# Properties

 Label 225.2.q.a.196.20 Level $225$ Weight $2$ Character 225.196 Analytic conductor $1.797$ Analytic rank $0$ Dimension $224$ Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [225,2,Mod(16,225)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(225, base_ring=CyclotomicField(30))

chi = DirichletCharacter(H, H._module([20, 6]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("225.16");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$225 = 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 225.q (of order $$15$$, degree $$8$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.79663404548$$ Analytic rank: $$0$$ Dimension: $$224$$ Relative dimension: $$28$$ over $$\Q(\zeta_{15})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

## Embedding invariants

 Embedding label 196.20 Character $$\chi$$ $$=$$ 225.196 Dual form 225.2.q.a.31.20

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.797750 + 0.885991i) q^{2} +(-1.56929 - 0.733023i) q^{3} +(0.0604816 - 0.575444i) q^{4} +(1.30610 + 1.81497i) q^{5} +(-0.602450 - 1.97515i) q^{6} +(0.157578 - 0.272934i) q^{7} +(2.48714 - 1.80701i) q^{8} +(1.92535 + 2.30066i) q^{9} +O(q^{10})$$ $$q+(0.797750 + 0.885991i) q^{2} +(-1.56929 - 0.733023i) q^{3} +(0.0604816 - 0.575444i) q^{4} +(1.30610 + 1.81497i) q^{5} +(-0.602450 - 1.97515i) q^{6} +(0.157578 - 0.272934i) q^{7} +(2.48714 - 1.80701i) q^{8} +(1.92535 + 2.30066i) q^{9} +(-0.566103 + 2.60508i) q^{10} +(1.93450 + 2.14848i) q^{11} +(-0.516727 + 0.858705i) q^{12} +(4.36810 - 4.85127i) q^{13} +(0.367525 - 0.0781199i) q^{14} +(-0.719240 - 3.80561i) q^{15} +(2.45317 + 0.521438i) q^{16} +(0.794350 - 0.577129i) q^{17} +(-0.502410 + 3.54119i) q^{18} +(-5.88399 + 4.27497i) q^{19} +(1.12341 - 0.641816i) q^{20} +(-0.447354 + 0.312804i) q^{21} +(-0.360286 + 3.42790i) q^{22} +(1.28104 - 0.272294i) q^{23} +(-5.22763 + 1.01260i) q^{24} +(-1.58820 + 4.74106i) q^{25} +7.78284 q^{26} +(-1.33501 - 5.02173i) q^{27} +(-0.147528 - 0.107185i) q^{28} +(-3.94048 + 1.75442i) q^{29} +(2.79797 - 3.67317i) q^{30} +(-7.91741 - 3.52506i) q^{31} +(-1.57924 - 2.73533i) q^{32} +(-1.46091 - 4.78962i) q^{33} +(1.14502 + 0.243382i) q^{34} +(0.701179 - 0.0704794i) q^{35} +(1.44035 - 0.968786i) q^{36} +(0.00738727 + 0.0227357i) q^{37} +(-8.48155 - 1.80281i) q^{38} +(-10.4109 + 4.41114i) q^{39} +(6.52812 + 2.15393i) q^{40} +(3.06561 - 3.40470i) q^{41} +(-0.634018 - 0.146812i) q^{42} +(-1.34599 + 2.33132i) q^{43} +(1.35333 - 0.983252i) q^{44} +(-1.66091 + 6.49934i) q^{45} +(1.26320 + 0.917772i) q^{46} +(-4.76261 + 2.12045i) q^{47} +(-3.46752 - 2.61652i) q^{48} +(3.45034 + 5.97616i) q^{49} +(-5.46752 + 2.37504i) q^{50} +(-1.66962 + 0.323407i) q^{51} +(-2.52745 - 2.80701i) q^{52} +(-3.44104 - 2.50006i) q^{53} +(3.38421 - 5.18889i) q^{54} +(-1.37277 + 6.31717i) q^{55} +(-0.101275 - 0.963571i) q^{56} +(12.3674 - 2.39557i) q^{57} +(-4.69792 - 2.09165i) q^{58} +(3.46632 - 3.84974i) q^{59} +(-2.23342 + 0.183713i) q^{60} +(-4.95936 - 5.50792i) q^{61} +(-3.19295 - 9.82688i) q^{62} +(0.931321 - 0.162961i) q^{63} +(2.71365 - 8.35176i) q^{64} +(14.5101 + 1.59172i) q^{65} +(3.07812 - 5.11527i) q^{66} +(-2.27694 - 1.01376i) q^{67} +(-0.284062 - 0.492010i) q^{68} +(-2.20993 - 0.511726i) q^{69} +(0.621810 + 0.565014i) q^{70} +(9.63629 + 7.00118i) q^{71} +(8.94593 + 2.24291i) q^{72} +(-0.283594 + 0.872814i) q^{73} +(-0.0142504 + 0.0246825i) q^{74} +(5.96766 - 6.27591i) q^{75} +(2.10413 + 3.64447i) q^{76} +(0.891228 - 0.189436i) q^{77} +(-12.2135 - 5.70500i) q^{78} +(-10.3980 + 4.62948i) q^{79} +(2.25770 + 5.13348i) q^{80} +(-1.58603 + 8.85915i) q^{81} +5.46212 q^{82} +(1.03926 + 9.88793i) q^{83} +(0.152945 + 0.276346i) q^{84} +(2.08497 + 0.687930i) q^{85} +(-3.13929 + 0.667278i) q^{86} +(7.46979 + 0.135276i) q^{87} +(8.69369 + 1.84790i) q^{88} +(3.78718 - 11.6557i) q^{89} +(-7.08335 + 3.71330i) q^{90} +(-0.635757 - 1.95666i) q^{91} +(-0.0792106 - 0.753639i) q^{92} +(9.84078 + 11.3355i) q^{93} +(-5.67808 - 2.52804i) q^{94} +(-15.4440 - 5.09571i) q^{95} +(0.473233 + 5.45015i) q^{96} +(-6.75362 + 3.00691i) q^{97} +(-2.54232 + 7.82445i) q^{98} +(-1.21831 + 8.58719i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9}+O(q^{10})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9} - 20 q^{10} - 11 q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - 48 q^{15} + 23 q^{16} - 24 q^{17} - 12 q^{19} + q^{20} + 15 q^{21} - 11 q^{22} + q^{23} - 30 q^{24} - 16 q^{25} - 136 q^{26} + 7 q^{27} + 4 q^{28} - 15 q^{29} - 24 q^{30} + 3 q^{31} + 12 q^{32} - 5 q^{33} + q^{34} + 14 q^{35} + 38 q^{36} - 24 q^{37} + 55 q^{38} + 20 q^{39} + q^{40} - 19 q^{41} - 38 q^{42} - 8 q^{43} + 4 q^{44} - 38 q^{45} - 20 q^{46} - 10 q^{47} - 25 q^{48} - 72 q^{49} - 3 q^{50} - 26 q^{51} - 25 q^{52} - 12 q^{53} + 53 q^{54} - 20 q^{55} - 60 q^{56} + 38 q^{57} - 23 q^{58} - 30 q^{59} - 33 q^{60} - 3 q^{61} - 44 q^{62} + 46 q^{63} - 44 q^{64} + 51 q^{65} - 134 q^{66} - 12 q^{67} - 156 q^{68} + 4 q^{69} - 16 q^{70} + 42 q^{71} + 74 q^{72} - 12 q^{73} + 90 q^{74} + 67 q^{75} - 8 q^{76} + 31 q^{77} - 92 q^{78} - 15 q^{79} + 298 q^{80} - 104 q^{81} + 8 q^{82} + 59 q^{83} + 115 q^{84} - 11 q^{85} + 9 q^{86} - 59 q^{87} - 23 q^{88} + 106 q^{89} + 107 q^{90} + 30 q^{91} + 11 q^{92} + 32 q^{93} + 25 q^{94} + 7 q^{95} + 35 q^{96} - 21 q^{97} + 146 q^{98} - 20 q^{99}+O(q^{100})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 - 20 * q^10 - 11 * q^11 - 4 * q^12 - 3 * q^13 + q^14 - 48 * q^15 + 23 * q^16 - 24 * q^17 - 12 * q^19 + q^20 + 15 * q^21 - 11 * q^22 + q^23 - 30 * q^24 - 16 * q^25 - 136 * q^26 + 7 * q^27 + 4 * q^28 - 15 * q^29 - 24 * q^30 + 3 * q^31 + 12 * q^32 - 5 * q^33 + q^34 + 14 * q^35 + 38 * q^36 - 24 * q^37 + 55 * q^38 + 20 * q^39 + q^40 - 19 * q^41 - 38 * q^42 - 8 * q^43 + 4 * q^44 - 38 * q^45 - 20 * q^46 - 10 * q^47 - 25 * q^48 - 72 * q^49 - 3 * q^50 - 26 * q^51 - 25 * q^52 - 12 * q^53 + 53 * q^54 - 20 * q^55 - 60 * q^56 + 38 * q^57 - 23 * q^58 - 30 * q^59 - 33 * q^60 - 3 * q^61 - 44 * q^62 + 46 * q^63 - 44 * q^64 + 51 * q^65 - 134 * q^66 - 12 * q^67 - 156 * q^68 + 4 * q^69 - 16 * q^70 + 42 * q^71 + 74 * q^72 - 12 * q^73 + 90 * q^74 + 67 * q^75 - 8 * q^76 + 31 * q^77 - 92 * q^78 - 15 * q^79 + 298 * q^80 - 104 * q^81 + 8 * q^82 + 59 * q^83 + 115 * q^84 - 11 * q^85 + 9 * q^86 - 59 * q^87 - 23 * q^88 + 106 * q^89 + 107 * q^90 + 30 * q^91 + 11 * q^92 + 32 * q^93 + 25 * q^94 + 7 * q^95 + 35 * q^96 - 21 * q^97 + 146 * q^98 - 20 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/225\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{3}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.797750 + 0.885991i 0.564095 + 0.626491i 0.955948 0.293537i $$-0.0948325\pi$$
−0.391853 + 0.920028i $$0.628166\pi$$
$$3$$ −1.56929 0.733023i −0.906031 0.423211i
$$4$$ 0.0604816 0.575444i 0.0302408 0.287722i
$$5$$ 1.30610 + 1.81497i 0.584106 + 0.811678i
$$6$$ −0.602450 1.97515i −0.245949 0.806351i
$$7$$ 0.157578 0.272934i 0.0595591 0.103159i −0.834708 0.550692i $$-0.814364\pi$$
0.894268 + 0.447533i $$0.147697\pi$$
$$8$$ 2.48714 1.80701i 0.879336 0.638875i
$$9$$ 1.92535 + 2.30066i 0.641784 + 0.766885i
$$10$$ −0.566103 + 2.60508i −0.179017 + 0.823800i
$$11$$ 1.93450 + 2.14848i 0.583273 + 0.647790i 0.960483 0.278337i $$-0.0897833\pi$$
−0.377210 + 0.926128i $$0.623117\pi$$
$$12$$ −0.516727 + 0.858705i −0.149166 + 0.247887i
$$13$$ 4.36810 4.85127i 1.21149 1.34550i 0.290039 0.957015i $$-0.406332\pi$$
0.921455 0.388486i $$-0.127002\pi$$
$$14$$ 0.367525 0.0781199i 0.0982253 0.0208784i
$$15$$ −0.719240 3.80561i −0.185707 0.982605i
$$16$$ 2.45317 + 0.521438i 0.613293 + 0.130359i
$$17$$ 0.794350 0.577129i 0.192658 0.139974i −0.487275 0.873249i $$-0.662009\pi$$
0.679933 + 0.733274i $$0.262009\pi$$
$$18$$ −0.502410 + 3.54119i −0.118419 + 0.834668i
$$19$$ −5.88399 + 4.27497i −1.34988 + 0.980746i −0.350863 + 0.936427i $$0.614112\pi$$
−0.999017 + 0.0443190i $$0.985888\pi$$
$$20$$ 1.12341 0.641816i 0.251201 0.143514i
$$21$$ −0.447354 + 0.312804i −0.0976206 + 0.0682595i
$$22$$ −0.360286 + 3.42790i −0.0768133 + 0.730830i
$$23$$ 1.28104 0.272294i 0.267116 0.0567773i −0.0724063 0.997375i $$-0.523068\pi$$
0.339523 + 0.940598i $$0.389734\pi$$
$$24$$ −5.22763 + 1.01260i −1.06709 + 0.206696i
$$25$$ −1.58820 + 4.74106i −0.317641 + 0.948211i
$$26$$ 7.78284 1.52634
$$27$$ −1.33501 5.02173i −0.256922 0.966432i
$$28$$ −0.147528 0.107185i −0.0278801 0.0202561i
$$29$$ −3.94048 + 1.75442i −0.731729 + 0.325787i −0.738558 0.674190i $$-0.764493\pi$$
0.00682892 + 0.999977i $$0.497826\pi$$
$$30$$ 2.79797 3.67317i 0.510837 0.670626i
$$31$$ −7.91741 3.52506i −1.42201 0.633120i −0.455614 0.890178i $$-0.650580\pi$$
−0.966396 + 0.257058i $$0.917247\pi$$
$$32$$ −1.57924 2.73533i −0.279173 0.483542i
$$33$$ −1.46091 4.78962i −0.254311 0.833766i
$$34$$ 1.14502 + 0.243382i 0.196370 + 0.0417397i
$$35$$ 0.701179 0.0704794i 0.118521 0.0119132i
$$36$$ 1.44035 0.968786i 0.240058 0.161464i
$$37$$ 0.00738727 + 0.0227357i 0.00121446 + 0.00373772i 0.951662 0.307148i $$-0.0993745\pi$$
−0.950447 + 0.310885i $$0.899375\pi$$
$$38$$ −8.48155 1.80281i −1.37589 0.292454i
$$39$$ −10.4109 + 4.41114i −1.66708 + 0.706347i
$$40$$ 6.52812 + 2.15393i 1.03219 + 0.340567i
$$41$$ 3.06561 3.40470i 0.478767 0.531725i −0.454577 0.890707i $$-0.650210\pi$$
0.933344 + 0.358983i $$0.116876\pi$$
$$42$$ −0.634018 0.146812i −0.0978311 0.0226535i
$$43$$ −1.34599 + 2.33132i −0.205261 + 0.355523i −0.950216 0.311592i $$-0.899138\pi$$
0.744955 + 0.667115i $$0.232471\pi$$
$$44$$ 1.35333 0.983252i 0.204022 0.148231i
$$45$$ −1.66091 + 6.49934i −0.247593 + 0.968864i
$$46$$ 1.26320 + 0.917772i 0.186249 + 0.135318i
$$47$$ −4.76261 + 2.12045i −0.694698 + 0.309300i −0.723538 0.690284i $$-0.757485\pi$$
0.0288398 + 0.999584i $$0.490819\pi$$
$$48$$ −3.46752 2.61652i −0.500493 0.377662i
$$49$$ 3.45034 + 5.97616i 0.492905 + 0.853737i
$$50$$ −5.46752 + 2.37504i −0.773225 + 0.335882i
$$51$$ −1.66962 + 0.323407i −0.233793 + 0.0452860i
$$52$$ −2.52745 2.80701i −0.350494 0.389263i
$$53$$ −3.44104 2.50006i −0.472663 0.343410i 0.325815 0.945433i $$-0.394361\pi$$
−0.798478 + 0.602024i $$0.794361\pi$$
$$54$$ 3.38421 5.18889i 0.460532 0.706118i
$$55$$ −1.37277 + 6.31717i −0.185104 + 0.851808i
$$56$$ −0.101275 0.963571i −0.0135335 0.128763i
$$57$$ 12.3674 2.39557i 1.63810 0.317301i
$$58$$ −4.69792 2.09165i −0.616867 0.274647i
$$59$$ 3.46632 3.84974i 0.451276 0.501193i −0.473980 0.880536i $$-0.657183\pi$$
0.925256 + 0.379342i $$0.123850\pi$$
$$60$$ −2.23342 + 0.183713i −0.288333 + 0.0237172i
$$61$$ −4.95936 5.50792i −0.634980 0.705217i 0.336674 0.941621i $$-0.390698\pi$$
−0.971655 + 0.236404i $$0.924031\pi$$
$$62$$ −3.19295 9.82688i −0.405505 1.24801i
$$63$$ 0.931321 0.162961i 0.117335 0.0205311i
$$64$$ 2.71365 8.35176i 0.339207 1.04397i
$$65$$ 14.5101 + 1.59172i 1.79975 + 0.197428i
$$66$$ 3.07812 5.11527i 0.378891 0.629646i
$$67$$ −2.27694 1.01376i −0.278173 0.123851i 0.262908 0.964821i $$-0.415318\pi$$
−0.541081 + 0.840970i $$0.681985\pi$$
$$68$$ −0.284062 0.492010i −0.0344476 0.0596649i
$$69$$ −2.20993 0.511726i −0.266044 0.0616046i
$$70$$ 0.621810 + 0.565014i 0.0743205 + 0.0675321i
$$71$$ 9.63629 + 7.00118i 1.14362 + 0.830887i 0.987619 0.156870i $$-0.0501405\pi$$
0.155999 + 0.987757i $$0.450140\pi$$
$$72$$ 8.94593 + 2.24291i 1.05429 + 0.264330i
$$73$$ −0.283594 + 0.872814i −0.0331922 + 0.102155i −0.966280 0.257493i $$-0.917103\pi$$
0.933088 + 0.359649i $$0.117103\pi$$
$$74$$ −0.0142504 + 0.0246825i −0.00165658 + 0.00286928i
$$75$$ 5.96766 6.27591i 0.689086 0.724679i
$$76$$ 2.10413 + 3.64447i 0.241361 + 0.418049i
$$77$$ 0.891228 0.189436i 0.101565 0.0215883i
$$78$$ −12.2135 5.70500i −1.38291 0.645964i
$$79$$ −10.3980 + 4.62948i −1.16986 + 0.520857i −0.897361 0.441298i $$-0.854518\pi$$
−0.272503 + 0.962155i $$0.587851\pi$$
$$80$$ 2.25770 + 5.13348i 0.252418 + 0.573940i
$$81$$ −1.58603 + 8.85915i −0.176225 + 0.984350i
$$82$$ 5.46212 0.603191
$$83$$ 1.03926 + 9.88793i 0.114074 + 1.08534i 0.890453 + 0.455075i $$0.150388\pi$$
−0.776379 + 0.630266i $$0.782946\pi$$
$$84$$ 0.152945 + 0.276346i 0.0166876 + 0.0301518i
$$85$$ 2.08497 + 0.687930i 0.226147 + 0.0746165i
$$86$$ −3.13929 + 0.667278i −0.338519 + 0.0719544i
$$87$$ 7.46979 + 0.135276i 0.800846 + 0.0145031i
$$88$$ 8.69369 + 1.84790i 0.926750 + 0.196987i
$$89$$ 3.78718 11.6557i 0.401440 1.23551i −0.522391 0.852706i $$-0.674960\pi$$
0.923831 0.382800i $$-0.125040\pi$$
$$90$$ −7.08335 + 3.71330i −0.746650 + 0.391416i
$$91$$ −0.635757 1.95666i −0.0666455 0.205114i
$$92$$ −0.0792106 0.753639i −0.00825828 0.0785723i
$$93$$ 9.84078 + 11.3355i 1.02044 + 1.17544i
$$94$$ −5.67808 2.52804i −0.585649 0.260748i
$$95$$ −15.4440 5.09571i −1.58452 0.522809i
$$96$$ 0.473233 + 5.45015i 0.0482991 + 0.556254i
$$97$$ −6.75362 + 3.00691i −0.685726 + 0.305305i −0.719867 0.694112i $$-0.755797\pi$$
0.0341407 + 0.999417i $$0.489131\pi$$
$$98$$ −2.54232 + 7.82445i −0.256813 + 0.790389i
$$99$$ −1.21831 + 8.58719i −0.122445 + 0.863045i
$$100$$ 2.63216 + 1.20067i 0.263216 + 0.120067i
$$101$$ −5.77262 + 9.99848i −0.574397 + 0.994885i 0.421709 + 0.906731i $$0.361430\pi$$
−0.996107 + 0.0881544i $$0.971903\pi$$
$$102$$ −1.61847 1.22127i −0.160253 0.120923i
$$103$$ 1.71092 16.2783i 0.168582 1.60395i −0.503851 0.863790i $$-0.668084\pi$$
0.672433 0.740158i $$-0.265249\pi$$
$$104$$ 2.09778 19.9590i 0.205704 1.95714i
$$105$$ −1.15202 0.403378i −0.112425 0.0393657i
$$106$$ −0.530057 5.04315i −0.0514837 0.489834i
$$107$$ −10.1611 −0.982314 −0.491157 0.871071i $$-0.663426\pi$$
−0.491157 + 0.871071i $$0.663426\pi$$
$$108$$ −2.97047 + 0.464500i −0.285833 + 0.0446965i
$$109$$ 3.42411 + 10.5383i 0.327970 + 1.00939i 0.970082 + 0.242777i $$0.0780584\pi$$
−0.642112 + 0.766611i $$0.721942\pi$$
$$110$$ −6.69209 + 3.82327i −0.638065 + 0.364534i
$$111$$ 0.00507301 0.0410940i 0.000481508 0.00390047i
$$112$$ 0.528885 0.587387i 0.0499750 0.0555028i
$$113$$ −9.81486 + 10.9005i −0.923305 + 1.02543i 0.0762934 + 0.997085i $$0.475691\pi$$
−0.999598 + 0.0283484i $$0.990975\pi$$
$$114$$ 11.9885 + 9.04630i 1.12283 + 0.847264i
$$115$$ 2.16738 + 1.96941i 0.202109 + 0.183648i
$$116$$ 0.771242 + 2.37364i 0.0716080 + 0.220387i
$$117$$ 19.5712 + 0.709090i 1.80936 + 0.0655554i
$$118$$ 6.17609 0.568555
$$119$$ −0.0323456 0.307748i −0.00296512 0.0282112i
$$120$$ −8.66564 8.16541i −0.791061 0.745397i
$$121$$ 0.276140 2.62729i 0.0251036 0.238845i
$$122$$ 0.923645 8.78789i 0.0836229 0.795618i
$$123$$ −7.30655 + 3.09581i −0.658810 + 0.279140i
$$124$$ −2.50733 + 4.34283i −0.225165 + 0.389998i
$$125$$ −10.6792 + 3.30976i −0.955178 + 0.296034i
$$126$$ 0.887343 + 0.695141i 0.0790508 + 0.0619281i
$$127$$ 4.75644 14.6388i 0.422066 1.29899i −0.483710 0.875228i $$-0.660711\pi$$
0.905776 0.423757i $$-0.139289\pi$$
$$128$$ 3.79357 1.68900i 0.335307 0.149288i
$$129$$ 3.82116 2.67188i 0.336435 0.235246i
$$130$$ 10.1652 + 14.1256i 0.891544 + 1.23890i
$$131$$ 3.04960 + 1.35777i 0.266445 + 0.118629i 0.535611 0.844465i $$-0.320081\pi$$
−0.269166 + 0.963094i $$0.586748\pi$$
$$132$$ −2.84452 + 0.550987i −0.247583 + 0.0479572i
$$133$$ 0.239594 + 2.27959i 0.0207754 + 0.197665i
$$134$$ −0.918249 2.82608i −0.0793247 0.244136i
$$135$$ 7.37061 8.98187i 0.634361 0.773037i
$$136$$ 0.932779 2.87080i 0.0799851 0.246169i
$$137$$ 8.26092 + 1.75591i 0.705778 + 0.150018i 0.546799 0.837264i $$-0.315846\pi$$
0.158979 + 0.987282i $$0.449180\pi$$
$$138$$ −1.30959 2.36621i −0.111480 0.201425i
$$139$$ 1.39912 0.297391i 0.118671 0.0252244i −0.148193 0.988958i $$-0.547346\pi$$
0.266864 + 0.963734i $$0.414012\pi$$
$$140$$ 0.00185147 0.407752i 0.000156477 0.0344613i
$$141$$ 9.02827 + 0.163499i 0.760317 + 0.0137691i
$$142$$ 1.48437 + 14.1229i 0.124566 + 1.18516i
$$143$$ 18.8729 1.57823
$$144$$ 3.52358 + 6.64786i 0.293631 + 0.553988i
$$145$$ −8.33087 4.86040i −0.691841 0.403634i
$$146$$ −0.999543 + 0.445025i −0.0827228 + 0.0368305i
$$147$$ −1.03392 11.9075i −0.0852764 0.982116i
$$148$$ 0.0135299 0.00287587i 0.00111215 0.000236395i
$$149$$ 10.3534 + 17.9326i 0.848181 + 1.46909i 0.882830 + 0.469693i $$0.155635\pi$$
−0.0346486 + 0.999400i $$0.511031\pi$$
$$150$$ 10.3211 + 0.280689i 0.842715 + 0.0229182i
$$151$$ 10.6562 18.4570i 0.867186 1.50201i 0.00232675 0.999997i $$-0.499259\pi$$
0.864860 0.502014i $$-0.167407\pi$$
$$152$$ −6.90938 + 21.2649i −0.560425 + 1.72481i
$$153$$ 2.85718 + 0.716348i 0.230989 + 0.0579133i
$$154$$ 0.878816 + 0.638497i 0.0708170 + 0.0514516i
$$155$$ −3.94307 18.9739i −0.316715 1.52402i
$$156$$ 1.90869 + 6.25770i 0.152818 + 0.501017i
$$157$$ −6.98186 12.0929i −0.557213 0.965122i −0.997728 0.0673760i $$-0.978537\pi$$
0.440514 0.897746i $$-0.354796\pi$$
$$158$$ −12.3967 5.51935i −0.986226 0.439096i
$$159$$ 3.56739 + 6.44568i 0.282912 + 0.511176i
$$160$$ 2.90188 6.43889i 0.229414 0.509039i
$$161$$ 0.127547 0.392548i 0.0100521 0.0309371i
$$162$$ −9.11438 + 5.66218i −0.716094 + 0.444863i
$$163$$ −0.190245 0.585515i −0.0149012 0.0458611i 0.943329 0.331858i $$-0.107675\pi$$
−0.958231 + 0.285997i $$0.907675\pi$$
$$164$$ −1.77380 1.97001i −0.138511 0.153832i
$$165$$ 6.78491 8.90722i 0.528204 0.693426i
$$166$$ −7.93155 + 8.80888i −0.615608 + 0.683702i
$$167$$ −4.93325 2.19642i −0.381746 0.169964i 0.206887 0.978365i $$-0.433667\pi$$
−0.588633 + 0.808401i $$0.700334\pi$$
$$168$$ −0.547389 + 1.58636i −0.0422320 + 0.122390i
$$169$$ −3.09563 29.4529i −0.238125 2.26561i
$$170$$ 1.05378 + 2.39606i 0.0808216 + 0.183769i
$$171$$ −21.1640 5.30621i −1.61845 0.405776i
$$172$$ 1.26014 + 0.915544i 0.0960846 + 0.0698096i
$$173$$ −0.243366 0.270286i −0.0185028 0.0205494i 0.733822 0.679341i $$-0.237734\pi$$
−0.752325 + 0.658792i $$0.771068\pi$$
$$174$$ 5.83918 + 6.72609i 0.442667 + 0.509903i
$$175$$ 1.04373 + 1.18056i 0.0788984 + 0.0892422i
$$176$$ 3.62536 + 6.27931i 0.273272 + 0.473321i
$$177$$ −8.26161 + 3.50047i −0.620981 + 0.263111i
$$178$$ 13.3481 5.94296i 1.00048 0.445444i
$$179$$ 12.2855 + 8.92591i 0.918259 + 0.667154i 0.943090 0.332538i $$-0.107905\pi$$
−0.0248313 + 0.999692i $$0.507905\pi$$
$$180$$ 3.63955 + 1.34885i 0.271276 + 0.100537i
$$181$$ 0.0462635 0.0336124i 0.00343874 0.00249839i −0.586065 0.810264i $$-0.699324\pi$$
0.589503 + 0.807766i $$0.299324\pi$$
$$182$$ 1.22641 2.12420i 0.0909074 0.157456i
$$183$$ 3.74524 + 12.2789i 0.276856 + 0.907680i
$$184$$ 2.69410 2.99210i 0.198611 0.220580i
$$185$$ −0.0316160 + 0.0431027i −0.00232445 + 0.00316898i
$$186$$ −2.19267 + 17.7617i −0.160774 + 1.30235i
$$187$$ 2.77662 + 0.590188i 0.203046 + 0.0431588i
$$188$$ 0.932151 + 2.86887i 0.0679841 + 0.209234i
$$189$$ −1.58097 0.426948i −0.114999 0.0310559i
$$190$$ −7.80571 17.7484i −0.566286 1.28760i
$$191$$ −2.34418 0.498271i −0.169619 0.0360536i 0.122319 0.992491i $$-0.460967\pi$$
−0.291938 + 0.956437i $$0.594300\pi$$
$$192$$ −10.3805 + 11.1172i −0.749152 + 0.802313i
$$193$$ 2.94773 + 5.10562i 0.212182 + 0.367511i 0.952397 0.304860i $$-0.0986095\pi$$
−0.740215 + 0.672370i $$0.765276\pi$$
$$194$$ −8.05179 3.58489i −0.578085 0.257380i
$$195$$ −21.6038 13.1341i −1.54708 0.940552i
$$196$$ 3.64763 1.62403i 0.260545 0.116002i
$$197$$ −12.8434 9.33130i −0.915057 0.664828i 0.0272318 0.999629i $$-0.491331\pi$$
−0.942289 + 0.334801i $$0.891331\pi$$
$$198$$ −8.58009 + 5.77102i −0.609760 + 0.410128i
$$199$$ 4.61006 0.326798 0.163399 0.986560i $$-0.447754\pi$$
0.163399 + 0.986560i $$0.447754\pi$$
$$200$$ 4.61706 + 14.6616i 0.326475 + 1.03673i
$$201$$ 2.83008 + 3.25994i 0.199618 + 0.229938i
$$202$$ −13.4637 + 2.86179i −0.947301 + 0.201355i
$$203$$ −0.142096 + 1.35195i −0.00997316 + 0.0948882i
$$204$$ 0.0851214 + 0.980330i 0.00595969 + 0.0686369i
$$205$$ 10.1834 + 1.11709i 0.711240 + 0.0780211i
$$206$$ 15.7873 11.4702i 1.09995 0.799164i
$$207$$ 3.09292 + 2.42298i 0.214973 + 0.168409i
$$208$$ 13.2453 9.62331i 0.918400 0.667256i
$$209$$ −20.5673 4.37170i −1.42267 0.302397i
$$210$$ −0.561633 1.34247i −0.0387564 0.0926394i
$$211$$ −0.144843 + 0.0307873i −0.00997140 + 0.00211949i −0.212895 0.977075i $$-0.568289\pi$$
0.202923 + 0.979195i $$0.434956\pi$$
$$212$$ −1.64676 + 1.82892i −0.113100 + 0.125611i
$$213$$ −9.99013 18.0505i −0.684512 1.23680i
$$214$$ −8.10605 9.00268i −0.554118 0.615410i
$$215$$ −5.98927 + 0.602015i −0.408465 + 0.0410571i
$$216$$ −12.3947 10.0774i −0.843351 0.685678i
$$217$$ −2.20972 + 1.60546i −0.150006 + 0.108986i
$$218$$ −6.60528 + 11.4407i −0.447366 + 0.774861i
$$219$$ 1.08484 1.16182i 0.0733064 0.0785084i
$$220$$ 3.55215 + 1.17202i 0.239486 + 0.0790178i
$$221$$ 0.669994 6.37456i 0.0450686 0.428800i
$$222$$ 0.0404559 0.0282881i 0.00271522 0.00189857i
$$223$$ −1.10187 1.22375i −0.0737867 0.0819485i 0.705121 0.709087i $$-0.250893\pi$$
−0.778908 + 0.627139i $$0.784226\pi$$
$$224$$ −0.995419 −0.0665092
$$225$$ −13.9654 + 5.47430i −0.931026 + 0.364953i
$$226$$ −17.4876 −1.16326
$$227$$ −2.45055 2.72161i −0.162648 0.180639i 0.656312 0.754490i $$-0.272116\pi$$
−0.818960 + 0.573851i $$0.805449\pi$$
$$228$$ −0.630521 7.26161i −0.0417572 0.480912i
$$229$$ 0.0884967 0.841990i 0.00584803 0.0556403i −0.991209 0.132308i $$-0.957761\pi$$
0.997057 + 0.0766674i $$0.0244280\pi$$
$$230$$ −0.0158532 + 3.49138i −0.00104533 + 0.230214i
$$231$$ −1.53746 0.356010i −0.101157 0.0234237i
$$232$$ −6.63027 + 11.4840i −0.435299 + 0.753960i
$$233$$ 9.04329 6.57033i 0.592445 0.430437i −0.250744 0.968053i $$-0.580675\pi$$
0.843189 + 0.537617i $$0.180675\pi$$
$$234$$ 14.9847 + 17.9056i 0.979582 + 1.17053i
$$235$$ −10.0690 5.87446i −0.656829 0.383207i
$$236$$ −2.00566 2.22751i −0.130557 0.144999i
$$237$$ 19.7110 + 0.356959i 1.28037 + 0.0231870i
$$238$$ 0.246858 0.274164i 0.0160015 0.0177714i
$$239$$ 15.9775 3.39613i 1.03350 0.219677i 0.340220 0.940346i $$-0.389498\pi$$
0.693280 + 0.720669i $$0.256165\pi$$
$$240$$ 0.219972 9.71087i 0.0141992 0.626834i
$$241$$ −2.04979 0.435696i −0.132038 0.0280656i 0.141418 0.989950i $$-0.454834\pi$$
−0.273457 + 0.961884i $$0.588167\pi$$
$$242$$ 2.54805 1.85127i 0.163795 0.119004i
$$243$$ 8.98290 12.7400i 0.576254 0.817271i
$$244$$ −3.46945 + 2.52070i −0.222109 + 0.161372i
$$245$$ −6.34004 + 14.0677i −0.405050 + 0.898753i
$$246$$ −8.57166 4.00386i −0.546509 0.255277i
$$247$$ −4.96285 + 47.2184i −0.315779 + 3.00443i
$$248$$ −26.0615 + 5.53955i −1.65491 + 0.351762i
$$249$$ 5.61718 16.2789i 0.355974 1.03163i
$$250$$ −11.4518 6.82133i −0.724273 0.431419i
$$251$$ −15.8673 −1.00154 −0.500769 0.865581i $$-0.666949\pi$$
−0.500769 + 0.865581i $$0.666949\pi$$
$$252$$ −0.0374469 0.545779i −0.00235893 0.0343809i
$$253$$ 3.06320 + 2.22554i 0.192582 + 0.139919i
$$254$$ 16.7643 7.46396i 1.05189 0.468330i
$$255$$ −2.76766 2.60789i −0.173317 0.163313i
$$256$$ −11.5220 5.12990i −0.720122 0.320619i
$$257$$ −1.09760 1.90109i −0.0684661 0.118587i 0.829760 0.558120i $$-0.188477\pi$$
−0.898226 + 0.439533i $$0.855144\pi$$
$$258$$ 5.41560 + 1.25402i 0.337160 + 0.0780721i
$$259$$ 0.00736942 + 0.00156642i 0.000457913 + 9.73325e-5i
$$260$$ 1.79354 8.25347i 0.111230 0.511858i
$$261$$ −11.6231 5.68782i −0.719453 0.352067i
$$262$$ 1.22985 + 3.78508i 0.0759801 + 0.233843i
$$263$$ 29.0145 + 6.16721i 1.78911 + 0.380287i 0.978654 0.205515i $$-0.0658869\pi$$
0.810454 + 0.585802i $$0.199220\pi$$
$$264$$ −12.2884 9.27257i −0.756297 0.570687i
$$265$$ 0.0431849 9.51070i 0.00265283 0.584237i
$$266$$ −1.82856 + 2.03082i −0.112116 + 0.124517i
$$267$$ −14.4871 + 15.5152i −0.886597 + 0.949512i
$$268$$ −0.721076 + 1.24894i −0.0440467 + 0.0762912i
$$269$$ −20.4742 + 14.8754i −1.24833 + 0.906968i −0.998124 0.0612238i $$-0.980500\pi$$
−0.250210 + 0.968192i $$0.580500\pi$$
$$270$$ 13.8378 0.634991i 0.842140 0.0386443i
$$271$$ −15.2201 11.0580i −0.924555 0.671728i 0.0200987 0.999798i $$-0.493602\pi$$
−0.944654 + 0.328070i $$0.893602\pi$$
$$272$$ 2.24961 1.00159i 0.136403 0.0607305i
$$273$$ −0.436589 + 3.53659i −0.0264235 + 0.214044i
$$274$$ 5.03443 + 8.71989i 0.304141 + 0.526788i
$$275$$ −13.2584 + 5.75934i −0.799513 + 0.347301i
$$276$$ −0.428130 + 1.24074i −0.0257704 + 0.0746839i
$$277$$ 15.1456 + 16.8209i 0.910012 + 1.01067i 0.999892 + 0.0147182i $$0.00468511\pi$$
−0.0898796 + 0.995953i $$0.528648\pi$$
$$278$$ 1.37963 + 1.00236i 0.0827447 + 0.0601176i
$$279$$ −7.13387 25.0022i −0.427094 1.49684i
$$280$$ 1.61657 1.44233i 0.0966087 0.0861958i
$$281$$ 0.0980168 + 0.932568i 0.00584719 + 0.0556323i 0.997056 0.0766714i $$-0.0244292\pi$$
−0.991209 + 0.132304i $$0.957763\pi$$
$$282$$ 7.05744 + 8.12940i 0.420265 + 0.484099i
$$283$$ 10.5924 + 4.71605i 0.629653 + 0.280340i 0.696648 0.717414i $$-0.254674\pi$$
−0.0669940 + 0.997753i $$0.521341\pi$$
$$284$$ 4.61161 5.12171i 0.273648 0.303917i
$$285$$ 20.5009 + 19.3175i 1.21437 + 1.14427i
$$286$$ 15.0559 + 16.7213i 0.890273 + 0.988748i
$$287$$ −0.446185 1.37322i −0.0263375 0.0810583i
$$288$$ 3.25245 8.89977i 0.191652 0.524424i
$$289$$ −4.95538 + 15.2511i −0.291493 + 0.897122i
$$290$$ −2.33968 11.2585i −0.137391 0.661120i
$$291$$ 12.8025 + 0.231850i 0.750498 + 0.0135913i
$$292$$ 0.485103 + 0.215982i 0.0283885 + 0.0126394i
$$293$$ 11.8547 + 20.5330i 0.692561 + 1.19955i 0.970996 + 0.239096i $$0.0768509\pi$$
−0.278435 + 0.960455i $$0.589816\pi$$
$$294$$ 9.72515 10.4153i 0.567182 0.607431i
$$295$$ 11.5145 + 1.26311i 0.670400 + 0.0735411i
$$296$$ 0.0594568 + 0.0431979i 0.00345586 + 0.00251083i
$$297$$ 8.20650 12.5828i 0.476189 0.730125i
$$298$$ −7.62869 + 23.4787i −0.441918 + 1.36008i
$$299$$ 4.27476 7.40411i 0.247216 0.428190i
$$300$$ −3.25050 3.81363i −0.187668 0.220180i
$$301$$ 0.424198 + 0.734732i 0.0244504 + 0.0423493i
$$302$$ 24.8537 5.28282i 1.43017 0.303992i
$$303$$ 16.3880 11.4591i 0.941469 0.658306i
$$304$$ −16.6636 + 7.41911i −0.955722 + 0.425515i
$$305$$ 3.51928 16.1950i 0.201513 0.927321i
$$306$$ 1.64464 + 3.10290i 0.0940176 + 0.177381i
$$307$$ −12.6269 −0.720652 −0.360326 0.932826i $$-0.617335\pi$$
−0.360326 + 0.932826i $$0.617335\pi$$
$$308$$ −0.0551071 0.524309i −0.00314002 0.0298753i
$$309$$ −14.6173 + 24.2913i −0.831549 + 1.38188i
$$310$$ 13.6651 18.6300i 0.776128 1.05811i
$$311$$ 13.8540 2.94477i 0.785590 0.166982i 0.202384 0.979306i $$-0.435131\pi$$
0.583207 + 0.812324i $$0.301798\pi$$
$$312$$ −17.9224 + 29.7838i −1.01466 + 1.68617i
$$313$$ −2.73979 0.582360i −0.154862 0.0329169i 0.129828 0.991537i $$-0.458557\pi$$
−0.284690 + 0.958620i $$0.591891\pi$$
$$314$$ 5.14446 15.8330i 0.290319 0.893509i
$$315$$ 1.51217 + 1.47747i 0.0852009 + 0.0832462i
$$316$$ 2.03512 + 6.26345i 0.114484 + 0.352347i
$$317$$ −3.11752 29.6613i −0.175098 1.66594i −0.630902 0.775862i $$-0.717315\pi$$
0.455805 0.890080i $$-0.349351\pi$$
$$318$$ −2.86494 + 8.30272i −0.160658 + 0.465594i
$$319$$ −11.3922 5.07212i −0.637839 0.283984i
$$320$$ 18.7025 5.98305i 1.04550 0.334463i
$$321$$ 15.9458 + 7.44835i 0.890007 + 0.415726i
$$322$$ 0.449545 0.200150i 0.0250522 0.0111539i
$$323$$ −2.20674 + 6.79164i −0.122786 + 0.377897i
$$324$$ 5.00202 + 1.44849i 0.277890 + 0.0804715i
$$325$$ 16.0627 + 28.4142i 0.890998 + 1.57614i
$$326$$ 0.366993 0.635650i 0.0203259 0.0352054i
$$327$$ 2.35141 19.0477i 0.130033 1.05334i
$$328$$ 1.47225 14.0075i 0.0812916 0.773437i
$$329$$ −0.171742 + 1.63402i −0.00946844 + 0.0900862i
$$330$$ 13.3044 1.09437i 0.732382 0.0602430i
$$331$$ 2.12974 + 20.2631i 0.117061 + 1.11376i 0.882519 + 0.470277i $$0.155846\pi$$
−0.765458 + 0.643486i $$0.777487\pi$$
$$332$$ 5.75281 0.315726
$$333$$ −0.0380839 + 0.0607698i −0.00208698 + 0.00333017i
$$334$$ −1.98949 6.12301i −0.108860 0.335036i
$$335$$ −1.13398 5.45665i −0.0619557 0.298129i
$$336$$ −1.26054 + 0.534096i −0.0687683 + 0.0291373i
$$337$$ 17.7807 19.7475i 0.968576 1.07571i −0.0285223 0.999593i $$-0.509080\pi$$
0.997099 0.0761198i $$-0.0242532\pi$$
$$338$$ 23.6255 26.2388i 1.28506 1.42720i
$$339$$ 23.3927 9.91156i 1.27052 0.538322i
$$340$$ 0.521967 1.15818i 0.0283077 0.0628109i
$$341$$ −7.74271 23.8296i −0.419291 1.29045i
$$342$$ −12.1823 22.9842i −0.658745 1.24284i
$$343$$ 4.38089 0.236546
$$344$$ 0.865065 + 8.23054i 0.0466412 + 0.443761i
$$345$$ −1.95763 4.67932i −0.105395 0.251926i
$$346$$ 0.0453252 0.431241i 0.00243670 0.0231837i
$$347$$ −2.14059 + 20.3664i −0.114913 + 1.09332i 0.773347 + 0.633983i $$0.218581\pi$$
−0.888260 + 0.459341i $$0.848086\pi$$
$$348$$ 0.529629 4.29027i 0.0283911 0.229982i
$$349$$ 2.88806 5.00227i 0.154594 0.267766i −0.778317 0.627872i $$-0.783926\pi$$
0.932911 + 0.360106i $$0.117260\pi$$
$$350$$ −0.213335 + 1.86653i −0.0114032 + 0.0997701i
$$351$$ −30.1932 15.4589i −1.61159 0.825138i
$$352$$ 2.82175 8.68445i 0.150400 0.462883i
$$353$$ 12.6340 5.62502i 0.672440 0.299390i −0.0419678 0.999119i $$-0.513363\pi$$
0.714408 + 0.699729i $$0.246696\pi$$
$$354$$ −9.69209 4.52722i −0.515129 0.240619i
$$355$$ −0.120935 + 26.6338i −0.00641857 + 1.41357i
$$356$$ −6.47817 2.88427i −0.343342 0.152866i
$$357$$ −0.174827 + 0.506657i −0.00925281 + 0.0268151i
$$358$$ 1.89245 + 18.0055i 0.100019 + 0.951618i
$$359$$ 0.158269 + 0.487102i 0.00835313 + 0.0257083i 0.955146 0.296135i $$-0.0956977\pi$$
−0.946793 + 0.321843i $$0.895698\pi$$
$$360$$ 7.61347 + 19.1660i 0.401265 + 1.01014i
$$361$$ 10.4747 32.2377i 0.551299 1.69672i
$$362$$ 0.0666870 + 0.0141748i 0.00350499 + 0.000745008i
$$363$$ −2.35921 + 3.92057i −0.123826 + 0.205777i
$$364$$ −1.16440 + 0.247501i −0.0610311 + 0.0129726i
$$365$$ −1.95453 + 0.625268i −0.102305 + 0.0327280i
$$366$$ −7.89120 + 13.1137i −0.412480 + 0.685465i
$$367$$ 2.04367 + 19.4442i 0.106679 + 1.01498i 0.908633 + 0.417595i $$0.137127\pi$$
−0.801955 + 0.597385i $$0.796207\pi$$
$$368$$ 3.28461 0.171222
$$369$$ 13.7354 + 0.497651i 0.715037 + 0.0259067i
$$370$$ −0.0634103 + 0.00637373i −0.00329655 + 0.000331354i
$$371$$ −1.22458 + 0.545220i −0.0635773 + 0.0283064i
$$372$$ 7.11813 4.97723i 0.369058 0.258057i
$$373$$ −24.2570 + 5.15599i −1.25598 + 0.266967i −0.787394 0.616450i $$-0.788570\pi$$
−0.468587 + 0.883417i $$0.655237\pi$$
$$374$$ 1.69214 + 2.93088i 0.0874987 + 0.151552i
$$375$$ 19.1849 + 2.63414i 0.990705 + 0.136026i
$$376$$ −8.01359 + 13.8800i −0.413270 + 0.715804i
$$377$$ −8.70129 + 26.7798i −0.448139 + 1.37923i
$$378$$ −0.882946 1.74132i −0.0454138 0.0895639i
$$379$$ 15.1691 + 11.0210i 0.779184 + 0.566110i 0.904734 0.425977i $$-0.140070\pi$$
−0.125550 + 0.992087i $$0.540070\pi$$
$$380$$ −3.86637 + 8.57897i −0.198341 + 0.440092i
$$381$$ −18.1948 + 19.4860i −0.932150 + 0.998298i
$$382$$ −1.42861 2.47442i −0.0730938 0.126602i
$$383$$ 5.00833 + 2.22985i 0.255914 + 0.113940i 0.530684 0.847570i $$-0.321935\pi$$
−0.274770 + 0.961510i $$0.588602\pi$$
$$384$$ −7.19129 0.130232i −0.366979 0.00664587i
$$385$$ 1.50785 + 1.37013i 0.0768473 + 0.0698280i
$$386$$ −2.17198 + 6.68468i −0.110551 + 0.340241i
$$387$$ −7.95507 + 1.39196i −0.404379 + 0.0707574i
$$388$$ 1.32184 + 4.06819i 0.0671061 + 0.206531i
$$389$$ −1.04925 1.16531i −0.0531990 0.0590835i 0.715958 0.698143i $$-0.245990\pi$$
−0.769157 + 0.639060i $$0.779324\pi$$
$$390$$ −5.59773 29.6185i −0.283452 1.49979i
$$391$$ 0.860448 0.955625i 0.0435148 0.0483280i
$$392$$ 19.3805 + 8.62874i 0.978861 + 0.435817i
$$393$$ −3.79043 4.36616i −0.191202 0.220244i
$$394$$ −1.97840 18.8232i −0.0996704 0.948300i
$$395$$ −21.9831 12.8254i −1.10609 0.645317i
$$396$$ 4.86776 + 1.22044i 0.244614 + 0.0613294i
$$397$$ 7.83333 + 5.69125i 0.393143 + 0.285635i 0.766742 0.641955i $$-0.221876\pi$$
−0.373599 + 0.927590i $$0.621876\pi$$
$$398$$ 3.67768 + 4.08447i 0.184345 + 0.204736i
$$399$$ 1.29500 3.75296i 0.0648309 0.187883i
$$400$$ −6.36831 + 10.8025i −0.318415 + 0.540124i
$$401$$ −0.505309 0.875221i −0.0252339 0.0437064i 0.853133 0.521694i $$-0.174700\pi$$
−0.878367 + 0.477988i $$0.841366\pi$$
$$402$$ −0.630582 + 5.10804i −0.0314506 + 0.254766i
$$403$$ −51.6851 + 23.0117i −2.57462 + 1.14629i
$$404$$ 5.40443 + 3.92655i 0.268880 + 0.195353i
$$405$$ −18.1506 + 8.69235i −0.901909 + 0.431926i
$$406$$ −1.31117 + 0.952622i −0.0650724 + 0.0472779i
$$407$$ −0.0345565 + 0.0598535i −0.00171290 + 0.00296683i
$$408$$ −3.56816 + 3.82137i −0.176650 + 0.189186i
$$409$$ 5.36444 5.95782i 0.265255 0.294595i −0.595773 0.803153i $$-0.703154\pi$$
0.861028 + 0.508557i $$0.169821\pi$$
$$410$$ 7.13408 + 9.91357i 0.352327 + 0.489596i
$$411$$ −11.6767 8.81099i −0.575968 0.434614i
$$412$$ −9.26377 1.96908i −0.456393 0.0970094i
$$413$$ −0.504507 1.55271i −0.0248251 0.0764040i
$$414$$ 0.320639 + 4.67323i 0.0157585 + 0.229677i
$$415$$ −16.5889 + 14.8009i −0.814316 + 0.726546i
$$416$$ −20.1681 4.28687i −0.988823 0.210181i
$$417$$ −2.41361 0.558891i −0.118195 0.0273690i
$$418$$ −12.5342 21.7099i −0.613070 1.06187i
$$419$$ 22.8670 + 10.1810i 1.11713 + 0.497377i 0.880415 0.474204i $$-0.157264\pi$$
0.236711 + 0.971580i $$0.423931\pi$$
$$420$$ −0.301797 + 0.638525i −0.0147262 + 0.0311568i
$$421$$ 30.1379 13.4182i 1.46883 0.653965i 0.492512 0.870305i $$-0.336079\pi$$
0.976318 + 0.216340i $$0.0694120\pi$$
$$422$$ −0.142826 0.103769i −0.00695265 0.00505140i
$$423$$ −14.0481 6.87451i −0.683044 0.334250i
$$424$$ −13.0760 −0.635026
$$425$$ 1.47461 + 4.68265i 0.0715291 + 0.227142i
$$426$$ 8.02298 23.2510i 0.388714 1.12651i
$$427$$ −2.28479 + 0.485646i −0.110569 + 0.0235021i
$$428$$ −0.614562 + 5.84717i −0.0297060 + 0.282633i
$$429$$ −29.6171 13.8343i −1.42993 0.667926i
$$430$$ −5.31132 4.82618i −0.256135 0.232739i
$$431$$ 4.71468 3.42542i 0.227098 0.164997i −0.468418 0.883507i $$-0.655176\pi$$
0.695516 + 0.718511i $$0.255176\pi$$
$$432$$ −0.656483 13.0153i −0.0315851 0.626198i
$$433$$ −1.68629 + 1.22516i −0.0810381 + 0.0588776i −0.627567 0.778563i $$-0.715949\pi$$
0.546529 + 0.837440i $$0.315949\pi$$
$$434$$ −3.18523 0.677041i −0.152896 0.0324990i
$$435$$ 9.51078 + 13.7341i 0.456007 + 0.658500i
$$436$$ 6.27131 1.33301i 0.300341 0.0638395i
$$437$$ −6.37361 + 7.07861i −0.304891 + 0.338616i
$$438$$ 1.89479 + 0.0343140i 0.0905365 + 0.00163959i
$$439$$ 15.2474 + 16.9340i 0.727721 + 0.808216i 0.987528 0.157445i $$-0.0503256\pi$$
−0.259807 + 0.965661i $$0.583659\pi$$
$$440$$ 8.00095 + 18.1923i 0.381430 + 0.867284i
$$441$$ −7.10597 + 19.4443i −0.338379 + 0.925917i
$$442$$ 6.18230 4.49170i 0.294062 0.213648i
$$443$$ 4.50211 7.79787i 0.213901 0.370488i −0.739031 0.673672i $$-0.764716\pi$$
0.952932 + 0.303184i $$0.0980495\pi$$
$$444$$ −0.0233405 0.00540466i −0.00110769 0.000256494i
$$445$$ 26.1012 8.34996i 1.23732 0.395826i
$$446$$ 0.205216 1.95250i 0.00971724 0.0924534i
$$447$$ −3.10247 35.7307i −0.146742 1.69000i
$$448$$ −1.85187 2.05671i −0.0874925 0.0971702i
$$449$$ −2.14345 −0.101156 −0.0505779 0.998720i $$-0.516106\pi$$
−0.0505779 + 0.998720i $$0.516106\pi$$
$$450$$ −15.9911 8.00609i −0.753826 0.377411i
$$451$$ 13.2453 0.623698
$$452$$ 5.67902 + 6.30719i 0.267118 + 0.296665i
$$453$$ −30.2521 + 21.1532i −1.42137 + 0.993865i
$$454$$ 0.456397 4.34233i 0.0214198 0.203795i
$$455$$ 2.72091 3.70947i 0.127558 0.173903i
$$456$$ 26.4305 28.3061i 1.23772 1.32555i
$$457$$ 9.78295 16.9446i 0.457627 0.792634i −0.541208 0.840889i $$-0.682033\pi$$
0.998835 + 0.0482552i $$0.0153661\pi$$
$$458$$ 0.816594 0.593290i 0.0381569 0.0277226i
$$459$$ −3.95865 3.21854i −0.184774 0.150228i
$$460$$ 1.26437 1.12809i 0.0589516 0.0525976i
$$461$$ −2.55207 2.83436i −0.118862 0.132009i 0.680777 0.732491i $$-0.261642\pi$$
−0.799639 + 0.600482i $$0.794976\pi$$
$$462$$ −0.911085 1.64618i −0.0423875 0.0765873i
$$463$$ 6.05576 6.72560i 0.281435 0.312565i −0.585808 0.810450i $$-0.699223\pi$$
0.867243 + 0.497884i $$0.165890\pi$$
$$464$$ −10.5815 + 2.24917i −0.491234 + 0.104415i
$$465$$ −7.72050 + 32.6660i −0.358030 + 1.51485i
$$466$$ 13.0355 + 2.77079i 0.603860 + 0.128354i
$$467$$ 24.8972 18.0889i 1.15211 0.837053i 0.163346 0.986569i $$-0.447771\pi$$
0.988759 + 0.149515i $$0.0477713\pi$$
$$468$$ 1.59174 11.2193i 0.0735783 0.518611i
$$469$$ −0.635487 + 0.461708i −0.0293441 + 0.0213197i
$$470$$ −2.82782 13.6074i −0.130438 0.627662i
$$471$$ 2.09217 + 24.0952i 0.0964021 + 1.11025i
$$472$$ 1.66469 15.8385i 0.0766238 0.729027i
$$473$$ −7.61260 + 1.61811i −0.350028 + 0.0744007i
$$474$$ 15.4082 + 17.7485i 0.707721 + 0.815216i
$$475$$ −10.9229 34.6859i −0.501177 1.59150i
$$476$$ −0.179048 −0.00820666
$$477$$ −0.873437 12.7301i −0.0399919 0.582873i
$$478$$ 15.7550 + 11.4467i 0.720617 + 0.523559i
$$479$$ 11.2505 5.00905i 0.514049 0.228870i −0.133282 0.991078i $$-0.542552\pi$$
0.647331 + 0.762209i $$0.275885\pi$$
$$480$$ −9.27375 + 7.97734i −0.423287 + 0.364114i
$$481$$ 0.142565 + 0.0634742i 0.00650042 + 0.00289417i
$$482$$ −1.24920 2.16367i −0.0568993 0.0985524i
$$483$$ −0.487905 + 0.522528i −0.0222005 + 0.0237759i
$$484$$ −1.49516 0.317806i −0.0679618 0.0144457i
$$485$$ −14.2783 8.33027i −0.648346 0.378258i
$$486$$ 18.4536 2.20456i 0.837074 0.100001i
$$487$$ 1.53444 + 4.72251i 0.0695320 + 0.213997i 0.979784 0.200056i $$-0.0641125\pi$$
−0.910252 + 0.414054i $$0.864113\pi$$
$$488$$ −22.2875 4.73735i −1.00891 0.214450i
$$489$$ −0.130646 + 1.05830i −0.00590800 + 0.0478579i
$$490$$ −17.5216 + 5.60530i −0.791547 + 0.253221i
$$491$$ −12.7546 + 14.1654i −0.575605 + 0.639274i −0.958695 0.284437i $$-0.908193\pi$$
0.383090 + 0.923711i $$0.374860\pi$$
$$492$$ 1.33955 + 4.39175i 0.0603917 + 0.197996i
$$493$$ −2.11760 + 3.66778i −0.0953718 + 0.165189i
$$494$$ −45.7942 + 33.2714i −2.06038 + 1.49695i
$$495$$ −17.1767 + 9.00453i −0.772035 + 0.404724i
$$496$$ −17.5847 12.7760i −0.789576 0.573660i
$$497$$ 3.42933 1.52684i 0.153827 0.0684880i
$$498$$ 18.9040 8.00969i 0.847110 0.358923i
$$499$$ −2.50922 4.34610i −0.112328 0.194558i 0.804380 0.594115i $$-0.202497\pi$$
−0.916709 + 0.399557i $$0.869164\pi$$
$$500$$ 1.25868 + 6.34547i 0.0562900 + 0.283778i
$$501$$ 6.13167 + 7.06301i 0.273943 + 0.315552i
$$502$$ −12.6582 14.0583i −0.564962 0.627453i
$$503$$ −5.48055 3.98186i −0.244366 0.177542i 0.458860 0.888508i $$-0.348258\pi$$
−0.703226 + 0.710966i $$0.748258\pi$$
$$504$$ 2.02185 2.08821i 0.0900605 0.0930164i
$$505$$ −25.6865 + 2.58190i −1.14304 + 0.114893i
$$506$$ 0.471854 + 4.48939i 0.0209765 + 0.199578i
$$507$$ −16.7317 + 48.4894i −0.743083 + 2.15349i
$$508$$ −8.13615 3.62245i −0.360983 0.160720i
$$509$$ −6.65406 + 7.39008i −0.294936 + 0.327559i −0.872341 0.488899i $$-0.837399\pi$$
0.577405 + 0.816458i $$0.304065\pi$$
$$510$$ 0.102673 4.53257i 0.00454642 0.200705i
$$511$$ 0.193532 + 0.214939i 0.00856136 + 0.00950835i
$$512$$ −7.21302 22.1994i −0.318774 0.981084i
$$513$$ 29.3229 + 23.8407i 1.29464 + 1.05259i
$$514$$ 0.808743 2.48906i 0.0356721 0.109788i
$$515$$ 31.7792 18.1558i 1.40036 0.800041i
$$516$$ −1.30641 2.36047i −0.0575115 0.103914i
$$517$$ −13.7690 6.13035i −0.605560 0.269613i
$$518$$ 0.00449112 + 0.00777885i 0.000197329 + 0.000341783i
$$519$$ 0.183787 + 0.602550i 0.00806736 + 0.0264490i
$$520$$ 38.9648 22.2611i 1.70872 0.976212i
$$521$$ 15.4969 + 11.2591i 0.678930 + 0.493272i 0.873003 0.487715i $$-0.162170\pi$$
−0.194072 + 0.980987i $$0.562170\pi$$
$$522$$ −4.23299 14.8354i −0.185273 0.649330i
$$523$$ 0.0808887 0.248950i 0.00353702 0.0108858i −0.949272 0.314455i $$-0.898178\pi$$
0.952809 + 0.303569i $$0.0981783\pi$$
$$524$$ 0.965764 1.67275i 0.0421896 0.0730745i
$$525$$ −0.772533 2.61773i −0.0337161 0.114247i
$$526$$ 17.6822 + 30.6265i 0.770980 + 1.33538i
$$527$$ −8.32361 + 1.76924i −0.362582 + 0.0770692i
$$528$$ −1.08637 12.5115i −0.0472781 0.544495i
$$529$$ −19.4446 + 8.65730i −0.845418 + 0.376404i
$$530$$ 8.46084 7.54890i 0.367516 0.327903i
$$531$$ 15.5308 + 0.562700i 0.673980 + 0.0244191i
$$532$$ 1.32626 0.0575009
$$533$$ −3.12624 29.7442i −0.135412 1.28836i
$$534$$ −25.3034 0.458236i −1.09498 0.0198298i
$$535$$ −13.2715 18.4421i −0.573775 0.797322i
$$536$$ −7.49495 + 1.59310i −0.323733 + 0.0688115i
$$537$$ −12.7366 23.0129i −0.549624 0.993080i
$$538$$ −29.5128 6.27313i −1.27239 0.270454i
$$539$$ −6.16497 + 18.9738i −0.265544 + 0.817261i
$$540$$ −4.72278 4.78462i −0.203236 0.205897i
$$541$$ 6.23922 + 19.2023i 0.268245 + 0.825573i 0.990928 + 0.134394i $$0.0429087\pi$$
−0.722683 + 0.691180i $$0.757091\pi$$
$$542$$ −2.34450 22.3064i −0.100705 0.958143i
$$543$$ −0.0972395 + 0.0188354i −0.00417295 + 0.000808305i
$$544$$ −2.83311 1.26138i −0.121468 0.0540813i
$$545$$ −14.6545 + 19.9787i −0.627729 + 0.855795i
$$546$$ −3.48168 + 2.43451i −0.149002 + 0.104187i
$$547$$ −6.86422 + 3.05615i −0.293493 + 0.130671i −0.548201 0.836346i $$-0.684687\pi$$
0.254708 + 0.967018i $$0.418021\pi$$
$$548$$ 1.51006 4.64750i 0.0645067 0.198531i
$$549$$ 3.12332 22.0145i 0.133300 0.939554i
$$550$$ −15.6796 7.15234i −0.668582 0.304977i
$$551$$ 15.6857 27.1684i 0.668233 1.15741i
$$552$$ −6.42110 + 2.72064i −0.273300 + 0.115798i
$$553$$ −0.374956 + 3.56747i −0.0159447 + 0.151704i
$$554$$ −2.82076 + 26.8378i −0.119843 + 1.14023i
$$555$$ 0.0812100 0.0444655i 0.00344717 0.00188746i
$$556$$ −0.0865112 0.823099i −0.00366889 0.0349072i
$$557$$ 17.2753 0.731980 0.365990 0.930619i $$-0.380730\pi$$
0.365990 + 0.930619i $$0.380730\pi$$
$$558$$ 16.4607 26.2661i 0.696837 1.11193i
$$559$$ 5.43045 + 16.7132i 0.229684 + 0.706894i
$$560$$ 1.75686 + 0.192723i 0.0742411 + 0.00814404i
$$561$$ −3.92470 2.96150i −0.165701 0.125035i
$$562$$ −0.748054 + 0.830798i −0.0315548 + 0.0350451i
$$563$$ 1.80844 2.00848i 0.0762167 0.0846473i −0.703830 0.710368i $$-0.748528\pi$$
0.780047 + 0.625721i $$0.215195\pi$$
$$564$$ 0.640129 5.18538i 0.0269543 0.218344i
$$565$$ −32.6033 3.57649i −1.37163 0.150464i
$$566$$ 4.27172 + 13.1470i 0.179554 + 0.552610i
$$567$$ 2.16804 + 1.82889i 0.0910490 + 0.0768063i
$$568$$ 36.6180 1.53646
$$569$$ 4.46837 + 42.5137i 0.187324 + 1.78227i 0.535201 + 0.844725i $$0.320236\pi$$
−0.347877 + 0.937540i $$0.613097\pi$$
$$570$$ −0.760528 + 33.5741i −0.0318550 + 1.40627i
$$571$$ −3.16839 + 30.1452i −0.132593 + 1.26154i 0.702601 + 0.711584i $$0.252022\pi$$
−0.835194 + 0.549955i $$0.814645\pi$$
$$572$$ 1.14147 10.8603i 0.0477271 0.454093i
$$573$$ 3.31346 + 2.50027i 0.138422 + 0.104450i
$$574$$ 0.860713 1.49080i 0.0359255 0.0622247i
$$575$$ −0.743598 + 6.50596i −0.0310102 + 0.271317i
$$576$$ 24.4393 9.83692i 1.01830 0.409872i
$$577$$ 11.8163 36.3667i 0.491917 1.51396i −0.329790 0.944054i $$-0.606978\pi$$
0.821707 0.569910i $$-0.193022\pi$$
$$578$$ −17.4655 + 7.77613i −0.726468 + 0.323444i
$$579$$ −0.883312 10.1730i −0.0367092 0.422774i
$$580$$ −3.30075 + 4.49999i −0.137056 + 0.186852i
$$581$$ 2.86252 + 1.27448i 0.118757 + 0.0528741i
$$582$$ 10.0078 + 11.5279i 0.414837 + 0.477847i
$$583$$ −1.28536 12.2294i −0.0532340 0.506488i
$$584$$ 0.871846 + 2.68327i 0.0360773 + 0.111034i
$$585$$ 24.2750 + 36.4473i 1.00365 + 1.50691i
$$586$$ −8.73494 + 26.8834i −0.360837 + 1.11054i
$$587$$ −18.3047 3.89078i −0.755515 0.160590i −0.185976 0.982554i $$-0.559545\pi$$
−0.569539 + 0.821964i $$0.692878\pi$$
$$588$$ −6.91465 0.125222i −0.285155 0.00516407i
$$589$$ 61.6556 13.1053i 2.54047 0.539994i
$$590$$ 8.06659 + 11.2094i 0.332096 + 0.461484i
$$591$$ 13.3150 + 24.0581i 0.547707 + 0.989617i
$$592$$ 0.00626701 + 0.0596266i 0.000257572 + 0.00245064i
$$593$$ −42.4830 −1.74457 −0.872284 0.489000i $$-0.837362\pi$$
−0.872284 + 0.489000i $$0.837362\pi$$
$$594$$ 17.6949 2.76701i 0.726033 0.113532i
$$595$$ 0.516306 0.460656i 0.0211665 0.0188851i
$$596$$ 10.9454 4.87320i 0.448340 0.199614i
$$597$$ −7.23453 3.37928i −0.296089 0.138305i
$$598$$ 9.97017 2.11922i 0.407710 0.0866615i
$$599$$ −22.9566 39.7621i −0.937983 1.62463i −0.769226 0.638977i $$-0.779358\pi$$
−0.168757 0.985658i $$-0.553975\pi$$
$$600$$ 3.50176 26.3927i 0.142959 1.07748i
$$601$$ 13.8303 23.9548i 0.564150 0.977136i −0.432978 0.901404i $$-0.642537\pi$$
0.997128 0.0757320i $$-0.0241293\pi$$
$$602$$ −0.312563 + 0.961968i −0.0127391 + 0.0392069i
$$603$$ −2.05161 7.19031i −0.0835479 0.292812i
$$604$$ −9.97648 7.24834i −0.405937 0.294931i
$$605$$ 5.12911 2.93032i 0.208528 0.119135i
$$606$$ 23.2262 + 5.37820i 0.943500 + 0.218474i
$$607$$ −7.77177 13.4611i −0.315446 0.546369i 0.664086 0.747656i $$-0.268821\pi$$
−0.979532 + 0.201287i $$0.935488\pi$$
$$608$$ 20.9857 + 9.34344i 0.851083 + 0.378926i
$$609$$ 1.21400 2.01744i 0.0491938 0.0817509i
$$610$$ 17.1561 9.80148i 0.694630 0.396850i
$$611$$ −10.5167 + 32.3671i −0.425460 + 1.30943i
$$612$$ 0.585025 1.60082i 0.0236482 0.0647093i
$$613$$ −12.9646 39.9011i −0.523637 1.61159i −0.766996 0.641652i $$-0.778249\pi$$
0.243359 0.969936i $$-0.421751\pi$$
$$614$$ −10.0731 11.1873i −0.406516 0.451482i
$$615$$ −15.1619 9.21772i −0.611386 0.371694i
$$616$$ 1.87429 2.08161i 0.0755174 0.0838706i
$$617$$ −8.46425 3.76852i −0.340758 0.151715i 0.229221 0.973374i $$-0.426382\pi$$
−0.569979 + 0.821659i $$0.693049\pi$$
$$618$$ −33.1828 + 6.42755i −1.33481 + 0.258554i
$$619$$ −1.08260 10.3002i −0.0435132 0.414001i −0.994497 0.104761i $$-0.966592\pi$$
0.950984 0.309240i $$-0.100074\pi$$
$$620$$ −11.1569 + 1.12144i −0.448073 + 0.0450383i
$$621$$ −3.07759 6.06954i −0.123500 0.243562i
$$622$$ 13.6611 + 9.92537i 0.547760 + 0.397971i
$$623$$ −2.58447 2.87034i −0.103545 0.114998i
$$624$$ −27.8399 + 5.39263i −1.11449 + 0.215878i
$$625$$ −19.9552 15.0595i −0.798208 0.602381i
$$626$$ −1.66970 2.89201i −0.0667347 0.115588i
$$627$$ 29.0715 + 21.9368i 1.16100 + 0.876070i
$$628$$ −7.38109 + 3.28627i −0.294537 + 0.131136i
$$629$$ 0.0189895 + 0.0137967i 0.000757161 + 0.000550110i
$$630$$ −0.102698 + 2.51842i −0.00409157 + 0.100336i
$$631$$ 29.6450 21.5383i 1.18015 0.857428i 0.187960 0.982177i $$-0.439813\pi$$
0.992188 + 0.124749i $$0.0398126\pi$$
$$632$$ −17.4957 + 30.3034i −0.695941 + 1.20541i
$$633$$ 0.249869 + 0.0578590i 0.00993139 + 0.00229969i
$$634$$ 23.7926 26.4244i 0.944925 1.04945i
$$635$$ 32.7814 10.4870i 1.30089 0.416163i
$$636$$ 3.92489 1.66299i 0.155632 0.0659418i
$$637$$ 44.0634 + 9.36597i 1.74586 + 0.371093i
$$638$$ −4.59425 14.1397i −0.181888 0.559794i
$$639$$ 2.44598 + 35.6495i 0.0967613 + 1.41027i
$$640$$ 8.02026 + 4.67918i 0.317029 + 0.184961i
$$641$$ 25.7650 + 5.47651i 1.01766 + 0.216309i 0.686394 0.727230i $$-0.259193\pi$$
0.331261 + 0.943539i $$0.392526\pi$$
$$642$$ 6.12158 + 20.0698i 0.241600 + 0.792090i
$$643$$ 24.3415 + 42.1606i 0.959934 + 1.66265i 0.722651 + 0.691213i $$0.242923\pi$$
0.237282 + 0.971441i $$0.423743\pi$$
$$644$$ −0.218175 0.0971380i −0.00859732 0.00382777i
$$645$$ 9.84020 + 3.44554i 0.387457 + 0.135668i
$$646$$ −7.77776 + 3.46288i −0.306012 + 0.136245i
$$647$$ 10.6167 + 7.71348i 0.417386 + 0.303248i 0.776585 0.630012i $$-0.216950\pi$$
−0.359199 + 0.933261i $$0.616950\pi$$
$$648$$ 12.0639 + 24.8999i 0.473915 + 0.978161i
$$649$$ 14.9767 0.587885
$$650$$ −12.3607 + 36.8989i −0.484828 + 1.44729i
$$651$$ 4.64454 0.899653i 0.182034 0.0352602i
$$652$$ −0.348437 + 0.0740627i −0.0136459 + 0.00290052i
$$653$$ 5.05266 48.0729i 0.197726 1.88124i −0.224109 0.974564i $$-0.571947\pi$$
0.421835 0.906673i $$-0.361386\pi$$
$$654$$ 18.7519 13.1119i 0.733257 0.512717i
$$655$$ 1.51878 + 7.30830i 0.0593435 + 0.285559i
$$656$$ 9.29580 6.75379i 0.362940 0.263691i
$$657$$ −2.55406 + 1.02802i −0.0996435 + 0.0401070i
$$658$$ −1.58473 + 1.15137i −0.0617792 + 0.0448853i
$$659$$ −29.3437 6.23721i −1.14307 0.242967i −0.402807 0.915285i $$-0.631966\pi$$
−0.740263 + 0.672318i $$0.765299\pi$$
$$660$$ −4.71525 4.44306i −0.183541 0.172946i
$$661$$ −11.7271 + 2.49266i −0.456130 + 0.0969533i −0.430246 0.902712i $$-0.641573\pi$$
−0.0258835 + 0.999665i $$0.508240\pi$$
$$662$$ −16.2540 + 18.0519i −0.631729 + 0.701606i
$$663$$ −5.72412 + 9.51243i −0.222306 + 0.369432i
$$664$$ 20.4524 + 22.7147i 0.793707 + 0.881501i
$$665$$ −3.82444 + 3.41222i −0.148305 + 0.132320i
$$666$$ −0.0842229 + 0.0147371i −0.00326357 + 0.000571053i
$$667$$ −4.57022 + 3.32046i −0.176959 + 0.128569i
$$668$$ −1.56229 + 2.70596i −0.0604468 + 0.104697i
$$669$$ 0.832119 + 2.72812i 0.0321716 + 0.105475i
$$670$$ 3.92992 5.35774i 0.151826 0.206987i
$$671$$ 2.23978 21.3101i 0.0864659 0.822668i
$$672$$ 1.56210 + 0.729665i 0.0602594 + 0.0281474i
$$673$$ −17.3708 19.2922i −0.669593 0.743659i 0.308637 0.951180i $$-0.400127\pi$$
−0.978231 + 0.207521i $$0.933460\pi$$
$$674$$ 31.6806 1.22029
$$675$$ 25.9286 + 1.64619i 0.997991 + 0.0633619i
$$676$$ −17.1357 −0.659067
$$677$$ 26.3010 + 29.2103i 1.01083 + 1.12264i 0.992430 + 0.122810i $$0.0391907\pi$$
0.0184004 + 0.999831i $$0.494143\pi$$
$$678$$ 27.4431 + 12.8188i 1.05395 + 0.492303i
$$679$$ −0.243539 + 2.31712i −0.00934616 + 0.0889227i
$$680$$ 6.42871 2.05659i 0.246530 0.0788666i
$$681$$ 1.85062 + 6.06730i 0.0709159 + 0.232500i
$$682$$ 14.9361 25.8700i 0.571932 0.990615i
$$683$$ −26.3578 + 19.1501i −1.00855 + 0.732757i −0.963905 0.266246i $$-0.914217\pi$$
−0.0446482 + 0.999003i $$0.514217\pi$$
$$684$$ −4.33346 + 11.8578i −0.165694 + 0.453393i
$$685$$ 7.60267 + 17.2867i 0.290483 + 0.660491i
$$686$$ 3.49486 + 3.88143i 0.133434 + 0.148194i
$$687$$ −0.756076 + 1.25646i −0.0288461 + 0.0479369i
$$688$$ −4.51758 + 5.01729i −0.172231 + 0.191282i
$$689$$ −27.1593 + 5.77288i −1.03469 + 0.219929i
$$690$$ 2.58414 5.46737i 0.0983764 0.208139i
$$691$$ −32.6488 6.93971i −1.24202 0.263999i −0.460375 0.887725i $$-0.652285\pi$$
−0.781643 + 0.623726i $$0.785618\pi$$
$$692$$ −0.170254 + 0.123696i −0.00647207 + 0.00470223i
$$693$$ 2.15176 + 1.68568i 0.0817384 + 0.0640335i
$$694$$ −19.7521 + 14.3507i −0.749779 + 0.544746i
$$695$$ 2.36714 + 2.15092i 0.0897907 + 0.0815892i
$$696$$ 18.8229 13.1616i 0.713479 0.498888i
$$697$$ 0.470212 4.47377i 0.0178106 0.169456i
$$698$$ 6.73592 1.43176i 0.254958 0.0541931i
$$699$$ −19.0078 + 3.68183i −0.718940 + 0.139260i
$$700$$ 0.742475 0.529205i 0.0280629 0.0200021i
$$701$$ −47.0156 −1.77575 −0.887877 0.460081i $$-0.847820\pi$$
−0.887877 + 0.460081i $$0.847820\pi$$
$$702$$ −10.3901 39.0833i −0.392151 1.47510i
$$703$$ −0.140661 0.102196i −0.00530513 0.00385441i
$$704$$ 23.1931 10.3262i 0.874124 0.389185i
$$705$$ 11.4951 + 16.5995i 0.432930 + 0.625175i
$$706$$ 15.0625 + 6.70626i 0.566885 + 0.252393i
$$707$$ 1.81928 + 3.15109i 0.0684211 + 0.118509i
$$708$$ 1.51465 + 4.96581i 0.0569240 + 0.186627i
$$709$$ 2.86671 + 0.609338i 0.107661 + 0.0228842i 0.261427 0.965223i $$-0.415807\pi$$
−0.153766 + 0.988107i $$0.549140\pi$$
$$710$$ −23.6938 + 21.1400i −0.889212 + 0.793369i
$$711$$ −30.6706 15.0088i −1.15024 0.562873i
$$712$$ −11.6428 35.8329i −0.436333 1.34289i
$$713$$ −11.1024 2.35989i −0.415789 0.0883786i
$$714$$ −0.588361 + 0.249290i −0.0220189 + 0.00932946i
$$715$$ 24.6499 + 34.2537i 0.921855 + 1.28102i
$$716$$ 5.87941 6.52975i 0.219724 0.244028i
$$717$$ −27.5628 6.38238i −1.02935 0.238354i
$$718$$ −0.305309 + 0.528811i −0.0113940 + 0.0197351i
$$719$$ 13.9385 10.1269i 0.519820 0.377671i −0.296716 0.954966i $$-0.595892\pi$$
0.816536 + 0.577295i $$0.195892\pi$$
$$720$$ −7.46349 + 15.0779i −0.278148 + 0.561922i
$$721$$ −4.17330 3.03208i −0.155422 0.112920i
$$722$$ 36.9185 16.4372i 1.37397 0.611729i
$$723$$ 2.89734 + 2.18628i 0.107753 + 0.0813084i
$$724$$ −0.0165440 0.0286550i −0.000614851 0.00106495i
$$725$$ −2.05949 21.4684i −0.0764875 0.797317i
$$726$$ −5.35565 + 1.03740i −0.198767 + 0.0385014i
$$727$$ −0.116229 0.129085i −0.00431069 0.00478751i 0.740986 0.671521i $$-0.234359\pi$$
−0.745296 + 0.666733i $$0.767692\pi$$
$$728$$ −5.11692 3.71766i −0.189646 0.137786i
$$729$$ −23.4355 + 13.4081i −0.867982 + 0.496596i
$$730$$ −2.11321 1.23289i −0.0782134 0.0456313i
$$731$$ 0.276287 + 2.62869i 0.0102188 + 0.0972257i
$$732$$ 7.29232 1.41253i 0.269532 0.0522087i
$$733$$ −48.4219 21.5588i −1.78851 0.796294i −0.977401 0.211392i $$-0.932200\pi$$
−0.811104 0.584902i $$-0.801133\pi$$
$$734$$ −15.5971 + 17.3223i −0.575698 + 0.639378i
$$735$$ 20.2613 17.4289i 0.747351 0.642876i
$$736$$ −2.76790 3.07406i −0.102026 0.113311i
$$737$$ −2.22670 6.85308i −0.0820216 0.252436i
$$738$$ 10.5165 + 12.5665i 0.387118 + 0.462578i
$$739$$ −1.32714 + 4.08451i −0.0488195 + 0.150251i −0.972494 0.232926i $$-0.925170\pi$$
0.923675 + 0.383177i $$0.125170\pi$$
$$740$$ 0.0228910 + 0.0208002i 0.000841491 + 0.000764629i
$$741$$ 42.4003 70.4615i 1.55761 2.58847i
$$742$$ −1.45997 0.650022i −0.0535973 0.0238631i
$$743$$ −15.1680 26.2718i −0.556461 0.963820i −0.997788 0.0664731i $$-0.978825\pi$$
0.441327 0.897346i $$-0.354508\pi$$
$$744$$ 44.9588 + 10.4105i 1.64827 + 0.381669i
$$745$$ −19.0245 + 42.2127i −0.697002 + 1.54656i
$$746$$ −23.9192 17.3783i −0.875745 0.636266i
$$747$$ −20.7478 + 21.4288i −0.759121 + 0.784037i
$$748$$ 0.507554 1.56209i 0.0185580 0.0571157i
$$749$$ −1.60118 + 2.77332i −0.0585057 + 0.101335i
$$750$$ 12.9710 + 19.0991i 0.473632 + 0.697399i
$$751$$ 13.8299 + 23.9541i 0.504661 + 0.874099i 0.999985 + 0.00539081i $$0.00171596\pi$$
−0.495324 + 0.868708i $$0.664951\pi$$
$$752$$ −12.7892 + 2.71843i −0.466374 + 0.0991308i
$$753$$ 24.9005 + 11.6311i 0.907424 + 0.423862i
$$754$$ −30.6681 + 13.6543i −1.11687 + 0.497262i
$$755$$ 47.4169 4.76614i 1.72568 0.173457i
$$756$$ −0.341304 + 0.883937i −0.0124131 + 0.0321485i
$$757$$ 31.2908 1.13729 0.568643 0.822585i $$-0.307469\pi$$
0.568643 + 0.822585i $$0.307469\pi$$
$$758$$ 2.33664 + 22.2317i 0.0848707 + 0.807491i
$$759$$ −3.17567 5.73792i −0.115270 0.208273i
$$760$$ −47.6194 + 15.2338i −1.72734 + 0.552587i
$$761$$ 18.0350 3.83346i 0.653769 0.138963i 0.130926 0.991392i $$-0.458205\pi$$
0.522843 + 0.852429i $$0.324872\pi$$
$$762$$ −31.7794 0.575514i −1.15125 0.0208487i
$$763$$ 3.41583 + 0.726057i 0.123661 + 0.0262850i
$$764$$ −0.428507 + 1.31881i −0.0155028 + 0.0477128i
$$765$$ 2.43161 + 6.12130i 0.0879152 + 0.221316i
$$766$$ 2.01977 + 6.21620i 0.0729771 + 0.224601i