# Properties

 Label 225.2.q.a.211.4 Level $225$ Weight $2$ Character 225.211 Analytic conductor $1.797$ Analytic rank $0$ Dimension $224$ CM no Inner twists $4$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$225 = 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 225.q (of order $$15$$, degree $$8$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.79663404548$$ Analytic rank: $$0$$ Dimension: $$224$$ Relative dimension: $$28$$ over $$\Q(\zeta_{15})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

## Embedding invariants

 Embedding label 211.4 Character $$\chi$$ $$=$$ 225.211 Dual form 225.2.q.a.16.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-2.06085 - 0.917550i) q^{2} +(1.65499 - 0.510883i) q^{3} +(2.06695 + 2.29558i) q^{4} +(-2.23029 + 0.160691i) q^{5} +(-3.87945 - 0.465685i) q^{6} +(2.12428 + 3.67936i) q^{7} +(-0.759150 - 2.33642i) q^{8} +(2.47800 - 1.69101i) q^{9} +O(q^{10})$$ $$q+(-2.06085 - 0.917550i) q^{2} +(1.65499 - 0.510883i) q^{3} +(2.06695 + 2.29558i) q^{4} +(-2.23029 + 0.160691i) q^{5} +(-3.87945 - 0.465685i) q^{6} +(2.12428 + 3.67936i) q^{7} +(-0.759150 - 2.33642i) q^{8} +(2.47800 - 1.69101i) q^{9} +(4.74373 + 1.71524i) q^{10} +(2.79930 + 1.24633i) q^{11} +(4.59355 + 2.74319i) q^{12} +(-2.17836 + 0.969869i) q^{13} +(-1.00183 - 9.53175i) q^{14} +(-3.60901 + 1.40536i) q^{15} +(0.0664873 - 0.632584i) q^{16} +(2.36985 + 7.29363i) q^{17} +(-6.65837 + 1.21124i) q^{18} +(-0.781940 - 2.40656i) q^{19} +(-4.97876 - 4.78765i) q^{20} +(5.39539 + 5.00406i) q^{21} +(-4.62537 - 5.13700i) q^{22} +(-0.656165 - 6.24299i) q^{23} +(-2.45003 - 3.47893i) q^{24} +(4.94836 - 0.716775i) q^{25} +5.37918 q^{26} +(3.23716 - 4.06458i) q^{27} +(-4.05548 + 12.4815i) q^{28} +(4.40315 - 0.935918i) q^{29} +(8.72712 + 0.415217i) q^{30} +(1.42509 + 0.302912i) q^{31} +(-3.17411 + 5.49772i) q^{32} +(5.26955 + 0.632551i) q^{33} +(1.80838 - 17.2055i) q^{34} +(-5.32900 - 7.86468i) q^{35} +(9.00374 + 2.19320i) q^{36} +(0.524265 + 0.380901i) q^{37} +(-0.596680 + 5.67703i) q^{38} +(-3.10968 + 2.71801i) q^{39} +(2.06856 + 5.08890i) q^{40} +(1.84882 - 0.823147i) q^{41} +(-6.52762 - 15.2632i) q^{42} +(0.433089 + 0.750133i) q^{43} +(2.92496 + 9.00211i) q^{44} +(-5.25491 + 4.16964i) q^{45} +(-4.37600 + 13.4679i) q^{46} +(-9.74091 + 2.07049i) q^{47} +(-0.213140 - 1.08089i) q^{48} +(-5.52514 + 9.56982i) q^{49} +(-10.8555 - 3.06320i) q^{50} +(7.64827 + 10.8602i) q^{51} +(-6.72897 - 2.99593i) q^{52} +(-0.161545 + 0.497185i) q^{53} +(-10.4008 + 5.40624i) q^{54} +(-6.44352 - 2.32985i) q^{55} +(6.98390 - 7.75641i) q^{56} +(-2.52357 - 3.58336i) q^{57} +(-9.93298 - 2.11132i) q^{58} +(1.08427 - 0.482747i) q^{59} +(-10.6857 - 5.37997i) q^{60} +(-9.93622 - 4.42389i) q^{61} +(-2.65896 - 1.93184i) q^{62} +(11.4858 + 5.52526i) q^{63} +(10.5566 - 7.66983i) q^{64} +(4.70252 - 2.51313i) q^{65} +(-10.2794 - 6.13867i) q^{66} +(2.36441 + 0.502571i) q^{67} +(-11.8448 + 20.5157i) q^{68} +(-4.27538 - 9.99688i) q^{69} +(3.76603 + 21.0975i) q^{70} +(-3.08718 + 9.50135i) q^{71} +(-5.83210 - 4.50592i) q^{72} +(-2.70313 + 1.96394i) q^{73} +(-0.730937 - 1.26602i) q^{74} +(7.82330 - 3.71429i) q^{75} +(3.90822 - 6.76924i) q^{76} +(1.36081 + 12.9472i) q^{77} +(8.90251 - 2.74813i) q^{78} +(1.44490 - 0.307122i) q^{79} +(-0.0466350 + 1.42153i) q^{80} +(3.28095 - 8.38066i) q^{81} -4.56542 q^{82} +(4.79891 - 5.32973i) q^{83} +(-0.335214 + 22.7286i) q^{84} +(-6.45746 - 15.8861i) q^{85} +(-0.204248 - 1.94329i) q^{86} +(6.80903 - 3.79843i) q^{87} +(0.786864 - 7.48651i) q^{88} +(0.415723 - 0.302040i) q^{89} +(14.6554 - 3.77135i) q^{90} +(-8.19595 - 5.95471i) q^{91} +(12.9750 - 14.4102i) q^{92} +(2.51326 - 0.226736i) q^{93} +(21.9743 + 4.67079i) q^{94} +(2.13066 + 5.24167i) q^{95} +(-2.44444 + 10.7203i) q^{96} +(-2.02334 + 0.430075i) q^{97} +(20.1673 - 14.6524i) q^{98} +(9.04423 - 1.64526i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9}+O(q^{10})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9} - 20 q^{10} - 11 q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - 48 q^{15} + 23 q^{16} - 24 q^{17} - 12 q^{19} + q^{20} + 15 q^{21} - 11 q^{22} + q^{23} - 30 q^{24} - 16 q^{25} - 136 q^{26} + 7 q^{27} + 4 q^{28} - 15 q^{29} - 24 q^{30} + 3 q^{31} + 12 q^{32} - 5 q^{33} + q^{34} + 14 q^{35} + 38 q^{36} - 24 q^{37} + 55 q^{38} + 20 q^{39} + q^{40} - 19 q^{41} - 38 q^{42} - 8 q^{43} + 4 q^{44} - 38 q^{45} - 20 q^{46} - 10 q^{47} - 25 q^{48} - 72 q^{49} - 3 q^{50} - 26 q^{51} - 25 q^{52} - 12 q^{53} + 53 q^{54} - 20 q^{55} - 60 q^{56} + 38 q^{57} - 23 q^{58} - 30 q^{59} - 33 q^{60} - 3 q^{61} - 44 q^{62} + 46 q^{63} - 44 q^{64} + 51 q^{65} - 134 q^{66} - 12 q^{67} - 156 q^{68} + 4 q^{69} - 16 q^{70} + 42 q^{71} + 74 q^{72} - 12 q^{73} + 90 q^{74} + 67 q^{75} - 8 q^{76} + 31 q^{77} - 92 q^{78} - 15 q^{79} + 298 q^{80} - 104 q^{81} + 8 q^{82} + 59 q^{83} + 115 q^{84} - 11 q^{85} + 9 q^{86} - 59 q^{87} - 23 q^{88} + 106 q^{89} + 107 q^{90} + 30 q^{91} + 11 q^{92} + 32 q^{93} + 25 q^{94} + 7 q^{95} + 35 q^{96} - 21 q^{97} + 146 q^{98} - 20 q^{99}+O(q^{100})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 - 20 * q^10 - 11 * q^11 - 4 * q^12 - 3 * q^13 + q^14 - 48 * q^15 + 23 * q^16 - 24 * q^17 - 12 * q^19 + q^20 + 15 * q^21 - 11 * q^22 + q^23 - 30 * q^24 - 16 * q^25 - 136 * q^26 + 7 * q^27 + 4 * q^28 - 15 * q^29 - 24 * q^30 + 3 * q^31 + 12 * q^32 - 5 * q^33 + q^34 + 14 * q^35 + 38 * q^36 - 24 * q^37 + 55 * q^38 + 20 * q^39 + q^40 - 19 * q^41 - 38 * q^42 - 8 * q^43 + 4 * q^44 - 38 * q^45 - 20 * q^46 - 10 * q^47 - 25 * q^48 - 72 * q^49 - 3 * q^50 - 26 * q^51 - 25 * q^52 - 12 * q^53 + 53 * q^54 - 20 * q^55 - 60 * q^56 + 38 * q^57 - 23 * q^58 - 30 * q^59 - 33 * q^60 - 3 * q^61 - 44 * q^62 + 46 * q^63 - 44 * q^64 + 51 * q^65 - 134 * q^66 - 12 * q^67 - 156 * q^68 + 4 * q^69 - 16 * q^70 + 42 * q^71 + 74 * q^72 - 12 * q^73 + 90 * q^74 + 67 * q^75 - 8 * q^76 + 31 * q^77 - 92 * q^78 - 15 * q^79 + 298 * q^80 - 104 * q^81 + 8 * q^82 + 59 * q^83 + 115 * q^84 - 11 * q^85 + 9 * q^86 - 59 * q^87 - 23 * q^88 + 106 * q^89 + 107 * q^90 + 30 * q^91 + 11 * q^92 + 32 * q^93 + 25 * q^94 + 7 * q^95 + 35 * q^96 - 21 * q^97 + 146 * q^98 - 20 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/225\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{4}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.06085 0.917550i −1.45724 0.648806i −0.483269 0.875472i $$-0.660551\pi$$
−0.973972 + 0.226666i $$0.927217\pi$$
$$3$$ 1.65499 0.510883i 0.955510 0.294958i
$$4$$ 2.06695 + 2.29558i 1.03347 + 1.14779i
$$5$$ −2.23029 + 0.160691i −0.997414 + 0.0718633i
$$6$$ −3.87945 0.465685i −1.58378 0.190115i
$$7$$ 2.12428 + 3.67936i 0.802903 + 1.39067i 0.917698 + 0.397279i $$0.130045\pi$$
−0.114795 + 0.993389i $$0.536621\pi$$
$$8$$ −0.759150 2.33642i −0.268400 0.826050i
$$9$$ 2.47800 1.69101i 0.825999 0.563671i
$$10$$ 4.74373 + 1.71524i 1.50010 + 0.542406i
$$11$$ 2.79930 + 1.24633i 0.844021 + 0.375783i 0.782748 0.622338i $$-0.213817\pi$$
0.0612732 + 0.998121i $$0.480484\pi$$
$$12$$ 4.59355 + 2.74319i 1.32604 + 0.791892i
$$13$$ −2.17836 + 0.969869i −0.604169 + 0.268993i −0.685940 0.727658i $$-0.740609\pi$$
0.0817713 + 0.996651i $$0.473942\pi$$
$$14$$ −1.00183 9.53175i −0.267750 2.54747i
$$15$$ −3.60901 + 1.40536i −0.931843 + 0.362862i
$$16$$ 0.0664873 0.632584i 0.0166218 0.158146i
$$17$$ 2.36985 + 7.29363i 0.574772 + 1.76897i 0.636955 + 0.770901i $$0.280194\pi$$
−0.0621827 + 0.998065i $$0.519806\pi$$
$$18$$ −6.65837 + 1.21124i −1.56939 + 0.285492i
$$19$$ −0.781940 2.40656i −0.179389 0.552103i 0.820417 0.571765i $$-0.193741\pi$$
−0.999807 + 0.0196617i $$0.993741\pi$$
$$20$$ −4.97876 4.78765i −1.11328 1.07055i
$$21$$ 5.39539 + 5.00406i 1.17737 + 1.09197i
$$22$$ −4.62537 5.13700i −0.986133 1.09521i
$$23$$ −0.656165 6.24299i −0.136820 1.30175i −0.820363 0.571844i $$-0.806228\pi$$
0.683543 0.729910i $$-0.260438\pi$$
$$24$$ −2.45003 3.47893i −0.500109 0.710133i
$$25$$ 4.94836 0.716775i 0.989671 0.143355i
$$26$$ 5.37918 1.05494
$$27$$ 3.23716 4.06458i 0.622991 0.782229i
$$28$$ −4.05548 + 12.4815i −0.766414 + 2.35878i
$$29$$ 4.40315 0.935918i 0.817644 0.173796i 0.219941 0.975513i $$-0.429413\pi$$
0.597703 + 0.801718i $$0.296080\pi$$
$$30$$ 8.72712 + 0.415217i 1.59335 + 0.0758080i
$$31$$ 1.42509 + 0.302912i 0.255953 + 0.0544046i 0.334101 0.942537i $$-0.391567\pi$$
−0.0781478 + 0.996942i $$0.524901\pi$$
$$32$$ −3.17411 + 5.49772i −0.561108 + 0.971868i
$$33$$ 5.26955 + 0.632551i 0.917311 + 0.110113i
$$34$$ 1.80838 17.2055i 0.310134 2.95073i
$$35$$ −5.32900 7.86468i −0.900765 1.32937i
$$36$$ 9.00374 + 2.19320i 1.50062 + 0.365533i
$$37$$ 0.524265 + 0.380901i 0.0861887 + 0.0626198i 0.630045 0.776559i $$-0.283036\pi$$
−0.543856 + 0.839178i $$0.683036\pi$$
$$38$$ −0.596680 + 5.67703i −0.0967943 + 0.920937i
$$39$$ −3.10968 + 2.71801i −0.497948 + 0.435231i
$$40$$ 2.06856 + 5.08890i 0.327069 + 0.804627i
$$41$$ 1.84882 0.823147i 0.288737 0.128554i −0.257257 0.966343i $$-0.582819\pi$$
0.545994 + 0.837789i $$0.316152\pi$$
$$42$$ −6.52762 15.2632i −1.00723 2.35516i
$$43$$ 0.433089 + 0.750133i 0.0660455 + 0.114394i 0.897157 0.441711i $$-0.145628\pi$$
−0.831112 + 0.556105i $$0.812295\pi$$
$$44$$ 2.92496 + 9.00211i 0.440955 + 1.35712i
$$45$$ −5.25491 + 4.16964i −0.783356 + 0.621573i
$$46$$ −4.37600 + 13.4679i −0.645206 + 1.98574i
$$47$$ −9.74091 + 2.07049i −1.42086 + 0.302012i −0.853342 0.521351i $$-0.825428\pi$$
−0.567515 + 0.823363i $$0.692095\pi$$
$$48$$ −0.213140 1.08089i −0.0307642 0.156013i
$$49$$ −5.52514 + 9.56982i −0.789305 + 1.36712i
$$50$$ −10.8555 3.06320i −1.53520 0.433202i
$$51$$ 7.64827 + 10.8602i 1.07097 + 1.52073i
$$52$$ −6.72897 2.99593i −0.933140 0.415461i
$$53$$ −0.161545 + 0.497185i −0.0221900 + 0.0682937i −0.961538 0.274671i $$-0.911431\pi$$
0.939348 + 0.342965i $$0.111431\pi$$
$$54$$ −10.4008 + 5.40624i −1.41536 + 0.735696i
$$55$$ −6.44352 2.32985i −0.868844 0.314157i
$$56$$ 6.98390 7.75641i 0.933263 1.03649i
$$57$$ −2.52357 3.58336i −0.334256 0.474628i
$$58$$ −9.93298 2.11132i −1.30426 0.277230i
$$59$$ 1.08427 0.482747i 0.141160 0.0628484i −0.334941 0.942239i $$-0.608716\pi$$
0.476101 + 0.879391i $$0.342050\pi$$
$$60$$ −10.6857 5.37997i −1.37952 0.694551i
$$61$$ −9.93622 4.42389i −1.27220 0.566421i −0.344166 0.938909i $$-0.611838\pi$$
−0.928037 + 0.372488i $$0.878505\pi$$
$$62$$ −2.65896 1.93184i −0.337688 0.245345i
$$63$$ 11.4858 + 5.52526i 1.44708 + 0.696118i
$$64$$ 10.5566 7.66983i 1.31958 0.958728i
$$65$$ 4.70252 2.51313i 0.583276 0.311715i
$$66$$ −10.2794 6.13867i −1.26530 0.755618i
$$67$$ 2.36441 + 0.502571i 0.288859 + 0.0613988i 0.350062 0.936727i $$-0.386161\pi$$
−0.0612034 + 0.998125i $$0.519494\pi$$
$$68$$ −11.8448 + 20.5157i −1.43639 + 2.48790i
$$69$$ −4.27538 9.99688i −0.514696 1.20348i
$$70$$ 3.76603 + 21.0975i 0.450127 + 2.52164i
$$71$$ −3.08718 + 9.50135i −0.366380 + 1.12760i 0.582732 + 0.812665i $$0.301984\pi$$
−0.949112 + 0.314938i $$0.898016\pi$$
$$72$$ −5.83210 4.50592i −0.687319 0.531028i
$$73$$ −2.70313 + 1.96394i −0.316378 + 0.229862i −0.734628 0.678470i $$-0.762643\pi$$
0.418250 + 0.908332i $$0.362643\pi$$
$$74$$ −0.730937 1.26602i −0.0849697 0.147172i
$$75$$ 7.82330 3.71429i 0.903357 0.428889i
$$76$$ 3.90822 6.76924i 0.448304 0.776485i
$$77$$ 1.36081 + 12.9472i 0.155078 + 1.47547i
$$78$$ 8.90251 2.74813i 1.00801 0.311165i
$$79$$ 1.44490 0.307122i 0.162564 0.0345540i −0.125911 0.992042i $$-0.540185\pi$$
0.288474 + 0.957488i $$0.406852\pi$$
$$80$$ −0.0466350 + 1.42153i −0.00521395 + 0.158932i
$$81$$ 3.28095 8.38066i 0.364550 0.931184i
$$82$$ −4.56542 −0.504166
$$83$$ 4.79891 5.32973i 0.526748 0.585013i −0.419783 0.907624i $$-0.637894\pi$$
0.946532 + 0.322611i $$0.104561\pi$$
$$84$$ −0.335214 + 22.7286i −0.0365749 + 2.47990i
$$85$$ −6.45746 15.8861i −0.700410 1.72309i
$$86$$ −0.204248 1.94329i −0.0220247 0.209551i
$$87$$ 6.80903 3.79843i 0.730005 0.407234i
$$88$$ 0.786864 7.48651i 0.0838799 0.798064i
$$89$$ 0.415723 0.302040i 0.0440665 0.0320162i −0.565534 0.824725i $$-0.691330\pi$$
0.609600 + 0.792709i $$0.291330\pi$$
$$90$$ 14.6554 3.77135i 1.54482 0.397536i
$$91$$ −8.19595 5.95471i −0.859169 0.624223i
$$92$$ 12.9750 14.4102i 1.35274 1.50237i
$$93$$ 2.51326 0.226736i 0.260613 0.0235114i
$$94$$ 21.9743 + 4.67079i 2.26648 + 0.481755i
$$95$$ 2.13066 + 5.24167i 0.218601 + 0.537784i
$$96$$ −2.44444 + 10.7203i −0.249484 + 1.09413i
$$97$$ −2.02334 + 0.430075i −0.205439 + 0.0436675i −0.309482 0.950905i $$-0.600156\pi$$
0.104042 + 0.994573i $$0.466822\pi$$
$$98$$ 20.1673 14.6524i 2.03720 1.48011i
$$99$$ 9.04423 1.64526i 0.908979 0.165354i
$$100$$ 11.8734 + 9.87780i 1.18734 + 0.987780i
$$101$$ −7.67282 13.2897i −0.763474 1.32238i −0.941049 0.338269i $$-0.890159\pi$$
0.177575 0.984107i $$-0.443175\pi$$
$$102$$ −5.79716 29.3989i −0.574005 2.91093i
$$103$$ −6.17144 6.85407i −0.608090 0.675352i 0.357952 0.933740i $$-0.383475\pi$$
−0.966041 + 0.258388i $$0.916809\pi$$
$$104$$ 3.91973 + 4.35330i 0.384361 + 0.426876i
$$105$$ −12.8374 10.2935i −1.25280 1.00454i
$$106$$ 0.789113 0.876399i 0.0766454 0.0851234i
$$107$$ 8.88999 0.859427 0.429714 0.902965i $$-0.358615\pi$$
0.429714 + 0.902965i $$0.358615\pi$$
$$108$$ 16.0216 0.970126i 1.54168 0.0933504i
$$109$$ −1.19596 0.868915i −0.114552 0.0832270i 0.529034 0.848600i $$-0.322554\pi$$
−0.643586 + 0.765373i $$0.722554\pi$$
$$110$$ 11.1414 + 10.7137i 1.06229 + 1.02151i
$$111$$ 1.06225 + 0.362550i 0.100824 + 0.0344118i
$$112$$ 2.46874 1.09916i 0.233274 0.103860i
$$113$$ −3.38269 + 1.50607i −0.318216 + 0.141679i −0.559628 0.828744i $$-0.689056\pi$$
0.241412 + 0.970423i $$0.422389\pi$$
$$114$$ 1.91280 + 9.70028i 0.179150 + 0.908515i
$$115$$ 2.46663 + 13.8182i 0.230014 + 1.28856i
$$116$$ 11.2495 + 8.17327i 1.04449 + 0.758869i
$$117$$ −3.75792 + 6.08697i −0.347419 + 0.562741i
$$118$$ −2.67746 −0.246480
$$119$$ −21.8017 + 24.2132i −1.99856 + 2.21962i
$$120$$ 6.02329 + 7.36530i 0.549849 + 0.672357i
$$121$$ −1.07768 1.19689i −0.0979709 0.108808i
$$122$$ 16.4179 + 18.2340i 1.48641 + 1.65083i
$$123$$ 2.63925 2.30683i 0.237973 0.208000i
$$124$$ 2.25022 + 3.89750i 0.202076 + 0.350006i
$$125$$ −10.9211 + 2.39377i −0.976811 + 0.214105i
$$126$$ −18.6008 21.9255i −1.65709 1.95328i
$$127$$ 4.74186 3.44516i 0.420772 0.305709i −0.357176 0.934037i $$-0.616261\pi$$
0.777948 + 0.628328i $$0.216261\pi$$
$$128$$ −16.3741 + 3.48041i −1.44728 + 0.307628i
$$129$$ 1.09999 + 1.02021i 0.0968487 + 0.0898242i
$$130$$ −11.9971 + 0.864387i −1.05222 + 0.0758118i
$$131$$ 6.27356 + 1.33349i 0.548124 + 0.116507i 0.473646 0.880715i $$-0.342938\pi$$
0.0744779 + 0.997223i $$0.476271\pi$$
$$132$$ 9.43981 + 13.4041i 0.821630 + 1.16668i
$$133$$ 7.19356 7.98925i 0.623760 0.692756i
$$134$$ −4.41156 3.20519i −0.381101 0.276886i
$$135$$ −6.56665 + 9.58536i −0.565167 + 0.824977i
$$136$$ 15.2419 11.0739i 1.30699 0.949581i
$$137$$ 1.45881 13.8797i 0.124635 1.18582i −0.736138 0.676831i $$-0.763353\pi$$
0.860773 0.508989i $$-0.169981\pi$$
$$138$$ −0.361707 + 24.5250i −0.0307906 + 2.08770i
$$139$$ −1.23615 11.7612i −0.104849 0.997573i −0.912823 0.408355i $$-0.866103\pi$$
0.807974 0.589218i $$-0.200564\pi$$
$$140$$ 7.03922 28.4890i 0.594923 2.40776i
$$141$$ −15.0633 + 8.40311i −1.26856 + 0.707669i
$$142$$ 15.0802 16.7482i 1.26550 1.40548i
$$143$$ −7.30667 −0.611015
$$144$$ −0.904953 1.67997i −0.0754127 0.139998i
$$145$$ −9.66989 + 2.79491i −0.803041 + 0.232105i
$$146$$ 7.37277 1.56713i 0.610175 0.129697i
$$147$$ −4.25500 + 18.6607i −0.350947 + 1.53911i
$$148$$ 0.209241 + 1.99079i 0.0171995 + 0.163642i
$$149$$ 6.20150 10.7413i 0.508047 0.879963i −0.491910 0.870646i $$-0.663701\pi$$
0.999957 0.00931695i $$-0.00296572\pi$$
$$150$$ −19.5307 + 0.476318i −1.59468 + 0.0388912i
$$151$$ 6.61985 + 11.4659i 0.538716 + 0.933083i 0.998974 + 0.0452978i $$0.0144237\pi$$
−0.460258 + 0.887785i $$0.652243\pi$$
$$152$$ −5.02914 + 3.65388i −0.407917 + 0.296369i
$$153$$ 18.2061 + 14.0662i 1.47188 + 1.13718i
$$154$$ 9.07528 27.9309i 0.731307 2.25073i
$$155$$ −3.22703 0.446581i −0.259201 0.0358703i
$$156$$ −12.6670 1.52053i −1.01417 0.121740i
$$157$$ 4.80131 8.31611i 0.383186 0.663698i −0.608330 0.793684i $$-0.708160\pi$$
0.991516 + 0.129987i $$0.0414935\pi$$
$$158$$ −3.25952 0.692832i −0.259313 0.0551188i
$$159$$ −0.0133529 + 0.905369i −0.00105895 + 0.0718004i
$$160$$ 6.19574 12.7715i 0.489816 1.00968i
$$161$$ 21.5764 15.6761i 1.70045 1.23545i
$$162$$ −14.4512 + 14.2608i −1.13539 + 1.12044i
$$163$$ −9.18728 6.67495i −0.719603 0.522822i 0.166654 0.986015i $$-0.446704\pi$$
−0.886257 + 0.463193i $$0.846704\pi$$
$$164$$ 5.71101 + 2.54270i 0.445955 + 0.198552i
$$165$$ −11.8543 0.563999i −0.922853 0.0439073i
$$166$$ −14.7801 + 6.58053i −1.14716 + 0.510748i
$$167$$ −18.1337 3.85444i −1.40323 0.298266i −0.556747 0.830682i $$-0.687951\pi$$
−0.846482 + 0.532417i $$0.821284\pi$$
$$168$$ 7.59569 16.4047i 0.586020 1.26565i
$$169$$ −4.89408 + 5.43543i −0.376468 + 0.418110i
$$170$$ −1.26842 + 38.6639i −0.0972831 + 2.96538i
$$171$$ −6.00717 4.64119i −0.459380 0.354920i
$$172$$ −0.826815 + 2.54467i −0.0630440 + 0.194030i
$$173$$ 8.23416 + 3.66608i 0.626032 + 0.278727i 0.695132 0.718883i $$-0.255346\pi$$
−0.0691000 + 0.997610i $$0.522013\pi$$
$$174$$ −17.5176 + 1.58037i −1.32801 + 0.119807i
$$175$$ 13.1490 + 16.6842i 0.993969 + 1.26120i
$$176$$ 0.974526 1.68793i 0.0734577 0.127232i
$$177$$ 1.54783 1.35288i 0.116342 0.101688i
$$178$$ −1.13388 + 0.241013i −0.0849878 + 0.0180647i
$$179$$ 5.80773 17.8744i 0.434090 1.33599i −0.459926 0.887957i $$-0.652124\pi$$
0.894016 0.448035i $$-0.147876\pi$$
$$180$$ −20.4333 3.44464i −1.52301 0.256748i
$$181$$ −0.674906 2.07715i −0.0501653 0.154393i 0.922836 0.385194i $$-0.125865\pi$$
−0.973001 + 0.230801i $$0.925865\pi$$
$$182$$ 11.4269 + 19.7920i 0.847018 + 1.46708i
$$183$$ −18.7045 2.24526i −1.38267 0.165975i
$$184$$ −14.0881 + 6.27245i −1.03859 + 0.462411i
$$185$$ −1.23047 0.765274i −0.0904659 0.0562641i
$$186$$ −5.38750 1.83877i −0.395031 0.134825i
$$187$$ −2.45636 + 23.3707i −0.179627 + 1.70903i
$$188$$ −24.8869 18.0814i −1.81506 1.31872i
$$189$$ 21.8317 + 3.27637i 1.58802 + 0.238321i
$$190$$ 0.418519 12.7573i 0.0303626 0.925511i
$$191$$ 1.30681 12.4335i 0.0945576 0.899655i −0.839699 0.543053i $$-0.817268\pi$$
0.934256 0.356603i $$-0.116065\pi$$
$$192$$ 13.5527 18.0867i 0.978084 1.30529i
$$193$$ 7.39092 12.8015i 0.532010 0.921469i −0.467291 0.884103i $$-0.654770\pi$$
0.999302 0.0373655i $$-0.0118966\pi$$
$$194$$ 4.56443 + 0.970199i 0.327707 + 0.0696562i
$$195$$ 6.49872 6.56165i 0.465383 0.469889i
$$196$$ −33.3884 + 7.09692i −2.38489 + 0.506923i
$$197$$ 3.83767 11.8111i 0.273422 0.841507i −0.716210 0.697885i $$-0.754125\pi$$
0.989633 0.143623i $$-0.0458752\pi$$
$$198$$ −20.1484 4.90790i −1.43188 0.348789i
$$199$$ 6.90105 0.489202 0.244601 0.969624i $$-0.421343\pi$$
0.244601 + 0.969624i $$0.421343\pi$$
$$200$$ −5.43123 11.0173i −0.384046 0.779042i
$$201$$ 4.16983 0.376185i 0.294117 0.0265341i
$$202$$ 3.61856 + 34.4283i 0.254601 + 2.42237i
$$203$$ 12.7971 + 14.2126i 0.898181 + 0.997531i
$$204$$ −9.12185 + 40.0046i −0.638657 + 2.80088i
$$205$$ −3.99112 + 2.13294i −0.278752 + 0.148971i
$$206$$ 6.42945 + 19.7878i 0.447961 + 1.37868i
$$207$$ −12.1830 14.3605i −0.846774 0.998127i
$$208$$ 0.468691 + 1.44248i 0.0324978 + 0.100018i
$$209$$ 0.810485 7.71125i 0.0560624 0.533398i
$$210$$ 17.0111 + 32.9923i 1.17388 + 2.27668i
$$211$$ 2.36206 + 22.4735i 0.162611 + 1.54714i 0.706337 + 0.707875i $$0.250346\pi$$
−0.543727 + 0.839262i $$0.682987\pi$$
$$212$$ −1.47523 + 0.656816i −0.101319 + 0.0451103i
$$213$$ −0.255177 + 17.3018i −0.0174844 + 1.18550i
$$214$$ −18.3209 8.15700i −1.25239 0.557601i
$$215$$ −1.08645 1.60342i −0.0740955 0.109352i
$$216$$ −11.9541 4.47774i −0.813371 0.304672i
$$217$$ 1.91276 + 5.88688i 0.129847 + 0.399628i
$$218$$ 1.66742 + 2.88806i 0.112932 + 0.195604i
$$219$$ −3.47032 + 4.63129i −0.234503 + 0.312954i
$$220$$ −7.97006 19.6073i −0.537342 1.32192i
$$221$$ −12.2363 13.5897i −0.823100 0.914145i
$$222$$ −1.85648 1.72183i −0.124599 0.115562i
$$223$$ 5.21313 + 2.32103i 0.349097 + 0.155428i 0.573792 0.819001i $$-0.305472\pi$$
−0.224695 + 0.974429i $$0.572139\pi$$
$$224$$ −26.9708 −1.80206
$$225$$ 11.0499 10.1439i 0.736663 0.676260i
$$226$$ 8.35310 0.555640
$$227$$ −11.8328 5.26831i −0.785372 0.349670i −0.0254432 0.999676i $$-0.508100\pi$$
−0.759929 + 0.650006i $$0.774766\pi$$
$$228$$ 3.00979 13.1997i 0.199328 0.874170i
$$229$$ 5.11674 + 5.68271i 0.338123 + 0.375524i 0.888096 0.459659i $$-0.152028\pi$$
−0.549972 + 0.835183i $$0.685362\pi$$
$$230$$ 7.59555 30.7406i 0.500836 2.02697i
$$231$$ 8.86662 + 20.7323i 0.583381 + 1.36409i
$$232$$ −5.52935 9.57712i −0.363020 0.628769i
$$233$$ 0.0969674 + 0.298435i 0.00635254 + 0.0195511i 0.954183 0.299225i $$-0.0967282\pi$$
−0.947830 + 0.318776i $$0.896728\pi$$
$$234$$ 13.3296 9.09627i 0.871383 0.594642i
$$235$$ 21.3923 6.18307i 1.39548 0.403339i
$$236$$ 3.34931 + 1.49121i 0.218021 + 0.0970694i
$$237$$ 2.23439 1.24646i 0.145139 0.0809662i
$$238$$ 67.1469 29.8957i 4.35249 1.93785i
$$239$$ 2.36316 + 22.4840i 0.152860 + 1.45437i 0.754867 + 0.655878i $$0.227701\pi$$
−0.602007 + 0.798491i $$0.705632\pi$$
$$240$$ 0.649053 + 2.37644i 0.0418962 + 0.153399i
$$241$$ −1.68606 + 16.0418i −0.108609 + 1.03334i 0.795474 + 0.605988i $$0.207222\pi$$
−0.904083 + 0.427357i $$0.859445\pi$$
$$242$$ 1.12274 + 3.45543i 0.0721722 + 0.222123i
$$243$$ 1.14841 15.5461i 0.0736706 0.997283i
$$244$$ −10.3823 31.9533i −0.664656 2.04560i
$$245$$ 10.7849 22.2313i 0.689019 1.42030i
$$246$$ −7.55573 + 2.33239i −0.481736 + 0.148708i
$$247$$ 4.03740 + 4.48399i 0.256894 + 0.285309i
$$248$$ −0.374125 3.55956i −0.0237570 0.226033i
$$249$$ 5.21929 11.2723i 0.330759 0.714355i
$$250$$ 24.7031 + 5.08743i 1.56236 + 0.321757i
$$251$$ −18.3401 −1.15762 −0.578809 0.815463i $$-0.696482\pi$$
−0.578809 + 0.815463i $$0.696482\pi$$
$$252$$ 11.0569 + 37.7870i 0.696519 + 2.38036i
$$253$$ 5.94402 18.2938i 0.373698 1.15012i
$$254$$ −12.9334 + 2.74907i −0.811512 + 0.172492i
$$255$$ −18.8030 22.9923i −1.17749 1.43984i
$$256$$ 11.4109 + 2.42545i 0.713179 + 0.151591i
$$257$$ −11.2959 + 19.5650i −0.704616 + 1.22043i 0.262214 + 0.965010i $$0.415547\pi$$
−0.966830 + 0.255421i $$0.917786\pi$$
$$258$$ −1.33082 3.11179i −0.0828535 0.193731i
$$259$$ −0.287786 + 2.73810i −0.0178822 + 0.170137i
$$260$$ 15.4889 + 5.60050i 0.960584 + 0.347328i
$$261$$ 9.32834 9.76499i 0.577410 0.604438i
$$262$$ −11.7053 8.50443i −0.723158 0.525405i
$$263$$ 0.238572 2.26986i 0.0147110 0.139965i −0.984701 0.174252i $$-0.944249\pi$$
0.999412 + 0.0342866i $$0.0109159\pi$$
$$264$$ −2.52247 12.7921i −0.155247 0.787300i
$$265$$ 0.280399 1.13482i 0.0172248 0.0697117i
$$266$$ −22.1554 + 9.86421i −1.35843 + 0.604814i
$$267$$ 0.533711 0.712260i 0.0326626 0.0435896i
$$268$$ 3.73342 + 6.46647i 0.228055 + 0.395002i
$$269$$ −0.759927 2.33881i −0.0463335 0.142600i 0.925213 0.379447i $$-0.123886\pi$$
−0.971547 + 0.236847i $$0.923886\pi$$
$$270$$ 22.3279 13.7288i 1.35883 0.835506i
$$271$$ −4.44549 + 13.6818i −0.270044 + 0.831111i 0.720444 + 0.693513i $$0.243938\pi$$
−0.990488 + 0.137598i $$0.956062\pi$$
$$272$$ 4.77140 1.01419i 0.289309 0.0614945i
$$273$$ −16.6064 5.66783i −1.00506 0.343032i
$$274$$ −15.7417 + 27.2654i −0.950990 + 1.64716i
$$275$$ 14.7453 + 4.16081i 0.889174 + 0.250907i
$$276$$ 14.1116 30.4775i 0.849419 1.83453i
$$277$$ −25.6221 11.4077i −1.53949 0.685423i −0.550691 0.834709i $$-0.685636\pi$$
−0.988794 + 0.149286i $$0.952303\pi$$
$$278$$ −8.24397 + 25.3723i −0.494441 + 1.52173i
$$279$$ 4.04359 1.65923i 0.242084 0.0993354i
$$280$$ −14.3297 + 18.4213i −0.856364 + 1.10088i
$$281$$ 8.00633 8.89193i 0.477618 0.530448i −0.455396 0.890289i $$-0.650502\pi$$
0.933014 + 0.359841i $$0.117169\pi$$
$$282$$ 38.7536 3.49619i 2.30774 0.208195i
$$283$$ −30.4217 6.46633i −1.80838 0.384383i −0.824884 0.565302i $$-0.808760\pi$$
−0.983498 + 0.180919i $$0.942093\pi$$
$$284$$ −28.1921 + 12.5519i −1.67289 + 0.744820i
$$285$$ 6.20411 + 7.58641i 0.367500 + 0.449380i
$$286$$ 15.0580 + 6.70424i 0.890396 + 0.396430i
$$287$$ 6.95607 + 5.05388i 0.410604 + 0.298321i
$$288$$ 1.43128 + 18.9908i 0.0843389 + 1.11904i
$$289$$ −33.8276 + 24.5772i −1.98986 + 1.44572i
$$290$$ 22.4927 + 3.11271i 1.32082 + 0.182784i
$$291$$ −3.12890 + 1.74546i −0.183419 + 0.102321i
$$292$$ −10.0956 2.14589i −0.590801 0.125579i
$$293$$ 9.75305 16.8928i 0.569779 0.986886i −0.426808 0.904342i $$-0.640362\pi$$
0.996587 0.0825441i $$-0.0263045\pi$$
$$294$$ 25.8910 34.5527i 1.50999 2.01515i
$$295$$ −2.34066 + 1.25090i −0.136278 + 0.0728301i
$$296$$ 0.491950 1.51407i 0.0285940 0.0880034i
$$297$$ 14.1276 7.34342i 0.819766 0.426109i
$$298$$ −22.6361 + 16.4461i −1.31127 + 0.952695i
$$299$$ 7.48425 + 12.9631i 0.432826 + 0.749676i
$$300$$ 24.6968 + 10.2818i 1.42587 + 0.593618i
$$301$$ −1.84001 + 3.18699i −0.106056 + 0.183695i
$$302$$ −3.12197 29.7036i −0.179649 1.70925i
$$303$$ −19.4879 18.0745i −1.11955 1.03835i
$$304$$ −1.57434 + 0.334637i −0.0902947 + 0.0191927i
$$305$$ 22.8715 + 8.26988i 1.30962 + 0.473532i
$$306$$ −24.6137 45.6933i −1.40707 2.61211i
$$307$$ 27.0345 1.54294 0.771469 0.636267i $$-0.219522\pi$$
0.771469 + 0.636267i $$0.219522\pi$$
$$308$$ −26.9086 + 29.8850i −1.53326 + 1.70286i
$$309$$ −13.7153 8.19056i −0.780236 0.465945i
$$310$$ 6.24067 + 3.88130i 0.354446 + 0.220443i
$$311$$ 2.19188 + 20.8544i 0.124290 + 1.18254i 0.861815 + 0.507222i $$0.169328\pi$$
−0.737525 + 0.675320i $$0.764006\pi$$
$$312$$ 8.71115 + 5.20216i 0.493172 + 0.294514i
$$313$$ 2.87675 27.3705i 0.162604 1.54707i −0.543772 0.839233i $$-0.683004\pi$$
0.706376 0.707837i $$-0.250329\pi$$
$$314$$ −17.5252 + 12.7328i −0.989005 + 0.718554i
$$315$$ −26.5045 10.4773i −1.49336 0.590326i
$$316$$ 3.69155 + 2.68207i 0.207666 + 0.150878i
$$317$$ −4.19062 + 4.65416i −0.235369 + 0.261403i −0.849245 0.527999i $$-0.822943\pi$$
0.613876 + 0.789402i $$0.289609\pi$$
$$318$$ 0.858239 1.85358i 0.0481277 0.103943i
$$319$$ 13.4922 + 2.86786i 0.755419 + 0.160569i
$$320$$ −22.3118 + 18.8023i −1.24727 + 1.05108i
$$321$$ 14.7129 4.54174i 0.821192 0.253495i
$$322$$ −58.8493 + 12.5088i −3.27954 + 0.697088i
$$323$$ 15.6995 11.4064i 0.873544 0.634667i
$$324$$ 26.0200 9.79070i 1.44555 0.543928i
$$325$$ −10.0841 + 6.36066i −0.559367 + 0.352826i
$$326$$ 12.8090 + 22.1859i 0.709426 + 1.22876i
$$327$$ −2.42322 0.827053i −0.134004 0.0457361i
$$328$$ −3.32675 3.69473i −0.183689 0.204007i
$$329$$ −28.3105 31.4420i −1.56081 1.73345i
$$330$$ 23.9124 + 12.0392i 1.31633 + 0.662736i
$$331$$ −1.60189 + 1.77908i −0.0880478 + 0.0977870i −0.785559 0.618787i $$-0.787624\pi$$
0.697511 + 0.716574i $$0.254291\pi$$
$$332$$ 22.1539 1.21585
$$333$$ 1.94324 + 0.0573323i 0.106489 + 0.00314179i
$$334$$ 33.8342 + 24.5820i 1.85133 + 1.34507i
$$335$$ −5.35407 0.740937i −0.292524 0.0404817i
$$336$$ 3.52421 3.08033i 0.192262 0.168046i
$$337$$ −6.42544 + 2.86079i −0.350016 + 0.155837i −0.574211 0.818707i $$-0.694691\pi$$
0.224195 + 0.974544i $$0.428025\pi$$
$$338$$ 15.0732 6.71104i 0.819876 0.365033i
$$339$$ −4.82889 + 4.22069i −0.262269 + 0.229236i
$$340$$ 23.1205 47.6593i 1.25388 2.58469i
$$341$$ 3.61172 + 2.62407i 0.195586 + 0.142101i
$$342$$ 8.12137 + 15.0767i 0.439153 + 0.815253i
$$343$$ −17.2078 −0.929135
$$344$$ 1.42385 1.58134i 0.0767688 0.0852603i
$$345$$ 11.1417 + 21.6089i 0.599851 + 1.16338i
$$346$$ −13.6056 15.1105i −0.731439 0.812346i
$$347$$ 7.78217 + 8.64298i 0.417769 + 0.463979i 0.914891 0.403701i $$-0.132277\pi$$
−0.497122 + 0.867681i $$0.665610\pi$$
$$348$$ 22.7935 + 7.77950i 1.22186 + 0.417025i
$$349$$ 9.48461 + 16.4278i 0.507700 + 0.879362i 0.999960 + 0.00891382i $$0.00283739\pi$$
−0.492261 + 0.870448i $$0.663829\pi$$
$$350$$ −11.7895 46.4484i −0.630176 2.48277i
$$351$$ −3.10959 + 11.9937i −0.165978 + 0.640179i
$$352$$ −15.7373 + 11.4338i −0.838799 + 0.609423i
$$353$$ −17.9763 + 3.82097i −0.956780 + 0.203370i −0.659739 0.751495i $$-0.729333\pi$$
−0.297041 + 0.954865i $$0.596000\pi$$
$$354$$ −4.43117 + 1.36787i −0.235514 + 0.0727013i
$$355$$ 5.35850 21.6868i 0.284400 1.15102i
$$356$$ 1.55263 + 0.330022i 0.0822894 + 0.0174911i
$$357$$ −23.7115 + 51.2108i −1.25495 + 2.71037i
$$358$$ −28.3695 + 31.5075i −1.49937 + 1.66522i
$$359$$ −9.64076 7.00442i −0.508820 0.369679i 0.303556 0.952814i $$-0.401826\pi$$
−0.812376 + 0.583134i $$0.801826\pi$$
$$360$$ 13.7313 + 9.11233i 0.723703 + 0.480262i
$$361$$ 10.1912 7.40435i 0.536379 0.389702i
$$362$$ −0.515005 + 4.89995i −0.0270681 + 0.257536i
$$363$$ −2.39502 1.43027i −0.125706 0.0750696i
$$364$$ −3.27111 31.1225i −0.171453 1.63126i
$$365$$ 5.71318 4.81452i 0.299041 0.252004i
$$366$$ 36.4870 + 21.7894i 1.90720 + 1.13895i
$$367$$ 17.3734 19.2951i 0.906885 1.00720i −0.0930481 0.995662i $$-0.529661\pi$$
0.999933 0.0115366i $$-0.00367231\pi$$
$$368$$ −3.99285 −0.208141
$$369$$ 3.18942 5.16614i 0.166034 0.268938i
$$370$$ 1.83364 + 2.70613i 0.0953263 + 0.140685i
$$371$$ −2.17249 + 0.461778i −0.112790 + 0.0239743i
$$372$$ 5.71527 + 5.30073i 0.296323 + 0.274830i
$$373$$ 3.95418 + 37.6215i 0.204740 + 1.94797i 0.303440 + 0.952850i $$0.401865\pi$$
−0.0987007 + 0.995117i $$0.531469\pi$$
$$374$$ 26.5060 45.9097i 1.37059 2.37393i
$$375$$ −16.8514 + 9.54106i −0.870200 + 0.492698i
$$376$$ 12.2324 + 21.1871i 0.630836 + 1.09264i
$$377$$ −8.68394 + 6.30925i −0.447245 + 0.324943i
$$378$$ −41.9856 26.7838i −2.15951 1.37761i
$$379$$ −8.50160 + 26.1652i −0.436698 + 1.34402i 0.454639 + 0.890676i $$0.349768\pi$$
−0.891337 + 0.453342i $$0.850232\pi$$
$$380$$ −7.62870 + 15.7254i −0.391344 + 0.806694i
$$381$$ 6.08766 8.12425i 0.311881 0.416218i
$$382$$ −14.1015 + 24.4245i −0.721495 + 1.24967i
$$383$$ 28.8177 + 6.12539i 1.47251 + 0.312993i 0.873137 0.487474i $$-0.162082\pi$$
0.599377 + 0.800467i $$0.295415\pi$$
$$384$$ −25.3209 + 14.1253i −1.29215 + 0.720828i
$$385$$ −5.11549 28.6573i −0.260709 1.46051i
$$386$$ −26.9776 + 19.6003i −1.37312 + 0.997631i
$$387$$ 2.34168 + 1.12647i 0.119034 + 0.0572616i
$$388$$ −5.16941 3.75580i −0.262437 0.190672i
$$389$$ 27.9229 + 12.4321i 1.41575 + 0.630331i 0.964983 0.262312i $$-0.0844850\pi$$
0.450764 + 0.892643i $$0.351152\pi$$
$$390$$ −19.4135 + 7.55967i −0.983043 + 0.382799i
$$391$$ 43.9791 19.5808i 2.22412 0.990241i
$$392$$ 26.5535 + 5.64413i 1.34116 + 0.285072i
$$393$$ 11.0640 0.998144i 0.558103 0.0503497i
$$394$$ −18.7461 + 20.8197i −0.944417 + 1.04888i
$$395$$ −3.17318 + 0.917153i −0.159660 + 0.0461470i
$$396$$ 22.4707 + 17.3611i 1.12920 + 0.872426i
$$397$$ −2.97055 + 9.14241i −0.149088 + 0.458844i −0.997514 0.0704690i $$-0.977550\pi$$
0.848426 + 0.529313i $$0.177550\pi$$
$$398$$ −14.2220 6.33205i −0.712886 0.317397i
$$399$$ 7.82371 16.8972i 0.391675 0.845919i
$$400$$ −0.124418 3.17791i −0.00622088 0.158895i
$$401$$ 4.31447 7.47289i 0.215454 0.373178i −0.737959 0.674846i $$-0.764210\pi$$
0.953413 + 0.301668i $$0.0975434\pi$$
$$402$$ −8.93857 3.05077i −0.445816 0.152159i
$$403$$ −3.39814 + 0.722298i −0.169274 + 0.0359802i
$$404$$ 14.6482 45.0827i 0.728778 2.24295i
$$405$$ −5.97076 + 19.2185i −0.296689 + 0.954974i
$$406$$ −13.3321 41.0321i −0.661663 2.03639i
$$407$$ 0.992849 + 1.71967i 0.0492137 + 0.0852406i
$$408$$ 19.5678 26.1141i 0.968752 1.29284i
$$409$$ 21.7649 9.69034i 1.07620 0.479157i 0.209412 0.977827i $$-0.432845\pi$$
0.866791 + 0.498671i $$0.166178\pi$$
$$410$$ 10.1822 0.733623i 0.502863 0.0362310i
$$411$$ −4.67656 23.7160i −0.230678 1.16983i
$$412$$ 2.97802 28.3340i 0.146717 1.39592i
$$413$$ 4.07949 + 2.96392i 0.200739 + 0.145845i
$$414$$ 11.9308 + 40.7734i 0.586364 + 2.00390i
$$415$$ −9.84650 + 12.6580i −0.483346 + 0.621355i
$$416$$ 1.58229 15.0545i 0.0775782 0.738107i
$$417$$ −8.05443 18.8332i −0.394427 0.922265i
$$418$$ −8.74575 + 15.1481i −0.427768 + 0.740917i
$$419$$ −5.80677 1.23427i −0.283679 0.0602979i 0.0638744 0.997958i $$-0.479654\pi$$
−0.347554 + 0.937660i $$0.612988\pi$$
$$420$$ −2.90467 50.7453i −0.141733 2.47612i
$$421$$ 15.0822 3.20582i 0.735061 0.156242i 0.174853 0.984594i $$-0.444055\pi$$
0.560207 + 0.828353i $$0.310722\pi$$
$$422$$ 15.7527 48.4818i 0.766829 2.36006i
$$423$$ −20.6367 + 21.6027i −1.00339 + 1.05036i
$$424$$ 1.28427 0.0623698
$$425$$ 16.9547 + 34.3929i 0.822425 + 1.66830i
$$426$$ 16.4012 35.4224i 0.794640 1.71622i
$$427$$ −4.83023 45.9565i −0.233751 2.22399i
$$428$$ 18.3751 + 20.4076i 0.888195 + 0.986440i
$$429$$ −12.0925 + 3.73285i −0.583831 + 0.180224i
$$430$$ 0.767802 + 4.30128i 0.0370267 + 0.207426i
$$431$$ −3.02158 9.29948i −0.145545 0.447940i 0.851536 0.524296i $$-0.175671\pi$$
−0.997081 + 0.0763560i $$0.975671\pi$$
$$432$$ −2.35596 2.31802i −0.113351 0.111526i
$$433$$ −5.55389 17.0931i −0.266903 0.821443i −0.991249 0.132006i $$-0.957858\pi$$
0.724346 0.689437i $$-0.242142\pi$$
$$434$$ 1.45959 13.8870i 0.0700624 0.666599i
$$435$$ −14.5757 + 9.56574i −0.698852 + 0.458642i
$$436$$ −0.477322 4.54142i −0.0228596 0.217494i
$$437$$ −14.5111 + 6.46075i −0.694159 + 0.309059i
$$438$$ 11.4013 6.36021i 0.544773 0.303903i
$$439$$ 26.8307 + 11.9458i 1.28056 + 0.570142i 0.930399 0.366548i $$-0.119460\pi$$
0.350160 + 0.936690i $$0.386127\pi$$
$$440$$ −0.551916 + 16.8235i −0.0263115 + 0.802029i
$$441$$ 2.49141 + 33.0571i 0.118639 + 1.57415i
$$442$$ 12.7478 + 39.2338i 0.606353 + 1.86616i
$$443$$ −5.20445 9.01437i −0.247271 0.428285i 0.715497 0.698616i $$-0.246200\pi$$
−0.962768 + 0.270331i $$0.912867\pi$$
$$444$$ 1.36335 + 3.18785i 0.0647019 + 0.151289i
$$445$$ −0.878646 + 0.740439i −0.0416518 + 0.0351002i
$$446$$ −8.61381 9.56660i −0.407876 0.452992i
$$447$$ 4.77589 20.9450i 0.225892 0.990666i
$$448$$ 50.6453 + 22.5487i 2.39276 + 1.06533i
$$449$$ 11.4000 0.538000 0.269000 0.963140i $$-0.413307\pi$$
0.269000 + 0.963140i $$0.413307\pi$$
$$450$$ −32.0798 + 10.7662i −1.51226 + 0.507523i
$$451$$ 6.20132 0.292009
$$452$$ −10.4491 4.65225i −0.491485 0.218823i
$$453$$ 16.8135 + 15.5940i 0.789969 + 0.732672i
$$454$$ 19.5517 + 21.7144i 0.917609 + 1.01911i
$$455$$ 19.2362 + 11.9637i 0.901807 + 0.560866i
$$456$$ −6.45648 + 8.61645i −0.302352 + 0.403502i
$$457$$ −9.11863 15.7939i −0.426552 0.738809i 0.570012 0.821636i $$-0.306938\pi$$
−0.996564 + 0.0828271i $$0.973605\pi$$
$$458$$ −5.33066 16.4061i −0.249085 0.766606i
$$459$$ 37.3171 + 13.9782i 1.74181 + 0.652447i
$$460$$ −26.6224 + 34.2239i −1.24128 + 1.59570i
$$461$$ −34.8569 15.5193i −1.62345 0.722806i −0.625116 0.780532i $$-0.714948\pi$$
−0.998332 + 0.0577259i $$0.981615\pi$$
$$462$$ 0.750137 50.8617i 0.0348995 2.36630i
$$463$$ −14.5875 + 6.49477i −0.677939 + 0.301838i −0.716670 0.697412i $$-0.754335\pi$$
0.0387319 + 0.999250i $$0.487668\pi$$
$$464$$ −0.299294 2.84759i −0.0138944 0.132196i
$$465$$ −5.56886 + 0.909545i −0.258250 + 0.0421792i
$$466$$ 0.0739936 0.704002i 0.00342769 0.0326123i
$$467$$ −2.63535 8.11077i −0.121949 0.375321i 0.871384 0.490602i $$-0.163223\pi$$
−0.993333 + 0.115281i $$0.963223\pi$$
$$468$$ −21.7405 + 3.95487i −1.00496 + 0.182814i
$$469$$ 3.17353 + 9.76712i 0.146540 + 0.451004i
$$470$$ −49.7596 6.88612i −2.29524 0.317633i
$$471$$ 3.69757 16.2160i 0.170375 0.747194i
$$472$$ −1.95102 2.16683i −0.0898032 0.0997365i
$$473$$ 0.277435 + 2.63962i 0.0127565 + 0.121370i
$$474$$ −5.74843 + 0.518600i −0.264034 + 0.0238201i
$$475$$ −5.59428 11.3481i −0.256683 0.520684i
$$476$$ −100.646 −4.61312
$$477$$ 0.440438 + 1.50520i 0.0201663 + 0.0689184i
$$478$$ 15.7601 48.5045i 0.720848 2.21854i
$$479$$ −7.93651 + 1.68696i −0.362629 + 0.0770791i −0.385623 0.922657i $$-0.626013\pi$$
0.0229942 + 0.999736i $$0.492680\pi$$
$$480$$ 3.72914 24.3021i 0.170211 1.10923i
$$481$$ −1.51146 0.321272i −0.0689169 0.0146487i
$$482$$ 18.1939 31.5128i 0.828709 1.43537i
$$483$$ 27.7000 36.9669i 1.26039 1.68205i
$$484$$ 0.520034 4.94779i 0.0236379 0.224900i
$$485$$ 4.44353 1.28432i 0.201770 0.0583182i
$$486$$ −16.6310 + 30.9845i −0.754398 + 1.40548i
$$487$$ 12.1898 + 8.85644i 0.552374 + 0.401323i 0.828660 0.559752i $$-0.189104\pi$$
−0.276286 + 0.961076i $$0.589104\pi$$
$$488$$ −2.79300 + 26.5736i −0.126433 + 1.20293i
$$489$$ −18.6150 6.35337i −0.841799 0.287309i
$$490$$ −42.6243 + 35.9197i −1.92557 + 1.62269i
$$491$$ −3.50680 + 1.56133i −0.158260 + 0.0704618i −0.484338 0.874881i $$-0.660939\pi$$
0.326078 + 0.945343i $$0.394273\pi$$
$$492$$ 10.7507 + 1.29050i 0.484679 + 0.0581803i
$$493$$ 17.2610 + 29.8970i 0.777398 + 1.34649i
$$494$$ −4.20620 12.9453i −0.189246 0.582438i
$$495$$ −19.9068 + 5.12272i −0.894746 + 0.230249i
$$496$$ 0.286367 0.881348i 0.0128583 0.0395737i
$$497$$ −41.5169 + 8.82470i −1.86229 + 0.395842i
$$498$$ −21.0991 + 18.4416i −0.945473 + 0.826389i
$$499$$ −8.93474 + 15.4754i −0.399974 + 0.692775i −0.993722 0.111876i $$-0.964314\pi$$
0.593748 + 0.804651i $$0.297648\pi$$
$$500$$ −28.0684 20.1224i −1.25525 0.899899i
$$501$$ −31.9803 + 2.88513i −1.42878 + 0.128898i
$$502$$ 37.7962 + 16.8280i 1.68693 + 0.751069i
$$503$$ −12.3252 + 37.9329i −0.549552 + 1.69135i 0.160363 + 0.987058i $$0.448734\pi$$
−0.709915 + 0.704288i $$0.751266\pi$$
$$504$$ 4.18990 31.0302i 0.186633 1.38220i
$$505$$ 19.2481 + 28.4069i 0.856531 + 1.26409i
$$506$$ −29.0352 + 32.2469i −1.29077 + 1.43355i
$$507$$ −5.32280 + 11.4959i −0.236394 + 0.510550i
$$508$$ 17.7098 + 3.76433i 0.785745 + 0.167015i
$$509$$ 2.90742 1.29447i 0.128869 0.0573762i −0.341289 0.939958i $$-0.610864\pi$$
0.470158 + 0.882582i $$0.344197\pi$$
$$510$$ 17.6535 + 64.6364i 0.781709 + 2.86215i
$$511$$ −12.9683 5.77385i −0.573683 0.255420i
$$512$$ 5.79508 + 4.21037i 0.256109 + 0.186074i
$$513$$ −12.3129 4.61217i −0.543629 0.203632i
$$514$$ 41.2309 29.9560i 1.81862 1.32130i
$$515$$ 14.8655 + 14.2949i 0.655050 + 0.629907i
$$516$$ −0.0683421 + 4.63382i −0.00300859 + 0.203993i
$$517$$ −29.8483 6.34444i −1.31272 0.279028i
$$518$$ 3.10543 5.37876i 0.136445 0.236329i
$$519$$ 15.5004 + 1.86065i 0.680392 + 0.0816735i
$$520$$ −9.44166 9.07924i −0.414044 0.398151i
$$521$$ 5.21002 16.0348i 0.228255 0.702497i −0.769690 0.638418i $$-0.779589\pi$$
0.997945 0.0640786i $$-0.0204109\pi$$
$$522$$ −28.1842 + 11.5650i −1.23359 + 0.506185i
$$523$$ 4.47138 3.24865i 0.195520 0.142053i −0.485718 0.874115i $$-0.661442\pi$$
0.681238 + 0.732062i $$0.261442\pi$$
$$524$$ 9.90600 + 17.1577i 0.432746 + 0.749537i
$$525$$ 30.2851 + 20.8946i 1.32175 + 0.911914i
$$526$$ −2.57437 + 4.45894i −0.112248 + 0.194419i
$$527$$ 1.16791 + 11.1119i 0.0508750 + 0.484043i
$$528$$ 0.750500 3.29138i 0.0326613 0.143239i
$$529$$ −16.0470 + 3.41090i −0.697697 + 0.148300i
$$530$$ −1.61912 + 2.08142i −0.0703300 + 0.0904113i
$$531$$ 1.87048 3.02976i 0.0811720 0.131480i
$$532$$ 33.2086 1.43978
$$533$$ −3.22905 + 3.58623i −0.139866 + 0.155337i
$$534$$ −1.75343 + 0.978155i −0.0758784 + 0.0423289i
$$535$$ −19.8272 + 1.42854i −0.857205 + 0.0617613i
$$536$$ −0.620723 5.90579i −0.0268112 0.255091i
$$537$$ 0.480050 32.5490i 0.0207157 1.40459i
$$538$$ −0.579883 + 5.51722i −0.0250005 + 0.237864i
$$539$$ −27.3937 + 19.9027i −1.17993 + 0.857269i
$$540$$ −35.5768 + 4.73819i −1.53098 + 0.203899i
$$541$$ −3.34560 2.43072i −0.143838 0.104505i 0.513539 0.858066i $$-0.328334\pi$$
−0.657377 + 0.753562i $$0.728334\pi$$
$$542$$ 21.7152 24.1172i 0.932749 1.03592i
$$543$$ −2.17814 3.09286i −0.0934730 0.132727i
$$544$$ −47.6205 10.1220i −2.04171 0.433979i
$$545$$ 2.80696 + 1.74575i 0.120237 + 0.0747797i
$$546$$ 29.0228 + 26.9177i 1.24206 + 1.15197i
$$547$$ 41.5266 8.82676i 1.77555 0.377405i 0.800490 0.599346i $$-0.204573\pi$$
0.975060 + 0.221941i $$0.0712392\pi$$
$$548$$ 34.8771 25.3397i 1.48988 1.08246i
$$549$$ −32.1028 + 5.83989i −1.37011 + 0.249241i
$$550$$ −26.5701 22.1044i −1.13295 0.942533i
$$551$$ −5.69534 9.86462i −0.242630 0.420247i
$$552$$ −20.1113 + 17.5782i −0.855993 + 0.748180i
$$553$$ 4.19938 + 4.66389i 0.178576 + 0.198329i
$$554$$ 42.3363 + 47.0192i 1.79870 + 1.99765i
$$555$$ −2.42738 0.637897i −0.103037 0.0270772i
$$556$$ 24.4437 27.1475i 1.03664 1.15131i
$$557$$ −15.6043 −0.661177 −0.330588 0.943775i $$-0.607247\pi$$
−0.330588 + 0.943775i $$0.607247\pi$$
$$558$$ −9.85566 0.290777i −0.417224 0.0123096i
$$559$$ −1.67096 1.21402i −0.0706740 0.0513476i
$$560$$ −5.32938 + 2.84814i −0.225207 + 0.120356i
$$561$$ 7.87443 + 39.9332i 0.332459 + 1.68598i
$$562$$ −24.6586 + 10.9787i −1.04016 + 0.463110i
$$563$$ −38.2572 + 17.0332i −1.61235 + 0.717865i −0.997492 0.0707733i $$-0.977453\pi$$
−0.614858 + 0.788638i $$0.710787\pi$$
$$564$$ −50.4251 17.2103i −2.12328 0.724683i
$$565$$ 7.30235 3.90253i 0.307212 0.164181i
$$566$$ 56.7614 + 41.2396i 2.38586 + 1.73343i
$$567$$ 37.8051 5.73107i 1.58767 0.240682i
$$568$$ 24.5428 1.02979
$$569$$ 16.0904 17.8702i 0.674546 0.749159i −0.304564 0.952492i $$-0.598511\pi$$
0.979110 + 0.203333i $$0.0651774\pi$$
$$570$$ −5.82483 21.3270i −0.243975 0.893291i
$$571$$ 11.0384 + 12.2594i 0.461944 + 0.513041i 0.928440 0.371482i $$-0.121150\pi$$
−0.466496 + 0.884523i $$0.654484\pi$$
$$572$$ −15.1025 16.7730i −0.631467 0.701315i
$$573$$ −4.18929 21.2449i −0.175010 0.887520i
$$574$$ −9.69823 16.7978i −0.404796 0.701128i
$$575$$ −7.72176 30.4222i −0.322020 1.26869i
$$576$$ 13.1895 36.8572i 0.549562 1.53572i
$$577$$ −6.91645 + 5.02510i −0.287936 + 0.209198i −0.722371 0.691505i $$-0.756948\pi$$
0.434436 + 0.900703i $$0.356948\pi$$
$$578$$ 92.2645 19.6114i 3.83770 0.815728i
$$579$$ 5.69188 24.9622i 0.236546 1.03739i
$$580$$ −26.4031 16.4210i −1.09633 0.681846i
$$581$$ 29.8042 + 6.33508i 1.23649 + 0.262823i
$$582$$ 8.04975 0.726215i 0.333673 0.0301026i
$$583$$ −1.07187 + 1.19043i −0.0443924 + 0.0493027i
$$584$$ 6.64069 + 4.82474i 0.274794 + 0.199649i
$$585$$ 7.40311 14.1796i 0.306081 0.586253i
$$586$$ −35.5995 + 25.8646i −1.47060 + 1.06846i
$$587$$ 1.54336 14.6841i 0.0637014 0.606078i −0.915377 0.402597i $$-0.868108\pi$$
0.979079 0.203482i $$-0.0652257\pi$$
$$588$$ −51.6318 + 28.8029i −2.12926 + 1.18781i
$$589$$ −0.385356 3.66642i −0.0158783 0.151072i
$$590$$ 5.97150 0.430244i 0.245843 0.0177129i
$$591$$ 0.317210 21.5079i 0.0130483 0.884717i
$$592$$ 0.275809 0.306317i 0.0113357 0.0125895i
$$593$$ 39.0327 1.60288 0.801441 0.598074i $$-0.204067\pi$$
0.801441 + 0.598074i $$0.204067\pi$$
$$594$$ −35.8528 + 2.17093i −1.47106 + 0.0890743i
$$595$$ 44.7332 57.5058i 1.83388 2.35751i
$$596$$ 37.4757 7.96570i 1.53506 0.326288i
$$597$$ 11.4212 3.52563i 0.467438 0.144294i
$$598$$ −3.52963 33.5822i −0.144337 1.37328i
$$599$$ 2.16975 3.75811i 0.0886534 0.153552i −0.818289 0.574807i $$-0.805077\pi$$
0.906942 + 0.421255i $$0.138410\pi$$
$$600$$ −14.6172 15.4588i −0.596745 0.631105i
$$601$$ 7.63713 + 13.2279i 0.311525 + 0.539577i 0.978693 0.205331i $$-0.0658270\pi$$
−0.667168 + 0.744907i $$0.732494\pi$$
$$602$$ 6.71620 4.87960i 0.273732 0.198878i
$$603$$ 6.70886 2.75288i 0.273206 0.112106i
$$604$$ −12.6380 + 38.8958i −0.514233 + 1.58265i
$$605$$ 2.59586 + 2.49622i 0.105537 + 0.101486i
$$606$$ 23.5775 + 55.1299i 0.957771 + 2.23950i
$$607$$ −16.3162 + 28.2605i −0.662255 + 1.14706i 0.317766 + 0.948169i $$0.397067\pi$$
−0.980022 + 0.198891i $$0.936266\pi$$
$$608$$ 15.7126 + 3.33981i 0.637229 + 0.135447i
$$609$$ 28.4401 + 16.9840i 1.15245 + 0.688225i
$$610$$ −39.5467 38.0287i −1.60120 1.53974i
$$611$$ 19.2111 13.9577i 0.777199 0.564668i
$$612$$ 5.34107 + 70.8675i 0.215900 + 2.86465i
$$613$$ −13.4253 9.75406i −0.542243 0.393963i 0.282674 0.959216i $$-0.408778\pi$$
−0.824917 + 0.565253i $$0.808778\pi$$
$$614$$ −55.7140 24.8055i −2.24843 1.00107i
$$615$$ −5.51560 + 5.56900i −0.222410 + 0.224564i
$$616$$ 29.2171 13.0083i 1.17719 0.524119i
$$617$$ −36.6450 7.78913i −1.47527 0.313578i −0.601091 0.799181i $$-0.705267\pi$$
−0.874180 + 0.485602i $$0.838600\pi$$
$$618$$ 20.7499 + 29.4640i 0.834685 + 1.18522i
$$619$$ −10.6559 + 11.8346i −0.428296 + 0.475671i −0.918207 0.396102i $$-0.870363\pi$$
0.489910 + 0.871773i $$0.337029\pi$$
$$620$$ −5.64494 8.33095i −0.226706 0.334579i
$$621$$ −27.4993 17.5425i −1.10351 0.703957i
$$622$$ 14.6178 44.9889i 0.586119 1.80389i
$$623$$ 1.99443 + 0.887976i 0.0799050 + 0.0355760i
$$624$$ 1.51262 + 2.14785i 0.0605532 + 0.0859828i
$$625$$ 23.9725 7.09371i 0.958899 0.283749i
$$626$$ −31.0423 + 53.7669i −1.24070 + 2.14896i
$$627$$ −2.59820 13.1761i −0.103762 0.526204i
$$628$$ 29.0143 6.16718i 1.15780 0.246097i
$$629$$ −1.53573 + 4.72648i −0.0612334 + 0.188457i
$$630$$ 45.0084 + 45.9113i 1.79318 + 1.82915i
$$631$$ −3.82191 11.7626i −0.152148 0.468263i 0.845713 0.533638i $$-0.179176\pi$$
−0.997861 + 0.0653753i $$0.979176\pi$$
$$632$$ −1.81446 3.14274i −0.0721754 0.125012i
$$633$$ 15.3905 + 35.9867i 0.611717 + 1.43034i
$$634$$ 12.9067 5.74642i 0.512589 0.228219i
$$635$$ −10.0221 + 8.44567i −0.397715 + 0.335156i
$$636$$ −2.10594 + 1.84070i −0.0835060 + 0.0729883i
$$637$$ 2.75428 26.2052i 0.109128 1.03829i
$$638$$ −25.1740 18.2900i −0.996649 0.724108i
$$639$$ 8.41690 + 28.7648i 0.332967 + 1.13792i
$$640$$ 35.9596 10.3935i 1.42143 0.410839i
$$641$$ −2.44347 + 23.2481i −0.0965114 + 0.918244i 0.833946 + 0.551845i $$0.186076\pi$$
−0.930458 + 0.366399i $$0.880591\pi$$
$$642$$ −34.4883 4.13993i −1.36114 0.163390i
$$643$$ −1.29303 + 2.23959i −0.0509921 + 0.0883208i −0.890395 0.455189i $$-0.849572\pi$$
0.839403 + 0.543510i $$0.182905\pi$$
$$644$$ 80.5829 + 17.1284i 3.17541 + 0.674955i
$$645$$ −2.61723 2.09859i −0.103053 0.0826321i
$$646$$ −42.8203 + 9.10173i −1.68474 + 0.358103i
$$647$$ −5.47796 + 16.8594i −0.215361 + 0.662812i 0.783767 + 0.621055i $$0.213296\pi$$
−0.999128 + 0.0417574i $$0.986704\pi$$
$$648$$ −22.0715 1.30351i −0.867050 0.0512066i
$$649$$ 3.63686 0.142759
$$650$$ 26.6181 3.85566i 1.04405 0.151232i
$$651$$ 6.17312 + 8.76555i 0.241944 + 0.343549i
$$652$$ −3.66676 34.8869i −0.143601 1.36628i
$$653$$ −2.36951 2.63160i −0.0927259 0.102983i 0.694996 0.719014i $$-0.255406\pi$$
−0.787722 + 0.616031i $$0.788740\pi$$
$$654$$ 4.23502 + 3.92785i 0.165603 + 0.153591i
$$655$$ −14.2061 1.96595i −0.555079 0.0768161i
$$656$$ −0.397787 1.22426i −0.0155310 0.0477994i
$$657$$ −3.37731 + 9.43768i −0.131761 + 0.368199i
$$658$$ 29.4941 + 90.7736i 1.14980 + 3.53872i
$$659$$ −1.37129 + 13.0470i −0.0534179 + 0.508237i 0.934799 + 0.355177i $$0.115579\pi$$
−0.988217 + 0.153060i $$0.951087\pi$$
$$660$$ −23.2074 28.3781i −0.903347 1.10462i
$$661$$ −4.11615 39.1625i −0.160100 1.52325i −0.719585 0.694405i $$-0.755668\pi$$
0.559485 0.828840i $$-0.310999\pi$$
$$662$$ 4.93365 2.19660i 0.191752 0.0853734i
$$663$$ −27.1937 16.2396i −1.05611 0.630695i
$$664$$ −16.0956 7.16622i −0.624630 0.278103i
$$665$$ −14.7599 + 18.9743i −0.572364 + 0.735790i
$$666$$ −3.95212 1.90117i −0.153141 0.0736689i
$$667$$ −8.73212 26.8747i −0.338109 1.04059i
$$668$$ −28.6333 49.5943i −1.10785 1.91886i
$$669$$ 9.81346 + 1.17800i 0.379410 + 0.0455440i
$$670$$ 10.3541 + 6.43959i 0.400013 + 0.248783i
$$671$$ −22.3009 24.7676i −0.860915 0.956143i
$$672$$ −44.6364 + 13.7789i −1.72189 + 0.531533i
$$673$$ −39.4094 17.5462i −1.51912 0.676356i −0.533573 0.845754i $$-0.679151\pi$$
−0.985548 + 0.169398i $$0.945818\pi$$
$$674$$ 15.8668 0.611166
$$675$$ 13.1052 22.4333i 0.504420 0.863458i
$$676$$ −22.5932 −0.868971
$$677$$ 27.8062 + 12.3801i 1.06868 + 0.475807i 0.864244 0.503072i $$-0.167797\pi$$
0.204437 + 0.978880i $$0.434464\pi$$
$$678$$ 13.8243 4.26745i 0.530920 0.163891i
$$679$$ −5.88055 6.53102i −0.225675 0.250637i
$$680$$ −32.2144 + 27.1473i −1.23537 + 1.04105i
$$681$$ −22.2747 2.67383i −0.853569 0.102461i
$$682$$ −5.03551 8.72175i −0.192820 0.333973i
$$683$$ 15.4441 + 47.5321i 0.590952 + 1.81876i 0.573924 + 0.818909i $$0.305420\pi$$
0.0170281 + 0.999855i $$0.494580\pi$$
$$684$$ −1.76231 23.3830i −0.0673835 0.894072i
$$685$$ −1.02323 + 31.1901i −0.0390956 + 1.19171i
$$686$$ 35.4628 + 15.7890i 1.35397 + 0.602828i
$$687$$ 11.3714 + 6.79079i 0.433844 + 0.259085i
$$688$$ 0.503317 0.224091i 0.0191888 0.00854340i
$$689$$ −0.130301 1.23973i −0.00496406 0.0472299i
$$690$$ −3.13423 54.7558i −0.119318 2.08452i
$$691$$ 1.95655 18.6153i 0.0744305 0.708159i −0.892140 0.451759i $$-0.850797\pi$$
0.966571 0.256400i $$-0.0825365\pi$$
$$692$$ 8.60379 + 26.4797i 0.327067 + 1.00661i
$$693$$ 25.2660 + 29.7820i 0.959775 + 1.13132i
$$694$$ −8.10753 24.9524i −0.307758 0.947181i
$$695$$ 4.64690 + 26.0322i 0.176267 + 0.987459i
$$696$$ −14.0438 13.0252i −0.532329 0.493719i
$$697$$ 10.3852 + 11.5339i 0.393366 + 0.436877i
$$698$$ −4.47302 42.5579i −0.169306 1.61084i
$$699$$ 0.312945 + 0.444368i 0.0118367 + 0.0168076i
$$700$$ −11.1216 + 64.6697i −0.420355 + 2.44429i
$$701$$ 37.2362 1.40639 0.703195 0.710997i $$-0.251756\pi$$
0.703195 + 0.710997i $$0.251756\pi$$
$$702$$ 17.4133 21.8641i 0.657221 0.825208i
$$703$$ 0.506719 1.55952i 0.0191113 0.0588184i
$$704$$ 39.1103 8.31315i 1.47402 0.313314i
$$705$$ 32.2453 21.1619i 1.21443 0.797003i
$$706$$ 40.5523 + 8.61967i 1.52621 + 0.324405i
$$707$$ 32.5985 56.4622i 1.22599 2.12348i
$$708$$ 6.30491 + 0.756834i 0.236953 + 0.0284436i
$$709$$ 5.22998 49.7599i 0.196416 1.86877i −0.242373 0.970183i $$-0.577926\pi$$
0.438789 0.898590i $$-0.355407\pi$$
$$710$$ −30.9418 + 39.7766i −1.16123 + 1.49279i
$$711$$ 3.06111 3.20439i 0.114800 0.120174i
$$712$$ −1.02129 0.742010i −0.0382744 0.0278080i
$$713$$ 0.955983 9.09557i 0.0358019 0.340632i
$$714$$ 95.8544 83.7814i 3.58726 3.13544i
$$715$$ 16.2960 1.17412i 0.609435 0.0439095i
$$716$$ 53.0362 23.6132i 1.98206 0.882468i
$$717$$ 15.3977 + 36.0035i 0.575037 + 1.34458i
$$718$$ 13.4413 + 23.2809i 0.501623 + 0.868837i
$$719$$ 12.5051 + 38.4868i 0.466362 + 1.43532i 0.857261 + 0.514882i $$0.172164\pi$$
−0.390899 + 0.920434i $$0.627836\pi$$
$$720$$ 2.28826 + 3.60140i 0.0852785 + 0.134216i
$$721$$ 12.1088 37.2669i 0.450954 1.38789i
$$722$$ −27.7964 + 5.90831i −1.03448 + 0.219885i
$$723$$ 5.40507 + 27.4105i 0.201017 + 1.01941i
$$724$$ 3.37325 5.84265i 0.125366 0.217140i
$$725$$ 21.1175 7.78732i 0.784285 0.289214i
$$726$$ 3.62344 + 5.14512i 0.134478 + 0.190953i
$$727$$ 19.5293 + 8.69500i 0.724301 + 0.322480i 0.735562 0.677457i $$-0.236918\pi$$
−0.0112613 + 0.999937i $$0.503585\pi$$
$$728$$ −7.69076 + 23.6697i −0.285039 + 0.877259i
$$729$$ −6.04162 26.3154i −0.223764 0.974643i
$$730$$ −16.1916 + 4.67989i −0.599277 + 0.173211i
$$731$$ −4.44484 + 4.93650i −0.164398 + 0.182583i
$$732$$ −33.5069 47.5784i −1.23845 1.75855i
$$733$$ 15.0890 + 3.20726i 0.557324 + 0.118463i 0.477958 0.878383i $$-0.341377\pi$$
0.0793660 + 0.996846i $$0.474710\pi$$
$$734$$ −53.5083 + 23.8234i −1.97503 + 0.879339i
$$735$$ 6.49127 42.3024i 0.239434 1.56035i
$$736$$ 36.4050 + 16.2085i 1.34190 + 0.597454i
$$737$$ 5.99233 + 4.35368i 0.220730 + 0.160370i
$$738$$ −11.3131 + 7.72019i −0.416441 + 0.284184i
$$739$$ −25.1767 + 18.2919i −0.926139 + 0.672879i −0.945044 0.326942i $$-0.893982\pi$$
0.0189056 + 0.999821i $$0.493982\pi$$
$$740$$ −0.786570 4.40642i −0.0289149 0.161983i
$$741$$ 8.97266 + 5.35832i 0.329619 + 0.196843i
$$742$$ 4.90089 + 1.04172i 0.179917 + 0.0382426i
$$743$$ −14.4868 + 25.0919i −0.531470 + 0.920533i 0.467856 + 0.883805i $$0.345027\pi$$
−0.999325 + 0.0367277i $$0.988307\pi$$
$$744$$ −2.43769 5.69992i −0.0893702 0.208969i
$$745$$ −12.1051 + 24.9527i −0.443496 + 0.914198i
$$746$$ 26.3706 81.1605i 0.965497 2.97150i
$$747$$ 2.87904 21.3221i 0.105339 0.780134i
$$748$$ −58.7264 + 42.6672i −2.14725 + 1.56007i
$$749$$ 18.8848 + 32.7095i 0.690036 + 1.19518i
$$750$$ 43.4825 4.20074i 1.58776 0.153389i
$$751$$ −10.6074 + 18.3726i −0.387070 + 0.670425i −0.992054 0.125813i $$-0.959846\pi$$
0.604984 + 0.796238i $$0.293179\pi$$
$$752$$ 0.662115 + 6.29960i 0.0241448 + 0.229723i
$$753$$ −30.3528 + 9.36965i −1.10612 + 0.341449i
$$754$$ 23.6853 5.03448i 0.862569 0.183345i
$$755$$ −16.6066 24.5085i −0.604377 0.891957i
$$756$$ 37.6038 + 56.8884i 1.36764 + 2.06901i
$$757$$ 35.8369 1.30251 0.651257 0.758857i $$-0.274242\pi$$
0.651257 + 0.758857i $$0.274242\pi$$
$$758$$ 41.5284 46.1220i 1.50838 1.67523i
$$759$$ 0.491316 33.3128i 0.0178336 1.20918i
$$760$$ 10.6293 8.95735i 0.385564 0.324917i
$$761$$ 4.23275 + 40.2719i 0.153437 + 1.45986i 0.752203 + 0.658931i $$0.228991\pi$$
−0.598766 + 0.800924i $$0.704342\pi$$
$$762$$ −20.0002 + 11.1571i −0.724530 + 0.404180i
$$763$$ 0.656501 6.24619i 0.0237669 0.226127i
$$764$$ 31.2431 22.6995i 1.13034 0.821237i
$$765$$ −42.8651 28.4460i −1.54979 1.02847i
$$766$$ −53.7686 39.0652i −1.94274 1.41148i
$$767$$ −1.89373 + 2.10320i −0.0683785 + 0.0759421i
$$768$$ 20.1240 1.81550i 0.726162 0.0655113i
$$769$$ −20.3031 4.31556i −0.732150 0.155623i −0.173273 0.984874i $$-0.555434\pi$$
−0.558877 + 0.829251i $$0.688768\pi$$
$$770$$ −15.7522 + 63.7521i −0.567671 + 2.29747i
$$771$$ −8.69913 + 38.1508i −0.313292