Properties

Label 225.2.q.a.121.9
Level $225$
Weight $2$
Character 225.121
Analytic conductor $1.797$
Analytic rank $0$
Dimension $224$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,2,Mod(16,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.q (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 121.9
Character \(\chi\) \(=\) 225.121
Dual form 225.2.q.a.106.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.16617 + 0.247876i) q^{2} +(-1.18208 - 1.26597i) q^{3} +(-0.528590 + 0.235343i) q^{4} +(0.918757 - 2.03860i) q^{5} +(1.69231 + 1.18332i) q^{6} +(0.157578 + 0.272934i) q^{7} +(2.48714 - 1.80701i) q^{8} +(-0.205352 + 2.99296i) q^{9} +O(q^{10})\) \(q+(-1.16617 + 0.247876i) q^{2} +(-1.18208 - 1.26597i) q^{3} +(-0.528590 + 0.235343i) q^{4} +(0.918757 - 2.03860i) q^{5} +(1.69231 + 1.18332i) q^{6} +(0.157578 + 0.272934i) q^{7} +(2.48714 - 1.80701i) q^{8} +(-0.205352 + 2.99296i) q^{9} +(-0.566103 + 2.60508i) q^{10} +(-2.82788 + 0.601085i) q^{11} +(0.922776 + 0.390983i) q^{12} +(-6.38538 - 1.35725i) q^{13} +(-0.251417 - 0.279226i) q^{14} +(-3.66685 + 1.24668i) q^{15} +(-1.67816 + 1.86379i) q^{16} +(0.794350 - 0.577129i) q^{17} +(-0.502410 - 3.54119i) q^{18} +(-5.88399 + 4.27497i) q^{19} +(-0.00587474 + 1.29381i) q^{20} +(0.159255 - 0.522120i) q^{21} +(3.14879 - 1.40193i) q^{22} +(-0.876336 - 0.973270i) q^{23} +(-5.22763 - 1.01260i) q^{24} +(-3.31177 - 3.74595i) q^{25} +7.78284 q^{26} +(4.03174 - 3.27797i) q^{27} +(-0.147528 - 0.107185i) q^{28} +(0.450873 - 4.28977i) q^{29} +(3.96713 - 2.36276i) q^{30} +(0.905916 + 8.61921i) q^{31} +(-1.57924 + 2.73533i) q^{32} +(4.10375 + 2.86948i) q^{33} +(-0.783287 + 0.869928i) q^{34} +(0.701179 - 0.0704794i) q^{35} +(-0.595827 - 1.63038i) q^{36} +(0.00738727 + 0.0227357i) q^{37} +(5.80205 - 6.44383i) q^{38} +(5.82981 + 9.68807i) q^{39} +(-1.39870 - 6.73048i) q^{40} +(-4.48136 - 0.952542i) q^{41} +(-0.0562962 + 0.648355i) q^{42} +(-1.34599 - 2.33132i) q^{43} +(1.35333 - 0.983252i) q^{44} +(5.91278 + 3.16844i) q^{45} +(1.26320 + 0.917772i) q^{46} +(0.544941 - 5.18477i) q^{47} +(4.34323 - 0.0786545i) q^{48} +(3.45034 - 5.97616i) q^{49} +(4.79061 + 3.54749i) q^{50} +(-1.66962 - 0.323407i) q^{51} +(3.69467 - 0.785326i) q^{52} +(-3.44104 - 2.50006i) q^{53} +(-3.88915 + 4.82203i) q^{54} +(-1.37277 + 6.31717i) q^{55} +(0.885114 + 0.394078i) q^{56} +(12.3674 + 2.39557i) q^{57} +(0.537539 + 5.11434i) q^{58} +(-5.06713 - 1.07705i) q^{59} +(1.64486 - 1.52195i) q^{60} +(7.24968 - 1.54097i) q^{61} +(-3.19295 - 9.82688i) q^{62} +(-0.849240 + 0.415579i) q^{63} +(2.71365 - 8.35176i) q^{64} +(-8.63350 + 11.7702i) q^{65} +(-5.49693 - 2.32907i) q^{66} +(0.260529 + 2.47877i) q^{67} +(-0.284062 + 0.492010i) q^{68} +(-0.196226 + 2.25990i) q^{69} +(-0.800221 + 0.255996i) q^{70} +(9.63629 + 7.00118i) q^{71} +(4.89758 + 7.81499i) q^{72} +(-0.283594 + 0.872814i) q^{73} +(-0.0142504 - 0.0246825i) q^{74} +(-0.827464 + 8.62063i) q^{75} +(2.10413 - 3.64447i) q^{76} +(-0.609670 - 0.677108i) q^{77} +(-9.19997 - 9.85283i) q^{78} +(1.18974 - 11.3196i) q^{79} +(2.25770 + 5.13348i) q^{80} +(-8.91566 - 1.22922i) q^{81} +5.46212 q^{82} +(-9.08283 - 4.04394i) q^{83} +(0.0386972 + 0.313467i) q^{84} +(-0.446720 - 2.14960i) q^{85} +(2.14753 + 2.38507i) q^{86} +(-5.96368 + 4.50007i) q^{87} +(-5.94717 + 6.60500i) q^{88} +(3.78718 - 11.6557i) q^{89} +(-7.68067 - 2.22928i) q^{90} +(-0.635757 - 1.95666i) q^{91} +(0.692276 + 0.308221i) q^{92} +(9.84078 - 11.3355i) q^{93} +(0.649689 + 6.18138i) q^{94} +(3.30899 + 15.9228i) q^{95} +(5.32964 - 1.23412i) q^{96} +(0.772754 - 7.35226i) q^{97} +(-2.54232 + 7.82445i) q^{98} +(-1.21831 - 8.58719i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9} - 20 q^{10} - 11 q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - 48 q^{15} + 23 q^{16} - 24 q^{17} - 12 q^{19} + q^{20} + 15 q^{21} - 11 q^{22} + q^{23} - 30 q^{24} - 16 q^{25} - 136 q^{26} + 7 q^{27} + 4 q^{28} - 15 q^{29} - 24 q^{30} + 3 q^{31} + 12 q^{32} - 5 q^{33} + q^{34} + 14 q^{35} + 38 q^{36} - 24 q^{37} + 55 q^{38} + 20 q^{39} + q^{40} - 19 q^{41} - 38 q^{42} - 8 q^{43} + 4 q^{44} - 38 q^{45} - 20 q^{46} - 10 q^{47} - 25 q^{48} - 72 q^{49} - 3 q^{50} - 26 q^{51} - 25 q^{52} - 12 q^{53} + 53 q^{54} - 20 q^{55} - 60 q^{56} + 38 q^{57} - 23 q^{58} - 30 q^{59} - 33 q^{60} - 3 q^{61} - 44 q^{62} + 46 q^{63} - 44 q^{64} + 51 q^{65} - 134 q^{66} - 12 q^{67} - 156 q^{68} + 4 q^{69} - 16 q^{70} + 42 q^{71} + 74 q^{72} - 12 q^{73} + 90 q^{74} + 67 q^{75} - 8 q^{76} + 31 q^{77} - 92 q^{78} - 15 q^{79} + 298 q^{80} - 104 q^{81} + 8 q^{82} + 59 q^{83} + 115 q^{84} - 11 q^{85} + 9 q^{86} - 59 q^{87} - 23 q^{88} + 106 q^{89} + 107 q^{90} + 30 q^{91} + 11 q^{92} + 32 q^{93} + 25 q^{94} + 7 q^{95} + 35 q^{96} - 21 q^{97} + 146 q^{98} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.16617 + 0.247876i −0.824604 + 0.175275i −0.600841 0.799369i \(-0.705168\pi\)
−0.223763 + 0.974644i \(0.571834\pi\)
\(3\) −1.18208 1.26597i −0.682477 0.730907i
\(4\) −0.528590 + 0.235343i −0.264295 + 0.117672i
\(5\) 0.918757 2.03860i 0.410881 0.911689i
\(6\) 1.69231 + 1.18332i 0.690883 + 0.483088i
\(7\) 0.157578 + 0.272934i 0.0595591 + 0.103159i 0.894268 0.447533i \(-0.147697\pi\)
−0.834708 + 0.550692i \(0.814364\pi\)
\(8\) 2.48714 1.80701i 0.879336 0.638875i
\(9\) −0.205352 + 2.99296i −0.0684508 + 0.997654i
\(10\) −0.566103 + 2.60508i −0.179017 + 0.823800i
\(11\) −2.82788 + 0.601085i −0.852639 + 0.181234i −0.613445 0.789738i \(-0.710217\pi\)
−0.239195 + 0.970972i \(0.576883\pi\)
\(12\) 0.922776 + 0.390983i 0.266382 + 0.112867i
\(13\) −6.38538 1.35725i −1.77098 0.376434i −0.797166 0.603761i \(-0.793668\pi\)
−0.973819 + 0.227326i \(0.927002\pi\)
\(14\) −0.251417 0.279226i −0.0671939 0.0746264i
\(15\) −3.66685 + 1.24668i −0.946777 + 0.321891i
\(16\) −1.67816 + 1.86379i −0.419541 + 0.465948i
\(17\) 0.794350 0.577129i 0.192658 0.139974i −0.487275 0.873249i \(-0.662009\pi\)
0.679933 + 0.733274i \(0.262009\pi\)
\(18\) −0.502410 3.54119i −0.118419 0.834668i
\(19\) −5.88399 + 4.27497i −1.34988 + 0.980746i −0.350863 + 0.936427i \(0.614112\pi\)
−0.999017 + 0.0443190i \(0.985888\pi\)
\(20\) −0.00587474 + 1.29381i −0.00131363 + 0.289304i
\(21\) 0.159255 0.522120i 0.0347522 0.113936i
\(22\) 3.14879 1.40193i 0.671324 0.298893i
\(23\) −0.876336 0.973270i −0.182729 0.202941i 0.644820 0.764334i \(-0.276932\pi\)
−0.827549 + 0.561393i \(0.810266\pi\)
\(24\) −5.22763 1.01260i −1.06709 0.206696i
\(25\) −3.31177 3.74595i −0.662354 0.749191i
\(26\) 7.78284 1.52634
\(27\) 4.03174 3.27797i 0.775909 0.630845i
\(28\) −0.147528 0.107185i −0.0278801 0.0202561i
\(29\) 0.450873 4.28977i 0.0837249 0.796589i −0.869420 0.494074i \(-0.835507\pi\)
0.953145 0.302515i \(-0.0978263\pi\)
\(30\) 3.96713 2.36276i 0.724296 0.431379i
\(31\) 0.905916 + 8.61921i 0.162707 + 1.54806i 0.705817 + 0.708394i \(0.250580\pi\)
−0.543110 + 0.839662i \(0.682753\pi\)
\(32\) −1.57924 + 2.73533i −0.279173 + 0.483542i
\(33\) 4.10375 + 2.86948i 0.714372 + 0.499512i
\(34\) −0.783287 + 0.869928i −0.134333 + 0.149191i
\(35\) 0.701179 0.0704794i 0.118521 0.0119132i
\(36\) −0.595827 1.63038i −0.0993045 0.271730i
\(37\) 0.00738727 + 0.0227357i 0.00121446 + 0.00373772i 0.951662 0.307148i \(-0.0993745\pi\)
−0.950447 + 0.310885i \(0.899375\pi\)
\(38\) 5.80205 6.44383i 0.941217 1.04533i
\(39\) 5.82981 + 9.68807i 0.933517 + 1.55133i
\(40\) −1.39870 6.73048i −0.221153 1.06418i
\(41\) −4.48136 0.952542i −0.699871 0.148762i −0.155784 0.987791i \(-0.549790\pi\)
−0.544087 + 0.839029i \(0.683124\pi\)
\(42\) −0.0562962 + 0.648355i −0.00868669 + 0.100043i
\(43\) −1.34599 2.33132i −0.205261 0.355523i 0.744955 0.667115i \(-0.232471\pi\)
−0.950216 + 0.311592i \(0.899138\pi\)
\(44\) 1.35333 0.983252i 0.204022 0.148231i
\(45\) 5.91278 + 3.16844i 0.881426 + 0.472323i
\(46\) 1.26320 + 0.917772i 0.186249 + 0.135318i
\(47\) 0.544941 5.18477i 0.0794878 0.756276i −0.880085 0.474816i \(-0.842515\pi\)
0.959573 0.281460i \(-0.0908187\pi\)
\(48\) 4.34323 0.0786545i 0.626892 0.0113528i
\(49\) 3.45034 5.97616i 0.492905 0.853737i
\(50\) 4.79061 + 3.54749i 0.677494 + 0.501691i
\(51\) −1.66962 0.323407i −0.233793 0.0452860i
\(52\) 3.69467 0.785326i 0.512358 0.108905i
\(53\) −3.44104 2.50006i −0.472663 0.343410i 0.325815 0.945433i \(-0.394361\pi\)
−0.798478 + 0.602024i \(0.794361\pi\)
\(54\) −3.88915 + 4.82203i −0.529246 + 0.656195i
\(55\) −1.37277 + 6.31717i −0.185104 + 0.851808i
\(56\) 0.885114 + 0.394078i 0.118278 + 0.0526609i
\(57\) 12.3674 + 2.39557i 1.63810 + 0.317301i
\(58\) 0.537539 + 5.11434i 0.0705823 + 0.671546i
\(59\) −5.06713 1.07705i −0.659684 0.140220i −0.134108 0.990967i \(-0.542817\pi\)
−0.525576 + 0.850747i \(0.676150\pi\)
\(60\) 1.64486 1.52195i 0.212351 0.196483i
\(61\) 7.24968 1.54097i 0.928226 0.197301i 0.281096 0.959680i \(-0.409302\pi\)
0.647131 + 0.762379i \(0.275969\pi\)
\(62\) −3.19295 9.82688i −0.405505 1.24801i
\(63\) −0.849240 + 0.415579i −0.106994 + 0.0523580i
\(64\) 2.71365 8.35176i 0.339207 1.04397i
\(65\) −8.63350 + 11.7702i −1.07085 + 1.45992i
\(66\) −5.49693 2.32907i −0.676626 0.286688i
\(67\) 0.260529 + 2.47877i 0.0318287 + 0.302830i 0.998842 + 0.0481052i \(0.0153183\pi\)
−0.967014 + 0.254725i \(0.918015\pi\)
\(68\) −0.284062 + 0.492010i −0.0344476 + 0.0596649i
\(69\) −0.196226 + 2.25990i −0.0236228 + 0.272060i
\(70\) −0.800221 + 0.255996i −0.0956447 + 0.0305974i
\(71\) 9.63629 + 7.00118i 1.14362 + 0.830887i 0.987619 0.156870i \(-0.0501405\pi\)
0.155999 + 0.987757i \(0.450140\pi\)
\(72\) 4.89758 + 7.81499i 0.577185 + 0.921005i
\(73\) −0.283594 + 0.872814i −0.0331922 + 0.102155i −0.966280 0.257493i \(-0.917103\pi\)
0.933088 + 0.359649i \(0.117103\pi\)
\(74\) −0.0142504 0.0246825i −0.00165658 0.00286928i
\(75\) −0.827464 + 8.62063i −0.0955474 + 0.995425i
\(76\) 2.10413 3.64447i 0.241361 0.418049i
\(77\) −0.609670 0.677108i −0.0694784 0.0771636i
\(78\) −9.19997 9.85283i −1.04169 1.11561i
\(79\) 1.18974 11.3196i 0.133857 1.27356i −0.696999 0.717072i \(-0.745482\pi\)
0.830856 0.556488i \(-0.187851\pi\)
\(80\) 2.25770 + 5.13348i 0.252418 + 0.573940i
\(81\) −8.91566 1.22922i −0.990629 0.136581i
\(82\) 5.46212 0.603191
\(83\) −9.08283 4.04394i −0.996970 0.443880i −0.157637 0.987497i \(-0.550388\pi\)
−0.839333 + 0.543617i \(0.817054\pi\)
\(84\) 0.0386972 + 0.313467i 0.00422221 + 0.0342021i
\(85\) −0.446720 2.14960i −0.0484536 0.233157i
\(86\) 2.14753 + 2.38507i 0.231574 + 0.257189i
\(87\) −5.96368 + 4.50007i −0.639373 + 0.482459i
\(88\) −5.94717 + 6.60500i −0.633971 + 0.704096i
\(89\) 3.78718 11.6557i 0.401440 1.23551i −0.522391 0.852706i \(-0.674960\pi\)
0.923831 0.382800i \(-0.125040\pi\)
\(90\) −7.68067 2.22928i −0.809614 0.234987i
\(91\) −0.635757 1.95666i −0.0666455 0.205114i
\(92\) 0.692276 + 0.308221i 0.0721747 + 0.0321343i
\(93\) 9.84078 11.3355i 1.02044 1.17544i
\(94\) 0.649689 + 6.18138i 0.0670103 + 0.637561i
\(95\) 3.30899 + 15.9228i 0.339496 + 1.63364i
\(96\) 5.32964 1.23412i 0.543954 0.125957i
\(97\) 0.772754 7.35226i 0.0784612 0.746509i −0.882591 0.470142i \(-0.844203\pi\)
0.961052 0.276367i \(-0.0891306\pi\)
\(98\) −2.54232 + 7.82445i −0.256813 + 0.790389i
\(99\) −1.21831 8.58719i −0.122445 0.863045i
\(100\) 2.63216 + 1.20067i 0.263216 + 0.120067i
\(101\) −5.77262 9.99848i −0.574397 0.994885i −0.996107 0.0881544i \(-0.971903\pi\)
0.421709 0.906731i \(-0.361430\pi\)
\(102\) 2.02721 0.0367122i 0.200724 0.00363505i
\(103\) −14.9529 + 6.65745i −1.47335 + 0.655978i −0.977212 0.212265i \(-0.931916\pi\)
−0.496139 + 0.868243i \(0.665249\pi\)
\(104\) −18.3339 + 8.16277i −1.79779 + 0.800426i
\(105\) −0.918078 0.804358i −0.0895952 0.0784973i
\(106\) 4.63253 + 2.06253i 0.449951 + 0.200331i
\(107\) −10.1611 −0.982314 −0.491157 0.871071i \(-0.663426\pi\)
−0.491157 + 0.871071i \(0.663426\pi\)
\(108\) −1.35969 + 2.68154i −0.130836 + 0.258032i
\(109\) 3.42411 + 10.5383i 0.327970 + 1.00939i 0.970082 + 0.242777i \(0.0780584\pi\)
−0.642112 + 0.766611i \(0.721942\pi\)
\(110\) 0.0349956 7.70715i 0.00333670 0.734848i
\(111\) 0.0200503 0.0362276i 0.00190309 0.00343857i
\(112\) −0.773134 0.164335i −0.0730543 0.0155282i
\(113\) 14.3476 + 3.04967i 1.34970 + 0.286888i 0.825355 0.564615i \(-0.190975\pi\)
0.524349 + 0.851503i \(0.324309\pi\)
\(114\) −15.0162 + 0.271938i −1.40640 + 0.0254694i
\(115\) −2.78925 + 0.892300i −0.260099 + 0.0832074i
\(116\) 0.771242 + 2.37364i 0.0716080 + 0.220387i
\(117\) 5.37346 18.8325i 0.496777 1.74106i
\(118\) 6.17609 0.568555
\(119\) 0.282690 + 0.125862i 0.0259142 + 0.0115377i
\(120\) −6.86720 + 9.72671i −0.626887 + 0.887923i
\(121\) −2.41337 + 1.07450i −0.219397 + 0.0976820i
\(122\) −8.07236 + 3.59405i −0.730837 + 0.325390i
\(123\) 4.09146 + 6.79925i 0.368914 + 0.613067i
\(124\) −2.50733 4.34283i −0.225165 0.389998i
\(125\) −10.6792 + 3.30976i −0.955178 + 0.296034i
\(126\) 0.887343 0.695141i 0.0790508 0.0619281i
\(127\) 4.75644 14.6388i 0.422066 1.29899i −0.483710 0.875228i \(-0.660711\pi\)
0.905776 0.423757i \(-0.139289\pi\)
\(128\) −0.434062 + 4.12983i −0.0383660 + 0.365029i
\(129\) −1.36031 + 4.45980i −0.119768 + 0.392663i
\(130\) 7.15054 15.8661i 0.627144 1.39155i
\(131\) −0.348937 3.31991i −0.0304868 0.290062i −0.999134 0.0416200i \(-0.986748\pi\)
0.968647 0.248442i \(-0.0799186\pi\)
\(132\) −2.84452 0.550987i −0.247583 0.0479572i
\(133\) −2.09398 0.932298i −0.181571 0.0808405i
\(134\) −0.918249 2.82608i −0.0793247 0.244136i
\(135\) −2.97827 11.2308i −0.256329 0.966590i
\(136\) 0.932779 2.87080i 0.0799851 0.246169i
\(137\) −5.65113 + 6.27621i −0.482808 + 0.536213i −0.934501 0.355961i \(-0.884154\pi\)
0.451693 + 0.892174i \(0.350820\pi\)
\(138\) −0.331344 2.68406i −0.0282059 0.228482i
\(139\) −0.957106 1.06297i −0.0811807 0.0901603i 0.701186 0.712978i \(-0.252654\pi\)
−0.782367 + 0.622818i \(0.785988\pi\)
\(140\) −0.354049 + 0.202273i −0.0299226 + 0.0170952i
\(141\) −7.20792 + 5.43896i −0.607016 + 0.458043i
\(142\) −12.9729 5.77593i −1.08867 0.484705i
\(143\) 18.8729 1.57823
\(144\) −5.23364 5.40542i −0.436137 0.450452i
\(145\) −8.33087 4.86040i −0.691841 0.403634i
\(146\) 0.114368 1.08814i 0.00946519 0.0900553i
\(147\) −11.6442 + 2.69631i −0.960399 + 0.222388i
\(148\) −0.00925554 0.0102793i −0.000760800 0.000844954i
\(149\) 10.3534 17.9326i 0.848181 1.46909i −0.0346486 0.999400i \(-0.511031\pi\)
0.882830 0.469693i \(-0.155635\pi\)
\(150\) −1.17189 10.2582i −0.0956844 0.837578i
\(151\) 10.6562 + 18.4570i 0.867186 + 1.50201i 0.864860 + 0.502014i \(0.167407\pi\)
0.00232675 + 0.999997i \(0.499259\pi\)
\(152\) −6.90938 + 21.2649i −0.560425 + 1.72481i
\(153\) 1.56420 + 2.49597i 0.126458 + 0.201788i
\(154\) 0.878816 + 0.638497i 0.0708170 + 0.0514516i
\(155\) 18.4034 + 6.07216i 1.47820 + 0.487728i
\(156\) −5.36161 3.74901i −0.429272 0.300161i
\(157\) −6.98186 + 12.0929i −0.557213 + 0.965122i 0.440514 + 0.897746i \(0.354796\pi\)
−0.997728 + 0.0673760i \(0.978537\pi\)
\(158\) 1.41843 + 13.4955i 0.112845 + 1.07364i
\(159\) 0.902600 + 7.31153i 0.0715808 + 0.579842i
\(160\) 4.12530 + 5.73254i 0.326133 + 0.453197i
\(161\) 0.127547 0.392548i 0.0100521 0.0309371i
\(162\) 10.7018 0.776501i 0.840816 0.0610077i
\(163\) −0.190245 0.585515i −0.0149012 0.0458611i 0.943329 0.331858i \(-0.107675\pi\)
−0.958231 + 0.285997i \(0.907675\pi\)
\(164\) 2.59298 0.551154i 0.202477 0.0430379i
\(165\) 9.62007 5.72956i 0.748921 0.446045i
\(166\) 11.5945 + 2.46448i 0.899907 + 0.191281i
\(167\) 0.564465 + 5.37053i 0.0436796 + 0.415584i 0.994412 + 0.105571i \(0.0336669\pi\)
−0.950732 + 0.310013i \(0.899666\pi\)
\(168\) −0.547389 1.58636i −0.0422320 0.122390i
\(169\) 27.0548 + 12.0456i 2.08114 + 0.926582i
\(170\) 1.05378 + 2.39606i 0.0808216 + 0.183769i
\(171\) −11.5865 18.4885i −0.886045 1.41385i
\(172\) 1.26014 + 0.915544i 0.0960846 + 0.0698096i
\(173\) 0.355757 0.0756186i 0.0270477 0.00574917i −0.194368 0.980929i \(-0.562266\pi\)
0.221416 + 0.975180i \(0.428932\pi\)
\(174\) 5.83918 6.72609i 0.442667 0.509903i
\(175\) 0.500534 1.49418i 0.0378368 0.112949i
\(176\) 3.62536 6.27931i 0.273272 0.473321i
\(177\) 4.62626 + 7.68799i 0.347731 + 0.577865i
\(178\) −1.52730 + 14.5313i −0.114476 + 1.08917i
\(179\) 12.2855 + 8.92591i 0.918259 + 0.667154i 0.943090 0.332538i \(-0.107905\pi\)
−0.0248313 + 0.999692i \(0.507905\pi\)
\(180\) −3.87111 0.283269i −0.288535 0.0211136i
\(181\) 0.0462635 0.0336124i 0.00343874 0.00249839i −0.586065 0.810264i \(-0.699324\pi\)
0.589503 + 0.807766i \(0.299324\pi\)
\(182\) 1.22641 + 2.12420i 0.0909074 + 0.157456i
\(183\) −10.5205 7.35631i −0.777701 0.543794i
\(184\) −3.93828 0.837107i −0.290334 0.0617124i
\(185\) 0.0531361 + 0.00582888i 0.00390664 + 0.000428548i
\(186\) −8.66619 + 15.6584i −0.635436 + 1.14813i
\(187\) −1.89943 + 2.10953i −0.138900 + 0.154264i
\(188\) 0.932151 + 2.86887i 0.0679841 + 0.209234i
\(189\) 1.52998 + 0.583862i 0.111290 + 0.0424697i
\(190\) −7.80571 17.7484i −0.566286 1.28760i
\(191\) 1.60360 1.78098i 0.116033 0.128867i −0.682330 0.731044i \(-0.739033\pi\)
0.798363 + 0.602177i \(0.205700\pi\)
\(192\) −13.7808 + 6.43709i −0.994546 + 0.464557i
\(193\) 2.94773 5.10562i 0.212182 0.367511i −0.740215 0.672370i \(-0.765276\pi\)
0.952397 + 0.304860i \(0.0986095\pi\)
\(194\) 0.921292 + 8.76550i 0.0661449 + 0.629326i
\(195\) 25.1063 2.98367i 1.79790 0.213665i
\(196\) −0.417364 + 3.97095i −0.0298117 + 0.283640i
\(197\) −12.8434 9.33130i −0.915057 0.664828i 0.0272318 0.999629i \(-0.491331\pi\)
−0.942289 + 0.334801i \(0.891331\pi\)
\(198\) 3.54932 + 9.71210i 0.252239 + 0.690209i
\(199\) 4.61006 0.326798 0.163399 0.986560i \(-0.447754\pi\)
0.163399 + 0.986560i \(0.447754\pi\)
\(200\) −15.0058 3.33229i −1.06107 0.235629i
\(201\) 2.83008 3.25994i 0.199618 0.229938i
\(202\) 9.21022 + 10.2290i 0.648029 + 0.719709i
\(203\) 1.24187 0.552916i 0.0871622 0.0388071i
\(204\) 0.958654 0.221984i 0.0671192 0.0155420i
\(205\) −6.05913 + 8.26054i −0.423188 + 0.576941i
\(206\) 15.7873 11.4702i 1.09995 0.799164i
\(207\) 3.09292 2.42298i 0.214973 0.168409i
\(208\) 13.2453 9.62331i 0.918400 0.667256i
\(209\) 14.0696 15.6259i 0.973217 1.08087i
\(210\) 1.27001 + 0.710445i 0.0876392 + 0.0490254i
\(211\) 0.0990841 + 0.110044i 0.00682123 + 0.00757575i 0.746546 0.665334i \(-0.231711\pi\)
−0.739725 + 0.672910i \(0.765044\pi\)
\(212\) 2.40727 + 0.511681i 0.165332 + 0.0351424i
\(213\) −2.52764 20.4752i −0.173191 1.40294i
\(214\) 11.8496 2.51870i 0.810020 0.172175i
\(215\) −5.98927 + 0.602015i −0.408465 + 0.0410571i
\(216\) 4.10418 15.4382i 0.279254 1.05043i
\(217\) −2.20972 + 1.60546i −0.150006 + 0.108986i
\(218\) −6.60528 11.4407i −0.447366 0.774861i
\(219\) 1.44019 0.672718i 0.0973188 0.0454581i
\(220\) −0.761075 3.66227i −0.0513117 0.246910i
\(221\) −5.85553 + 2.60705i −0.393886 + 0.175369i
\(222\) −0.0144020 + 0.0472173i −0.000966600 + 0.00316902i
\(223\) 1.61074 0.342372i 0.107863 0.0229270i −0.153664 0.988123i \(-0.549107\pi\)
0.261527 + 0.965196i \(0.415774\pi\)
\(224\) −0.995419 −0.0665092
\(225\) 11.8916 9.14277i 0.792772 0.609518i
\(226\) −17.4876 −1.16326
\(227\) 3.58225 0.761432i 0.237763 0.0505380i −0.0874891 0.996165i \(-0.527884\pi\)
0.325252 + 0.945627i \(0.394551\pi\)
\(228\) −7.10104 + 1.64430i −0.470278 + 0.108896i
\(229\) −0.773433 + 0.344355i −0.0511099 + 0.0227556i −0.432132 0.901810i \(-0.642239\pi\)
0.381023 + 0.924566i \(0.375572\pi\)
\(230\) 3.03155 1.73196i 0.199894 0.114202i
\(231\) −0.136515 + 1.57222i −0.00898202 + 0.103445i
\(232\) −6.63027 11.4840i −0.435299 0.753960i
\(233\) 9.04329 6.57033i 0.592445 0.430437i −0.250744 0.968053i \(-0.580675\pi\)
0.843189 + 0.537617i \(0.180675\pi\)
\(234\) −1.59822 + 23.2938i −0.104479 + 1.52276i
\(235\) −10.0690 5.87446i −0.656829 0.383207i
\(236\) 2.93191 0.623197i 0.190851 0.0405667i
\(237\) −15.7367 + 11.8746i −1.02221 + 0.771338i
\(238\) −0.360862 0.0767036i −0.0233912 0.00497196i
\(239\) −10.9299 12.1389i −0.706996 0.785199i 0.277477 0.960732i \(-0.410502\pi\)
−0.984473 + 0.175533i \(0.943835\pi\)
\(240\) 3.83003 8.92638i 0.247227 0.576195i
\(241\) 1.40222 1.55732i 0.0903247 0.100316i −0.696288 0.717763i \(-0.745166\pi\)
0.786613 + 0.617447i \(0.211833\pi\)
\(242\) 2.54805 1.85127i 0.163795 0.119004i
\(243\) 8.98290 + 12.7400i 0.576254 + 0.817271i
\(244\) −3.46945 + 2.52070i −0.222109 + 0.161372i
\(245\) −9.01297 12.5245i −0.575818 0.800161i
\(246\) −6.45669 6.91488i −0.411664 0.440876i
\(247\) 43.3737 19.3112i 2.75980 1.22874i
\(248\) 17.8282 + 19.8002i 1.13209 + 1.25731i
\(249\) 5.61718 + 16.2789i 0.355974 + 1.03163i
\(250\) 11.6333 6.50685i 0.735756 0.411529i
\(251\) −15.8673 −1.00154 −0.500769 0.865581i \(-0.666949\pi\)
−0.500769 + 0.865581i \(0.666949\pi\)
\(252\) 0.351096 0.419534i 0.0221170 0.0264282i
\(253\) 3.06320 + 2.22554i 0.192582 + 0.139919i
\(254\) −1.91818 + 18.2503i −0.120358 + 1.14513i
\(255\) −2.19327 + 3.10654i −0.137348 + 0.194539i
\(256\) 1.31835 + 12.5433i 0.0823968 + 0.783953i
\(257\) −1.09760 + 1.90109i −0.0684661 + 0.118587i −0.898226 0.439533i \(-0.855144\pi\)
0.829760 + 0.558120i \(0.188477\pi\)
\(258\) 0.480865 5.53805i 0.0299374 0.344784i
\(259\) −0.00504127 + 0.00559889i −0.000313249 + 0.000347898i
\(260\) 1.79354 8.25347i 0.111230 0.511858i
\(261\) 12.7465 + 2.23036i 0.788990 + 0.138056i
\(262\) 1.22985 + 3.78508i 0.0759801 + 0.233843i
\(263\) −19.8482 + 22.0437i −1.22389 + 1.35927i −0.311346 + 0.950297i \(0.600780\pi\)
−0.912546 + 0.408973i \(0.865887\pi\)
\(264\) 15.3918 0.278740i 0.947299 0.0171553i
\(265\) −8.25810 + 4.71795i −0.507291 + 0.289821i
\(266\) 2.67302 + 0.568167i 0.163893 + 0.0348366i
\(267\) −19.2326 + 8.98362i −1.17701 + 0.549788i
\(268\) −0.721076 1.24894i −0.0440467 0.0762912i
\(269\) −20.4742 + 14.8754i −1.24833 + 0.906968i −0.998124 0.0612238i \(-0.980500\pi\)
−0.250210 + 0.968192i \(0.580500\pi\)
\(270\) 6.25699 + 12.3587i 0.380789 + 0.752126i
\(271\) −15.2201 11.0580i −0.924555 0.671728i 0.0200987 0.999798i \(-0.493602\pi\)
−0.944654 + 0.328070i \(0.893602\pi\)
\(272\) −0.257402 + 2.44902i −0.0156073 + 0.148494i
\(273\) −1.72555 + 3.11779i −0.104435 + 0.188697i
\(274\) 5.03443 8.71989i 0.304141 0.526788i
\(275\) 11.6169 + 8.60247i 0.700528 + 0.518748i
\(276\) −0.428130 1.24074i −0.0257704 0.0746839i
\(277\) −22.1401 + 4.70603i −1.33027 + 0.282758i −0.817580 0.575814i \(-0.804685\pi\)
−0.512692 + 0.858573i \(0.671352\pi\)
\(278\) 1.37963 + 1.00236i 0.0827447 + 0.0601176i
\(279\) −25.9830 + 0.941397i −1.55556 + 0.0563599i
\(280\) 1.61657 1.44233i 0.0966087 0.0861958i
\(281\) −0.856636 0.381399i −0.0511026 0.0227523i 0.381026 0.924564i \(-0.375571\pi\)
−0.432129 + 0.901812i \(0.642237\pi\)
\(282\) 7.05744 8.12940i 0.420265 0.484099i
\(283\) −1.21199 11.5313i −0.0720454 0.685466i −0.969622 0.244608i \(-0.921341\pi\)
0.897577 0.440858i \(-0.145326\pi\)
\(284\) −6.74133 1.43291i −0.400024 0.0850278i
\(285\) 16.2462 23.0111i 0.962342 1.36306i
\(286\) −22.0090 + 4.67815i −1.30142 + 0.276625i
\(287\) −0.446185 1.37322i −0.0263375 0.0810583i
\(288\) −7.86244 5.28832i −0.463299 0.311617i
\(289\) −4.95538 + 15.2511i −0.291493 + 0.897122i
\(290\) 10.9200 + 3.60301i 0.641242 + 0.211576i
\(291\) −10.2212 + 7.71271i −0.599177 + 0.452127i
\(292\) −0.0555058 0.528103i −0.00324823 0.0309049i
\(293\) 11.8547 20.5330i 0.692561 1.19955i −0.278435 0.960455i \(-0.589816\pi\)
0.970996 0.239096i \(-0.0768509\pi\)
\(294\) 12.9107 6.03067i 0.752970 0.351716i
\(295\) −6.85114 + 9.34030i −0.398889 + 0.543813i
\(296\) 0.0594568 + 0.0431979i 0.00345586 + 0.00251083i
\(297\) −9.43096 + 11.6931i −0.547240 + 0.678504i
\(298\) −7.62869 + 23.4787i −0.441918 + 1.36008i
\(299\) 4.27476 + 7.40411i 0.247216 + 0.428190i
\(300\) −1.59142 4.75152i −0.0918807 0.274329i
\(301\) 0.424198 0.734732i 0.0244504 0.0423493i
\(302\) −17.0019 18.8825i −0.978350 1.08657i
\(303\) −5.83403 + 19.1270i −0.335156 + 1.09882i
\(304\) 1.90666 18.1406i 0.109354 1.04044i
\(305\) 3.51928 16.1950i 0.201513 0.927321i
\(306\) −2.44281 2.52299i −0.139646 0.144230i
\(307\) −12.6269 −0.720652 −0.360326 0.932826i \(-0.617335\pi\)
−0.360326 + 0.932826i \(0.617335\pi\)
\(308\) 0.481619 + 0.214430i 0.0274428 + 0.0122183i
\(309\) 26.1037 + 11.0602i 1.48499 + 0.629193i
\(310\) −22.9666 2.51937i −1.30442 0.143091i
\(311\) −9.47726 10.5256i −0.537406 0.596850i 0.411890 0.911234i \(-0.364869\pi\)
−0.949296 + 0.314384i \(0.898202\pi\)
\(312\) 32.0060 + 13.5610i 1.81198 + 0.767742i
\(313\) 1.87423 2.08155i 0.105938 0.117656i −0.687844 0.725859i \(-0.741443\pi\)
0.793782 + 0.608203i \(0.208109\pi\)
\(314\) 5.14446 15.8330i 0.290319 0.893509i
\(315\) 0.0669536 + 2.11308i 0.00377241 + 0.119058i
\(316\) 2.03512 + 6.26345i 0.114484 + 0.352347i
\(317\) 27.2462 + 12.1308i 1.53030 + 0.681332i 0.987368 0.158446i \(-0.0506485\pi\)
0.542929 + 0.839778i \(0.317315\pi\)
\(318\) −2.86494 8.30272i −0.160658 0.465594i
\(319\) 1.30350 + 12.4020i 0.0729820 + 0.694377i
\(320\) −14.5327 13.2053i −0.812403 0.738198i
\(321\) 12.0113 + 12.8637i 0.670407 + 0.717980i
\(322\) −0.0514372 + 0.489392i −0.00286648 + 0.0272728i
\(323\) −2.20674 + 6.79164i −0.122786 + 0.377897i
\(324\) 5.00202 1.44849i 0.277890 0.0804715i
\(325\) 16.0627 + 28.4142i 0.890998 + 1.57614i
\(326\) 0.366993 + 0.635650i 0.0203259 + 0.0352054i
\(327\) 9.29360 16.7920i 0.513937 0.928600i
\(328\) −12.8670 + 5.72877i −0.710462 + 0.316318i
\(329\) 1.50097 0.668275i 0.0827512 0.0368432i
\(330\) −9.79838 + 9.06620i −0.539383 + 0.499078i
\(331\) −18.6133 8.28716i −1.02308 0.455504i −0.174547 0.984649i \(-0.555846\pi\)
−0.848531 + 0.529145i \(0.822513\pi\)
\(332\) 5.75281 0.315726
\(333\) −0.0695641 + 0.0174410i −0.00381209 + 0.000955762i
\(334\) −1.98949 6.12301i −0.108860 0.335036i
\(335\) 5.29259 + 1.74627i 0.289165 + 0.0954091i
\(336\) 0.705868 + 1.17302i 0.0385082 + 0.0639936i
\(337\) −25.9922 5.52480i −1.41588 0.300955i −0.564471 0.825453i \(-0.690920\pi\)
−0.851412 + 0.524498i \(0.824253\pi\)
\(338\) −34.5362 7.34089i −1.87852 0.399292i
\(339\) −13.0992 21.7685i −0.711453 1.18230i
\(340\) 0.742026 + 1.03113i 0.0402420 + 0.0559206i
\(341\) −7.74271 23.8296i −0.419291 1.29045i
\(342\) 18.0947 + 18.6886i 0.978448 + 1.01056i
\(343\) 4.38089 0.236546
\(344\) −7.56039 3.36610i −0.407629 0.181488i
\(345\) 4.42675 + 2.47633i 0.238328 + 0.133321i
\(346\) −0.396128 + 0.176368i −0.0212960 + 0.00948158i
\(347\) 18.7081 8.32938i 1.00430 0.447144i 0.162372 0.986730i \(-0.448086\pi\)
0.841931 + 0.539585i \(0.181419\pi\)
\(348\) 2.09328 3.78221i 0.112211 0.202748i
\(349\) 2.88806 + 5.00227i 0.154594 + 0.267766i 0.932911 0.360106i \(-0.117260\pi\)
−0.778317 + 0.627872i \(0.783926\pi\)
\(350\) −0.213335 + 1.86653i −0.0114032 + 0.0997701i
\(351\) −30.1932 + 15.4589i −1.61159 + 0.825138i
\(352\) 2.82175 8.68445i 0.150400 0.462883i
\(353\) −1.44559 + 13.7539i −0.0769411 + 0.732045i 0.886246 + 0.463214i \(0.153304\pi\)
−0.963187 + 0.268831i \(0.913363\pi\)
\(354\) −7.30066 7.81874i −0.388026 0.415561i
\(355\) 23.1260 13.2122i 1.22740 0.701229i
\(356\) 0.741236 + 7.05239i 0.0392854 + 0.373776i
\(357\) −0.174827 0.506657i −0.00925281 0.0268151i
\(358\) −16.5394 7.36382i −0.874135 0.389190i
\(359\) 0.158269 + 0.487102i 0.00835313 + 0.0257083i 0.955146 0.296135i \(-0.0956977\pi\)
−0.946793 + 0.321843i \(0.895698\pi\)
\(360\) 20.4313 2.80413i 1.07682 0.147791i
\(361\) 10.4747 32.2377i 0.551299 1.69672i
\(362\) −0.0456192 + 0.0506652i −0.00239769 + 0.00266291i
\(363\) 4.21310 + 1.78510i 0.221130 + 0.0936934i
\(364\) 0.796542 + 0.884650i 0.0417501 + 0.0463682i
\(365\) 1.51876 + 1.38004i 0.0794957 + 0.0722345i
\(366\) 14.0922 + 5.97089i 0.736609 + 0.312103i
\(367\) −17.8610 7.95224i −0.932337 0.415103i −0.116373 0.993206i \(-0.537127\pi\)
−0.815964 + 0.578102i \(0.803793\pi\)
\(368\) 3.28461 0.171222
\(369\) 3.77118 13.2169i 0.196320 0.688046i
\(370\) −0.0634103 + 0.00637373i −0.00329655 + 0.000331354i
\(371\) 0.140118 1.33313i 0.00727455 0.0692127i
\(372\) −2.53400 + 8.30780i −0.131382 + 0.430739i
\(373\) 16.5937 + 18.4292i 0.859191 + 0.954228i 0.999355 0.0359001i \(-0.0114298\pi\)
−0.140165 + 0.990128i \(0.544763\pi\)
\(374\) 1.69214 2.93088i 0.0874987 0.151552i
\(375\) 16.8138 + 9.60713i 0.868260 + 0.496110i
\(376\) −8.01359 13.8800i −0.413270 0.715804i
\(377\) −8.70129 + 26.7798i −0.448139 + 1.37923i
\(378\) −1.92894 0.301634i −0.0992140 0.0155144i
\(379\) 15.1691 + 11.0210i 0.779184 + 0.566110i 0.904734 0.425977i \(-0.140070\pi\)
−0.125550 + 0.992087i \(0.540070\pi\)
\(380\) −5.49642 7.63786i −0.281960 0.391814i
\(381\) −24.1548 + 11.2828i −1.23749 + 0.578036i
\(382\) −1.42861 + 2.47442i −0.0730938 + 0.126602i
\(383\) −0.573056 5.45227i −0.0292818 0.278598i −0.999359 0.0358009i \(-0.988602\pi\)
0.970077 0.242797i \(-0.0780649\pi\)
\(384\) 5.74133 4.33229i 0.292986 0.221081i
\(385\) −1.94049 + 0.620776i −0.0988965 + 0.0316377i
\(386\) −2.17198 + 6.68468i −0.110551 + 0.340241i
\(387\) 7.25396 3.54975i 0.368740 0.180444i
\(388\) 1.32184 + 4.06819i 0.0671061 + 0.206531i
\(389\) 1.53381 0.326022i 0.0777673 0.0165300i −0.168864 0.985639i \(-0.554010\pi\)
0.246631 + 0.969109i \(0.420676\pi\)
\(390\) −28.5385 + 9.70270i −1.44510 + 0.491316i
\(391\) −1.25782 0.267358i −0.0636107 0.0135209i
\(392\) −2.21753 21.0983i −0.112002 1.06563i
\(393\) −3.79043 + 4.36616i −0.191202 + 0.220244i
\(394\) 17.2906 + 7.69827i 0.871087 + 0.387833i
\(395\) −21.9831 12.8254i −1.10609 0.645317i
\(396\) 2.66493 + 4.25238i 0.133918 + 0.213690i
\(397\) 7.83333 + 5.69125i 0.393143 + 0.285635i 0.766742 0.641955i \(-0.221876\pi\)
−0.373599 + 0.927590i \(0.621876\pi\)
\(398\) −5.37609 + 1.14272i −0.269479 + 0.0572796i
\(399\) 1.29500 + 3.75296i 0.0648309 + 0.187883i
\(400\) 12.5394 + 0.113877i 0.626969 + 0.00569383i
\(401\) −0.505309 + 0.875221i −0.0252339 + 0.0437064i −0.878367 0.477988i \(-0.841366\pi\)
0.853133 + 0.521694i \(0.174700\pi\)
\(402\) −2.49228 + 4.50314i −0.124304 + 0.224596i
\(403\) 5.91384 56.2665i 0.294590 2.80283i
\(404\) 5.40443 + 3.92655i 0.268880 + 0.195353i
\(405\) −10.6972 + 17.0461i −0.531549 + 0.847027i
\(406\) −1.31117 + 0.952622i −0.0650724 + 0.0472779i
\(407\) −0.0345565 0.0598535i −0.00171290 0.00296683i
\(408\) −4.73696 + 2.21266i −0.234515 + 0.109543i
\(409\) −7.84185 1.66684i −0.387754 0.0824197i 0.00990955 0.999951i \(-0.496846\pi\)
−0.397664 + 0.917531i \(0.630179\pi\)
\(410\) 5.01836 11.1351i 0.247839 0.549922i
\(411\) 14.6256 0.264865i 0.721427 0.0130648i
\(412\) 6.33716 7.03812i 0.312209 0.346744i
\(413\) −0.504507 1.55271i −0.0248251 0.0764040i
\(414\) −3.00626 + 3.59226i −0.147750 + 0.176550i
\(415\) −16.5889 + 14.8009i −0.814316 + 0.726546i
\(416\) 13.7966 15.3227i 0.676434 0.751256i
\(417\) −0.214311 + 2.46819i −0.0104949 + 0.120868i
\(418\) −12.5342 + 21.7099i −0.613070 + 1.06187i
\(419\) −2.61646 24.8939i −0.127822 1.21615i −0.850880 0.525360i \(-0.823931\pi\)
0.723058 0.690788i \(-0.242736\pi\)
\(420\) 0.674587 + 0.209112i 0.0329165 + 0.0102036i
\(421\) −3.44840 + 32.8093i −0.168065 + 1.59903i 0.507450 + 0.861681i \(0.330588\pi\)
−0.675515 + 0.737346i \(0.736079\pi\)
\(422\) −0.142826 0.103769i −0.00695265 0.00505140i
\(423\) 15.4059 + 2.69569i 0.749061 + 0.131069i
\(424\) −13.0760 −0.635026
\(425\) −4.79260 1.06428i −0.232475 0.0516250i
\(426\) 8.02298 + 23.2510i 0.388714 + 1.12651i
\(427\) 1.56298 + 1.73586i 0.0756377 + 0.0840042i
\(428\) 5.37108 2.39136i 0.259621 0.115591i
\(429\) −22.3094 23.8925i −1.07711 1.15354i
\(430\) 6.83526 2.18665i 0.329625 0.105449i
\(431\) 4.71468 3.42542i 0.227098 0.164997i −0.468418 0.883507i \(-0.655176\pi\)
0.695516 + 0.718511i \(0.255176\pi\)
\(432\) −0.656483 + 13.0153i −0.0315851 + 0.626198i
\(433\) −1.68629 + 1.22516i −0.0810381 + 0.0588776i −0.627567 0.778563i \(-0.715949\pi\)
0.546529 + 0.837440i \(0.315949\pi\)
\(434\) 2.17895 2.41997i 0.104593 0.116162i
\(435\) 3.69468 + 16.2920i 0.177146 + 0.781143i
\(436\) −4.29007 4.76461i −0.205457 0.228183i
\(437\) 9.31706 + 1.98040i 0.445695 + 0.0947355i
\(438\) −1.51275 + 1.14149i −0.0722818 + 0.0545425i
\(439\) −22.2890 + 4.73767i −1.06380 + 0.226117i −0.706383 0.707830i \(-0.749674\pi\)
−0.357413 + 0.933946i \(0.616341\pi\)
\(440\) 8.00095 + 18.1923i 0.381430 + 0.867284i
\(441\) 17.1779 + 11.5540i 0.817995 + 0.550188i
\(442\) 6.18230 4.49170i 0.294062 0.213648i
\(443\) 4.50211 + 7.79787i 0.213901 + 0.370488i 0.952932 0.303184i \(-0.0980495\pi\)
−0.739031 + 0.673672i \(0.764716\pi\)
\(444\) −0.00207246 + 0.0238682i −9.83547e−5 + 0.00113274i
\(445\) −20.2819 18.4293i −0.961453 0.873634i
\(446\) −1.79352 + 0.798526i −0.0849256 + 0.0378113i
\(447\) −34.9406 + 8.09076i −1.65263 + 0.382680i
\(448\) 2.70709 0.575410i 0.127898 0.0271856i
\(449\) −2.14345 −0.101156 −0.0505779 0.998720i \(-0.516106\pi\)
−0.0505779 + 0.998720i \(0.516106\pi\)
\(450\) −11.6013 + 13.6096i −0.546890 + 0.641564i
\(451\) 13.2453 0.623698
\(452\) −8.30169 + 1.76458i −0.390479 + 0.0829988i
\(453\) 10.7695 35.3081i 0.505996 1.65892i
\(454\) −3.98876 + 1.77591i −0.187202 + 0.0833477i
\(455\) −4.57295 0.501640i −0.214383 0.0235173i
\(456\) 35.0882 16.3898i 1.64315 0.767525i
\(457\) 9.78295 + 16.9446i 0.457627 + 0.792634i 0.998835 0.0482552i \(-0.0153661\pi\)
−0.541208 + 0.840889i \(0.682033\pi\)
\(458\) 0.816594 0.593290i 0.0381569 0.0277226i
\(459\) 1.31080 4.93068i 0.0611831 0.230145i
\(460\) 1.26437 1.12809i 0.0589516 0.0525976i
\(461\) 3.73066 0.792976i 0.173754 0.0369326i −0.120213 0.992748i \(-0.538358\pi\)
0.293967 + 0.955816i \(0.405024\pi\)
\(462\) −0.230517 1.86731i −0.0107246 0.0868752i
\(463\) −8.85242 1.88164i −0.411407 0.0874473i −0.00244131 0.999997i \(-0.500777\pi\)
−0.408966 + 0.912550i \(0.634110\pi\)
\(464\) 7.23859 + 8.03927i 0.336043 + 0.373214i
\(465\) −14.0673 30.4760i −0.652353 1.41329i
\(466\) −8.91735 + 9.90372i −0.413088 + 0.458781i
\(467\) 24.8972 18.0889i 1.15211 0.837053i 0.163346 0.986569i \(-0.447771\pi\)
0.988759 + 0.149515i \(0.0477713\pi\)
\(468\) 1.59174 + 11.2193i 0.0735783 + 0.518611i
\(469\) −0.635487 + 0.461708i −0.0293441 + 0.0213197i
\(470\) 13.1983 + 4.35473i 0.608790 + 0.200869i
\(471\) 23.5624 5.45606i 1.08570 0.251402i
\(472\) −14.5489 + 6.47759i −0.669667 + 0.298155i
\(473\) 5.20763 + 5.78365i 0.239447 + 0.265933i
\(474\) 15.4082 17.7485i 0.707721 0.815216i
\(475\) 35.5003 + 7.88343i 1.62886 + 0.361717i
\(476\) −0.179048 −0.00820666
\(477\) 8.18921 9.78551i 0.374958 0.448048i
\(478\) 15.7550 + 11.4467i 0.720617 + 0.523559i
\(479\) −1.28729 + 12.2478i −0.0588179 + 0.559615i 0.924940 + 0.380113i \(0.124115\pi\)
−0.983758 + 0.179501i \(0.942552\pi\)
\(480\) 2.38077 11.9989i 0.108667 0.547670i
\(481\) −0.0163124 0.155202i −0.000743782 0.00707662i
\(482\) −1.24920 + 2.16367i −0.0568993 + 0.0985524i
\(483\) −0.647725 + 0.302555i −0.0294725 + 0.0137667i
\(484\) 1.02281 1.13594i 0.0464912 0.0516338i
\(485\) −14.2783 8.33027i −0.648346 0.378258i
\(486\) −13.6335 12.6303i −0.618428 0.572922i
\(487\) 1.53444 + 4.72251i 0.0695320 + 0.213997i 0.979784 0.200056i \(-0.0641125\pi\)
−0.910252 + 0.414054i \(0.864113\pi\)
\(488\) 15.2464 16.9329i 0.690173 0.766514i
\(489\) −0.516357 + 0.932972i −0.0233505 + 0.0421905i
\(490\) 13.6152 + 12.3715i 0.615070 + 0.558889i
\(491\) 18.6448 + 3.96308i 0.841430 + 0.178852i 0.608412 0.793621i \(-0.291807\pi\)
0.233018 + 0.972472i \(0.425140\pi\)
\(492\) −3.76286 2.63112i −0.169643 0.118620i
\(493\) −2.11760 3.66778i −0.0953718 0.165189i
\(494\) −45.7942 + 33.2714i −2.06038 + 1.49695i
\(495\) −18.6252 5.40589i −0.837139 0.242976i
\(496\) −17.5847 12.7760i −0.789576 0.573660i
\(497\) −0.392386 + 3.73331i −0.0176009 + 0.167462i
\(498\) −10.5857 17.5915i −0.474357 0.788293i
\(499\) −2.50922 + 4.34610i −0.112328 + 0.194558i −0.916709 0.399557i \(-0.869164\pi\)
0.804380 + 0.594115i \(0.202497\pi\)
\(500\) 4.86600 4.26279i 0.217614 0.190638i
\(501\) 6.13167 7.06301i 0.273943 0.315552i
\(502\) 18.5039 3.93313i 0.825871 0.175544i
\(503\) −5.48055 3.98186i −0.244366 0.177542i 0.458860 0.888508i \(-0.348258\pi\)
−0.703226 + 0.710966i \(0.748258\pi\)
\(504\) −1.36122 + 2.56819i −0.0606337 + 0.114396i
\(505\) −25.6865 + 2.58190i −1.14304 + 0.114893i
\(506\) −4.12386 1.83606i −0.183328 0.0816228i
\(507\) −16.7317 48.4894i −0.743083 2.15349i
\(508\) 0.930943 + 8.85733i 0.0413039 + 0.392981i
\(509\) 9.72702 + 2.06754i 0.431143 + 0.0916422i 0.418371 0.908276i \(-0.362601\pi\)
0.0127717 + 0.999918i \(0.495935\pi\)
\(510\) 1.78767 4.16641i 0.0791596 0.184492i
\(511\) −0.282909 + 0.0601341i −0.0125152 + 0.00266018i
\(512\) −7.21302 22.1994i −0.318774 0.981084i
\(513\) −9.70953 + 36.5231i −0.428686 + 1.61253i
\(514\) 0.808743 2.48906i 0.0356721 0.109788i
\(515\) −0.166186 + 36.5995i −0.00732303 + 1.61277i
\(516\) −0.330540 2.67755i −0.0145512 0.117872i
\(517\) 1.57546 + 14.9895i 0.0692886 + 0.659237i
\(518\) 0.00449112 0.00777885i 0.000197329 0.000341783i
\(519\) −0.516266 0.360990i −0.0226616 0.0158457i
\(520\) −0.203763 + 44.8750i −0.00893558 + 1.96790i
\(521\) 15.4969 + 11.2591i 0.678930 + 0.493272i 0.873003 0.487715i \(-0.162170\pi\)
−0.194072 + 0.980987i \(0.562170\pi\)
\(522\) −15.4174 + 0.558592i −0.674802 + 0.0244489i
\(523\) 0.0808887 0.248950i 0.00353702 0.0108858i −0.949272 0.314455i \(-0.898178\pi\)
0.952809 + 0.303569i \(0.0981783\pi\)
\(524\) 0.965764 + 1.67275i 0.0421896 + 0.0730745i
\(525\) −2.48325 + 1.13258i −0.108378 + 0.0494300i
\(526\) 17.6822 30.6265i 0.770980 1.33538i
\(527\) 5.69401 + 6.32384i 0.248035 + 0.275471i
\(528\) −12.2349 + 2.83308i −0.532455 + 0.123294i
\(529\) 2.22487 21.1682i 0.0967333 0.920356i
\(530\) 8.46084 7.54890i 0.367516 0.327903i
\(531\) 4.26412 14.9446i 0.185047 0.648539i
\(532\) 1.32626 0.0575009
\(533\) 27.3223 + 12.1647i 1.18346 + 0.526911i
\(534\) 20.2015 15.2437i 0.874206 0.659659i
\(535\) −9.33561 + 20.7145i −0.403614 + 0.895565i
\(536\) 5.12714 + 5.69427i 0.221459 + 0.245955i
\(537\) −3.22253 26.1042i −0.139063 1.12648i
\(538\) 20.1891 22.4222i 0.870412 0.966691i
\(539\) −6.16497 + 18.9738i −0.265544 + 0.817261i
\(540\) 4.21737 + 5.23555i 0.181487 + 0.225302i
\(541\) 6.23922 + 19.2023i 0.268245 + 0.825573i 0.990928 + 0.134394i \(0.0429087\pi\)
−0.722683 + 0.691180i \(0.757091\pi\)
\(542\) 20.4902 + 9.12282i 0.880129 + 0.391859i
\(543\) −0.0972395 0.0188354i −0.00417295 0.000808305i
\(544\) 0.324166 + 3.08423i 0.0138985 + 0.132235i
\(545\) 24.6293 + 2.70177i 1.05500 + 0.115731i
\(546\) 1.23945 4.06358i 0.0530437 0.173905i
\(547\) 0.785409 7.47267i 0.0335817 0.319508i −0.964816 0.262925i \(-0.915313\pi\)
0.998398 0.0565830i \(-0.0180206\pi\)
\(548\) 1.51006 4.64750i 0.0645067 0.198531i
\(549\) 3.12332 + 22.0145i 0.133300 + 0.939554i
\(550\) −15.6796 7.15234i −0.668582 0.304977i
\(551\) 15.6857 + 27.1684i 0.668233 + 1.15741i
\(552\) 3.59563 + 5.97527i 0.153040 + 0.254324i
\(553\) 3.27699 1.45901i 0.139352 0.0620435i
\(554\) 24.6526 10.9760i 1.04739 0.466327i
\(555\) −0.0554321 0.0741588i −0.00235296 0.00314787i
\(556\) 0.756081 + 0.336629i 0.0320650 + 0.0142762i
\(557\) 17.2753 0.731980 0.365990 0.930619i \(-0.380730\pi\)
0.365990 + 0.930619i \(0.380730\pi\)
\(558\) 30.0672 7.53840i 1.27284 0.319126i
\(559\) 5.43045 + 16.7132i 0.229684 + 0.706894i
\(560\) −1.04534 + 1.42513i −0.0441735 + 0.0602226i
\(561\) 4.91587 0.0890249i 0.207548 0.00375863i
\(562\) 1.09352 + 0.232435i 0.0461273 + 0.00980467i
\(563\) −2.64361 0.561918i −0.111415 0.0236820i 0.151867 0.988401i \(-0.451472\pi\)
−0.263282 + 0.964719i \(0.584805\pi\)
\(564\) 2.53001 4.57132i 0.106533 0.192487i
\(565\) 19.3990 26.4470i 0.816120 1.11263i
\(566\) 4.27172 + 13.1470i 0.179554 + 0.552610i
\(567\) −1.06942 2.62709i −0.0449114 0.110327i
\(568\) 36.6180 1.53646
\(569\) −39.0521 17.3871i −1.63715 0.728906i −0.637995 0.770040i \(-0.720236\pi\)
−0.999154 + 0.0411349i \(0.986903\pi\)
\(570\) −13.2419 + 30.8619i −0.554640 + 1.29266i
\(571\) 27.6907 12.3287i 1.15882 0.515941i 0.264949 0.964262i \(-0.414645\pi\)
0.893872 + 0.448322i \(0.147978\pi\)
\(572\) −9.97604 + 4.44162i −0.417119 + 0.185714i
\(573\) −4.15026 + 0.0751599i −0.173380 + 0.00313985i
\(574\) 0.860713 + 1.49080i 0.0359255 + 0.0622247i
\(575\) −0.743598 + 6.50596i −0.0310102 + 0.271317i
\(576\) 24.4393 + 9.83692i 1.01830 + 0.409872i
\(577\) 11.8163 36.3667i 0.491917 1.51396i −0.329790 0.944054i \(-0.606978\pi\)
0.821707 0.569910i \(-0.193022\pi\)
\(578\) 1.99841 19.0136i 0.0831229 0.790862i
\(579\) −9.94803 + 2.30354i −0.413426 + 0.0957319i
\(580\) 5.54748 + 0.608543i 0.230346 + 0.0252684i
\(581\) −0.327531 3.11625i −0.0135883 0.129284i
\(582\) 10.0078 11.5279i 0.414837 0.477847i
\(583\) 11.2336 + 5.00152i 0.465248 + 0.207142i
\(584\) 0.871846 + 2.68327i 0.0360773 + 0.111034i
\(585\) −33.4550 28.2568i −1.38319 1.16827i
\(586\) −8.73494 + 26.8834i −0.360837 + 1.11054i
\(587\) 12.5219 13.9069i 0.516832 0.574000i −0.427073 0.904217i \(-0.640455\pi\)
0.943905 + 0.330217i \(0.107122\pi\)
\(588\) 5.52046 4.16563i 0.227660 0.171788i
\(589\) −42.1773 46.8426i −1.73789 1.93012i
\(590\) 5.67432 12.5906i 0.233608 0.518346i
\(591\) 3.36889 + 27.2898i 0.138578 + 1.12255i
\(592\) −0.0547716 0.0243859i −0.00225110 0.00100225i
\(593\) −42.4830 −1.74457 −0.872284 0.489000i \(-0.837362\pi\)
−0.872284 + 0.489000i \(0.837362\pi\)
\(594\) 8.09962 15.9738i 0.332331 0.655415i
\(595\) 0.516306 0.460656i 0.0211665 0.0188851i
\(596\) −1.25238 + 11.9156i −0.0512994 + 0.488081i
\(597\) −5.44948 5.83619i −0.223032 0.238859i
\(598\) −6.82039 7.57481i −0.278906 0.309757i
\(599\) −22.9566 + 39.7621i −0.937983 + 1.62463i −0.168757 + 0.985658i \(0.553975\pi\)
−0.769226 + 0.638977i \(0.779358\pi\)
\(600\) 13.5196 + 22.9359i 0.551934 + 0.936356i
\(601\) 13.8303 + 23.9548i 0.564150 + 0.977136i 0.997128 + 0.0757320i \(0.0241293\pi\)
−0.432978 + 0.901404i \(0.642537\pi\)
\(602\) −0.312563 + 0.961968i −0.0127391 + 0.0392069i
\(603\) −7.47237 + 0.270733i −0.304299 + 0.0110251i
\(604\) −9.97648 7.24834i −0.405937 0.294931i
\(605\) −0.0268222 + 5.90710i −0.00109048 + 0.240158i
\(606\) 2.06232 23.7514i 0.0837758 0.964834i
\(607\) −7.77177 + 13.4611i −0.315446 + 0.546369i −0.979532 0.201287i \(-0.935488\pi\)
0.664086 + 0.747656i \(0.268821\pi\)
\(608\) −2.40120 22.8459i −0.0973814 0.926523i
\(609\) −2.16797 0.918575i −0.0878506 0.0372225i
\(610\) −0.0897161 + 19.7584i −0.00363250 + 0.799993i
\(611\) −10.5167 + 32.3671i −0.425460 + 1.30943i
\(612\) −1.41423 0.951222i −0.0571670 0.0384509i
\(613\) −12.9646 39.9011i −0.523637 1.61159i −0.766996 0.641652i \(-0.778249\pi\)
0.243359 0.969936i \(-0.421751\pi\)
\(614\) 14.7250 3.12990i 0.594253 0.126312i
\(615\) 17.6200 2.09399i 0.710507 0.0844377i
\(616\) −2.73988 0.582379i −0.110393 0.0234647i
\(617\) 0.968484 + 9.21451i 0.0389897 + 0.370962i 0.996567 + 0.0827867i \(0.0263820\pi\)
−0.957578 + 0.288176i \(0.906951\pi\)
\(618\) −33.1828 6.42755i −1.33481 0.258554i
\(619\) 9.46155 + 4.21255i 0.380292 + 0.169317i 0.587975 0.808879i \(-0.299926\pi\)
−0.207683 + 0.978196i \(0.566592\pi\)
\(620\) −11.1569 + 1.12144i −0.448073 + 0.0450383i
\(621\) −6.72351 1.05137i −0.269805 0.0421901i
\(622\) 13.6611 + 9.92537i 0.547760 + 0.397971i
\(623\) 3.77802 0.803044i 0.151363 0.0321733i
\(624\) −27.8399 5.39263i −1.11449 0.215878i
\(625\) −3.06433 + 24.8115i −0.122573 + 0.992459i
\(626\) −1.66970 + 2.89201i −0.0667347 + 0.115588i
\(627\) −36.4134 + 0.659435i −1.45421 + 0.0263353i
\(628\) 0.844549 8.03534i 0.0337012 0.320645i
\(629\) 0.0189895 + 0.0137967i 0.000757161 + 0.000550110i
\(630\) −0.601861 2.44760i −0.0239787 0.0975148i
\(631\) 29.6450 21.5383i 1.18015 0.857428i 0.187960 0.982177i \(-0.439813\pi\)
0.992188 + 0.124749i \(0.0398126\pi\)
\(632\) −17.4957 30.3034i −0.695941 1.20541i
\(633\) 0.0221865 0.255519i 0.000881835 0.0101560i
\(634\) −34.7805 7.39282i −1.38131 0.293606i
\(635\) −25.4727 23.1460i −1.01085 0.918521i
\(636\) −2.19783 3.65238i −0.0871495 0.144826i
\(637\) −30.1429 + 33.4770i −1.19430 + 1.32641i
\(638\) −4.59425 14.1397i −0.181888 0.559794i
\(639\) −22.9331 + 27.4034i −0.907220 + 1.08406i
\(640\) 8.02026 + 4.67918i 0.317029 + 0.184961i
\(641\) −17.6253 + 19.5749i −0.696157 + 0.773161i −0.982759 0.184889i \(-0.940807\pi\)
0.286603 + 0.958050i \(0.407474\pi\)
\(642\) −17.1958 12.0239i −0.678664 0.474544i
\(643\) 24.3415 42.1606i 0.959934 1.66265i 0.237282 0.971441i \(-0.423743\pi\)
0.722651 0.691213i \(-0.242923\pi\)
\(644\) 0.0249638 + 0.237514i 0.000983711 + 0.00935938i
\(645\) 7.84195 + 6.87059i 0.308777 + 0.270529i
\(646\) 0.889937 8.46718i 0.0350141 0.333137i
\(647\) 10.6167 + 7.71348i 0.417386 + 0.303248i 0.776585 0.630012i \(-0.216950\pi\)
−0.359199 + 0.933261i \(0.616950\pi\)
\(648\) −24.3957 + 13.0535i −0.958354 + 0.512788i
\(649\) 14.9767 0.587885
\(650\) −25.7750 29.1542i −1.01098 1.14352i
\(651\) 4.64454 + 0.899653i 0.182034 + 0.0352602i
\(652\) 0.238359 + 0.264724i 0.00933485 + 0.0103674i
\(653\) −44.1587 + 19.6607i −1.72806 + 0.769383i −0.731943 + 0.681366i \(0.761386\pi\)
−0.996119 + 0.0880168i \(0.971947\pi\)
\(654\) −6.67554 + 21.8859i −0.261034 + 0.855807i
\(655\) −7.08856 2.33885i −0.276973 0.0913864i
\(656\) 9.29580 6.75379i 0.362940 0.263691i
\(657\) −2.55406 1.02802i −0.0996435 0.0401070i
\(658\) −1.58473 + 1.15137i −0.0617792 + 0.0448853i
\(659\) 20.0735 22.2938i 0.781951 0.868444i −0.212113 0.977245i \(-0.568034\pi\)
0.994064 + 0.108801i \(0.0347011\pi\)
\(660\) −3.73666 + 5.29261i −0.145449 + 0.206014i
\(661\) 8.02224 + 8.90960i 0.312029 + 0.346543i 0.878677 0.477417i \(-0.158427\pi\)
−0.566648 + 0.823960i \(0.691760\pi\)
\(662\) 23.7604 + 5.05042i 0.923473 + 0.196290i
\(663\) 10.2222 + 4.33116i 0.396996 + 0.168208i
\(664\) −29.8977 + 6.35495i −1.16026 + 0.246620i
\(665\) −3.82444 + 3.41222i −0.148305 + 0.132320i
\(666\) 0.0768001 0.0375824i 0.00297594 0.00145629i
\(667\) −4.57022 + 3.32046i −0.176959 + 0.128569i
\(668\) −1.56229 2.70596i −0.0604468 0.104697i
\(669\) −2.33746 1.63443i −0.0903714 0.0631906i
\(670\) −6.60489 0.724539i −0.255169 0.0279914i
\(671\) −19.5750 + 8.71535i −0.755685 + 0.336452i
\(672\) 1.17667 + 1.26017i 0.0453910 + 0.0486121i
\(673\) 25.3929 5.39742i 0.978824 0.208055i 0.309397 0.950933i \(-0.399873\pi\)
0.669427 + 0.742878i \(0.266540\pi\)
\(674\) 31.6806 1.22029
\(675\) −25.6313 4.24684i −0.986550 0.163461i
\(676\) −17.1357 −0.659067
\(677\) −38.4473 + 8.17223i −1.47765 + 0.314084i −0.875079 0.483980i \(-0.839191\pi\)
−0.602572 + 0.798065i \(0.705857\pi\)
\(678\) 20.6718 + 22.1387i 0.793895 + 0.850232i
\(679\) 2.12845 0.947647i 0.0816824 0.0363674i
\(680\) −4.99541 4.53913i −0.191565 0.174068i
\(681\) −5.19848 3.63494i −0.199206 0.139291i
\(682\) 14.9361 + 25.8700i 0.571932 + 0.990615i
\(683\) −26.3578 + 19.1501i −1.00855 + 0.732757i −0.963905 0.266246i \(-0.914217\pi\)
−0.0446482 + 0.999003i \(0.514217\pi\)
\(684\) 10.4757 + 7.04600i 0.400547 + 0.269410i
\(685\) 7.60267 + 17.2867i 0.290483 + 0.660491i
\(686\) −5.10885 + 1.08592i −0.195057 + 0.0414606i
\(687\) 1.35021 + 0.572086i 0.0515135 + 0.0218264i
\(688\) 6.60389 + 1.40370i 0.251771 + 0.0535156i
\(689\) 18.5791 + 20.6342i 0.707807 + 0.786100i
\(690\) −5.77615 1.79052i −0.219894 0.0681640i
\(691\) 22.3344 24.8048i 0.849639 0.943620i −0.149340 0.988786i \(-0.547715\pi\)
0.998979 + 0.0451661i \(0.0143817\pi\)
\(692\) −0.170254 + 0.123696i −0.00647207 + 0.00470223i
\(693\) 2.15176 1.68568i 0.0817384 0.0640335i
\(694\) −19.7521 + 14.3507i −0.749779 + 0.544746i
\(695\) −3.04632 + 0.974541i −0.115554 + 0.0369664i
\(696\) −6.70080 + 21.9687i −0.253993 + 0.832723i
\(697\) −4.10951 + 1.82967i −0.155659 + 0.0693037i
\(698\) −4.60791 5.11760i −0.174412 0.193704i
\(699\) −19.0078 3.68183i −0.718940 0.139260i
\(700\) 0.0870675 + 0.907604i 0.00329084 + 0.0343042i
\(701\) −47.0156 −1.77575 −0.887877 0.460081i \(-0.847820\pi\)
−0.887877 + 0.460081i \(0.847820\pi\)
\(702\) 31.3784 25.5119i 1.18430 0.962884i
\(703\) −0.140661 0.102196i −0.00530513 0.00385441i
\(704\) −2.65377 + 25.2490i −0.100018 + 0.951606i
\(705\) 4.46553 + 19.6911i 0.168181 + 0.741611i
\(706\) −1.72346 16.3976i −0.0648633 0.617133i
\(707\) 1.81928 3.15109i 0.0684211 0.118509i
\(708\) −4.25472 2.97504i −0.159902 0.111809i
\(709\) −1.96106 + 2.17797i −0.0736490 + 0.0817955i −0.778843 0.627219i \(-0.784193\pi\)
0.705194 + 0.709014i \(0.250860\pi\)
\(710\) −23.6938 + 21.1400i −0.889212 + 0.793369i
\(711\) 33.6350 + 5.88537i 1.26141 + 0.220719i
\(712\) −11.6428 35.8329i −0.436333 1.34289i
\(713\) 7.59494 8.43503i 0.284433 0.315894i
\(714\) 0.329465 + 0.547510i 0.0123299 + 0.0204901i
\(715\) 17.3396 38.4743i 0.648465 1.43886i
\(716\) −8.59463 1.82684i −0.321196 0.0682724i
\(717\) −2.44738 + 28.1861i −0.0913990 + 1.05263i
\(718\) −0.305309 0.528811i −0.0113940 0.0197351i
\(719\) 13.9385 10.1269i 0.519820 0.377671i −0.296716 0.954966i \(-0.595892\pi\)
0.816536 + 0.577295i \(0.195892\pi\)
\(720\) −15.8279 + 5.70303i −0.589872 + 0.212540i
\(721\) −4.17330 3.03208i −0.155422 0.112920i
\(722\) −4.22424 + 40.1910i −0.157210 + 1.49575i
\(723\) −3.62906 + 0.0657210i −0.134966 + 0.00244419i
\(724\) −0.0165440 + 0.0286550i −0.000614851 + 0.00106495i
\(725\) −17.5624 + 12.5178i −0.652253 + 0.464899i
\(726\) −5.35565 1.03740i −0.198767 0.0385014i
\(727\) 0.169906 0.0361146i 0.00630145 0.00133942i −0.204760 0.978812i \(-0.565641\pi\)
0.211061 + 0.977473i \(0.432308\pi\)
\(728\) −5.11692 3.71766i −0.189646 0.137786i
\(729\) 5.50988 26.4318i 0.204070 0.978956i
\(730\) −2.11321 1.23289i −0.0782134 0.0456313i
\(731\) −2.41466 1.07508i −0.0893094 0.0397631i
\(732\) 7.29232 + 1.41253i 0.269532 + 0.0522087i
\(733\) 5.54047 + 52.7141i 0.204642 + 1.94704i 0.305630 + 0.952150i \(0.401133\pi\)
−0.100988 + 0.994888i \(0.532200\pi\)
\(734\) 22.8001 + 4.84631i 0.841566 + 0.178880i
\(735\) −5.20152 + 26.2152i −0.191861 + 0.966960i
\(736\) 4.04616 0.860038i 0.149144 0.0317014i
\(737\) −2.22670 6.85308i −0.0820216 0.252436i
\(738\) −1.12166 + 16.3479i −0.0412889 + 0.601776i
\(739\) −1.32714 + 4.08451i −0.0488195 + 0.150251i −0.972494 0.232926i \(-0.925170\pi\)
0.923675 + 0.383177i \(0.125170\pi\)
\(740\) −0.0294590 + 0.00942414i −0.00108293 + 0.000346438i
\(741\) −75.7188 32.0823i −2.78160 1.17857i
\(742\) 0.167051 + 1.58938i 0.00613264 + 0.0583481i
\(743\) −15.1680 + 26.2718i −0.556461 + 0.963820i 0.441327 + 0.897346i \(0.354508\pi\)
−0.997788 + 0.0664731i \(0.978825\pi\)
\(744\) 3.99201 45.9754i 0.146354 1.68554i
\(745\) −27.0451 37.5820i −0.990855 1.37690i
\(746\) −23.9192 17.3783i −0.875745 0.636266i
\(747\) 13.9685 26.3542i 0.511082 0.964248i
\(748\) 0.507554 1.56209i 0.0185580 0.0571157i
\(749\) −1.60118 2.77332i −0.0585057 0.101335i
\(750\) −21.9890 7.03578i −0.802926 0.256910i
\(751\) 13.8299 23.9541i 0.504661 0.874099i −0.495324 0.868708i \(-0.664951\pi\)
0.999985 0.00539081i \(-0.00171596\pi\)
\(752\) 8.74882 + 9.71655i 0.319037 + 0.354326i
\(753\) 18.7565 + 20.0875i 0.683526 + 0.732031i
\(754\) 3.50907 33.3866i 0.127793 1.21587i
\(755\) 47.4169 4.76614i 1.72568 0.173457i
\(756\) −0.946142 + 0.0514480i −0.0344109 + 0.00187115i
\(757\) 31.2908 1.13729 0.568643 0.822585i \(-0.307469\pi\)
0.568643 + 0.822585i \(0.307469\pi\)
\(758\) −20.4215 9.09225i −0.741743 0.330245i
\(759\) −0.803491 6.50869i −0.0291649 0.236250i
\(760\) 37.0026 + 33.6227i 1.34222 + 1.21962i
\(761\) −12.3374 13.7021i −0.447230 0.496699i 0.476804 0.879010i \(-0.341795\pi\)
−0.924034 + 0.382311i \(0.875128\pi\)
\(762\) 25.3718 19.1450i 0.919122 0.693552i
\(763\) −2.33670 + 2.59517i −0.0845942 + 0.0939514i
\(764\) −0.428507 + 1.31881i −0.0155028 + 0.0477128i
\(765\) 6.52541 0.895591i 0.235927 0.0323802i
\(766\) 2.01977 + 6.21620i 0.0729771