.07994i −0.149275 0.324546i
\(246\) 1.34863 11.4304i 0.0859854 0.728774i
\(247\) −0.706189 6.71894i −0.0449337 0.427516i
\(248\) 24.3907 + 5.18441i 1.54881 + 0.329210i
\(249\) 10.2353 + 2.31208i 0.648638 + 0.146522i
\(250\) 7.27129 4.56135i 0.459877 0.288485i
\(251\) −6.58070 −0.415370 −0.207685 0.978196i \(-0.566593\pi\)
−0.207685 + 0.978196i \(0.566593\pi\)
\(252\) −12.0470 + 5.00036i −0.758888 + 0.314993i
\(253\) −10.1278 + 7.35826i −0.636728 + 0.462610i
\(254\) −1.46424 0.651923i −0.0918748 0.0409053i
\(255\) −6.18464 29.1687i −0.387297 1.82662i
\(256\) −11.9261 + 5.30986i −0.745384 + 0.331866i
\(257\) 5.84297 10.1203i 0.364474 0.631288i −0.624217 0.781251i \(-0.714582\pi\)
0.988692 + 0.149963i \(0.0479153\pi\)
\(258\) −0.628243 + 1.85297i −0.0391127 + 0.115361i
\(259\) 13.9514 2.96545i 0.866895 0.184264i
\(260\) −1.41106 6.26129i −0.0875103 0.388309i
\(261\) −8.71907 6.68023i −0.539697 0.413496i
\(262\) −0.224194 + 0.689998i −0.0138508 + 0.0426282i
\(263\) −19.1430 + 4.06897i −1.18041 + 0.250903i −0.756002 0.654569i \(-0.772850\pi\)
−0.424405 + 0.905473i \(0.639517\pi\)
\(264\) −0.896129 9.71346i −0.0551530 0.597822i
\(265\) −0.190779 15.6114i −0.0117195 0.959001i
\(266\) 5.25710 + 5.83860i 0.322333 + 0.357988i
\(267\) 3.68872 0.735136i 0.225746 0.0449896i
\(268\) 8.80227 + 15.2460i 0.537684 + 0.931297i
\(269\) −3.43410 2.49502i −0.209381 0.152124i 0.478153 0.878277i \(-0.341307\pi\)
−0.687534 + 0.726153i \(0.741307\pi\)
\(270\) 8.84425 + 1.16231i 0.538244 + 0.0707359i
\(271\) 11.4304 8.30468i 0.694348 0.504473i −0.183739 0.982975i \(-0.558820\pi\)
0.878087 + 0.478502i \(0.158820\pi\)
\(272\) −5.70315 2.53920i −0.345804 0.153962i
\(273\) 9.86741 + 4.54456i 0.597203 + 0.275049i
\(274\) 2.52385 4.37143i 0.152471 0.264088i
\(275\) 9.92851 + 4.13278i 0.598712 + 0.249216i
\(276\) −13.8706 3.13325i −0.834912 0.188600i
\(277\) −8.74312 + 9.71021i −0.525323 + 0.583430i −0.946157 0.323707i \(-0.895071\pi\)
0.420834 + 0.907138i \(0.361737\pi\)
\(278\) −3.69869 + 2.68726i −0.221833 + 0.161171i
\(279\) −28.0872 + 5.22693i −1.68153 + 0.312928i
\(280\) 13.5580 + 11.9109i 0.810245 + 0.711813i
\(281\) −1.70659 + 16.2371i −0.101807 + 0.968627i 0.817724 + 0.575610i \(0.195235\pi\)
−0.919531 + 0.393017i \(0.871431\pi\)
\(282\) 0.459186 + 1.47691i 0.0273441 + 0.0879487i
\(283\) −4.37085 + 1.94603i −0.259820 + 0.115679i −0.532513 0.846422i \(-0.678752\pi\)
0.272693 + 0.962101i \(0.412086\pi\)
\(284\) −6.18205 6.86586i −0.366837 0.407414i
\(285\) 2.66711 + 12.5789i 0.157986 + 0.745111i
\(286\) −2.24841 + 2.49711i −0.132951 + 0.147657i
\(287\) −8.24417 + 25.3729i −0.486638 + 1.49772i
\(288\) 12.0907 12.7597i 0.712452 0.751870i
\(289\) 13.0624 + 40.2020i 0.768377 + 2.36482i
\(290\) −1.23159 + 6.16360i −0.0723216 + 0.361939i
\(291\) −13.9681 + 23.4978i −0.818823 + 1.37747i
\(292\) 10.3960 4.62859i 0.608379 0.270868i
\(293\) 14.9796 25.9455i 0.875119 1.51575i 0.0184836 0.999829i \(-0.494116\pi\)
0.856636 0.515922i \(-0.172551\pi\)
\(294\) −3.26108 + 0.649910i −0.190190 + 0.0379035i
\(295\) −0.438906 + 0.0515608i −0.0255541 + 0.00300198i
\(296\) −9.80245 + 7.12190i −0.569756 + 0.413952i
\(297\) 5.21467 + 9.88508i 0.302586 + 0.573591i
\(298\) 0.238270 + 0.733319i 0.0138026 + 0.0424800i
\(299\) 5.92179 + 10.2568i 0.342466 + 0.593168i
\(300\) 3.91080 + 11.5731i 0.225790 + 0.668171i
\(301\) 2.26762 3.92763i 0.130703 0.226385i
\(302\) −3.84168 0.816575i −0.221064 0.0469886i
\(303\) 9.55420 4.10896i 0.548875 0.236053i
\(304\) 2.45947 + 1.09502i 0.141060 + 0.0628040i
\(305\) 0.118161 + 0.524315i 0.00676587 + 0.0300222i
\(306\) −17.7261 0.451180i −1.01334 0.0257923i
\(307\) −15.7491 −0.898850 −0.449425 0.893318i \(-0.648371\pi\)
−0.449425 + 0.893318i \(0.648371\pi\)
\(308\) −0.977508 + 9.30037i −0.0556987 + 0.529938i
\(309\) 23.9363 + 0.304574i 1.36169 + 0.0173266i
\(310\) 9.77029 + 13.1078i 0.554915 + 0.744472i
\(311\) 5.53185 + 1.17583i 0.313682 + 0.0666753i 0.362063 0.932154i \(-0.382073\pi\)
−0.0483803 + 0.998829i \(0.515406\pi\)
\(312\) −9.22795 0.117420i −0.522430 0.00664759i
\(313\) 1.71864 0.365309i 0.0971435 0.0206485i −0.159083 0.987265i \(-0.550854\pi\)
0.256227 + 0.966617i \(0.417521\pi\)
\(314\) 4.58615 + 14.1147i 0.258812 + 0.796540i
\(315\) −19.5785 6.64901i −1.10312 0.374629i
\(316\) 4.93536 15.1895i 0.277636 0.854475i
\(317\) −2.23315 + 21.2470i −0.125426 + 1.19335i 0.732934 + 0.680300i \(0.238151\pi\)
−0.858360 + 0.513048i \(0.828516\pi\)
\(318\) −9.05640 2.04577i −0.507858 0.114721i
\(319\) −7.19418 + 3.20305i −0.402797 + 0.179337i
\(320\) −6.14151 1.91285i −0.343321 0.106931i
\(321\) −1.75093 + 14.8401i −0.0977276 + 0.828296i
\(322\) −12.5824 5.60203i −0.701188 0.312189i
\(323\) −7.89860 24.3094i −0.439490 1.35261i
\(324\) −4.53219 + 11.8587i −0.251788 + 0.658814i
\(325\) 4.87036 8.93298i 0.270159 0.495513i
\(326\) −3.67797 6.37044i −0.203704 0.352826i
\(327\) −30.0717 13.8499i −1.66297 0.765902i
\(328\) −2.36900 22.5395i −0.130806 1.24454i
\(329\) −0.374738 3.56540i −0.0206600 0.196567i
\(330\) 3.76176 5.17213i 0.207078 0.284717i
\(331\) 2.03516 19.3633i 0.111863 1.06430i −0.784241 0.620457i \(-0.786947\pi\)
0.896103 0.443845i \(-0.146386\pi\)
\(332\) 8.54567 0.469005
\(333\) 7.24474 11.8418i 0.397010 0.648927i
\(334\) −3.52150 + 10.8381i −0.192688 + 0.593032i
\(335\) −5.46819 + 27.3660i −0.298759 + 1.49516i
\(336\) −3.53443 + 2.49983i −0.192819 + 0.136377i
\(337\) 19.2147 + 21.3401i 1.04669 + 1.16247i 0.986412 + 0.164289i \(0.0525331\pi\)
0.0602812 + 0.998181i \(0.480800\pi\)
\(338\) −4.55115 5.05456i −0.247550 0.274932i
\(339\) 4.41787 3.12467i 0.239946 0.169709i
\(340\) −10.1471 22.0613i −0.550306 1.19644i
\(341\) −6.32958 + 19.4804i −0.342766 + 1.05492i
\(342\) 7.64434 + 0.194570i 0.413359 + 0.0105212i
\(343\) −13.8685 −0.748829
\(344\) −0.402716 + 3.83159i −0.0217130 + 0.206585i
\(345\) −13.2406 18.2434i −0.712849 0.982192i
\(346\) 0.360137 + 3.42647i 0.0193611 + 0.184208i
\(347\) 0.845893 + 8.04813i 0.0454099 + 0.432046i 0.993482 + 0.113990i \(0.0363633\pi\)
−0.948072 + 0.318056i \(0.896970\pi\)
\(348\) −8.12501 3.74207i −0.435546 0.200596i
\(349\) −8.94831 15.4989i −0.478992 0.829639i 0.520718 0.853729i \(-0.325664\pi\)
−0.999710 + 0.0240902i \(0.992331\pi\)
\(350\) 1.52397 + 11.7334i 0.0814597 + 0.627179i
\(351\) 9.81651 3.92890i 0.523966 0.209709i
\(352\) −3.89448 11.9860i −0.207576 0.638854i
\(353\) −13.8126 6.14978i −0.735172 0.327320i 0.00477174 0.999989i \(-0.498481\pi\)
−0.739943 + 0.672669i \(0.765148\pi\)
\(354\) −0.0307940 + 0.260996i −0.00163668 + 0.0138718i
\(355\) −0.178964 14.6446i −0.00949844 0.777253i
\(356\) 2.79834 1.24590i 0.148312 0.0660326i
\(357\) 40.0913 + 9.05630i 2.12186 + 0.479310i
\(358\) −0.0745756 + 0.709539i −0.00394144 + 0.0375003i
\(359\) −5.02999 + 15.4807i −0.265473 + 0.817042i 0.726111 + 0.687577i \(0.241326\pi\)
−0.991584 + 0.129464i \(0.958674\pi\)
\(360\) 17.4915 1.60482i 0.921883 0.0845813i
\(361\) −2.46507 7.58672i −0.129741 0.399301i
\(362\) 0.728251 0.154795i 0.0382760 0.00813582i
\(363\) −11.0388 0.140462i −0.579388 0.00737235i
\(364\) 8.65400 + 1.83946i 0.453593 + 0.0964141i
\(365\) 17.2234 + 5.36443i 0.901512 + 0.280787i
\(366\) 0.319597 + 0.00406667i 0.0167056 + 0.000212568i
\(367\) −1.29714 + 12.3414i −0.0677100 + 0.644218i 0.907059 + 0.421003i \(0.138322\pi\)
−0.974769 + 0.223215i \(0.928345\pi\)
\(368\) −4.71962 −0.246027
\(369\) 12.4068 + 22.8106i 0.645870 + 1.18747i
\(370\) −7.90994 0.733762i −0.411218 0.0381465i
\(371\) 19.6605 + 8.75343i 1.02072 + 0.454455i
\(372\) −21.3740 + 9.19228i −1.10819 + 0.476597i
\(373\) 30.7322 + 6.53233i 1.59125 + 0.338231i 0.916570 0.399875i \(-0.130947\pi\)
0.674684 + 0.738107i \(0.264280\pi\)
\(374\) −6.35647 + 11.0097i −0.328685 + 0.569300i
\(375\) −7.45076 + 17.8742i −0.384756 + 0.923019i
\(376\) 1.52275 + 2.63748i 0.0785299 + 0.136018i
\(377\) 2.30229 + 7.08571i 0.118574 + 0.364933i
\(378\) −6.54999 + 10.4064i −0.336895 + 0.535249i
\(379\) 18.1814 13.2096i 0.933915 0.678529i −0.0130329 0.999915i \(-0.504149\pi\)
0.946948 + 0.321386i \(0.104149\pi\)
\(380\) 4.37593 + 9.51388i 0.224480 + 0.488052i
\(381\) 3.54628 0.706750i 0.181682 0.0362079i
\(382\) 5.37139 9.30353i 0.274824 0.476010i
\(383\) −17.8912 + 7.96566i −0.914195 + 0.407026i −0.809258 0.587453i \(-0.800131\pi\)
−0.104937 + 0.994479i \(0.533464\pi\)
\(384\) 8.41697 14.1595i 0.429527 0.722572i
\(385\) −10.8945 + 10.0533i −0.555238 + 0.512361i
\(386\) −1.61391 4.96712i −0.0821461 0.252820i
\(387\) −1.25678 4.23143i −0.0638858 0.215096i
\(388\) −6.87945 + 21.1728i −0.349251 + 1.07488i
\(389\) −19.0502 + 21.1574i −0.965882 + 1.07272i 0.0314345 + 0.999506i \(0.489992\pi\)
−0.997316 + 0.0732145i \(0.976674\pi\)
\(390\) −4.49442 4.05090i −0.227584 0.205125i
\(391\) 29.9830 + 33.2995i 1.51631 + 1.68403i
\(392\) −5.98159 + 2.66317i −0.302116 + 0.134511i
\(393\) −0.485945 1.56298i −0.0245127 0.0788418i
\(394\) 0.686076 6.52757i 0.0345640 0.328854i
\(395\) 21.7694 12.9258i 1.09534 0.650369i
\(396\) 5.91627 + 6.91680i 0.297304 + 0.347582i
\(397\) 26.7333 19.4229i 1.34171 0.974807i 0.342327 0.939581i \(-0.388785\pi\)
0.999379 0.0352262i \(-0.0112152\pi\)
\(398\) 6.35822 7.06152i 0.318709 0.353962i
\(399\) −17.2893 3.90550i −0.865545 0.195520i
\(400\) 2.11243 + 3.46068i 0.105622 + 0.173034i
\(401\) 7.60381 13.1702i 0.379716 0.657688i −0.611305 0.791395i \(-0.709355\pi\)
0.991021 + 0.133707i \(0.0426883\pi\)
\(402\) 15.0740 + 6.94251i 0.751822 + 0.346261i
\(403\) 17.7031 + 7.88192i 0.881853 + 0.392626i
\(404\) 6.85237 4.97854i 0.340918 0.247691i
\(405\) −17.8045 + 9.38091i −0.884710 + 0.466141i
\(406\) −7.00945 5.09267i −0.347873 0.252745i
\(407\) −4.97644 8.61945i −0.246673 0.427250i
\(408\) −34.2424 + 6.82428i −1.69525 + 0.337852i
\(409\) −4.53937 5.04148i −0.224457 0.249285i 0.620389 0.784294i \(-0.286975\pi\)
−0.844846 + 0.535009i \(0.820308\pi\)
\(410\) 8.58630 12.1269i 0.424047 0.598906i
\(411\) 1.04616 + 11.3397i 0.0516032 + 0.559345i
\(412\) 19.0692 4.05329i 0.939473 0.199691i
\(413\) 0.188244 0.579355i 0.00926287 0.0285082i
\(414\) −12.3812 + 5.13907i −0.608501 + 0.252572i
\(415\) 10.1772 + 8.94082i 0.499578 + 0.438888i
\(416\) −11.6627 + 2.47897i −0.571809 + 0.121542i
\(417\) 3.31183 9.76810i 0.162181 0.478346i
\(418\) 2.74121 4.74792i 0.134077 0.232228i
\(419\) 25.9141 11.5377i 1.26599 0.563653i 0.339721 0.940526i \(-0.389667\pi\)
0.926265 + 0.376873i \(0.123001\pi\)
\(420\) −16.7460 1.76860i −0.817119 0.0862989i
\(421\) −10.0596 4.47882i −0.490275 0.218284i 0.146682 0.989184i \(-0.453141\pi\)
−0.636957 + 0.770899i \(0.719807\pi\)
\(422\) 6.75074 4.90470i 0.328621 0.238757i
\(423\) −2.76981 2.12213i −0.134673 0.103181i
\(424\) −18.2823 −0.887866
\(425\) 10.9970 36.8895i 0.533435 1.78940i
\(426\) −8.49553 1.91907i −0.411610 0.0929793i
\(427\) −0.724677 0.154035i −0.0350696 0.00745427i
\(428\) 1.27207 + 12.1029i 0.0614879 + 0.585018i
\(429\) 0.888265 7.52854i 0.0428858 0.363481i
\(430\) −1.85634 + 1.71299i −0.0895206 + 0.0826077i
\(431\) 2.54049 + 1.84577i 0.122371 + 0.0889077i 0.647287 0.762246i \(-0.275903\pi\)
−0.524916 + 0.851154i \(0.675903\pi\)
\(432\) −0.600027 + 4.17058i −0.0288688 + 0.200657i
\(433\) 5.14241 + 3.73618i 0.247129 + 0.179549i 0.704453 0.709750i \(-0.251192\pi\)
−0.457325 + 0.889300i \(0.651192\pi\)
\(434\) −22.0431 + 4.68540i −1.05810 + 0.224906i
\(435\) −5.76110 12.9572i −0.276224 0.621250i
\(436\) −26.3738 5.60592i −1.26308 0.268475i
\(437\) −12.9301 14.3603i −0.618530 0.686947i
\(438\) 5.48168 9.22156i 0.261925 0.440623i
\(439\) 5.94526 6.60288i 0.283752 0.315138i −0.584372 0.811486i \(-0.698659\pi\)
0.868124 + 0.496347i \(0.165326\pi\)
\(440\) 4.98118 11.5663i 0.237469 0.551400i
\(441\) 5.15992 5.44541i 0.245711 0.259305i
\(442\) 9.73039 + 7.06954i 0.462827 + 0.336264i
\(443\) 11.9049 + 20.6199i 0.565618 + 0.979679i 0.996992 + 0.0775061i \(0.0246957\pi\)
−0.431374 + 0.902173i \(0.641971\pi\)
\(444\) 3.63015 10.7070i 0.172279 0.508130i
\(445\) 4.63610 + 1.44397i 0.219772 + 0.0684508i
\(446\) −1.64986 15.6974i −0.0781233 0.743293i
\(447\) −1.39420 1.04030i −0.0659432 0.0492045i
\(448\) 5.93310 6.58937i 0.280313 0.311319i
\(449\) −38.5889 −1.82112 −0.910561 0.413375i \(-0.864350\pi\)
−0.910561 + 0.413375i \(0.864350\pi\)
\(450\) 9.30986 + 6.77835i 0.438871 + 0.319535i
\(451\) 18.6167 0.876624
\(452\) 2.94878 3.27495i 0.138699 0.154041i
\(453\) 8.13979 3.50066i 0.382441 0.164476i
\(454\) −1.47546 14.0380i −0.0692466 0.658838i
\(455\) 8.38166 + 11.2448i 0.392938 + 0.527164i
\(456\) 14.7669 2.94295i 0.691526 0.137816i
\(457\) −11.3704 19.6941i −0.531884 0.921250i −0.999307 0.0372166i \(-0.988151\pi\)
0.467423 0.884034i \(-0.345182\pi\)
\(458\) −7.71324 5.60399i −0.360416 0.261857i
\(459\) 33.2376 22.2615i 1.55140 1.03908i
\(460\) −13.7918 12.1163i −0.643045 0.564926i
\(461\) 0.811202 0.900932i 0.0377815 0.0419606i −0.723958 0.689844i \(-0.757679\pi\)
0.761739 + 0.647884i \(0.224346\pi\)
\(462\) 4.31040 + 7.69017i 0.200538 + 0.357779i
\(463\) −7.47504 8.30187i −0.347395 0.385821i 0.543972 0.839103i \(-0.316920\pi\)
−0.891367 + 0.453282i \(0.850253\pi\)
\(464\) −2.90406 0.617278i −0.134818 0.0286564i
\(465\) −35.0720 11.4151i −1.62642 0.529363i
\(466\) 4.31675 0.917554i 0.199970 0.0425049i
\(467\) −28.0248 20.3612i −1.29683 0.942204i −0.296913 0.954905i \(-0.595957\pi\)
−0.999919 + 0.0127009i \(0.995957\pi\)
\(468\) 7.09305 4.88257i 0.327876 0.225697i
\(469\) −31.1215 22.6111i −1.43706 1.04408i
\(470\) −0.391243 + 1.95801i −0.0180467 + 0.0903161i
\(471\) −26.8351 20.0234i −1.23650 0.922630i
\(472\) 0.0540926 + 0.514657i 0.00248981 + 0.0236890i
\(473\) −3.09557 0.657984i −0.142335 0.0302541i
\(474\) −4.47003 14.3772i −0.205315 0.660369i
\(475\) −4.74244 + 15.9085i −0.217598 + 0.729932i
\(476\) 33.4729 1.53423
\(477\) 19.3461 8.03004i 0.885798 0.367670i
\(478\) −13.1382 + 9.54546i −0.600927 + 0.436599i
\(479\) 37.7630 + 16.8132i 1.72544 + 0.768214i 0.996496 + 0.0836382i \(0.0266540\pi\)
0.728941 + 0.684576i \(0.240013\pi\)
\(480\) 21.5862 7.00177i 0.985272 0.319586i
\(481\) −8.60212 + 3.82991i −0.392223 + 0.174629i
\(482\) −3.31455 + 5.74097i −0.150974 + 0.261494i
\(483\) 30.4735 6.07316i 1.38659 0.276338i
\(484\) −8.79427 + 1.86928i −0.399739 + 0.0849672i
\(485\) −30.3446 + 18.0174i −1.37788 + 0.818129i
\(486\) 2.96716 + 11.5942i 0.134593 + 0.525923i
\(487\) −1.47545 + 4.54096i −0.0668589 + 0.205771i −0.978905 0.204318i \(-0.934502\pi\)
0.912046 + 0.410089i \(0.134502\pi\)
\(488\) 0.615616 0.130853i 0.0278676 0.00592345i
\(489\) 15.0735 + 6.94229i 0.681648 + 0.313941i
\(490\) −4.09862 1.27657i −0.185157 0.0576694i
\(491\) −24.1102 26.7771i −1.08808 1.20843i −0.976690 0.214656i \(-0.931137\pi\)
−0.111388 0.993777i \(-0.535530\pi\)
\(492\) 13.9490 + 15.8940i 0.628868 + 0.716556i
\(493\) 14.0938 + 24.4112i 0.634754 + 1.09943i
\(494\) −4.19620 3.04872i −0.188796 0.137168i
\(495\) −0.190846 + 14.4272i −0.00857787 + 0.648453i
\(496\) −6.24742 + 4.53902i −0.280518 + 0.203808i
\(497\) 18.4429 + 8.21132i 0.827279 + 0.368328i
\(498\) 6.57720 4.65192i 0.294731 0.208457i
\(499\) 4.85852 8.41520i 0.217497 0.376716i −0.736545 0.676388i \(-0.763544\pi\)
0.954042 + 0.299673i \(0.0968774\pi\)
\(500\) −2.71133 + 15.5359i −0.121254 + 0.694788i
\(501\) −7.63291 24.5502i −0.341013 1.09682i
\(502\) −3.38061 + 3.75455i −0.150884 + 0.167574i
\(503\) −2.45420 + 1.78308i −0.109427 + 0.0795036i −0.641153 0.767413i \(-0.721544\pi\)
0.531726 + 0.846917i \(0.321544\pi\)
\(504\) −8.06554 + 22.8295i −0.359268 + 1.01691i
\(505\) 13.3693 + 1.24020i 0.594928 + 0.0551882i
\(506\) −1.00462 + 9.55836i −0.0446610 + 0.424921i
\(507\) 14.9676 + 3.38105i 0.664733 + 0.150158i
\(508\) 2.69028 1.19779i 0.119362 0.0531434i
\(509\) −7.55201 8.38736i −0.334737 0.371763i 0.552154 0.833742i \(-0.313806\pi\)
−0.886891 + 0.461979i \(0.847139\pi\)
\(510\) −19.8191 11.4559i −0.877603 0.507274i
\(511\) −16.6389 + 18.4794i −0.736061 + 0.817479i
\(512\) 2.78050 8.55750i 0.122882 0.378192i
\(513\) −14.3336 + 9.60022i −0.632845 + 0.423860i
\(514\) −2.77242 8.53262i −0.122286 0.376358i
\(515\) 26.9505 + 15.1238i 1.18758 + 0.666436i
\(516\) −1.75767 3.13586i −0.0773773 0.138048i
\(517\) −2.28539 + 1.01752i −0.100511 + 0.0447506i
\(518\) 5.47513 9.48321i 0.240563 0.416668i
\(519\) −5.12714 5.84207i −0.225057 0.256438i
\(520\) −10.3900 5.83057i −0.455633 0.255688i
\(521\) 23.1526 16.8213i 1.01433 0.736956i 0.0492197 0.998788i \(-0.484327\pi\)
0.965114 + 0.261832i \(0.0843266\pi\)
\(522\) −8.29047 + 1.54283i −0.362864 + 0.0675279i
\(523\) 2.37046 + 7.29554i 0.103653 + 0.319012i 0.989412 0.145134i \(-0.0463614\pi\)
−0.885759 + 0.464146i \(0.846361\pi\)
\(524\) −0.666495 1.15440i −0.0291160 0.0504303i
\(525\) −18.0927 19.6265i −0.789628 0.856573i
\(526\) −7.51256 + 13.0121i −0.327563 + 0.567356i
\(527\) 71.7141 + 15.2433i 3.12392 + 0.664009i
\(528\) 2.42117 + 1.80659i 0.105368 + 0.0786219i
\(529\) 9.93541 + 4.42353i 0.431974 + 0.192327i
\(530\) −9.00494 7.91099i −0.391149 0.343631i
\(531\) −0.283291 0.520846i −0.0122938 0.0226028i
\(532\) −14.4351 −0.625841
\(533\) 1.84104 17.5163i 0.0797442 0.758715i
\(534\) 1.47553 2.48221i 0.0638525 0.107416i
\(535\) −11.1477 + 15.7445i −0.481955 + 0.680694i
\(536\) 31.9648 + 6.79434i 1.38067 + 0.293471i
\(537\) −0.786985 1.40406i −0.0339609 0.0605895i
\(538\) −3.18767 + 0.677559i −0.137430 + 0.0292117i
\(539\) −1.66204 5.11522i −0.0715890 0.220328i
\(540\) −12.4602 + 10.6469i −0.536202 + 0.458172i
\(541\) 12.1397 37.3621i 0.521926 1.60632i −0.248390 0.968660i \(-0.579902\pi\)
0.770316 0.637662i \(-0.220098\pi\)
\(542\) 1.13384 10.7878i 0.0487026 0.463374i
\(543\) −1.13971 + 1.23384i −0.0489097 + 0.0529491i
\(544\) −41.2102 + 18.3480i −1.76687 + 0.786663i
\(545\) −25.5438 34.2695i −1.09418 1.46794i
\(546\) 7.66190 3.29514i 0.327899 0.141019i
\(547\) −0.788536 0.351079i −0.0337154 0.0150110i 0.389810 0.920895i \(-0.372541\pi\)
−0.423525 + 0.905884i \(0.639207\pi\)
\(548\) 2.86589 + 8.82032i 0.122425 + 0.376785i
\(549\) −0.593965 + 0.408862i −0.0253498 + 0.0174498i
\(550\) 7.45836 3.54154i 0.318025 0.151012i
\(551\) −6.07792 10.5273i −0.258928 0.448477i
\(552\) −21.5508 + 15.2425i −0.917265 + 0.648763i
\(553\) 3.64796 + 34.7080i 0.155127 + 1.47593i
\(554\) 1.04858 + 9.97660i 0.0445500 + 0.423865i
\(555\) 15.5253 8.95309i 0.659010 0.380037i
\(556\) 0.878031 8.35391i 0.0372368 0.354285i
\(557\) −17.9941 −0.762437 −0.381218 0.924485i \(-0.624495\pi\)
−0.381218 + 0.924485i \(0.624495\pi\)
\(558\) −11.4467 + 18.7100i −0.484576 + 0.792058i
\(559\) −0.925221 + 2.84754i −0.0391327 + 0.120438i
\(560\) −5.55070 + 0.652073i −0.234560 + 0.0275551i
\(561\) −2.63482 28.5597i −0.111242 1.20579i
\(562\) 8.38723 + 9.31497i 0.353794 + 0.392928i
\(563\) 7.31267 + 8.12154i 0.308192 + 0.342282i 0.877266 0.480004i \(-0.159365\pi\)
−0.569074 + 0.822286i \(0.692698\pi\)
\(564\) −2.58109 1.18875i −0.108684 0.0500556i
\(565\) 6.93813 0.815061i 0.291889 0.0342899i
\(566\) −1.13509 + 3.49345i −0.0477114 + 0.146841i
\(567\) −1.49243 27.7006i −0.0626760 1.16331i
\(568\) −17.1500 −0.719599
\(569\) 0.370119 3.52144i 0.0155162 0.147627i −0.984021 0.178053i \(-0.943020\pi\)
0.999537 + 0.0304269i \(0.00968667\pi\)
\(570\) 8.54692 + 4.94031i 0.357991 + 0.206927i
\(571\) −2.51252 23.9050i −0.105146 1.00039i −0.912152 0.409851i \(-0.865581\pi\)
0.807007 0.590542i \(-0.201086\pi\)
\(572\) −0.645333 6.13993i −0.0269827 0.256724i
\(573\) 2.22649 + 24.1337i 0.0930131 + 1.00820i
\(574\) 10.2411 + 17.7381i 0.427456 + 0.740375i
\(575\) −3.74828 28.8590i −0.156314 1.20350i
\(576\) −0.683413 8.60300i −0.0284755 0.358459i
\(577\) 0.345780 + 1.06420i 0.0143950 + 0.0443033i 0.957996 0.286782i \(-0.0925854\pi\)
−0.943601 + 0.331085i \(0.892585\pi\)
\(578\) 29.6472 + 13.1998i 1.23316 + 0.549039i
\(579\) 9.44354 + 7.04644i 0.392460 + 0.292840i
\(580\) −6.90162 9.25919i −0.286574 0.384467i
\(581\) −17.0590 + 7.59517i −0.707728 + 0.315101i
\(582\) 6.23081 + 20.0406i 0.258275 + 0.830708i
\(583\) 1.56977 14.9354i 0.0650133 0.618560i
\(584\) 6.52771 20.0902i 0.270119 0.831340i
\(585\) 13.5556 + 1.60630i 0.560453 + 0.0664122i
\(586\) −7.10765 21.8751i −0.293614 0.903652i
\(587\) −28.5669 + 6.07209i −1.17908 + 0.250622i −0.755447 0.655210i \(-0.772580\pi\)
−0.423637 + 0.905832i \(0.639247\pi\)
\(588\) 3.12181 5.25166i 0.128741 0.216575i
\(589\) −30.9265 6.57363i −1.27430 0.270862i
\(590\) −0.196056 + 0.276901i −0.00807149 + 0.0113998i
\(591\) 7.24005 + 12.9169i 0.297816 + 0.531332i
\(592\) 0.392224 3.73176i 0.0161203 0.153375i
\(593\) 11.3423 0.465772 0.232886 0.972504i \(-0.425183\pi\)
0.232886 + 0.972504i \(0.425183\pi\)
\(594\) 8.31870 + 2.10295i 0.341320 + 0.0862852i
\(595\) 39.8635 + 35.0207i 1.63424 + 1.43571i
\(596\) −1.29420 0.576216i −0.0530126 0.0236027i
\(597\) −2.51190 + 21.2897i −0.102805 + 0.871331i
\(598\) 8.89406 + 1.89049i 0.363705 + 0.0773079i
\(599\) −14.7936 + 25.6233i −0.604450 + 1.04694i 0.387688 + 0.921791i \(0.373274\pi\)
−0.992138 + 0.125148i \(0.960060\pi\)
\(600\) 20.8224 + 8.97993i 0.850072 + 0.366604i
\(601\) 3.62053 + 6.27094i 0.147684 + 0.255797i 0.930371 0.366619i \(-0.119485\pi\)
−0.782687 + 0.622416i \(0.786151\pi\)
\(602\) −1.07596 3.31145i −0.0438527 0.134965i
\(603\) −36.8091 + 6.85006i −1.49898 + 0.278956i
\(604\) 5.83794 4.24151i 0.237542 0.172585i
\(605\) −12.4289 6.97476i −0.505308 0.283564i
\(606\) 2.56383 7.56189i 0.104148 0.307181i
\(607\) 3.82155 6.61912i 0.155112 0.268662i −0.777988 0.628279i \(-0.783760\pi\)
0.933100 + 0.359618i \(0.117093\pi\)
\(608\) 17.7718 7.91251i 0.720741 0.320895i
\(609\) 19.5452 + 0.248700i 0.792010 + 0.0100778i
\(610\) 0.359844 + 0.201934i 0.0145696 + 0.00817605i
\(611\) 0.731374 + 2.25094i 0.0295882 + 0.0910632i
\(612\) 22.4087 23.6485i 0.905817 0.955933i
\(613\) −13.8744 + 42.7010i −0.560381 + 1.72468i 0.120910 + 0.992664i \(0.461419\pi\)
−0.681291 + 0.732013i \(0.738581\pi\)
\(614\) −8.09059 + 8.98551i −0.326510 + 0.362626i
\(615\) −0.0168873 + 33.5224i −0.000680962 + 1.35175i
\(616\) 11.6156 + 12.9004i 0.468004 + 0.519771i
\(617\) 12.1534 5.41102i 0.489275 0.217839i −0.147244 0.989100i \(-0.547040\pi\)
0.636519 + 0.771261i \(0.280374\pi\)
\(618\) 12.4702 13.5001i 0.501626 0.543055i
\(619\) −1.71219 + 16.2904i −0.0688186 + 0.654765i 0.904683 + 0.426085i \(0.140108\pi\)
−0.973502 + 0.228680i \(0.926559\pi\)
\(620\) −29.9090 2.77449i −1.20117 0.111426i
\(621\) 16.1100 25.5951i 0.646473 1.02710i
\(622\) 3.51266 2.55210i 0.140845 0.102330i
\(623\) −4.47877 + 4.97418i −0.179438 + 0.199286i
\(624\) 1.93925 2.09941i 0.0776321 0.0840437i
\(625\) −19.4833 + 15.6653i −0.779331 + 0.626612i
\(626\) 0.674473 1.16822i 0.0269573 0.0466915i
\(627\) 1.13626 + 12.3163i 0.0453778 + 0.491865i
\(628\) −24.9104 11.0908i −0.994035 0.442573i
\(629\) −28.8214 + 20.9399i −1.14918 + 0.834930i
\(630\) −13.8513 + 7.75462i −0.551850 + 0.308951i
\(631\) 5.16265 + 3.75089i 0.205522 + 0.149320i 0.685785 0.727804i \(-0.259459\pi\)
−0.480263 + 0.877124i \(0.659459\pi\)
\(632\) −14.8235 25.6750i −0.589646 1.02130i
\(633\) −6.04466 + 17.8284i −0.240254 + 0.708617i
\(634\) 10.9750 + 12.1890i 0.435875 + 0.484088i
\(635\) 4.45708 + 1.38821i 0.176874 + 0.0550895i
\(636\) 13.9273 9.85048i 0.552253 0.390597i
\(637\) −4.97724 + 1.05795i −0.197206 + 0.0419173i
\(638\) −1.86830 + 5.75003i −0.0739666 + 0.227646i
\(639\) 18.1480 7.53273i 0.717924 0.297990i
\(640\) 18.2853 10.8571i 0.722788 0.429163i
\(641\) 26.2427 5.57806i 1.03652 0.220320i 0.341933 0.939725i \(-0.388919\pi\)
0.694591 + 0.719405i \(0.255585\pi\)
\(642\) 7.56741 + 8.62260i 0.298662 + 0.340307i
\(643\) −11.0055 + 19.0621i −0.434016 + 0.751738i −0.997215 0.0745838i \(-0.976237\pi\)
0.563199 + 0.826321i \(0.309571\pi\)
\(644\) 23.1178 10.2927i 0.910970 0.405590i
\(645\) 1.18762 5.57349i 0.0467624 0.219456i
\(646\) −17.9271 7.98167i −0.705333 0.314034i
\(647\) −17.8461 + 12.9660i −0.701604 + 0.509745i −0.880454 0.474131i \(-0.842762\pi\)
0.178850 + 0.983876i \(0.442762\pi\)
\(648\) 10.7294 + 20.9816i 0.421492 + 0.824237i
\(649\) −0.425085 −0.0166860
\(650\) −2.59464 7.36776i −0.101770 0.288987i
\(651\) 34.4974 37.3465i 1.35206 1.46372i
\(652\) 13.2199 + 2.80998i 0.517731 + 0.110047i
\(653\) −0.834058 7.93553i −0.0326392 0.310541i −0.998646 0.0520240i \(-0.983433\pi\)
0.966007 0.258517i \(-0.0832339\pi\)
\(654\) −23.3503 + 10.0422i −0.913068 + 0.392681i
\(655\) 0.414043 2.07211i 0.0161780 0.0809640i
\(656\) 5.67819 + 4.12545i 0.221696 + 0.161072i
\(657\) 1.91658 + 24.1264i 0.0747728 + 0.941262i
\(658\) −2.22671 1.61780i −0.0868062 0.0630684i
\(659\) −30.5642 + 6.49663i −1.19061 + 0.253073i −0.760279 0.649597i \(-0.774938\pi\)
−0.430334 + 0.902670i \(0.641604\pi\)
\(660\) 2.43727 + 11.4949i 0.0948707 + 0.447440i
\(661\) 28.4658 + 6.05060i 1.10719 + 0.235341i 0.725005 0.688744i \(-0.241838\pi\)
0.382187 + 0.924085i \(0.375171\pi\)
\(662\) −10.0020 11.1084i −0.388740 0.431739i
\(663\) −27.1322 0.345240i −1.05373 0.0134080i
\(664\) 10.6145 11.7886i 0.411923 0.457487i
\(665\) −17.1910 15.1026i −0.666639 0.585653i
\(666\) −3.03448 10.2168i −0.117584 0.395891i
\(667\) 17.2401 + 12.5257i 0.667539 + 0.484996i
\(668\) −10.4689 18.1326i −0.405053 0.701572i
\(669\) 23.4885 + 26.7638i 0.908119 + 1.03475i
\(670\) 12.8043 + 17.1782i 0.494673 + 0.663651i
\(671\) 0.0540396 + 0.514152i 0.00208617 + 0.0198486i
\(672\) −3.66539 + 31.0662i −0.141395 + 1.19841i
\(673\) −24.4441 + 27.1479i −0.942252 + 1.04648i 0.0565920 + 0.998397i \(0.481977\pi\)
−0.998844 + 0.0480790i \(0.984690\pi\)
\(674\) 22.0463 0.849193
\(675\) −25.9783 0.356736i −0.999906 0.0137308i
\(676\) 12.4967 0.480642
\(677\) −19.3984 + 21.5442i −0.745543 + 0.828009i −0.989914 0.141673i \(-0.954752\pi\)
0.244371 + 0.969682i \(0.421419\pi\)
\(678\) 0.486785 4.12577i 0.0186949 0.158449i
\(679\) −5.08492 48.3798i −0.195141 1.85665i
\(680\) −43.0369 13.4044i −1.65039 0.514035i
\(681\) 21.0056 + 23.9346i 0.804936 + 0.917175i
\(682\) 7.86276 + 13.6187i 0.301081 + 0.521487i
\(683\) 14.2219 + 10.3328i 0.544186 + 0.395374i 0.825637 0.564201i \(-0.190816\pi\)
−0.281451 + 0.959576i \(0.590816\pi\)
\(684\) −9.66368 + 10.1983i −0.369500 + 0.389943i
\(685\) −5.81513 + 13.5027i −0.222185 + 0.515910i
\(686\) −7.12448 + 7.91254i −0.272014 + 0.302102i
\(687\) 21.5076 + 0.273670i 0.820566 + 0.0104412i
\(688\) −0.798359 0.886668i −0.0304372 0.0338039i
\(689\) −13.8974 2.95398i −0.529448 0.112538i
\(690\) −17.2105 1.81766i −0.655192 0.0691972i
\(691\) −43.3282 + 9.20970i −1.64828 + 0.350354i −0.936126 0.351665i \(-0.885615\pi\)
−0.712158 + 0.702019i \(0.752282\pi\)
\(692\) −5.12124 3.72080i −0.194680 0.141444i
\(693\) −17.9577 8.54922i −0.682155 0.324758i
\(694\) 5.02633 + 3.65184i 0.190797 + 0.138622i
\(695\) 9.78585 9.03017i 0.371198 0.342534i
\(696\) −15.2542 + 6.56032i −0.578207 + 0.248668i
\(697\) −6.96537 66.2711i −0.263832 2.51020i
\(698\) −13.4397 2.85669i −0.508699 0.108127i
\(699\) −6.75571 + 7.31366i −0.255524 + 0.276628i
\(700\) −17.8944 12.3444i −0.676344 0.466573i
\(701\) −42.4529 −1.60343 −0.801713 0.597710i \(-0.796078\pi\)
−0.801713 + 0.597710i \(0.796078\pi\)
\(702\) 2.80131 7.61905i 0.105729 0.287563i
\(703\) 12.4291 9.03029i 0.468774 0.340584i
\(704\) −5.65246 2.51664i −0.213035 0.0948494i
\(705\) −1.83014 4.11615i −0.0689272 0.155023i
\(706\) −10.6045 + 4.72141i −0.399104 + 0.177693i
\(707\) −9.25403 + 16.0285i −0.348034 + 0.602812i
\(708\) −0.318504 0.362916i −0.0119701 0.0136392i
\(709\) 32.7411 6.95933i 1.22962 0.261363i 0.453100 0.891460i \(-0.350318\pi\)
0.776517 + 0.630096i \(0.216985\pi\)
\(710\) −8.44725 7.42105i −0.317020 0.278507i
\(711\) 26.9632 + 20.6582i 1.01120 + 0.774743i
\(712\) 1.75710 5.40779i 0.0658500 0.202665i
\(713\) 54.2160 11.5240i 2.03041 0.431576i
\(714\) 25.7625 18.2213i 0.964139 0.681916i
\(715\) 5.65531 7.98732i 0.211496 0.298709i
\(716\) −0.877118 0.974138i −0.0327794 0.0364053i
\(717\) 11.7640 34.6975i 0.439336 1.29580i
\(718\) 6.24838 + 10.8225i 0.233188 + 0.403893i
\(719\) 2.88089 + 2.09309i 0.107439 + 0.0780592i 0.640208 0.768202i \(-0.278848\pi\)
−0.532768 + 0.846261i \(0.678848\pi\)
\(720\) −3.25527 + 4.35808i −0.121317 + 0.162416i
\(721\) −34.4639 + 25.0395i −1.28350 + 0.932519i
\(722\) −5.59488 2.49100i −0.208220 0.0927054i
\(723\) −1.37391 14.8923i −0.0510964 0.553851i
\(724\) −0.683962 + 1.18466i −0.0254192 + 0.0440274i
\(725\) 1.46808 18.2477i 0.0545230 0.677701i
\(726\) −5.75097 + 6.22594i −0.213439 + 0.231066i
\(727\) −23.0701 + 25.6219i −0.855622 + 0.950265i −0.999225 0.0393708i \(-0.987465\pi\)
0.143603 + 0.989635i \(0.454131\pi\)
\(728\) 13.2866 9.65327i 0.492433 0.357774i
\(729\) −20.5694 17.4899i −0.761831 0.647775i
\(730\) 11.9085 7.07082i 0.440755 0.261703i
\(731\) −1.18407 + 11.2657i −0.0437946 + 0.416678i
\(732\) −0.398468 + 0.431377i −0.0147278 + 0.0159441i
\(733\) −12.2761 + 5.46568i −0.453429 + 0.201879i −0.620727 0.784027i \(-0.713162\pi\)
0.167298 + 0.985906i \(0.446496\pi\)
\(734\) 6.37492 + 7.08007i 0.235303 + 0.261330i
\(735\) 9.21231 2.98813i 0.339801 0.110219i
\(736\) −22.8196 + 25.3438i −0.841143 + 0.934184i
\(737\) −8.29511 + 25.5297i −0.305554 + 0.940400i
\(738\) 19.3879 + 4.63960i 0.713678 + 0.170786i
\(739\) 4.06977 + 12.5255i 0.149709 + 0.460756i 0.997586 0.0694356i \(-0.0221199\pi\)
−0.847878 + 0.530192i \(0.822120\pi\)
\(740\) 10.7264 9.89810i 0.394311 0.363862i
\(741\) 11.7007 + 0.148884i 0.429836 + 0.00546939i
\(742\) 15.0941 6.72034i 0.554123 0.246711i
\(743\) −21.7820 + 37.7276i −0.799106 + 1.38409i 0.121093 + 0.992641i \(0.461360\pi\)
−0.920199 + 0.391451i \(0.871973\pi\)
\(744\) −13.8679 + 40.9028i −0.508423 + 1.49957i
\(745\) −0.938425 2.04027i −0.0343812 0.0747497i
\(746\) 19.5146 14.1782i 0.714480 0.519100i
\(747\) −6.05432 + 17.1368i −0.221516 + 0.627002i
\(748\) −7.21794 22.2145i −0.263914 0.812244i
\(749\) −13.2961 23.0296i −0.485830 0.841482i
\(750\) 6.37035 + 13.4332i 0.232612 + 0.490512i
\(751\) −15.6168 + 27.0491i −0.569864 + 0.987034i 0.426714 + 0.904386i \(0.359671\pi\)
−0.996579 + 0.0826477i \(0.973662\pi\)
\(752\) −0.922542 0.196092i −0.0336416 0.00715075i
\(753\) 1.33556 11.3196i 0.0486704 0.412509i
\(754\) 5.22541 + 2.32650i 0.190298 + 0.0847262i
\(755\) 11.3901 + 1.05660i 0.414529 + 0.0384536i
\(756\) −6.15628 21.7371i −0.223902 0.790569i
\(757\) 35.2792 1.28224 0.641122 0.767439i \(-0.278469\pi\)
0.641122 + 0.767439i \(0.278469\pi\)
\(758\) 1.80350 17.1592i 0.0655062 0.623249i
\(759\) −10.6017 18.9144i −0.384816 0.686548i
\(760\) 18.5596 + 5.78061i 0.673226 + 0.209685i
\(761\) −15.1319 3.21638i −0.548530 0.116594i −0.0746938 0.997207i \(-0.523798\pi\)
−0.473837 + 0.880613i \(0.657131\pi\)
\(762\) 1.41855 2.38636i 0.0513888 0.0864489i
\(763\) 57.6303 12.2497i 2.08636 0.443468i
\(764\) 6.09936 + 18.7719i 0.220667 + 0.679144i
\(765\) 51.4288 4.71852i 1.85941 0.170598i
\(766\) −4.64626 + 14.2997i −0.167876 + 0.516670i