# Properties

 Label 225.2.q.a.16.14 Level $225$ Weight $2$ Character 225.16 Analytic conductor $1.797$ Analytic rank $0$ Dimension $224$ Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [225,2,Mod(16,225)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(225, base_ring=CyclotomicField(30))

chi = DirichletCharacter(H, H._module([20, 6]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("225.16");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$225 = 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 225.q (of order $$15$$, degree $$8$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.79663404548$$ Analytic rank: $$0$$ Dimension: $$224$$ Relative dimension: $$28$$ over $$\Q(\zeta_{15})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

## Embedding invariants

 Embedding label 16.14 Character $$\chi$$ $$=$$ 225.16 Dual form 225.2.q.a.211.14

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.0861137 + 0.0383403i) q^{2} +(1.36636 - 1.06445i) q^{3} +(-1.33232 + 1.47969i) q^{4} +(-0.0996266 - 2.23385i) q^{5} +(-0.0768514 + 0.144050i) q^{6} +(0.322971 - 0.559402i) q^{7} +(0.116257 - 0.357802i) q^{8} +(0.733899 - 2.90885i) q^{9} +O(q^{10})$$ $$q+(-0.0861137 + 0.0383403i) q^{2} +(1.36636 - 1.06445i) q^{3} +(-1.33232 + 1.47969i) q^{4} +(-0.0996266 - 2.23385i) q^{5} +(-0.0768514 + 0.144050i) q^{6} +(0.322971 - 0.559402i) q^{7} +(0.116257 - 0.357802i) q^{8} +(0.733899 - 2.90885i) q^{9} +(0.0942256 + 0.188545i) q^{10} +(5.40026 - 2.40435i) q^{11} +(-0.245378 + 3.43997i) q^{12} +(-0.255067 - 0.113563i) q^{13} +(-0.00636459 + 0.0605550i) q^{14} +(-2.51394 - 2.94620i) q^{15} +(-0.412549 - 3.92514i) q^{16} +(-0.735171 + 2.26262i) q^{17} +(0.0483273 + 0.278630i) q^{18} +(-0.791053 + 2.43461i) q^{19} +(3.43813 + 2.82877i) q^{20} +(-0.154159 - 1.10813i) q^{21} +(-0.372853 + 0.414095i) q^{22} +(-0.562173 + 5.34872i) q^{23} +(-0.222013 - 0.612637i) q^{24} +(-4.98015 + 0.445101i) q^{25} +0.0263188 q^{26} +(-2.09355 - 4.75574i) q^{27} +(0.397440 + 1.22320i) q^{28} +(-0.794901 - 0.168961i) q^{29} +(0.329443 + 0.157323i) q^{30} +(0.0411395 - 0.00874448i) q^{31} +(0.562233 + 0.973816i) q^{32} +(4.81941 - 9.03351i) q^{33} +(-0.0234414 - 0.223030i) q^{34} +(-1.28180 - 0.665736i) q^{35} +(3.32640 + 4.96144i) q^{36} +(-6.04934 + 4.39510i) q^{37} +(-0.0252232 - 0.239983i) q^{38} +(-0.469396 + 0.116337i) q^{39} +(-0.810857 - 0.224054i) q^{40} +(8.91562 + 3.96949i) q^{41} +(0.0557613 + 0.0895149i) q^{42} +(-0.429402 + 0.743746i) q^{43} +(-3.63716 + 11.1940i) q^{44} +(-6.57104 - 1.34962i) q^{45} +(-0.156661 - 0.482152i) q^{46} +(1.61125 + 0.342483i) q^{47} +(-4.74181 - 4.92404i) q^{48} +(3.29138 + 5.70084i) q^{49} +(0.411794 - 0.229270i) q^{50} +(1.40394 + 3.87412i) q^{51} +(0.507867 - 0.226117i) q^{52} +(-2.47058 - 7.60367i) q^{53} +(0.362620 + 0.329267i) q^{54} +(-5.90896 - 11.8238i) q^{55} +(-0.162608 - 0.180594i) q^{56} +(1.51065 + 4.16860i) q^{57} +(0.0749299 - 0.0159268i) q^{58} +(2.32377 + 1.03461i) q^{59} +(7.70882 + 0.205424i) q^{60} +(-10.8863 + 4.84692i) q^{61} +(-0.00320741 + 0.00233032i) q^{62} +(-1.39019 - 1.35002i) q^{63} +(6.30025 + 4.57740i) q^{64} +(-0.228271 + 0.581094i) q^{65} +(-0.0686697 + 0.962687i) q^{66} +(-10.8408 + 2.30428i) q^{67} +(-2.36849 - 4.10235i) q^{68} +(4.92530 + 7.90670i) q^{69} +(0.135905 + 0.00818463i) q^{70} +(1.96555 + 6.04933i) q^{71} +(-0.955471 - 0.600764i) q^{72} +(10.1015 + 7.33920i) q^{73} +(0.352422 - 0.610413i) q^{74} +(-6.33091 + 5.90928i) q^{75} +(-2.54853 - 4.41418i) q^{76} +(0.399128 - 3.79745i) q^{77} +(0.0359611 - 0.0280150i) q^{78} +(7.36881 + 1.56629i) q^{79} +(-8.72707 + 1.31262i) q^{80} +(-7.92278 - 4.26960i) q^{81} -0.919949 q^{82} +(-8.55130 - 9.49718i) q^{83} +(1.84508 + 1.24828i) q^{84} +(5.12760 + 1.41684i) q^{85} +(0.00846196 - 0.0805102i) q^{86} +(-1.26597 + 0.615268i) q^{87} +(-0.232464 - 2.21174i) q^{88} +(-7.14652 - 5.19225i) q^{89} +(0.617601 - 0.135715i) q^{90} +(-0.145907 + 0.106007i) q^{91} +(-7.16543 - 7.95802i) q^{92} +(0.0469035 - 0.0557390i) q^{93} +(-0.151882 + 0.0322835i) q^{94} +(5.51736 + 1.52454i) q^{95} +(1.80479 + 0.732118i) q^{96} +(12.9608 + 2.75489i) q^{97} +(-0.502005 - 0.364728i) q^{98} +(-3.03064 - 17.4731i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9}+O(q^{10})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9} - 20 q^{10} - 11 q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - 48 q^{15} + 23 q^{16} - 24 q^{17} - 12 q^{19} + q^{20} + 15 q^{21} - 11 q^{22} + q^{23} - 30 q^{24} - 16 q^{25} - 136 q^{26} + 7 q^{27} + 4 q^{28} - 15 q^{29} - 24 q^{30} + 3 q^{31} + 12 q^{32} - 5 q^{33} + q^{34} + 14 q^{35} + 38 q^{36} - 24 q^{37} + 55 q^{38} + 20 q^{39} + q^{40} - 19 q^{41} - 38 q^{42} - 8 q^{43} + 4 q^{44} - 38 q^{45} - 20 q^{46} - 10 q^{47} - 25 q^{48} - 72 q^{49} - 3 q^{50} - 26 q^{51} - 25 q^{52} - 12 q^{53} + 53 q^{54} - 20 q^{55} - 60 q^{56} + 38 q^{57} - 23 q^{58} - 30 q^{59} - 33 q^{60} - 3 q^{61} - 44 q^{62} + 46 q^{63} - 44 q^{64} + 51 q^{65} - 134 q^{66} - 12 q^{67} - 156 q^{68} + 4 q^{69} - 16 q^{70} + 42 q^{71} + 74 q^{72} - 12 q^{73} + 90 q^{74} + 67 q^{75} - 8 q^{76} + 31 q^{77} - 92 q^{78} - 15 q^{79} + 298 q^{80} - 104 q^{81} + 8 q^{82} + 59 q^{83} + 115 q^{84} - 11 q^{85} + 9 q^{86} - 59 q^{87} - 23 q^{88} + 106 q^{89} + 107 q^{90} + 30 q^{91} + 11 q^{92} + 32 q^{93} + 25 q^{94} + 7 q^{95} + 35 q^{96} - 21 q^{97} + 146 q^{98} - 20 q^{99}+O(q^{100})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 - 20 * q^10 - 11 * q^11 - 4 * q^12 - 3 * q^13 + q^14 - 48 * q^15 + 23 * q^16 - 24 * q^17 - 12 * q^19 + q^20 + 15 * q^21 - 11 * q^22 + q^23 - 30 * q^24 - 16 * q^25 - 136 * q^26 + 7 * q^27 + 4 * q^28 - 15 * q^29 - 24 * q^30 + 3 * q^31 + 12 * q^32 - 5 * q^33 + q^34 + 14 * q^35 + 38 * q^36 - 24 * q^37 + 55 * q^38 + 20 * q^39 + q^40 - 19 * q^41 - 38 * q^42 - 8 * q^43 + 4 * q^44 - 38 * q^45 - 20 * q^46 - 10 * q^47 - 25 * q^48 - 72 * q^49 - 3 * q^50 - 26 * q^51 - 25 * q^52 - 12 * q^53 + 53 * q^54 - 20 * q^55 - 60 * q^56 + 38 * q^57 - 23 * q^58 - 30 * q^59 - 33 * q^60 - 3 * q^61 - 44 * q^62 + 46 * q^63 - 44 * q^64 + 51 * q^65 - 134 * q^66 - 12 * q^67 - 156 * q^68 + 4 * q^69 - 16 * q^70 + 42 * q^71 + 74 * q^72 - 12 * q^73 + 90 * q^74 + 67 * q^75 - 8 * q^76 + 31 * q^77 - 92 * q^78 - 15 * q^79 + 298 * q^80 - 104 * q^81 + 8 * q^82 + 59 * q^83 + 115 * q^84 - 11 * q^85 + 9 * q^86 - 59 * q^87 - 23 * q^88 + 106 * q^89 + 107 * q^90 + 30 * q^91 + 11 * q^92 + 32 * q^93 + 25 * q^94 + 7 * q^95 + 35 * q^96 - 21 * q^97 + 146 * q^98 - 20 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/225\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.0861137 + 0.0383403i −0.0608916 + 0.0271107i −0.436957 0.899483i $$-0.643944\pi$$
0.376065 + 0.926593i $$0.377277\pi$$
$$3$$ 1.36636 1.06445i 0.788870 0.614560i
$$4$$ −1.33232 + 1.47969i −0.666158 + 0.739843i
$$5$$ −0.0996266 2.23385i −0.0445544 0.999007i
$$6$$ −0.0768514 + 0.144050i −0.0313745 + 0.0588083i
$$7$$ 0.322971 0.559402i 0.122072 0.211434i −0.798513 0.601978i $$-0.794380\pi$$
0.920584 + 0.390544i $$0.127713\pi$$
$$8$$ 0.116257 0.357802i 0.0411030 0.126502i
$$9$$ 0.733899 2.90885i 0.244633 0.969616i
$$10$$ 0.0942256 + 0.188545i 0.0297968 + 0.0596232i
$$11$$ 5.40026 2.40435i 1.62824 0.724938i 0.629591 0.776927i $$-0.283223\pi$$
0.998648 + 0.0519884i $$0.0165559\pi$$
$$12$$ −0.245378 + 3.43997i −0.0708344 + 0.993034i
$$13$$ −0.255067 0.113563i −0.0707428 0.0314967i 0.371060 0.928609i $$-0.378994\pi$$
−0.441803 + 0.897112i $$0.645661\pi$$
$$14$$ −0.00636459 + 0.0605550i −0.00170101 + 0.0161840i
$$15$$ −2.51394 2.94620i −0.649097 0.760706i
$$16$$ −0.412549 3.92514i −0.103137 0.981286i
$$17$$ −0.735171 + 2.26262i −0.178305 + 0.548767i −0.999769 0.0214938i $$-0.993158\pi$$
0.821464 + 0.570261i $$0.193158\pi$$
$$18$$ 0.0483273 + 0.278630i 0.0113909 + 0.0656736i
$$19$$ −0.791053 + 2.43461i −0.181480 + 0.558538i −0.999870 0.0161251i $$-0.994867\pi$$
0.818390 + 0.574663i $$0.194867\pi$$
$$20$$ 3.43813 + 2.82877i 0.768789 + 0.632533i
$$21$$ −0.154159 1.10813i −0.0336402 0.241814i
$$22$$ −0.372853 + 0.414095i −0.0794925 + 0.0882853i
$$23$$ −0.562173 + 5.34872i −0.117221 + 1.11528i 0.764863 + 0.644193i $$0.222807\pi$$
−0.882084 + 0.471092i $$0.843860\pi$$
$$24$$ −0.222013 0.612637i −0.0453181 0.125054i
$$25$$ −4.98015 + 0.445101i −0.996030 + 0.0890202i
$$26$$ 0.0263188 0.00516154
$$27$$ −2.09355 4.75574i −0.402903 0.915243i
$$28$$ 0.397440 + 1.22320i 0.0751092 + 0.231162i
$$29$$ −0.794901 0.168961i −0.147609 0.0313753i 0.133514 0.991047i $$-0.457374\pi$$
−0.281124 + 0.959672i $$0.590707\pi$$
$$30$$ 0.329443 + 0.157323i 0.0601478 + 0.0287231i
$$31$$ 0.0411395 0.00874448i 0.00738888 0.00157055i −0.204216 0.978926i $$-0.565464\pi$$
0.211605 + 0.977355i $$0.432131\pi$$
$$32$$ 0.562233 + 0.973816i 0.0993896 + 0.172148i
$$33$$ 4.81941 9.03351i 0.838951 1.57253i
$$34$$ −0.0234414 0.223030i −0.00402016 0.0382493i
$$35$$ −1.28180 0.665736i −0.216663 0.112530i
$$36$$ 3.32640 + 4.96144i 0.554399 + 0.826907i
$$37$$ −6.04934 + 4.39510i −0.994506 + 0.722551i −0.960903 0.276885i $$-0.910698\pi$$
−0.0336026 + 0.999435i $$0.510698\pi$$
$$38$$ −0.0252232 0.239983i −0.00409174 0.0389303i
$$39$$ −0.469396 + 0.116337i −0.0751635 + 0.0186288i
$$40$$ −0.810857 0.224054i −0.128208 0.0354260i
$$41$$ 8.91562 + 3.96949i 1.39239 + 0.619930i 0.959549 0.281542i $$-0.0908457\pi$$
0.432837 + 0.901472i $$0.357512\pi$$
$$42$$ 0.0557613 + 0.0895149i 0.00860416 + 0.0138125i
$$43$$ −0.429402 + 0.743746i −0.0654832 + 0.113420i −0.896908 0.442217i $$-0.854192\pi$$
0.831425 + 0.555637i $$0.187526\pi$$
$$44$$ −3.63716 + 11.1940i −0.548323 + 1.68756i
$$45$$ −6.57104 1.34962i −0.979552 0.201189i
$$46$$ −0.156661 0.482152i −0.0230984 0.0710894i
$$47$$ 1.61125 + 0.342483i 0.235026 + 0.0499562i 0.323919 0.946085i $$-0.395000\pi$$
−0.0888930 + 0.996041i $$0.528333\pi$$
$$48$$ −4.74181 4.92404i −0.684421 0.710724i
$$49$$ 3.29138 + 5.70084i 0.470197 + 0.814405i
$$50$$ 0.411794 0.229270i 0.0582365 0.0324236i
$$51$$ 1.40394 + 3.87412i 0.196590 + 0.542485i
$$52$$ 0.507867 0.226117i 0.0704285 0.0313568i
$$53$$ −2.47058 7.60367i −0.339361 1.04444i −0.964534 0.263958i $$-0.914972\pi$$
0.625174 0.780486i $$-0.285028\pi$$
$$54$$ 0.362620 + 0.329267i 0.0493463 + 0.0448076i
$$55$$ −5.90896 11.8238i −0.796764 1.59432i
$$56$$ −0.162608 0.180594i −0.0217293 0.0241329i
$$57$$ 1.51065 + 4.16860i 0.200091 + 0.552145i
$$58$$ 0.0749299 0.0159268i 0.00983878 0.00209130i
$$59$$ 2.32377 + 1.03461i 0.302530 + 0.134695i 0.552387 0.833588i $$-0.313717\pi$$
−0.249857 + 0.968283i $$0.580384\pi$$
$$60$$ 7.70882 + 0.205424i 0.995204 + 0.0265201i
$$61$$ −10.8863 + 4.84692i −1.39385 + 0.620584i −0.959898 0.280350i $$-0.909549\pi$$
−0.433956 + 0.900934i $$0.642883\pi$$
$$62$$ −0.00320741 + 0.00233032i −0.000407342 + 0.000295951i
$$63$$ −1.39019 1.35002i −0.175147 0.170086i
$$64$$ 6.30025 + 4.57740i 0.787531 + 0.572175i
$$65$$ −0.228271 + 0.581094i −0.0283136 + 0.0720759i
$$66$$ −0.0686697 + 0.962687i −0.00845266 + 0.118499i
$$67$$ −10.8408 + 2.30428i −1.32442 + 0.281513i −0.815227 0.579142i $$-0.803388\pi$$
−0.509189 + 0.860655i $$0.670054\pi$$
$$68$$ −2.36849 4.10235i −0.287222 0.497483i
$$69$$ 4.92530 + 7.90670i 0.592937 + 0.951854i
$$70$$ 0.135905 + 0.00818463i 0.0162437 + 0.000978250i
$$71$$ 1.96555 + 6.04933i 0.233267 + 0.717923i 0.997347 + 0.0728005i $$0.0231937\pi$$
−0.764079 + 0.645122i $$0.776806\pi$$
$$72$$ −0.955471 0.600764i −0.112603 0.0708007i
$$73$$ 10.1015 + 7.33920i 1.18230 + 0.858989i 0.992429 0.122821i $$-0.0391941\pi$$
0.189868 + 0.981810i $$0.439194\pi$$
$$74$$ 0.352422 0.610413i 0.0409682 0.0709590i
$$75$$ −6.33091 + 5.90928i −0.731030 + 0.682345i
$$76$$ −2.54853 4.41418i −0.292336 0.506341i
$$77$$ 0.399128 3.79745i 0.0454848 0.432759i
$$78$$ 0.0359611 0.0280150i 0.00407179 0.00317208i
$$79$$ 7.36881 + 1.56629i 0.829056 + 0.176221i 0.602846 0.797857i $$-0.294033\pi$$
0.226210 + 0.974079i $$0.427366\pi$$
$$80$$ −8.72707 + 1.31262i −0.975717 + 0.146755i
$$81$$ −7.92278 4.26960i −0.880309 0.474400i
$$82$$ −0.919949 −0.101591
$$83$$ −8.55130 9.49718i −0.938627 1.04245i −0.999019 0.0442760i $$-0.985902\pi$$
0.0603925 0.998175i $$-0.480765\pi$$
$$84$$ 1.84508 + 1.24828i 0.201314 + 0.136198i
$$85$$ 5.12760 + 1.41684i 0.556166 + 0.153678i
$$86$$ 0.00846196 0.0805102i 0.000912476 0.00868163i
$$87$$ −1.26597 + 0.615268i −0.135727 + 0.0659637i
$$88$$ −0.232464 2.21174i −0.0247807 0.235773i
$$89$$ −7.14652 5.19225i −0.757529 0.550377i 0.140622 0.990063i $$-0.455090\pi$$
−0.898151 + 0.439686i $$0.855090\pi$$
$$90$$ 0.617601 0.135715i 0.0651009 0.0143056i
$$91$$ −0.145907 + 0.106007i −0.0152952 + 0.0111126i
$$92$$ −7.16543 7.95802i −0.747048 0.829681i
$$93$$ 0.0469035 0.0557390i 0.00486367 0.00577987i
$$94$$ −0.151882 + 0.0322835i −0.0156654 + 0.00332979i
$$95$$ 5.51736 + 1.52454i 0.566069 + 0.156415i
$$96$$ 1.80479 + 0.732118i 0.184201 + 0.0747215i
$$97$$ 12.9608 + 2.75489i 1.31597 + 0.279717i 0.811823 0.583904i $$-0.198475\pi$$
0.504142 + 0.863621i $$0.331809\pi$$
$$98$$ −0.502005 0.364728i −0.0507101 0.0368431i
$$99$$ −3.03064 17.4731i −0.304591 1.75611i
$$100$$ 5.97652 7.96207i 0.597652 0.796207i
$$101$$ 5.97629 10.3512i 0.594664 1.02999i −0.398931 0.916981i $$-0.630619\pi$$
0.993594 0.113006i $$-0.0360481\pi$$
$$102$$ −0.269433 0.279787i −0.0266778 0.0277031i
$$103$$ −3.15521 + 3.50421i −0.310892 + 0.345280i −0.878260 0.478184i $$-0.841295\pi$$
0.567368 + 0.823465i $$0.307962\pi$$
$$104$$ −0.0702864 + 0.0780609i −0.00689215 + 0.00765450i
$$105$$ −2.46004 + 0.454767i −0.240075 + 0.0443807i
$$106$$ 0.504278 + 0.560058i 0.0489798 + 0.0543976i
$$107$$ 4.90145 0.473841 0.236921 0.971529i $$-0.423862\pi$$
0.236921 + 0.971529i $$0.423862\pi$$
$$108$$ 9.82627 + 3.23836i 0.945533 + 0.311611i
$$109$$ 9.96264 7.23828i 0.954248 0.693302i 0.00244045 0.999997i $$-0.499223\pi$$
0.951808 + 0.306695i $$0.0992232\pi$$
$$110$$ 0.962171 + 0.791641i 0.0917394 + 0.0754800i
$$111$$ −3.58724 + 12.4445i −0.340486 + 1.18118i
$$112$$ −2.32897 1.03693i −0.220067 0.0979803i
$$113$$ 7.95515 + 3.54186i 0.748357 + 0.333190i 0.745232 0.666805i $$-0.232339\pi$$
0.00312509 + 0.999995i $$0.499005\pi$$
$$114$$ −0.289913 0.301055i −0.0271529 0.0281964i
$$115$$ 12.0042 + 0.722934i 1.11940 + 0.0674139i
$$116$$ 1.30907 0.951094i 0.121544 0.0883069i
$$117$$ −0.517531 + 0.658607i −0.0478457 + 0.0608882i
$$118$$ −0.239776 −0.0220732
$$119$$ 1.02828 + 1.14202i 0.0942620 + 0.104689i
$$120$$ −1.34642 + 0.556977i −0.122911 + 0.0508448i
$$121$$ 16.0214 17.7936i 1.45649 1.61760i
$$122$$ 0.751632 0.834772i 0.0680496 0.0755767i
$$123$$ 16.4073 4.06645i 1.47940 0.366660i
$$124$$ −0.0418718 + 0.0725240i −0.00376019 + 0.00651285i
$$125$$ 1.49044 + 11.0805i 0.133309 + 0.991074i
$$126$$ 0.171474 + 0.0629549i 0.0152761 + 0.00560846i
$$127$$ −16.5737 12.0415i −1.47068 1.06851i −0.980416 0.196940i $$-0.936900\pi$$
−0.490266 0.871573i $$-0.663100\pi$$
$$128$$ −2.91782 0.620202i −0.257902 0.0548187i
$$129$$ 0.204960 + 1.47330i 0.0180457 + 0.129717i
$$130$$ −0.00262205 0.0587922i −0.000229969 0.00515642i
$$131$$ −4.83084 + 1.02683i −0.422073 + 0.0897143i −0.414051 0.910254i $$-0.635887\pi$$
−0.00802126 + 0.999968i $$0.502553\pi$$
$$132$$ 6.94579 + 19.1667i 0.604553 + 1.66825i
$$133$$ 1.10644 + 1.22883i 0.0959405 + 0.106553i
$$134$$ 0.845195 0.614070i 0.0730138 0.0530476i
$$135$$ −10.4150 + 5.15046i −0.896383 + 0.443281i
$$136$$ 0.724103 + 0.526091i 0.0620913 + 0.0451120i
$$137$$ −1.74119 16.5663i −0.148760 1.41536i −0.773139 0.634236i $$-0.781315\pi$$
0.624379 0.781121i $$-0.285352\pi$$
$$138$$ −0.727281 0.492038i −0.0619103 0.0418850i
$$139$$ 0.692041 6.58433i 0.0586981 0.558475i −0.925167 0.379561i $$-0.876075\pi$$
0.983865 0.178914i $$-0.0572584\pi$$
$$140$$ 2.69284 1.00968i 0.227586 0.0853339i
$$141$$ 2.56611 1.24714i 0.216106 0.105028i
$$142$$ −0.401194 0.445571i −0.0336674 0.0373914i
$$143$$ −1.65047 −0.138019
$$144$$ −11.7204 1.68062i −0.976701 0.140051i
$$145$$ −0.298241 + 1.79252i −0.0247675 + 0.148861i
$$146$$ −1.15127 0.244710i −0.0952797 0.0202523i
$$147$$ 10.5655 + 4.28591i 0.871425 + 0.353496i
$$148$$ 1.55626 14.8068i 0.127924 1.21711i
$$149$$ 8.60564 + 14.9054i 0.705001 + 1.22110i 0.966691 + 0.255946i $$0.0823869\pi$$
−0.261690 + 0.965152i $$0.584280\pi$$
$$150$$ 0.318614 0.751599i 0.0260148 0.0613678i
$$151$$ −0.171293 + 0.296689i −0.0139397 + 0.0241442i −0.872911 0.487879i $$-0.837771\pi$$
0.858971 + 0.512024i $$0.171104\pi$$
$$152$$ 0.779144 + 0.566081i 0.0631969 + 0.0459152i
$$153$$ 6.04209 + 3.79904i 0.488474 + 0.307134i
$$154$$ 0.111225 + 0.342315i 0.00896276 + 0.0275845i
$$155$$ −0.0236324 0.0910283i −0.00189820 0.00731157i
$$156$$ 0.453241 0.849557i 0.0362884 0.0680190i
$$157$$ 5.07964 + 8.79820i 0.405399 + 0.702173i 0.994368 0.105984i $$-0.0337991\pi$$
−0.588968 + 0.808156i $$0.700466\pi$$
$$158$$ −0.694608 + 0.147644i −0.0552601 + 0.0117459i
$$159$$ −11.4694 7.75957i −0.909585 0.615374i
$$160$$ 2.11934 1.35296i 0.167549 0.106961i
$$161$$ 2.81052 + 2.04196i 0.221500 + 0.160929i
$$162$$ 0.845958 + 0.0639092i 0.0664648 + 0.00502118i
$$163$$ −13.1349 + 9.54309i −1.02881 + 0.747473i −0.968070 0.250681i $$-0.919345\pi$$
−0.0607380 + 0.998154i $$0.519345\pi$$
$$164$$ −17.7520 + 7.90371i −1.38620 + 0.617176i
$$165$$ −20.6596 9.86584i −1.60835 0.768055i
$$166$$ 1.10051 + 0.489978i 0.0854161 + 0.0380297i
$$167$$ −17.2141 + 3.65896i −1.33206 + 0.283139i −0.818299 0.574792i $$-0.805083\pi$$
−0.513764 + 0.857931i $$0.671749\pi$$
$$168$$ −0.414414 0.0736697i −0.0319727 0.00568374i
$$169$$ −8.64654 9.60295i −0.665118 0.738688i
$$170$$ −0.495879 + 0.0745841i −0.0380322 + 0.00572034i
$$171$$ 6.50136 + 4.08781i 0.497172 + 0.312603i
$$172$$ −0.528412 1.62628i −0.0402910 0.124003i
$$173$$ −13.0604 + 5.81488i −0.992967 + 0.442097i −0.837910 0.545808i $$-0.816223\pi$$
−0.155057 + 0.987906i $$0.549556\pi$$
$$174$$ 0.0854282 0.101521i 0.00647630 0.00769628i
$$175$$ −1.35945 + 2.92966i −0.102765 + 0.221461i
$$176$$ −11.6653 20.2049i −0.879304 1.52300i
$$177$$ 4.27641 1.05988i 0.321435 0.0796657i
$$178$$ 0.814486 + 0.173124i 0.0610483 + 0.0129762i
$$179$$ −5.01429 15.4324i −0.374786 1.15347i −0.943623 0.331022i $$-0.892607\pi$$
0.568837 0.822450i $$-0.307393\pi$$
$$180$$ 10.7517 7.92495i 0.801385 0.590691i
$$181$$ −4.83704 + 14.8869i −0.359534 + 1.10653i 0.593799 + 0.804613i $$0.297627\pi$$
−0.953333 + 0.301920i $$0.902373\pi$$
$$182$$ 0.00850021 0.0147228i 0.000630077 0.00109133i
$$183$$ −9.71542 + 18.2106i −0.718185 + 1.34617i
$$184$$ 1.84843 + 0.822972i 0.136268 + 0.0606703i
$$185$$ 10.4207 + 13.0754i 0.766143 + 0.961325i
$$186$$ −0.00190198 + 0.00659819i −0.000139460 + 0.000483803i
$$187$$ 1.47003 + 13.9864i 0.107499 + 1.02278i
$$188$$ −2.65347 + 1.92786i −0.193524 + 0.140603i
$$189$$ −3.33652 0.364832i −0.242696 0.0265376i
$$190$$ −0.533572 + 0.0802535i −0.0387094 + 0.00582220i
$$191$$ 0.00915242 + 0.0870794i 0.000662246 + 0.00630085i 0.994848 0.101378i $$-0.0323250\pi$$
−0.994186 + 0.107678i $$0.965658\pi$$
$$192$$ 13.4808 0.451899i 0.972895 0.0326130i
$$193$$ 9.55089 + 16.5426i 0.687488 + 1.19076i 0.972648 + 0.232284i $$0.0746199\pi$$
−0.285160 + 0.958480i $$0.592047\pi$$
$$194$$ −1.22172 + 0.259685i −0.0877146 + 0.0186443i
$$195$$ 0.306644 + 1.03697i 0.0219592 + 0.0742589i
$$196$$ −12.8206 2.72510i −0.915758 0.194650i
$$197$$ −6.93182 21.3339i −0.493871 1.51998i −0.818708 0.574210i $$-0.805309\pi$$
0.324837 0.945770i $$-0.394691\pi$$
$$198$$ 0.930903 + 1.38848i 0.0661564 + 0.0986747i
$$199$$ 3.83647 0.271960 0.135980 0.990712i $$-0.456582\pi$$
0.135980 + 0.990712i $$0.456582\pi$$
$$200$$ −0.419719 + 1.83365i −0.0296786 + 0.129659i
$$201$$ −12.3597 + 14.6880i −0.871785 + 1.03601i
$$202$$ −0.117771 + 1.12052i −0.00828635 + 0.0788393i
$$203$$ −0.351247 + 0.390100i −0.0246527 + 0.0273796i
$$204$$ −7.60296 3.08416i −0.532314 0.215935i
$$205$$ 7.97901 20.3116i 0.557278 1.41862i
$$206$$ 0.137354 0.422733i 0.00956992 0.0294532i
$$207$$ 15.1460 + 5.56069i 1.05272 + 0.386495i
$$208$$ −0.340524 + 1.04802i −0.0236111 + 0.0726674i
$$209$$ 1.58177 + 15.0495i 0.109413 + 1.04100i
$$210$$ 0.194407 0.133480i 0.0134154 0.00921102i
$$211$$ 2.00311 19.0583i 0.137900 1.31203i −0.678524 0.734578i $$-0.737380\pi$$
0.816424 0.577453i $$-0.195953\pi$$
$$212$$ 14.5426 + 6.47480i 0.998793 + 0.444691i
$$213$$ 9.12485 + 6.17336i 0.625224 + 0.422992i
$$214$$ −0.422082 + 0.187923i −0.0288530 + 0.0128462i
$$215$$ 1.70420 + 0.885122i 0.116225 + 0.0603648i
$$216$$ −1.94500 + 0.196187i −0.132341 + 0.0133488i
$$217$$ 0.00839519 0.0258377i 0.000569903 0.00175398i
$$218$$ −0.580403 + 1.00529i −0.0393098 + 0.0680866i
$$219$$ 21.6146 0.724556i 1.46058 0.0489609i
$$220$$ 25.3681 + 7.00964i 1.71032 + 0.472590i
$$221$$ 0.444468 0.493632i 0.0298982 0.0332053i
$$222$$ −0.168216 1.20918i −0.0112899 0.0811549i
$$223$$ −22.1731 + 9.87211i −1.48482 + 0.661085i −0.979426 0.201802i $$-0.935320\pi$$
−0.505396 + 0.862888i $$0.668654\pi$$
$$224$$ 0.726339 0.0485306
$$225$$ −2.36019 + 14.8132i −0.157346 + 0.987543i
$$226$$ −0.820844 −0.0546017
$$227$$ 16.2273 7.22487i 1.07704 0.479531i 0.209969 0.977708i $$-0.432664\pi$$
0.867076 + 0.498177i $$0.165997\pi$$
$$228$$ −8.18089 3.31860i −0.541793 0.219780i
$$229$$ −3.83232 + 4.25622i −0.253247 + 0.281259i −0.856341 0.516411i $$-0.827268\pi$$
0.603094 + 0.797670i $$0.293934\pi$$
$$230$$ −1.06145 + 0.397991i −0.0699897 + 0.0262428i
$$231$$ −3.49683 5.61355i −0.230075 0.369344i
$$232$$ −0.152867 + 0.264774i −0.0100362 + 0.0173833i
$$233$$ −2.10216 + 6.46978i −0.137717 + 0.423850i −0.996003 0.0893227i $$-0.971530\pi$$
0.858286 + 0.513172i $$0.171530\pi$$
$$234$$ 0.0193153 0.0765574i 0.00126268 0.00500471i
$$235$$ 0.604530 3.63342i 0.0394352 0.237018i
$$236$$ −4.62690 + 2.06003i −0.301186 + 0.134096i
$$237$$ 11.7357 5.70360i 0.762316 0.370489i
$$238$$ −0.132334 0.0589189i −0.00857795 0.00381915i
$$239$$ 1.21016 11.5139i 0.0782787 0.744772i −0.883033 0.469310i $$-0.844503\pi$$
0.961312 0.275462i $$-0.0888308\pi$$
$$240$$ −10.5271 + 11.0830i −0.679524 + 0.715407i
$$241$$ 2.76063 + 26.2657i 0.177828 + 1.69192i 0.611815 + 0.791001i $$0.290440\pi$$
−0.433987 + 0.900919i $$0.642894\pi$$
$$242$$ −0.697453 + 2.14654i −0.0448340 + 0.137985i
$$243$$ −15.3702 + 2.59957i −0.985997 + 0.166763i
$$244$$ 7.33214 22.5660i 0.469392 1.44464i
$$245$$ 12.4069 7.92040i 0.792647 0.506015i
$$246$$ −1.25699 + 0.979239i −0.0801424 + 0.0624340i
$$247$$ 0.478253 0.531154i 0.0304305 0.0337965i
$$248$$ 0.00165396 0.0157364i 0.000105027 0.000999263i
$$249$$ −21.7934 3.87418i −1.38110 0.245516i
$$250$$ −0.553179 0.897044i −0.0349861 0.0567340i
$$251$$ −1.93964 −0.122429 −0.0612144 0.998125i $$-0.519497\pi$$
−0.0612144 + 0.998125i $$0.519497\pi$$
$$252$$ 3.84977 0.258391i 0.242513 0.0162771i
$$253$$ 9.82431 + 30.2361i 0.617649 + 1.90093i
$$254$$ 1.88890 + 0.401499i 0.118520 + 0.0251923i
$$255$$ 8.51432 3.52214i 0.533187 0.220565i
$$256$$ −14.9597 + 3.17978i −0.934980 + 0.198736i
$$257$$ −2.53536 4.39138i −0.158152 0.273927i 0.776051 0.630671i $$-0.217220\pi$$
−0.934202 + 0.356744i $$0.883887\pi$$
$$258$$ −0.0741368 0.119013i −0.00461556 0.00740945i
$$259$$ 0.504869 + 4.80350i 0.0313710 + 0.298475i
$$260$$ −0.555708 1.11197i −0.0344636 0.0689615i
$$261$$ −1.07486 + 2.18824i −0.0665322 + 0.135449i
$$262$$ 0.376633 0.273640i 0.0232685 0.0169055i
$$263$$ −0.626513 5.96087i −0.0386324 0.367563i −0.996710 0.0810533i $$-0.974172\pi$$
0.958077 0.286510i $$-0.0924951\pi$$
$$264$$ −2.67192 2.77460i −0.164445 0.170765i
$$265$$ −16.7393 + 6.27643i −1.02829 + 0.385558i
$$266$$ −0.142393 0.0633975i −0.00873069 0.00388715i
$$267$$ −15.2916 + 0.512600i −0.935832 + 0.0313706i
$$268$$ 11.0338 19.1110i 0.673994 1.16739i
$$269$$ 1.33291 4.10227i 0.0812689 0.250120i −0.902164 0.431394i $$-0.858022\pi$$
0.983433 + 0.181274i $$0.0580220\pi$$
$$270$$ 0.699407 0.842841i 0.0425645 0.0512936i
$$271$$ −8.40101 25.8556i −0.510325 1.57062i −0.791630 0.611000i $$-0.790767\pi$$
0.281305 0.959618i $$-0.409233\pi$$
$$272$$ 9.18442 + 1.95221i 0.556887 + 0.118370i
$$273$$ −0.0865221 + 0.300155i −0.00523655 + 0.0181662i
$$274$$ 0.785099 + 1.35983i 0.0474296 + 0.0821504i
$$275$$ −25.8239 + 14.3777i −1.55724 + 0.867007i
$$276$$ −18.2615 3.24631i −1.09921 0.195405i
$$277$$ 12.2157 5.43880i 0.733972 0.326786i −0.00548865 0.999985i $$-0.501747\pi$$
0.739461 + 0.673199i $$0.235080\pi$$
$$278$$ 0.192851 + 0.593534i 0.0115664 + 0.0355978i
$$279$$ 0.00475591 0.126086i 0.000284729 0.00754858i
$$280$$ −0.387219 + 0.381232i −0.0231408 + 0.0227830i
$$281$$ 15.3773 + 17.0782i 0.917330 + 1.01880i 0.999754 + 0.0222013i $$0.00706746\pi$$
−0.0824231 + 0.996597i $$0.526266\pi$$
$$282$$ −0.173162 + 0.205782i −0.0103116 + 0.0122541i
$$283$$ −11.6062 + 2.46697i −0.689917 + 0.146646i −0.539512 0.841978i $$-0.681391\pi$$
−0.150405 + 0.988624i $$0.548058\pi$$
$$284$$ −11.5698 5.15122i −0.686543 0.305669i
$$285$$ 9.16152 3.78987i 0.542681 0.224493i
$$286$$ 0.142128 0.0632796i 0.00840422 0.00374180i
$$287$$ 5.10003 3.70539i 0.301045 0.218722i
$$288$$ 3.24530 0.920767i 0.191231 0.0542567i
$$289$$ 9.17430 + 6.66552i 0.539665 + 0.392089i
$$290$$ −0.0430432 0.165795i −0.00252758 0.00973583i
$$291$$ 20.6415 10.0319i 1.21003 0.588079i
$$292$$ −24.3182 + 5.16899i −1.42311 + 0.302492i
$$293$$ −7.39271 12.8045i −0.431887 0.748050i 0.565149 0.824989i $$-0.308819\pi$$
−0.997036 + 0.0769390i $$0.975485\pi$$
$$294$$ −1.07416 + 0.0360074i −0.0626460 + 0.00210000i
$$295$$ 2.07965 5.29403i 0.121082 0.308230i
$$296$$ 0.869299 + 2.67543i 0.0505270 + 0.155506i
$$297$$ −22.7401 20.6486i −1.31952 1.19815i
$$298$$ −1.31254 0.953617i −0.0760335 0.0552415i
$$299$$ 0.750808 1.30044i 0.0434204 0.0752063i
$$300$$ −0.309118 17.2408i −0.0178469 0.995397i
$$301$$ 0.277369 + 0.480417i 0.0159873 + 0.0276908i
$$302$$ 0.00337557 0.0321164i 0.000194242 0.00184809i
$$303$$ −2.85258 20.5050i −0.163876 1.17798i
$$304$$ 9.88255 + 2.10060i 0.566803 + 0.120478i
$$305$$ 11.9118 + 23.8356i 0.682070 + 1.36482i
$$306$$ −0.665963 0.0954939i −0.0380706 0.00545902i
$$307$$ 6.64948 0.379506 0.189753 0.981832i $$-0.439231\pi$$
0.189753 + 0.981832i $$0.439231\pi$$
$$308$$ 5.08727 + 5.64998i 0.289874 + 0.321938i
$$309$$ −0.581107 + 8.14659i −0.0330580 + 0.463443i
$$310$$ 0.00552513 + 0.00693271i 0.000313806 + 0.000393751i
$$311$$ −2.55826 + 24.3402i −0.145066 + 1.38021i 0.643590 + 0.765371i $$0.277444\pi$$
−0.788655 + 0.614836i $$0.789222\pi$$
$$312$$ −0.0129449 + 0.181476i −0.000732861 + 0.0102740i
$$313$$ −0.776631 7.38915i −0.0438978 0.417660i −0.994299 0.106632i $$-0.965993\pi$$
0.950401 0.311028i $$-0.100673\pi$$
$$314$$ −0.774752 0.562891i −0.0437218 0.0317658i
$$315$$ −2.87723 + 3.23996i −0.162114 + 0.182551i
$$316$$ −12.1352 + 8.81674i −0.682658 + 0.495980i
$$317$$ −1.47227 1.63512i −0.0826910 0.0918377i 0.700379 0.713771i $$-0.253014\pi$$
−0.783070 + 0.621933i $$0.786348\pi$$
$$318$$ 1.28518 + 0.228464i 0.0720693 + 0.0128116i
$$319$$ −4.69891 + 0.998784i −0.263089 + 0.0559212i
$$320$$ 9.59754 14.5298i 0.536519 0.812242i
$$321$$ 6.69717 5.21734i 0.373799 0.291204i
$$322$$ −0.320314 0.0680847i −0.0178504 0.00379421i
$$323$$ −4.92705 3.57971i −0.274148 0.199181i
$$324$$ 16.8733 6.03478i 0.937407 0.335266i
$$325$$ 1.32082 + 0.452030i 0.0732658 + 0.0250741i
$$326$$ 0.765214 1.32539i 0.0423813 0.0734065i
$$327$$ 5.90781 20.4949i 0.326703 1.13337i
$$328$$ 2.45680 2.72855i 0.135654 0.150659i
$$329$$ 0.711974 0.790727i 0.0392524 0.0435942i
$$330$$ 2.15734 + 0.0574884i 0.118757 + 0.00316463i
$$331$$ −12.0275 13.3579i −0.661092 0.734217i 0.315593 0.948895i $$-0.397797\pi$$
−0.976685 + 0.214678i $$0.931130\pi$$
$$332$$ 25.4459 1.39652
$$333$$ 8.34508 + 20.8222i 0.457308 + 1.14105i
$$334$$ 1.34208 0.975079i 0.0734354 0.0533539i
$$335$$ 6.22745 + 23.9871i 0.340242 + 1.31056i
$$336$$ −4.28598 + 1.06226i −0.233819 + 0.0579508i
$$337$$ −2.38823 1.06331i −0.130095 0.0579221i 0.340657 0.940188i $$-0.389351\pi$$
−0.470752 + 0.882266i $$0.656017\pi$$
$$338$$ 1.11277 + 0.495435i 0.0605265 + 0.0269481i
$$339$$ 14.6398 3.62838i 0.795122 0.197066i
$$340$$ −8.92806 + 5.69956i −0.484192 + 0.309102i
$$341$$ 0.201139 0.146136i 0.0108923 0.00791372i
$$342$$ −0.716585 0.102753i −0.0387485 0.00555623i
$$343$$ 8.77367 0.473734
$$344$$ 0.216193 + 0.240107i 0.0116563 + 0.0129457i
$$345$$ 17.1717 11.7901i 0.924491 0.634757i
$$346$$ 0.901739 1.00148i 0.0484778 0.0538400i
$$347$$ 0.794313 0.882174i 0.0426410 0.0473576i −0.721447 0.692470i $$-0.756523\pi$$
0.764088 + 0.645112i $$0.223189\pi$$
$$348$$ 0.776273 2.69298i 0.0416126 0.144359i
$$349$$ −9.82282 + 17.0136i −0.525803 + 0.910718i 0.473745 + 0.880662i $$0.342902\pi$$
−0.999548 + 0.0300560i $$0.990431\pi$$
$$350$$ 0.00474349 0.304406i 0.000253550 0.0162712i
$$351$$ −0.00608252 + 1.45078i −0.000324661 + 0.0774370i
$$352$$ 5.37759 + 3.90705i 0.286627 + 0.208246i
$$353$$ 23.9164 + 5.08359i 1.27294 + 0.270572i 0.794347 0.607464i $$-0.207813\pi$$
0.478594 + 0.878036i $$0.341147\pi$$
$$354$$ −0.327621 + 0.255229i −0.0174129 + 0.0135653i
$$355$$ 13.3175 4.99340i 0.706817 0.265022i
$$356$$ 17.2043 3.65689i 0.911827 0.193815i
$$357$$ 2.62062 + 0.465863i 0.138698 + 0.0246561i
$$358$$ 1.02348 + 1.13669i 0.0540927 + 0.0600760i
$$359$$ 1.90435 1.38359i 0.100508 0.0730231i −0.536396 0.843966i $$-0.680215\pi$$
0.636904 + 0.770943i $$0.280215\pi$$
$$360$$ −1.24683 + 2.19423i −0.0657135 + 0.115646i
$$361$$ 10.0698 + 7.31610i 0.529987 + 0.385058i
$$362$$ −0.154232 1.46742i −0.00810625 0.0771258i
$$363$$ 2.95073 41.3665i 0.154873 2.17118i
$$364$$ 0.0375360 0.357131i 0.00196742 0.0187188i
$$365$$ 15.3883 23.2965i 0.805459 1.21939i
$$366$$ 0.138431 1.94068i 0.00723590 0.101441i
$$367$$ −5.67343 6.30098i −0.296151 0.328908i 0.576645 0.816995i $$-0.304362\pi$$
−0.872795 + 0.488087i $$0.837695\pi$$
$$368$$ 21.2264 1.10650
$$369$$ 18.0898 23.0210i 0.941718 1.19842i
$$370$$ −1.39868 0.726443i −0.0727139 0.0377660i
$$371$$ −5.05143 1.07372i −0.262257 0.0557445i
$$372$$ 0.0199860 + 0.143664i 0.00103623 + 0.00744866i
$$373$$ 0.718101 6.83227i 0.0371819 0.353762i −0.960075 0.279743i $$-0.909751\pi$$
0.997257 0.0740189i $$-0.0235825\pi$$
$$374$$ −0.662830 1.14806i −0.0342741 0.0593646i
$$375$$ 13.8312 + 13.5536i 0.714238 + 0.699903i
$$376$$ 0.309860 0.536694i 0.0159798 0.0276779i
$$377$$ 0.183565 + 0.133368i 0.00945408 + 0.00686879i
$$378$$ 0.301308 0.0965063i 0.0154976 0.00496375i
$$379$$ −1.82815 5.62647i −0.0939059 0.289013i 0.893061 0.449935i $$-0.148553\pi$$
−0.986967 + 0.160923i $$0.948553\pi$$
$$380$$ −9.60671 + 6.13280i −0.492814 + 0.314606i
$$381$$ −35.4633 + 1.18879i −1.81684 + 0.0609035i
$$382$$ −0.00412680 0.00714783i −0.000211146 0.000365715i
$$383$$ −17.8504 + 3.79423i −0.912115 + 0.193876i −0.639988 0.768385i $$-0.721061\pi$$
−0.272128 + 0.962261i $$0.587727\pi$$
$$384$$ −4.64698 + 2.25845i −0.237140 + 0.115251i
$$385$$ −8.52268 0.513264i −0.434356 0.0261584i
$$386$$ −1.45671 1.05836i −0.0741447 0.0538693i
$$387$$ 1.84831 + 1.79490i 0.0939547 + 0.0912399i
$$388$$ −21.3442 + 15.5075i −1.08359 + 0.787272i
$$389$$ 18.3000 8.14768i 0.927846 0.413104i 0.113536 0.993534i $$-0.463782\pi$$
0.814310 + 0.580430i $$0.197116\pi$$
$$390$$ −0.0661639 0.0775405i −0.00335034 0.00392641i
$$391$$ −11.6888 5.20421i −0.591130 0.263188i
$$392$$ 2.42242 0.514901i 0.122351 0.0260064i
$$393$$ −5.50768 + 6.54520i −0.277826 + 0.330162i
$$394$$ 1.41487 + 1.57138i 0.0712803 + 0.0791648i
$$395$$ 2.76472 16.6168i 0.139108 0.836084i
$$396$$ 29.8924 + 18.7952i 1.50215 + 0.944497i
$$397$$ −5.88033 18.0978i −0.295125 0.908302i −0.983179 0.182643i $$-0.941535\pi$$
0.688054 0.725659i $$-0.258465\pi$$
$$398$$ −0.330372 + 0.147091i −0.0165601 + 0.00737302i
$$399$$ 2.81982 + 0.501275i 0.141168 + 0.0250951i
$$400$$ 3.80164 + 19.3642i 0.190082 + 0.968209i
$$401$$ −14.9193 25.8410i −0.745034 1.29044i −0.950179 0.311705i $$-0.899100\pi$$
0.205145 0.978732i $$-0.434233\pi$$
$$402$$ 0.501198 1.73871i 0.0249975 0.0867190i
$$403$$ −0.0114864 0.00244151i −0.000572177 0.000121620i
$$404$$ 7.35429 + 22.6342i 0.365889 + 1.12609i
$$405$$ −8.74831 + 18.1237i −0.434707 + 0.900572i
$$406$$ 0.0152907 0.0470599i 0.000758863 0.00233554i
$$407$$ −22.1006 + 38.2794i −1.09549 + 1.89744i
$$408$$ 1.54938 0.0519379i 0.0767060 0.00257131i
$$409$$ −29.9326 13.3269i −1.48007 0.658971i −0.501554 0.865126i $$-0.667238\pi$$
−0.978519 + 0.206155i $$0.933905\pi$$
$$410$$ 0.0916514 + 2.05503i 0.00452634 + 0.101491i
$$411$$ −20.0131 20.7822i −0.987174 1.02511i
$$412$$ −0.981404 9.33744i −0.0483503 0.460023i
$$413$$ 1.32927 0.965774i 0.0654093 0.0475227i
$$414$$ −1.51748 + 0.101851i −0.0745800 + 0.00500571i
$$415$$ −20.3633 + 20.0485i −0.999596 + 0.984140i
$$416$$ −0.0328174 0.312237i −0.00160901 0.0153087i
$$417$$ −6.06310 9.73322i −0.296911 0.476638i
$$418$$ −0.713214 1.23532i −0.0348844 0.0604216i
$$419$$ 5.17279 1.09951i 0.252707 0.0537146i −0.0798161 0.996810i $$-0.525433\pi$$
0.332523 + 0.943095i $$0.392100\pi$$
$$420$$ 2.60464 4.24598i 0.127093 0.207183i
$$421$$ −10.9560 2.32876i −0.533961 0.113497i −0.0669632 0.997755i $$-0.521331\pi$$
−0.466998 + 0.884259i $$0.654664\pi$$
$$422$$ 0.558207 + 1.71799i 0.0271731 + 0.0836302i
$$423$$ 2.17873 4.43555i 0.105933 0.215664i
$$424$$ −3.00783 −0.146073
$$425$$ 2.65416 11.5954i 0.128746 0.562461i
$$426$$ −1.02246 0.181762i −0.0495385 0.00880637i
$$427$$ −0.804600 + 7.65526i −0.0389373 + 0.370464i
$$428$$ −6.53028 + 7.25261i −0.315653 + 0.350568i
$$429$$ −2.25514 + 1.75684i −0.108879 + 0.0848211i
$$430$$ −0.180690 0.0108818i −0.00871367 0.000524766i
$$431$$ 2.72032 8.37228i 0.131033 0.403278i −0.863919 0.503631i $$-0.831997\pi$$
0.994952 + 0.100353i $$0.0319971\pi$$
$$432$$ −17.8033 + 10.1794i −0.856561 + 0.489759i
$$433$$ 5.29618 16.3000i 0.254518 0.783327i −0.739406 0.673260i $$-0.764894\pi$$
0.993924 0.110067i $$-0.0351065\pi$$
$$434$$ 0.000267686 0.00254686i 1.28493e−5 0.000122253i
$$435$$ 1.50054 + 2.76670i 0.0719454 + 0.132653i
$$436$$ −2.56300 + 24.3853i −0.122745 + 1.16784i
$$437$$ −12.5773 5.59979i −0.601656 0.267874i
$$438$$ −1.83353 + 0.891104i −0.0876096 + 0.0425786i
$$439$$ −0.755550 + 0.336392i −0.0360604 + 0.0160551i −0.424688 0.905340i $$-0.639616\pi$$
0.388627 + 0.921395i $$0.372949\pi$$
$$440$$ −4.91754 + 0.739637i −0.234435 + 0.0352608i
$$441$$ 18.9984 5.39028i 0.904686 0.256680i
$$442$$ −0.0193488 + 0.0595495i −0.000920329 + 0.00283248i
$$443$$ −7.57757 + 13.1247i −0.360021 + 0.623575i −0.987964 0.154685i $$-0.950564\pi$$
0.627943 + 0.778259i $$0.283897\pi$$
$$444$$ −13.6347 21.8880i −0.647072 1.03876i
$$445$$ −10.8867 + 16.4815i −0.516079 + 0.781299i
$$446$$ 1.53091 1.70025i 0.0724907 0.0805091i
$$447$$ 27.6245 + 11.2059i 1.30659 + 0.530023i
$$448$$ 4.59540 2.04600i 0.217112 0.0966646i
$$449$$ −7.04917 −0.332671 −0.166335 0.986069i $$-0.553193\pi$$
−0.166335 + 0.986069i $$0.553193\pi$$
$$450$$ −0.364696 1.36611i −0.0171919 0.0643989i
$$451$$ 57.6907 2.71655
$$452$$ −15.8396 + 7.05225i −0.745033 + 0.331710i
$$453$$ 0.0817609 + 0.587718i 0.00384146 + 0.0276134i
$$454$$ −1.12039 + 1.24432i −0.0525826 + 0.0583989i
$$455$$ 0.251340 + 0.315372i 0.0117830 + 0.0147849i
$$456$$ 1.66716 0.0558858i 0.0780718 0.00261709i
$$457$$ −3.18909 + 5.52366i −0.149179 + 0.258386i −0.930924 0.365212i $$-0.880996\pi$$
0.781745 + 0.623598i $$0.214330\pi$$
$$458$$ 0.166830 0.513451i 0.00779548 0.0239920i
$$459$$ 12.2996 1.24062i 0.574094 0.0579073i
$$460$$ −17.0631 + 16.7993i −0.795573 + 0.783272i
$$461$$ 2.88043 1.28245i 0.134155 0.0597297i −0.338561 0.940944i $$-0.609940\pi$$
0.472716 + 0.881215i $$0.343274\pi$$
$$462$$ 0.516351 + 0.349334i 0.0240228 + 0.0162525i
$$463$$ 22.9695 + 10.2267i 1.06748 + 0.475274i 0.863838 0.503770i $$-0.168054\pi$$
0.203646 + 0.979045i $$0.434721\pi$$
$$464$$ −0.335262 + 3.18981i −0.0155642 + 0.148083i
$$465$$ −0.129185 0.0992222i −0.00599083 0.00460132i
$$466$$ −0.0670286 0.637735i −0.00310504 0.0295425i
$$467$$ −11.3694 + 34.9913i −0.526111 + 1.61920i 0.235997 + 0.971754i $$0.424164\pi$$
−0.762108 + 0.647449i $$0.775836\pi$$
$$468$$ −0.285017 1.64326i −0.0131749 0.0759595i
$$469$$ −2.21224 + 6.80858i −0.102152 + 0.314391i
$$470$$ 0.0872479 + 0.336065i 0.00402445 + 0.0155015i
$$471$$ 16.3059 + 6.61452i 0.751335 + 0.304781i
$$472$$ 0.640341 0.711170i 0.0294741 0.0327343i
$$473$$ −0.530656 + 5.04885i −0.0243996 + 0.232146i
$$474$$ −0.791928 + 0.941109i −0.0363745 + 0.0432266i
$$475$$ 2.85592 12.4768i 0.131038 0.572476i
$$476$$ −3.05982 −0.140247
$$477$$ −23.9311 + 1.60622i −1.09573 + 0.0735438i
$$478$$ 0.337235 + 1.03790i 0.0154248 + 0.0474726i
$$479$$ −17.1732 3.65028i −0.784665 0.166786i −0.201878 0.979411i $$-0.564704\pi$$
−0.582787 + 0.812625i $$0.698038\pi$$
$$480$$ 1.45564 4.10457i 0.0664404 0.187347i
$$481$$ 2.04211 0.434064i 0.0931121 0.0197916i
$$482$$ −1.24476 2.15599i −0.0566973 0.0982027i
$$483$$ 6.01375 0.201591i 0.273635 0.00917269i
$$484$$ 4.98335 + 47.4134i 0.226516 + 2.15515i
$$485$$ 4.86278 29.2268i 0.220807 1.32712i
$$486$$ 1.22391 0.813156i 0.0555179 0.0368855i
$$487$$ 17.7188 12.8735i 0.802916 0.583352i −0.108852 0.994058i $$-0.534718\pi$$
0.911768 + 0.410706i $$0.134718\pi$$
$$488$$ 0.468623 + 4.45865i 0.0212135 + 0.201833i
$$489$$ −7.78897 + 27.0208i −0.352229 + 1.22192i
$$490$$ −0.764733 + 1.15774i −0.0345471 + 0.0523013i
$$491$$ 23.6286 + 10.5201i 1.06634 + 0.474766i 0.863450 0.504435i $$-0.168299\pi$$
0.202893 + 0.979201i $$0.434966\pi$$
$$492$$ −15.8426 + 29.6955i −0.714241 + 1.33877i
$$493$$ 0.966684 1.67435i 0.0435373 0.0754088i
$$494$$ −0.0208196 + 0.0640761i −0.000936717 + 0.00288292i
$$495$$ −38.7302 + 8.51077i −1.74079 + 0.382531i
$$496$$ −0.0512954 0.157871i −0.00230323 0.00708862i
$$497$$ 4.01882 + 0.854226i 0.180269 + 0.0383173i
$$498$$ 2.02525 0.501947i 0.0907537 0.0224928i
$$499$$ −11.6388 20.1590i −0.521024 0.902440i −0.999701 0.0244489i $$-0.992217\pi$$
0.478677 0.877991i $$-0.341116\pi$$
$$500$$ −18.3815 12.5574i −0.822045 0.561584i
$$501$$ −19.6259 + 23.3229i −0.876820 + 1.04199i
$$502$$ 0.167029 0.0743663i 0.00745489 0.00331913i
$$503$$ −7.37389 22.6945i −0.328786 1.01190i −0.969703 0.244288i $$-0.921446\pi$$
0.640917 0.767610i $$-0.278554\pi$$
$$504$$ −0.644658 + 0.340463i −0.0287153 + 0.0151654i
$$505$$ −23.7185 12.3189i −1.05546 0.548183i
$$506$$ −2.00527 2.22708i −0.0891451 0.0990056i
$$507$$ −22.0362 3.91733i −0.978660 0.173975i
$$508$$ 39.8991 8.48082i 1.77024 0.376276i
$$509$$ −6.28785 2.79953i −0.278704 0.124087i 0.262625 0.964898i $$-0.415412\pi$$
−0.541329 + 0.840811i $$0.682079\pi$$
$$510$$ −0.598160 + 0.629747i −0.0264870 + 0.0278856i
$$511$$ 7.36807 3.28048i 0.325944 0.145120i
$$512$$ 5.99293 4.35412i 0.264853 0.192427i
$$513$$ 13.2345 1.33493i 0.584317 0.0589384i
$$514$$ 0.386697 + 0.280951i 0.0170565 + 0.0123922i
$$515$$ 8.14222 + 6.69914i 0.358789 + 0.295199i
$$516$$ −2.45310 1.65963i −0.107992 0.0730611i
$$517$$ 9.52463 2.02452i 0.418893 0.0890384i
$$518$$ −0.227644 0.394291i −0.0100021 0.0173241i
$$519$$ −11.6557 + 21.8474i −0.511627 + 0.958995i
$$520$$ 0.181379 + 0.149232i 0.00795398 + 0.00654426i
$$521$$ 1.59963 + 4.92314i 0.0700809 + 0.215687i 0.979963 0.199180i $$-0.0638280\pi$$
−0.909882 + 0.414867i $$0.863828\pi$$
$$522$$ 0.00866222 0.229648i 0.000379135 0.0100514i
$$523$$ −26.2991 19.1074i −1.14998 0.835510i −0.161503 0.986872i $$-0.551634\pi$$
−0.988478 + 0.151362i $$0.951634\pi$$
$$524$$ 4.91682 8.51619i 0.214792 0.372031i
$$525$$ 1.26097 + 5.45005i 0.0550330 + 0.237860i
$$526$$ 0.282493 + 0.489292i 0.0123173 + 0.0213342i
$$527$$ −0.0104591 + 0.0995120i −0.000455607 + 0.00433481i
$$528$$ −37.4461 15.1901i −1.62963 0.661064i
$$529$$ −5.79534 1.23184i −0.251971 0.0535582i
$$530$$ 1.20084 1.18228i 0.0521613 0.0513548i
$$531$$ 4.71494 6.00020i 0.204611 0.260387i
$$532$$ −3.29240 −0.142744
$$533$$ −1.82329 2.02497i −0.0789756 0.0877112i
$$534$$ 1.29717 0.630427i 0.0561338 0.0272813i
$$535$$ −0.488315 10.9491i −0.0211117 0.473371i
$$536$$ −0.435841 + 4.14675i −0.0188255 + 0.179112i
$$537$$ −23.2783 15.7488i −1.00453 0.679612i
$$538$$ 0.0425006 + 0.404366i 0.00183233 + 0.0174335i
$$539$$ 31.4811 + 22.8724i 1.35599 + 0.985182i
$$540$$ 6.25504 22.2730i 0.269174 0.958478i
$$541$$ 9.31574 6.76828i 0.400515 0.290991i −0.369236 0.929336i $$-0.620381\pi$$
0.769751 + 0.638345i $$0.220381\pi$$
$$542$$ 1.71476 + 1.90443i 0.0736551 + 0.0818022i
$$543$$ 9.23716 + 25.4897i 0.396404 + 1.09387i
$$544$$ −2.61672 + 0.556200i −0.112191 + 0.0238469i
$$545$$ −17.1618 21.5339i −0.735129 0.922411i
$$546$$ −0.00405728 0.0291647i −0.000173635 0.00124813i
$$547$$ 22.8102 + 4.84846i 0.975294 + 0.207305i 0.667879 0.744270i $$-0.267203\pi$$
0.307415 + 0.951575i $$0.400536\pi$$
$$548$$ 26.8328 + 19.4952i 1.14624 + 0.832792i
$$549$$ 6.10946 + 35.2239i 0.260745 + 1.50332i
$$550$$ 1.67255 2.22821i 0.0713177 0.0950113i
$$551$$ 1.04016 1.80162i 0.0443125 0.0767515i
$$552$$ 3.40163 0.843075i 0.144783 0.0358836i
$$553$$ 3.25610 3.61626i 0.138463 0.153779i
$$554$$ −0.843417 + 0.936710i −0.0358334 + 0.0397970i
$$555$$ 28.1566 + 6.77354i 1.19518 + 0.287521i
$$556$$ 8.82072 + 9.79640i 0.374082 + 0.415460i
$$557$$ −13.9243 −0.589990 −0.294995 0.955499i $$-0.595318\pi$$
−0.294995 + 0.955499i $$0.595318\pi$$
$$558$$ 0.00442463 + 0.0110401i 0.000187310 + 0.000467364i
$$559$$ 0.193988 0.140941i 0.00820483 0.00596116i
$$560$$ −2.08431 + 5.30588i −0.0880781 + 0.224214i
$$561$$ 16.8963 + 17.5457i 0.713364 + 0.740779i
$$562$$ −1.97898 0.881097i −0.0834781 0.0371668i
$$563$$ 17.3991 + 7.74658i 0.733284 + 0.326479i 0.739184 0.673503i $$-0.235211\pi$$
−0.00589976 + 0.999983i $$0.501878\pi$$
$$564$$ −1.57350 + 5.45863i −0.0662561 + 0.229850i
$$565$$ 7.11943 18.1235i 0.299517 0.762459i
$$566$$ 0.904869 0.657426i 0.0380345 0.0276337i
$$567$$ −4.94725 + 3.05306i −0.207765 + 0.128217i
$$568$$ 2.39297 0.100407
$$569$$ −11.8249 13.1329i −0.495726 0.550559i 0.442416 0.896810i $$-0.354121\pi$$
−0.938142 + 0.346251i $$0.887455\pi$$
$$570$$ −0.643628 + 0.677615i −0.0269586 + 0.0283822i
$$571$$ 20.0655 22.2850i 0.839717 0.932600i −0.158785 0.987313i $$-0.550758\pi$$
0.998502 + 0.0547129i $$0.0174244\pi$$
$$572$$ 2.19895 2.44218i 0.0919427 0.102113i
$$573$$ 0.105197 + 0.109240i 0.00439467 + 0.00456356i
$$574$$ −0.297117 + 0.514621i −0.0124014 + 0.0214799i
$$575$$ 0.418984 26.8876i 0.0174728 1.12129i
$$576$$ 17.9387 14.9671i 0.747446 0.623630i
$$577$$ 4.49517 + 3.26593i 0.187136 + 0.135962i 0.677409 0.735607i $$-0.263103\pi$$
−0.490273 + 0.871569i $$0.663103\pi$$
$$578$$ −1.04559 0.222247i −0.0434909 0.00924427i
$$579$$ 30.6588 + 12.4368i 1.27413 + 0.516856i
$$580$$ −2.25502 2.82951i −0.0936345 0.117489i
$$581$$ −8.07456 + 1.71630i −0.334989 + 0.0712041i
$$582$$ −1.39290 + 1.65528i −0.0577374 + 0.0686138i
$$583$$ −31.6236 35.1216i −1.30972 1.45459i
$$584$$ 3.80036 2.76112i 0.157260 0.114256i
$$585$$ 1.52279 + 1.09047i 0.0629595 + 0.0450854i
$$586$$ 1.12754 + 0.819209i 0.0465784 + 0.0338412i
$$587$$ 3.48300 + 33.1385i 0.143759 + 1.36777i 0.793941 + 0.607995i $$0.208026\pi$$
−0.650182 + 0.759778i $$0.725307\pi$$
$$588$$ −20.4183 + 9.92339i −0.842038 + 0.409234i
$$589$$ −0.0112542 + 0.107076i −0.000463719 + 0.00441200i
$$590$$ 0.0238881 + 0.535623i 0.000983457 + 0.0220513i
$$591$$ −32.1803 21.7714i −1.32372 0.895554i
$$592$$ 19.7471 + 21.9313i 0.811600 + 0.901373i
$$593$$ −26.1795 −1.07506 −0.537532 0.843243i $$-0.680643\pi$$
−0.537532 + 0.843243i $$0.680643\pi$$
$$594$$ 2.74991 + 0.906264i 0.112830 + 0.0371845i
$$595$$ 2.44865 2.41079i 0.100385 0.0988327i
$$596$$ −33.5207 7.12505i −1.37306 0.291854i
$$597$$ 5.24201 4.08372i 0.214541 0.167136i
$$598$$ −0.0147957 + 0.140772i −0.000605042 + 0.00575659i
$$599$$ −9.64381 16.7036i −0.394036 0.682490i 0.598942 0.800792i $$-0.295588\pi$$
−0.992978 + 0.118303i $$0.962255\pi$$
$$600$$ 1.37834 + 2.95221i 0.0562705 + 0.120523i
$$601$$ 3.81131 6.60138i 0.155466 0.269276i −0.777762 0.628559i $$-0.783645\pi$$
0.933229 + 0.359283i $$0.116979\pi$$
$$602$$ −0.0423046 0.0307361i −0.00172421 0.00125271i
$$603$$ −1.25324 + 33.2254i −0.0510360 + 1.35304i
$$604$$ −0.210790 0.648744i −0.00857691 0.0263970i
$$605$$ −41.3444 34.0167i −1.68089 1.38298i
$$606$$ 1.03181 + 1.65640i 0.0419146 + 0.0672865i
$$607$$ 3.78262 + 6.55168i 0.153532 + 0.265925i 0.932523 0.361110i $$-0.117602\pi$$
−0.778992 + 0.627034i $$0.784269\pi$$
$$608$$ −2.81562 + 0.598478i −0.114188 + 0.0242715i
$$609$$ −0.0646905 + 0.906902i −0.00262139 + 0.0367495i
$$610$$ −1.93964 1.59587i −0.0785336 0.0646147i
$$611$$ −0.372084 0.270335i −0.0150529 0.0109366i
$$612$$ −13.6713 + 3.87888i −0.552631 + 0.156794i
$$613$$ −0.404949 + 0.294213i −0.0163558 + 0.0118832i −0.595933 0.803034i $$-0.703218\pi$$
0.579577 + 0.814917i $$0.303218\pi$$
$$614$$ −0.572611 + 0.254943i −0.0231087 + 0.0102887i
$$615$$ −10.7184 36.2463i −0.432209 1.46159i
$$616$$ −1.31233 0.584288i −0.0528754 0.0235417i
$$617$$ 21.6181 4.59508i 0.870313 0.184991i 0.248953 0.968516i $$-0.419914\pi$$
0.621360 + 0.783525i $$0.286580\pi$$
$$618$$ −0.262301 0.723813i −0.0105513 0.0291160i
$$619$$ 17.0008 + 18.8813i 0.683321 + 0.758905i 0.980629 0.195877i $$-0.0627552\pi$$
−0.297307 + 0.954782i $$0.596089\pi$$
$$620$$ 0.166179 + 0.0863098i 0.00667391 + 0.00346628i
$$621$$ 26.6140 8.52423i 1.06798 0.342066i
$$622$$ −0.712910 2.19411i −0.0285851 0.0879758i
$$623$$ −5.21267 + 2.32083i −0.208841 + 0.0929821i
$$624$$ 0.650289 + 1.79445i 0.0260324 + 0.0718356i
$$625$$ 24.6038 4.43334i 0.984151 0.177334i
$$626$$ 0.350181 + 0.606531i 0.0139960 + 0.0242419i
$$627$$ 18.1807 + 18.8794i 0.726066 + 0.753970i
$$628$$ −19.7863 4.20570i −0.789558 0.167826i
$$629$$ −5.49717 16.9185i −0.219186 0.674586i
$$630$$ 0.123548 0.389319i 0.00492228 0.0155109i
$$631$$ −13.3579 + 41.1114i −0.531770 + 1.63662i 0.218757 + 0.975779i $$0.429800\pi$$
−0.750527 + 0.660840i $$0.770200\pi$$
$$632$$ 1.41710 2.45448i 0.0563691 0.0976341i
$$633$$ −17.5496 28.1728i −0.697536 1.11977i
$$634$$ 0.189474 + 0.0843593i 0.00752497 + 0.00335033i
$$635$$ −25.2477 + 38.2229i −1.00193 + 1.51683i
$$636$$ 26.7626 6.63296i 1.06121 0.263014i
$$637$$ −0.192117 1.82787i −0.00761196 0.0724230i
$$638$$ 0.366347 0.266167i 0.0145038 0.0105376i
$$639$$ 19.0391 1.27788i 0.753174 0.0505520i
$$640$$ −1.09474 + 6.57976i −0.0432736 + 0.260088i
$$641$$ 2.74863 + 26.1515i 0.108564 + 1.03292i 0.904190 + 0.427131i $$0.140476\pi$$
−0.795625 + 0.605789i $$0.792858\pi$$
$$642$$ −0.376684 + 0.706056i −0.0148665 + 0.0278658i
$$643$$ 0.605320 + 1.04844i 0.0238715 + 0.0413466i 0.877714 0.479184i $$-0.159067\pi$$
−0.853843 + 0.520531i $$0.825734\pi$$
$$644$$ −6.76596 + 1.43815i −0.266616 + 0.0566710i
$$645$$ 3.27072 0.604630i 0.128784 0.0238073i
$$646$$ 0.561534 + 0.119358i 0.0220933 + 0.00469607i
$$647$$ 0.311454 + 0.958558i 0.0122445 + 0.0376848i 0.956992 0.290114i $$-0.0936932\pi$$
−0.944748 + 0.327799i $$0.893693\pi$$
$$648$$ −2.44875 + 2.33842i −0.0961960 + 0.0918617i
$$649$$ 15.0365 0.590236
$$650$$ −0.131072 + 0.0117145i −0.00514105 + 0.000459482i
$$651$$ −0.0160321 0.0442400i −0.000628346 0.00173390i
$$652$$ 3.37910 32.1500i 0.132336 1.25909i
$$653$$ 23.8737 26.5145i 0.934251 1.03759i −0.0649606 0.997888i $$-0.520692\pi$$
0.999212 0.0397029i $$-0.0126412\pi$$
$$654$$ 0.277035 + 1.99140i 0.0108329 + 0.0778697i
$$655$$ 2.77506 + 10.6891i 0.108430 + 0.417656i
$$656$$ 11.9027 36.6327i 0.464722 1.43027i
$$657$$ 28.7621 23.9976i 1.12212 0.936236i
$$658$$ −0.0309940 + 0.0953897i −0.00120827 + 0.00371868i
$$659$$ −1.59189 15.1459i −0.0620114 0.589999i −0.980768 0.195175i $$-0.937472\pi$$
0.918757 0.394823i $$-0.129194\pi$$
$$660$$ 42.1235 17.4253i 1.63965 0.678281i
$$661$$ −0.227402 + 2.16359i −0.00884493 + 0.0841539i −0.998054 0.0623579i $$-0.980138\pi$$
0.989209 + 0.146512i $$0.0468046\pi$$
$$662$$ 1.54788 + 0.689161i 0.0601601 + 0.0267850i
$$663$$ 0.0818594 1.14759i 0.00317916 0.0445689i
$$664$$ −4.39226 + 1.95556i −0.170453 + 0.0758904i
$$665$$ 2.63478 2.59404i 0.102172 0.100593i
$$666$$ −1.51695 1.47312i −0.0587808 0.0570823i
$$667$$ 1.35060 4.15671i 0.0522954 0.160949i
$$668$$ 17.5204 30.3463i 0.677886 1.17413i
$$669$$ −19.7882 + 37.0910i −0.765056 + 1.43402i
$$670$$ −1.45594 1.82686i −0.0562480 0.0705778i
$$671$$ −47.1354 + 52.3492i −1.81964 + 2.02092i
$$672$$ 0.992443 0.773151i 0.0382843 0.0298249i
$$673$$ 23.6039 10.5091i 0.909864 0.405098i 0.102216 0.994762i $$-0.467407\pi$$
0.807648 + 0.589664i $$0.200740\pi$$
$$674$$ 0.246427 0.00949201
$$675$$ 12.5430 + 22.7525i 0.482779 + 0.875742i
$$676$$ 25.7293 0.989587
$$677$$ 8.41574 3.74693i 0.323443 0.144006i −0.238591 0.971120i $$-0.576686\pi$$
0.562034 + 0.827114i $$0.310019\pi$$
$$678$$ −1.12157 + 0.873746i −0.0430737 + 0.0335560i
$$679$$ 5.72704 6.36052i 0.219784 0.244094i
$$680$$ 1.10307 1.66995i 0.0423007 0.0640396i
$$681$$ 14.4819 27.1449i 0.554948 1.04020i
$$682$$ −0.0117179 + 0.0202961i −0.000448703 + 0.000777177i
$$683$$ 5.99517 18.4512i 0.229399 0.706016i −0.768417 0.639950i $$-0.778955\pi$$
0.997815 0.0660664i $$-0.0210449\pi$$
$$684$$ −14.7105 + 4.17372i −0.562472 + 0.159586i
$$685$$ −36.8332 + 5.54001i −1.40732 + 0.211673i
$$686$$ −0.755534 + 0.336385i −0.0288464 + 0.0128432i
$$687$$ −0.705813 + 9.89485i −0.0269284 + 0.377512i
$$688$$ 3.09646 + 1.37863i 0.118051 + 0.0525599i
$$689$$ −0.233333 + 2.22001i −0.00888926 + 0.0845757i
$$690$$ −1.02668 + 1.67366i −0.0390851 + 0.0637150i
$$691$$ −0.793047 7.54533i −0.0301689 0.287038i −0.999196 0.0400847i $$-0.987237\pi$$
0.969027 0.246953i $$-0.0794294\pi$$
$$692$$ 8.79642 27.0726i 0.334390 1.02915i
$$693$$ −10.7533 3.94795i −0.408483 0.149970i
$$694$$ −0.0345784 + 0.106422i −0.00131258 + 0.00403971i
$$695$$ −14.7773 0.889939i −0.560536 0.0337573i
$$696$$ 0.0729660 + 0.524497i 0.00276577 + 0.0198810i
$$697$$ −15.5360 + 17.2544i −0.588467 + 0.653559i
$$698$$ 0.193572 1.84172i 0.00732682 0.0697100i
$$699$$ 4.01444 + 11.0777i 0.151840 + 0.418998i
$$700$$ −2.52376 5.91479i −0.0953891 0.223558i
$$701$$ −9.96570 −0.376399 −0.188200 0.982131i $$-0.560265\pi$$
−0.188200 + 0.982131i $$0.560265\pi$$
$$702$$ −0.0550996 0.125165i −0.00207960 0.00472406i
$$703$$ −5.91502 18.2046i −0.223089 0.686598i
$$704$$ 45.0286 + 9.57113i 1.69708 + 0.360725i
$$705$$ −3.04158 5.60806i −0.114552 0.211212i
$$706$$ −2.25444 + 0.479195i −0.0848468 + 0.0180348i
$$707$$ −3.86034 6.68630i −0.145183 0.251464i
$$708$$ −4.12923 + 7.73984i −0.155186 + 0.290881i
$$709$$ −2.60799 24.8133i −0.0979450 0.931884i −0.927592 0.373595i $$-0.878125\pi$$
0.829647 0.558289i $$-0.188542\pi$$
$$710$$ −0.955367 + 0.940596i −0.0358543 + 0.0352999i
$$711$$ 9.96406 20.2853i 0.373681 0.760756i
$$712$$ −2.68863 + 1.95340i −0.100761 + 0.0732069i
$$713$$ 0.0236442 + 0.224960i 0.000885483 + 0.00842480i
$$714$$ −0.243533 + 0.0603581i −0.00911398 + 0.00225885i
$$715$$ 0.164431 + 3.68690i 0.00614936 + 0.137882i
$$716$$ 29.5157 + 13.1412i 1.10305 + 0.491112i
$$717$$ −10.6024 17.0203i −0.395955 0.635636i
$$718$$ −0.110943 + 0.192159i −0.00414037 + 0.00717132i
$$719$$ −0.0734464 + 0.226045i −0.00273909 + 0.00843004i −0.952417 0.304799i $$-0.901411\pi$$
0.949678 + 0.313229i $$0.101411\pi$$
$$720$$ −2.58658 + 26.3491i −0.0963960 + 0.981971i
$$721$$ 0.941224 + 2.89679i 0.0350530 + 0.107882i
$$722$$ −1.14765 0.243940i −0.0427110 0.00907849i
$$723$$ 31.7305 + 32.9499i 1.18007 + 1.22542i
$$724$$ −15.5834 26.9913i −0.579154 1.00312i
$$725$$ 4.03393 + 0.487642i 0.149816 + 0.0181106i
$$726$$ 1.33191 + 3.67536i 0.0494317 + 0.136405i
$$727$$ −1.81932 + 0.810013i −0.0674748 + 0.0300417i −0.440197 0.897901i $$-0.645091\pi$$
0.372722 + 0.927943i $$0.378425\pi$$
$$728$$ 0.0209670 + 0.0645297i 0.000777088 + 0.00239163i
$$729$$ −18.2341 + 19.9127i −0.675338 + 0.737508i
$$730$$ −0.431947 + 2.59614i −0.0159871 + 0.0960874i
$$731$$ −1.36713 1.51836i −0.0505653 0.0561584i
$$732$$ −14.0020 38.6381i −0.517528 1.42810i
$$733$$ 46.8327 9.95460i 1.72981 0.367682i 0.767796 0.640695i $$-0.221354\pi$$
0.962010 + 0.273013i $$0.0880203\pi$$
$$734$$ 0.730142 + 0.325080i 0.0269500 + 0.0119989i
$$735$$ 8.52147 24.0286i 0.314319 0.886310i
$$736$$ −5.52474 + 2.45977i −0.203644 + 0.0906684i
$$737$$ −53.0028 + 38.5088i −1.95238 + 1.41849i
$$738$$ −0.675150 + 2.67599i −0.0248526 + 0.0985046i
$$739$$ −18.8030 13.6612i −0.691681 0.502536i 0.185531 0.982638i $$-0.440599\pi$$
−0.877212 + 0.480103i $$0.840599\pi$$
$$740$$ −33.2312 2.00129i −1.22160 0.0735689i
$$741$$ 0.0880818 1.23483i 0.00323576 0.0453625i
$$742$$ 0.476164 0.101212i 0.0174805 0.00371560i
$$743$$ −19.5580 33.8755i −0.717515 1.24277i −0.961982 0.273114i $$-0.911946\pi$$
0.244467 0.969658i $$-0.421387\pi$$
$$744$$ −0.0144907 0.0232622i −0.000531254 0.000852834i
$$745$$ 32.4390 20.7087i 1.18847 0.758706i
$$746$$ 0.200113 + 0.615885i 0.00732666 + 0.0225491i
$$747$$ −33.9016 + 17.9044i −1.24040 + 0.655090i
$$748$$ −22.6540 16.4591i −0.828311 0.601803i
$$749$$ 1.58303 2.74188i 0.0578425 0.100186i
$$750$$ −1.71070 0.636857i −0.0624660 0.0232547i
$$751$$ 13.9704 + 24.1975i 0.509788 + 0.882979i 0.999936 + 0.0113398i $$0.00360966\pi$$
−0.490147 + 0.871640i $$0.663057\pi$$
$$752$$ 0.679572 6.46570i 0.0247814 0.235780i
$$753$$ −2.65025 + 2.06464i −0.0965805 + 0.0752398i
$$754$$ −0.0209208 0.00444686i −0.000761892 0.000161945i
$$755$$ 0.679823 + 0.353085i 0.0247413 + 0.0128501i
$$756$$ 4.98514 4.45094i 0.181308 0.161879i
$$757$$ 6.33909 0.230398 0.115199 0.993342i $$-0.463249\pi$$
0.115199 + 0.993342i $$0.463249\pi$$
$$758$$ 0.373150 + 0.414425i 0.0135534 + 0.0150526i
$$759$$ 45.6083 + 30.8560i 1.65548 + 1.12000i
$$760$$ 1.18692 1.79688i 0.0430539 0.0651799i
$$761$$ 2.49946 23.7808i 0.0906053 0.862052i −0.850962 0.525227i $$-0.823980\pi$$
0.941567 0.336825i $$-0.109353\pi$$
$$762$$ 3.00830 1.46205i 0.108979 0.0529643i
$$763$$ −0.831467 7.91088i −0.0301011 0.286393i
$$764$$ −0.141044 0.102475i −0.00510280 0.00370740i
$$765$$ 7.88452 13.8756i 0.285065 0.501673i