# Properties

 Label 225.2.q.a.106.23 Level $225$ Weight $2$ Character 225.106 Analytic conductor $1.797$ Analytic rank $0$ Dimension $224$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [225,2,Mod(16,225)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(225, base_ring=CyclotomicField(30))

chi = DirichletCharacter(H, H._module([20, 6]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("225.16");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$225 = 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 225.q (of order $$15$$, degree $$8$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.79663404548$$ Analytic rank: $$0$$ Dimension: $$224$$ Relative dimension: $$28$$ over $$\Q(\zeta_{15})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

## Embedding invariants

 Embedding label 106.23 Character $$\chi$$ $$=$$ 225.106 Dual form 225.2.q.a.121.23

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(1.79209 + 0.380921i) q^{2} +(-1.49692 + 0.871345i) q^{3} +(1.23941 + 0.551821i) q^{4} +(-0.0204456 + 2.23597i) q^{5} +(-3.01453 + 0.991326i) q^{6} +(-2.15924 + 3.73991i) q^{7} +(-0.953512 - 0.692767i) q^{8} +(1.48151 - 2.60866i) q^{9} +O(q^{10})$$ $$q+(1.79209 + 0.380921i) q^{2} +(-1.49692 + 0.871345i) q^{3} +(1.23941 + 0.551821i) q^{4} +(-0.0204456 + 2.23597i) q^{5} +(-3.01453 + 0.991326i) q^{6} +(-2.15924 + 3.73991i) q^{7} +(-0.953512 - 0.692767i) q^{8} +(1.48151 - 2.60866i) q^{9} +(-0.888371 + 3.99929i) q^{10} +(0.885500 + 0.188219i) q^{11} +(-2.33612 + 0.253925i) q^{12} +(6.04866 - 1.28568i) q^{13} +(-5.29417 + 5.87977i) q^{14} +(-1.91770 - 3.36488i) q^{15} +(-3.26052 - 3.62117i) q^{16} +(4.65336 + 3.38087i) q^{17} +(3.64871 - 4.11063i) q^{18} +(-2.14825 - 1.56079i) q^{19} +(-1.25920 + 2.76001i) q^{20} +(-0.0265554 - 7.47977i) q^{21} +(1.51520 + 0.674611i) q^{22} +(2.35509 - 2.61559i) q^{23} +(2.03097 + 0.206176i) q^{24} +(-4.99916 - 0.0914317i) q^{25} +11.3295 q^{26} +(0.0553423 + 5.19586i) q^{27} +(-4.73994 + 3.44377i) q^{28} +(0.238489 + 2.26907i) q^{29} +(-2.15495 - 6.76068i) q^{30} +(0.244353 - 2.32486i) q^{31} +(-3.28516 - 5.69007i) q^{32} +(-1.48952 + 0.489828i) q^{33} +(7.05142 + 7.83140i) q^{34} +(-8.31820 - 4.90447i) q^{35} +(3.27572 - 2.41567i) q^{36} +(-0.704813 + 2.16919i) q^{37} +(-3.25532 - 3.61540i) q^{38} +(-7.93406 + 7.19503i) q^{39} +(1.56850 - 2.11786i) q^{40} +(5.91609 - 1.25750i) q^{41} +(2.80162 - 13.4146i) q^{42} +(-1.16011 + 2.00937i) q^{43} +(0.993634 + 0.721917i) q^{44} +(5.80261 + 3.36596i) q^{45} +(5.21688 - 3.79028i) q^{46} +(-0.583281 - 5.54955i) q^{47} +(8.03601 + 2.57955i) q^{48} +(-5.82462 - 10.0885i) q^{49} +(-8.92414 - 2.06814i) q^{50} +(-9.91160 - 1.00619i) q^{51} +(8.20623 + 1.74429i) q^{52} +(3.50455 - 2.54621i) q^{53} +(-1.88003 + 9.33255i) q^{54} +(-0.438957 + 1.97611i) q^{55} +(4.64974 - 2.07020i) q^{56} +(4.57574 + 0.464511i) q^{57} +(-0.436942 + 4.15723i) q^{58} +(12.8577 - 2.73299i) q^{59} +(-0.520005 - 5.22869i) q^{60} +(-13.8278 - 2.93920i) q^{61} +(1.32349 - 4.07330i) q^{62} +(6.55722 + 11.1735i) q^{63} +(-0.708321 - 2.17999i) q^{64} +(2.75108 + 13.5509i) q^{65} +(-2.85595 + 0.310428i) q^{66} +(-0.796374 + 7.57699i) q^{67} +(3.90179 + 6.75810i) q^{68} +(-1.24629 + 5.96742i) q^{69} +(-13.0388 - 11.9578i) q^{70} +(-4.21064 + 3.05921i) q^{71} +(-3.21983 + 1.46104i) q^{72} +(0.0260643 + 0.0802177i) q^{73} +(-2.08938 + 3.61892i) q^{74} +(7.56300 - 4.21913i) q^{75} +(-1.80128 - 3.11991i) q^{76} +(-2.61593 + 2.90528i) q^{77} +(-16.9593 + 9.87192i) q^{78} +(0.0932729 + 0.887432i) q^{79} +(8.16350 - 7.21639i) q^{80} +(-4.61023 - 7.72954i) q^{81} +11.0812 q^{82} +(0.951504 - 0.423637i) q^{83} +(4.09458 - 9.28516i) q^{84} +(-7.65467 + 10.3357i) q^{85} +(-2.84444 + 3.15907i) q^{86} +(-2.33414 - 3.18880i) q^{87} +(-0.713942 - 0.792913i) q^{88} +(1.84560 + 5.68017i) q^{89} +(9.11666 + 8.24246i) q^{90} +(-8.25216 + 25.3975i) q^{91} +(4.36226 - 1.94220i) q^{92} +(1.65998 + 3.69304i) q^{93} +(1.06865 - 10.1675i) q^{94} +(3.53382 - 4.77151i) q^{95} +(9.87563 + 5.65505i) q^{96} +(0.171397 + 1.63074i) q^{97} +(-6.59533 - 20.2983i) q^{98} +(1.80288 - 2.03112i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9}+O(q^{10})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9} - 20 q^{10} - 11 q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - 48 q^{15} + 23 q^{16} - 24 q^{17} - 12 q^{19} + q^{20} + 15 q^{21} - 11 q^{22} + q^{23} - 30 q^{24} - 16 q^{25} - 136 q^{26} + 7 q^{27} + 4 q^{28} - 15 q^{29} - 24 q^{30} + 3 q^{31} + 12 q^{32} - 5 q^{33} + q^{34} + 14 q^{35} + 38 q^{36} - 24 q^{37} + 55 q^{38} + 20 q^{39} + q^{40} - 19 q^{41} - 38 q^{42} - 8 q^{43} + 4 q^{44} - 38 q^{45} - 20 q^{46} - 10 q^{47} - 25 q^{48} - 72 q^{49} - 3 q^{50} - 26 q^{51} - 25 q^{52} - 12 q^{53} + 53 q^{54} - 20 q^{55} - 60 q^{56} + 38 q^{57} - 23 q^{58} - 30 q^{59} - 33 q^{60} - 3 q^{61} - 44 q^{62} + 46 q^{63} - 44 q^{64} + 51 q^{65} - 134 q^{66} - 12 q^{67} - 156 q^{68} + 4 q^{69} - 16 q^{70} + 42 q^{71} + 74 q^{72} - 12 q^{73} + 90 q^{74} + 67 q^{75} - 8 q^{76} + 31 q^{77} - 92 q^{78} - 15 q^{79} + 298 q^{80} - 104 q^{81} + 8 q^{82} + 59 q^{83} + 115 q^{84} - 11 q^{85} + 9 q^{86} - 59 q^{87} - 23 q^{88} + 106 q^{89} + 107 q^{90} + 30 q^{91} + 11 q^{92} + 32 q^{93} + 25 q^{94} + 7 q^{95} + 35 q^{96} - 21 q^{97} + 146 q^{98} - 20 q^{99}+O(q^{100})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 - 20 * q^10 - 11 * q^11 - 4 * q^12 - 3 * q^13 + q^14 - 48 * q^15 + 23 * q^16 - 24 * q^17 - 12 * q^19 + q^20 + 15 * q^21 - 11 * q^22 + q^23 - 30 * q^24 - 16 * q^25 - 136 * q^26 + 7 * q^27 + 4 * q^28 - 15 * q^29 - 24 * q^30 + 3 * q^31 + 12 * q^32 - 5 * q^33 + q^34 + 14 * q^35 + 38 * q^36 - 24 * q^37 + 55 * q^38 + 20 * q^39 + q^40 - 19 * q^41 - 38 * q^42 - 8 * q^43 + 4 * q^44 - 38 * q^45 - 20 * q^46 - 10 * q^47 - 25 * q^48 - 72 * q^49 - 3 * q^50 - 26 * q^51 - 25 * q^52 - 12 * q^53 + 53 * q^54 - 20 * q^55 - 60 * q^56 + 38 * q^57 - 23 * q^58 - 30 * q^59 - 33 * q^60 - 3 * q^61 - 44 * q^62 + 46 * q^63 - 44 * q^64 + 51 * q^65 - 134 * q^66 - 12 * q^67 - 156 * q^68 + 4 * q^69 - 16 * q^70 + 42 * q^71 + 74 * q^72 - 12 * q^73 + 90 * q^74 + 67 * q^75 - 8 * q^76 + 31 * q^77 - 92 * q^78 - 15 * q^79 + 298 * q^80 - 104 * q^81 + 8 * q^82 + 59 * q^83 + 115 * q^84 - 11 * q^85 + 9 * q^86 - 59 * q^87 - 23 * q^88 + 106 * q^89 + 107 * q^90 + 30 * q^91 + 11 * q^92 + 32 * q^93 + 25 * q^94 + 7 * q^95 + 35 * q^96 - 21 * q^97 + 146 * q^98 - 20 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/225\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.79209 + 0.380921i 1.26720 + 0.269352i 0.791998 0.610524i $$-0.209041\pi$$
0.475204 + 0.879876i $$0.342374\pi$$
$$3$$ −1.49692 + 0.871345i −0.864245 + 0.503071i
$$4$$ 1.23941 + 0.551821i 0.619705 + 0.275910i
$$5$$ −0.0204456 + 2.23597i −0.00914355 + 0.999958i
$$6$$ −3.01453 + 0.991326i −1.23068 + 0.404707i
$$7$$ −2.15924 + 3.73991i −0.816115 + 1.41355i 0.0924090 + 0.995721i $$0.470543\pi$$
−0.908524 + 0.417832i $$0.862790\pi$$
$$8$$ −0.953512 0.692767i −0.337117 0.244930i
$$9$$ 1.48151 2.60866i 0.493838 0.869554i
$$10$$ −0.888371 + 3.99929i −0.280928 + 1.26469i
$$11$$ 0.885500 + 0.188219i 0.266988 + 0.0567501i 0.339460 0.940620i $$-0.389756\pi$$
−0.0724722 + 0.997370i $$0.523089\pi$$
$$12$$ −2.33612 + 0.253925i −0.674379 + 0.0733017i
$$13$$ 6.04866 1.28568i 1.67760 0.356584i 0.731844 0.681472i $$-0.238660\pi$$
0.945752 + 0.324888i $$0.105327\pi$$
$$14$$ −5.29417 + 5.87977i −1.41493 + 1.57143i
$$15$$ −1.91770 3.36488i −0.495148 0.868809i
$$16$$ −3.26052 3.62117i −0.815129 0.905292i
$$17$$ 4.65336 + 3.38087i 1.12861 + 0.819981i 0.985491 0.169726i $$-0.0542881\pi$$
0.143115 + 0.989706i $$0.454288\pi$$
$$18$$ 3.64871 4.11063i 0.860009 0.968884i
$$19$$ −2.14825 1.56079i −0.492842 0.358070i 0.313434 0.949610i $$-0.398520\pi$$
−0.806276 + 0.591539i $$0.798520\pi$$
$$20$$ −1.25920 + 2.76001i −0.281565 + 0.617156i
$$21$$ −0.0265554 7.47977i −0.00579486 1.63222i
$$22$$ 1.51520 + 0.674611i 0.323042 + 0.143828i
$$23$$ 2.35509 2.61559i 0.491070 0.545389i −0.445769 0.895148i $$-0.647070\pi$$
0.936840 + 0.349759i $$0.113737\pi$$
$$24$$ 2.03097 + 0.206176i 0.414569 + 0.0420854i
$$25$$ −4.99916 0.0914317i −0.999833 0.0182863i
$$26$$ 11.3295 2.22190
$$27$$ 0.0553423 + 5.19586i 0.0106506 + 0.999943i
$$28$$ −4.73994 + 3.44377i −0.895764 + 0.650811i
$$29$$ 0.238489 + 2.26907i 0.0442862 + 0.421355i 0.994094 + 0.108521i $$0.0346116\pi$$
−0.949808 + 0.312834i $$0.898722\pi$$
$$30$$ −2.15495 6.76068i −0.393437 1.23433i
$$31$$ 0.244353 2.32486i 0.0438871 0.417558i −0.950417 0.310978i $$-0.899343\pi$$
0.994304 0.106580i $$-0.0339900\pi$$
$$32$$ −3.28516 5.69007i −0.580740 1.00587i
$$33$$ −1.48952 + 0.489828i −0.259293 + 0.0852682i
$$34$$ 7.05142 + 7.83140i 1.20931 + 1.34307i
$$35$$ −8.31820 4.90447i −1.40603 0.829006i
$$36$$ 3.27572 2.41567i 0.545953 0.402612i
$$37$$ −0.704813 + 2.16919i −0.115871 + 0.356613i −0.992128 0.125231i $$-0.960033\pi$$
0.876257 + 0.481844i $$0.160033\pi$$
$$38$$ −3.25532 3.61540i −0.528083 0.586496i
$$39$$ −7.93406 + 7.19503i −1.27047 + 1.15213i
$$40$$ 1.56850 2.11786i 0.248002 0.334864i
$$41$$ 5.91609 1.25750i 0.923938 0.196389i 0.278707 0.960376i $$-0.410094\pi$$
0.645232 + 0.763987i $$0.276761\pi$$
$$42$$ 2.80162 13.4146i 0.432299 2.06991i
$$43$$ −1.16011 + 2.00937i −0.176915 + 0.306427i −0.940822 0.338900i $$-0.889945\pi$$
0.763907 + 0.645326i $$0.223279\pi$$
$$44$$ 0.993634 + 0.721917i 0.149796 + 0.108833i
$$45$$ 5.80261 + 3.36596i 0.865002 + 0.501768i
$$46$$ 5.21688 3.79028i 0.769187 0.558847i
$$47$$ −0.583281 5.54955i −0.0850803 0.809485i −0.950977 0.309262i $$-0.899918\pi$$
0.865897 0.500223i $$-0.166749\pi$$
$$48$$ 8.03601 + 2.57955i 1.15990 + 0.372326i
$$49$$ −5.82462 10.0885i −0.832088 1.44122i
$$50$$ −8.92414 2.06814i −1.26206 0.292480i
$$51$$ −9.91160 1.00619i −1.38790 0.140894i
$$52$$ 8.20623 + 1.74429i 1.13800 + 0.241889i
$$53$$ 3.50455 2.54621i 0.481387 0.349748i −0.320475 0.947257i $$-0.603843\pi$$
0.801862 + 0.597509i $$0.203843\pi$$
$$54$$ −1.88003 + 9.33255i −0.255840 + 1.27000i
$$55$$ −0.438957 + 1.97611i −0.0591889 + 0.266458i
$$56$$ 4.64974 2.07020i 0.621348 0.276642i
$$57$$ 4.57574 + 0.464511i 0.606071 + 0.0615259i
$$58$$ −0.436942 + 4.15723i −0.0573733 + 0.545871i
$$59$$ 12.8577 2.73299i 1.67393 0.355805i 0.729365 0.684124i $$-0.239815\pi$$
0.944567 + 0.328319i $$0.106482\pi$$
$$60$$ −0.520005 5.22869i −0.0671324 0.675021i
$$61$$ −13.8278 2.93920i −1.77047 0.376326i −0.796794 0.604251i $$-0.793472\pi$$
−0.973679 + 0.227925i $$0.926806\pi$$
$$62$$ 1.32349 4.07330i 0.168084 0.517309i
$$63$$ 6.55722 + 11.1735i 0.826132 + 1.40772i
$$64$$ −0.708321 2.17999i −0.0885401 0.272498i
$$65$$ 2.75108 + 13.5509i 0.341230 + 1.68079i
$$66$$ −2.85595 + 0.310428i −0.351543 + 0.0382110i
$$67$$ −0.796374 + 7.57699i −0.0972926 + 0.925677i 0.831612 + 0.555357i $$0.187419\pi$$
−0.928904 + 0.370320i $$0.879248\pi$$
$$68$$ 3.90179 + 6.75810i 0.473162 + 0.819540i
$$69$$ −1.24629 + 5.96742i −0.150035 + 0.718393i
$$70$$ −13.0388 11.9578i −1.55843 1.42924i
$$71$$ −4.21064 + 3.05921i −0.499711 + 0.363061i −0.808907 0.587937i $$-0.799940\pi$$
0.309195 + 0.950999i $$0.399940\pi$$
$$72$$ −3.21983 + 1.46104i −0.379461 + 0.172186i
$$73$$ 0.0260643 + 0.0802177i 0.00305060 + 0.00938878i 0.952570 0.304319i $$-0.0984288\pi$$
−0.949520 + 0.313708i $$0.898429\pi$$
$$74$$ −2.08938 + 3.61892i −0.242886 + 0.420691i
$$75$$ 7.56300 4.21913i 0.873300 0.487183i
$$76$$ −1.80128 3.11991i −0.206621 0.357878i
$$77$$ −2.61593 + 2.90528i −0.298112 + 0.331087i
$$78$$ −16.9593 + 9.87192i −1.92027 + 1.11777i
$$79$$ 0.0932729 + 0.887432i 0.0104940 + 0.0998439i 0.998515 0.0544747i $$-0.0173484\pi$$
−0.988021 + 0.154319i $$0.950682\pi$$
$$80$$ 8.16350 7.21639i 0.912708 0.806817i
$$81$$ −4.61023 7.72954i −0.512248 0.858838i
$$82$$ 11.0812 1.22371
$$83$$ 0.951504 0.423637i 0.104441 0.0465002i −0.353851 0.935302i $$-0.615128\pi$$
0.458292 + 0.888802i $$0.348461\pi$$
$$84$$ 4.09458 9.28516i 0.446755 1.01309i
$$85$$ −7.65467 + 10.3357i −0.830266 + 1.12106i
$$86$$ −2.84444 + 3.15907i −0.306724 + 0.340652i
$$87$$ −2.33414 3.18880i −0.250246 0.341875i
$$88$$ −0.713942 0.792913i −0.0761065 0.0845248i
$$89$$ 1.84560 + 5.68017i 0.195633 + 0.602096i 0.999969 + 0.00792122i $$0.00252143\pi$$
−0.804336 + 0.594175i $$0.797479\pi$$
$$90$$ 9.11666 + 8.24246i 0.960980 + 0.868832i
$$91$$ −8.25216 + 25.3975i −0.865062 + 2.66239i
$$92$$ 4.36226 1.94220i 0.454797 0.202489i
$$93$$ 1.65998 + 3.69304i 0.172132 + 0.382951i
$$94$$ 1.06865 10.1675i 0.110223 1.04870i
$$95$$ 3.53382 4.77151i 0.362562 0.489547i
$$96$$ 9.87563 + 5.65505i 1.00793 + 0.577166i
$$97$$ 0.171397 + 1.63074i 0.0174027 + 0.165576i 0.999771 0.0213776i $$-0.00680523\pi$$
−0.982369 + 0.186954i $$0.940139\pi$$
$$98$$ −6.59533 20.2983i −0.666229 2.05044i
$$99$$ 1.80288 2.03112i 0.181196 0.204135i
$$100$$ −6.14556 2.87196i −0.614556 0.287196i
$$101$$ 3.92357 6.79582i 0.390410 0.676209i −0.602094 0.798425i $$-0.705667\pi$$
0.992504 + 0.122216i $$0.0390000\pi$$
$$102$$ −17.3792 5.57872i −1.72080 0.552375i
$$103$$ −11.4044 5.07757i −1.12371 0.500308i −0.241140 0.970490i $$-0.577521\pi$$
−0.882569 + 0.470183i $$0.844188\pi$$
$$104$$ −6.65814 2.96440i −0.652885 0.290683i
$$105$$ 16.7251 + 0.0935513i 1.63221 + 0.00912967i
$$106$$ 7.25039 3.22808i 0.704220 0.313539i
$$107$$ 6.18859 0.598273 0.299137 0.954210i $$-0.403301\pi$$
0.299137 + 0.954210i $$0.403301\pi$$
$$108$$ −2.79859 + 6.47033i −0.269294 + 0.622608i
$$109$$ 5.35768 16.4892i 0.513173 1.57938i −0.273410 0.961898i $$-0.588152\pi$$
0.786582 0.617485i $$-0.211848\pi$$
$$110$$ −1.53939 + 3.37416i −0.146775 + 0.321714i
$$111$$ −0.835069 3.86123i −0.0792612 0.366492i
$$112$$ 20.5831 4.37507i 1.94492 0.413405i
$$113$$ −5.86546 + 1.24674i −0.551776 + 0.117284i −0.475358 0.879792i $$-0.657682\pi$$
−0.0764178 + 0.997076i $$0.524348\pi$$
$$114$$ 8.02321 + 2.57544i 0.751442 + 0.241212i
$$115$$ 5.80025 + 5.31940i 0.540876 + 0.496037i
$$116$$ −0.956533 + 2.94391i −0.0888119 + 0.273335i
$$117$$ 5.60727 17.6837i 0.518392 1.63486i
$$118$$ 24.0833 2.21705
$$119$$ −22.6919 + 10.1031i −2.08016 + 0.926146i
$$120$$ −0.502528 + 4.53697i −0.0458743 + 0.414167i
$$121$$ −9.30032 4.14077i −0.845483 0.376433i
$$122$$ −23.6612 10.5346i −2.14218 0.953761i
$$123$$ −7.76017 + 7.03734i −0.699711 + 0.634535i
$$124$$ 1.58576 2.74662i 0.142406 0.246654i
$$125$$ 0.306650 11.1761i 0.0274276 0.999624i
$$126$$ 7.49494 + 22.5217i 0.667703 + 2.00639i
$$127$$ −3.86196 11.8859i −0.342694 1.05470i −0.962807 0.270190i $$-0.912913\pi$$
0.620113 0.784512i $$-0.287087\pi$$
$$128$$ 0.934599 + 8.89212i 0.0826077 + 0.785959i
$$129$$ −0.0142676 4.01872i −0.00125620 0.353829i
$$130$$ −0.231639 + 25.3325i −0.0203161 + 2.22181i
$$131$$ −0.542859 + 5.16496i −0.0474298 + 0.451265i 0.944874 + 0.327435i $$0.106184\pi$$
−0.992303 + 0.123830i $$0.960482\pi$$
$$132$$ −2.11642 0.214851i −0.184211 0.0187004i
$$133$$ 10.4758 4.66413i 0.908367 0.404431i
$$134$$ −4.31342 + 13.2753i −0.372622 + 1.14681i
$$135$$ −11.6189 + 0.0175116i −0.999999 + 0.00150716i
$$136$$ −2.09488 6.44739i −0.179635 0.552859i
$$137$$ 6.78844 + 7.53933i 0.579976 + 0.644128i 0.959718 0.280964i $$-0.0906542\pi$$
−0.379743 + 0.925092i $$0.623987\pi$$
$$138$$ −4.50658 + 10.2194i −0.383626 + 0.869936i
$$139$$ −2.28718 + 2.54017i −0.193996 + 0.215455i −0.832293 0.554336i $$-0.812972\pi$$
0.638297 + 0.769790i $$0.279639\pi$$
$$140$$ −7.60327 10.6688i −0.642593 0.901678i
$$141$$ 5.70870 + 7.79897i 0.480759 + 0.656792i
$$142$$ −8.71118 + 3.87847i −0.731026 + 0.325474i
$$143$$ 5.59808 0.468135
$$144$$ −14.2769 + 3.14077i −1.18974 + 0.261730i
$$145$$ −5.07845 + 0.486862i −0.421742 + 0.0404317i
$$146$$ 0.0161531 + 0.153686i 0.00133684 + 0.0127192i
$$147$$ 17.5096 + 10.0264i 1.44416 + 0.826966i
$$148$$ −2.07056 + 2.29959i −0.170199 + 0.189025i
$$149$$ −7.01283 12.1466i −0.574514 0.995087i −0.996094 0.0882960i $$-0.971858\pi$$
0.421581 0.906791i $$-0.361475\pi$$
$$150$$ 15.1608 4.68018i 1.23787 0.382135i
$$151$$ −0.171017 + 0.296210i −0.0139171 + 0.0241052i −0.872900 0.487899i $$-0.837763\pi$$
0.858983 + 0.512004i $$0.171097\pi$$
$$152$$ 0.967113 + 2.97647i 0.0784432 + 0.241423i
$$153$$ 15.7136 7.13025i 1.27037 0.576446i
$$154$$ −5.79467 + 4.21007i −0.466948 + 0.339257i
$$155$$ 5.19334 + 0.593901i 0.417139 + 0.0477032i
$$156$$ −13.8039 + 4.53941i −1.10520 + 0.363444i
$$157$$ 6.47430 + 11.2138i 0.516705 + 0.894959i 0.999812 + 0.0193980i $$0.00617496\pi$$
−0.483107 + 0.875561i $$0.660492\pi$$
$$158$$ −0.170888 + 1.62589i −0.0135951 + 0.129349i
$$159$$ −3.02739 + 6.86513i −0.240088 + 0.544440i
$$160$$ 12.7900 7.22921i 1.01114 0.571519i
$$161$$ 4.69688 + 14.4555i 0.370166 + 1.13925i
$$162$$ −5.31762 15.6082i −0.417792 1.22630i
$$163$$ 0.350556 1.07890i 0.0274577 0.0845060i −0.936389 0.350965i $$-0.885854\pi$$
0.963846 + 0.266459i $$0.0858536\pi$$
$$164$$ 8.02638 + 1.70606i 0.626755 + 0.133221i
$$165$$ −1.06479 3.34055i −0.0828937 0.260061i
$$166$$ 1.86656 0.396749i 0.144873 0.0307937i
$$167$$ 0.115945 1.10314i 0.00897209 0.0853638i −0.989120 0.147114i $$-0.953002\pi$$
0.998092 + 0.0617503i $$0.0196682\pi$$
$$168$$ −5.15642 + 7.15045i −0.397826 + 0.551669i
$$169$$ 23.0572 10.2657i 1.77363 0.789672i
$$170$$ −17.6550 + 15.6067i −1.35407 + 1.19698i
$$171$$ −7.25424 + 3.29171i −0.554746 + 0.251724i
$$172$$ −2.54667 + 1.85026i −0.194182 + 0.141081i
$$173$$ 4.81060 + 1.02253i 0.365743 + 0.0777411i 0.387117 0.922030i $$-0.373471\pi$$
−0.0213741 + 0.999772i $$0.506804\pi$$
$$174$$ −2.96831 6.60375i −0.225027 0.500629i
$$175$$ 11.1363 18.4990i 0.841828 1.39839i
$$176$$ −2.20561 3.82023i −0.166254 0.287961i
$$177$$ −16.8655 + 15.2946i −1.26769 + 1.14961i
$$178$$ 1.14379 + 10.8824i 0.0857306 + 0.815672i
$$179$$ −1.61240 + 1.17148i −0.120516 + 0.0875602i −0.646411 0.762990i $$-0.723731\pi$$
0.525894 + 0.850550i $$0.323731\pi$$
$$180$$ 5.33440 + 7.37381i 0.397603 + 0.549611i
$$181$$ 7.03514 + 5.11133i 0.522918 + 0.379922i 0.817702 0.575642i $$-0.195248\pi$$
−0.294784 + 0.955564i $$0.595248\pi$$
$$182$$ −24.4631 + 42.3714i −1.81333 + 3.14077i
$$183$$ 23.2602 7.64909i 1.71944 0.565437i
$$184$$ −4.05760 + 0.862470i −0.299130 + 0.0635821i
$$185$$ −4.83585 1.62029i −0.355539 0.119126i
$$186$$ 1.56809 + 7.25060i 0.114978 + 0.531640i
$$187$$ 3.48421 + 3.86961i 0.254791 + 0.282974i
$$188$$ 2.33943 7.20003i 0.170621 0.525116i
$$189$$ −19.5515 11.0121i −1.42217 0.801014i
$$190$$ 8.15050 7.20490i 0.591300 0.522698i
$$191$$ −15.0567 16.7221i −1.08946 1.20997i −0.976307 0.216392i $$-0.930571\pi$$
−0.113154 0.993577i $$-0.536095\pi$$
$$192$$ 2.95982 + 2.64606i 0.213606 + 0.190963i
$$193$$ −5.49895 9.52446i −0.395823 0.685586i 0.597383 0.801956i $$-0.296207\pi$$
−0.993206 + 0.116371i $$0.962874\pi$$
$$194$$ −0.314022 + 2.98772i −0.0225455 + 0.214506i
$$195$$ −15.9257 17.8875i −1.14046 1.28095i
$$196$$ −1.65203 15.7180i −0.118002 1.12271i
$$197$$ −4.79140 + 3.48116i −0.341373 + 0.248022i −0.745241 0.666795i $$-0.767666\pi$$
0.403868 + 0.914817i $$0.367666\pi$$
$$198$$ 4.00463 2.95320i 0.284596 0.209875i
$$199$$ 8.53871 0.605293 0.302646 0.953103i $$-0.402130\pi$$
0.302646 + 0.953103i $$0.402130\pi$$
$$200$$ 4.70342 + 3.55044i 0.332582 + 0.251054i
$$201$$ −5.41007 12.0360i −0.381597 0.848957i
$$202$$ 9.62008 10.6842i 0.676866 0.751736i
$$203$$ −9.00106 4.00753i −0.631751 0.281273i
$$204$$ −11.7293 6.71650i −0.821215 0.470249i
$$205$$ 2.69079 + 13.2539i 0.187933 + 0.925695i
$$206$$ −18.5036 13.4437i −1.28921 0.936664i
$$207$$ −3.33410 10.0187i −0.231736 0.696346i
$$208$$ −24.3774 17.7112i −1.69027 1.22805i
$$209$$ −1.60850 1.78642i −0.111262 0.123569i
$$210$$ 29.9374 + 6.53861i 2.06587 + 0.451207i
$$211$$ 17.9544 19.9404i 1.23603 1.37275i 0.333147 0.942875i $$-0.391889\pi$$
0.902886 0.429880i $$-0.141444\pi$$
$$212$$ 5.74862 1.22191i 0.394817 0.0839209i
$$213$$ 3.63735 8.24830i 0.249227 0.565164i
$$214$$ 11.0905 + 2.35736i 0.758133 + 0.161146i
$$215$$ −4.46919 2.63506i −0.304796 0.179710i
$$216$$ 3.54675 4.99265i 0.241326 0.339707i
$$217$$ 8.16717 + 5.93380i 0.554424 + 0.402812i
$$218$$ 15.8826 27.5094i 1.07570 1.86317i
$$219$$ −0.108913 0.0973682i −0.00735969 0.00657953i
$$220$$ −1.63450 + 2.20698i −0.110198 + 0.148795i
$$221$$ 32.4933 + 14.4670i 2.18574 + 0.973153i
$$222$$ −0.0256963 7.23779i −0.00172462 0.485769i
$$223$$ −14.4912 3.08021i −0.970405 0.206266i −0.304673 0.952457i $$-0.598547\pi$$
−0.665732 + 0.746191i $$0.731880\pi$$
$$224$$ 28.3738 1.89580
$$225$$ −7.64485 + 12.9057i −0.509657 + 0.860378i
$$226$$ −10.9864 −0.730802
$$227$$ 12.1197 + 2.57611i 0.804410 + 0.170983i 0.591727 0.806139i $$-0.298446\pi$$
0.212683 + 0.977121i $$0.431780\pi$$
$$228$$ 5.41488 + 3.10070i 0.358609 + 0.205349i
$$229$$ 14.4497 + 6.43344i 0.954866 + 0.425134i 0.824204 0.566293i $$-0.191623\pi$$
0.130662 + 0.991427i $$0.458290\pi$$
$$230$$ 8.36832 + 11.7423i 0.551790 + 0.774264i
$$231$$ 1.38432 6.62833i 0.0910815 0.436112i
$$232$$ 1.34453 2.32880i 0.0882729 0.152893i
$$233$$ −10.4851 7.61788i −0.686903 0.499064i 0.188738 0.982028i $$-0.439560\pi$$
−0.875640 + 0.482964i $$0.839560\pi$$
$$234$$ 16.7848 29.5549i 1.09726 1.93206i
$$235$$ 12.4206 1.19074i 0.810229 0.0776752i
$$236$$ 17.4441 + 3.70786i 1.13551 + 0.241361i
$$237$$ −0.912882 1.24714i −0.0592980 0.0810104i
$$238$$ −44.5144 + 9.46183i −2.88544 + 0.613319i
$$239$$ −3.26308 + 3.62401i −0.211071 + 0.234418i −0.839379 0.543547i $$-0.817081\pi$$
0.628308 + 0.777965i $$0.283748\pi$$
$$240$$ −5.93211 + 17.9156i −0.382916 + 1.15644i
$$241$$ −1.72108 1.91145i −0.110865 0.123128i 0.685158 0.728394i $$-0.259733\pi$$
−0.796023 + 0.605267i $$0.793066\pi$$
$$242$$ −15.0897 10.9633i −0.970005 0.704750i
$$243$$ 13.6362 + 7.55337i 0.874764 + 0.484549i
$$244$$ −15.5164 11.2734i −0.993338 0.721702i
$$245$$ 22.6768 12.8174i 1.44877 0.818876i
$$246$$ −16.5876 + 9.65556i −1.05759 + 0.615616i
$$247$$ −15.0007 6.67874i −0.954472 0.424958i
$$248$$ −1.84358 + 2.04751i −0.117068 + 0.130017i
$$249$$ −1.05519 + 1.46324i −0.0668698 + 0.0927289i
$$250$$ 4.80677 19.9119i 0.304007 1.25934i
$$251$$ 12.4805 0.787764 0.393882 0.919161i $$-0.371132\pi$$
0.393882 + 0.919161i $$0.371132\pi$$
$$252$$ 1.96133 + 17.4669i 0.123552 + 1.10031i
$$253$$ 2.57774 1.87283i 0.162061 0.117744i
$$254$$ −2.39341 22.7717i −0.150176 1.42883i
$$255$$ 2.45246 22.1415i 0.153579 1.38655i
$$256$$ −2.19150 + 20.8508i −0.136969 + 1.30317i
$$257$$ −6.11612 10.5934i −0.381513 0.660800i 0.609766 0.792582i $$-0.291263\pi$$
−0.991279 + 0.131782i $$0.957930\pi$$
$$258$$ 1.50525 7.20736i 0.0937126 0.448711i
$$259$$ −6.59072 7.31974i −0.409528 0.454826i
$$260$$ −4.06797 + 18.3133i −0.252285 + 1.13574i
$$261$$ 6.27255 + 2.73952i 0.388261 + 0.169572i
$$262$$ −2.94030 + 9.04931i −0.181652 + 0.559068i
$$263$$ −7.37723 8.19324i −0.454899 0.505217i 0.471445 0.881896i $$-0.343733\pi$$
−0.926344 + 0.376679i $$0.877066\pi$$
$$264$$ 1.75961 + 0.564834i 0.108297 + 0.0347631i
$$265$$ 5.62160 + 7.88814i 0.345332 + 0.484565i
$$266$$ 20.5503 4.36810i 1.26002 0.267825i
$$267$$ −7.71209 6.89458i −0.471972 0.421941i
$$268$$ −5.16817 + 8.95154i −0.315696 + 0.546802i
$$269$$ 5.11244 + 3.71441i 0.311711 + 0.226471i 0.732630 0.680627i $$-0.238292\pi$$
−0.420919 + 0.907098i $$0.638292\pi$$
$$270$$ −20.8289 4.39452i −1.26761 0.267442i
$$271$$ −4.89989 + 3.55998i −0.297647 + 0.216253i −0.726578 0.687084i $$-0.758890\pi$$
0.428931 + 0.903337i $$0.358890\pi$$
$$272$$ −2.92967 27.8740i −0.177638 1.69011i
$$273$$ −9.77724 45.2085i −0.591745 2.73614i
$$274$$ 9.29363 + 16.0970i 0.561449 + 0.972458i
$$275$$ −4.40955 1.02190i −0.265906 0.0616228i
$$276$$ −4.83761 + 6.70835i −0.291190 + 0.403795i
$$277$$ −29.1797 6.20233i −1.75324 0.372662i −0.784380 0.620281i $$-0.787019\pi$$
−0.968858 + 0.247618i $$0.920352\pi$$
$$278$$ −5.06645 + 3.68099i −0.303865 + 0.220771i
$$279$$ −5.70277 4.08176i −0.341416 0.244368i
$$280$$ 4.53385 + 10.4390i 0.270949 + 0.623852i
$$281$$ −20.3693 + 9.06901i −1.21513 + 0.541011i −0.911311 0.411718i $$-0.864929\pi$$
−0.303820 + 0.952729i $$0.598262\pi$$
$$282$$ 7.25973 + 16.1511i 0.432311 + 0.961781i
$$283$$ −2.65206 + 25.2327i −0.157649 + 1.49993i 0.574342 + 0.818615i $$0.305258\pi$$
−0.731991 + 0.681314i $$0.761409\pi$$
$$284$$ −6.90684 + 1.46809i −0.409846 + 0.0871154i
$$285$$ −1.13219 + 10.2217i −0.0670650 + 0.605483i
$$286$$ 10.0323 + 2.13243i 0.593221 + 0.126093i
$$287$$ −8.07130 + 24.8409i −0.476434 + 1.46631i
$$288$$ −19.7105 + 0.139958i −1.16145 + 0.00824709i
$$289$$ 4.97024 + 15.2968i 0.292367 + 0.899814i
$$290$$ −9.28652 1.06199i −0.545323 0.0623621i
$$291$$ −1.67750 2.29173i −0.0983368 0.134343i
$$292$$ −0.0119614 + 0.113805i −0.000699990 + 0.00665996i
$$293$$ 8.32257 + 14.4151i 0.486210 + 0.842140i 0.999874 0.0158509i $$-0.00504570\pi$$
−0.513664 + 0.857991i $$0.671712\pi$$
$$294$$ 27.5595 + 24.6381i 1.60730 + 1.43692i
$$295$$ 5.84802 + 28.8054i 0.340485 + 1.67712i
$$296$$ 2.17479 1.58008i 0.126407 0.0918402i
$$297$$ −0.928952 + 4.61135i −0.0539033 + 0.267577i
$$298$$ −7.94076 24.4392i −0.459996 1.41572i
$$299$$ 10.8823 18.8487i 0.629341 1.09005i
$$300$$ 11.7019 1.05582i 0.675607 0.0609575i
$$301$$ −5.00992 8.67743i −0.288767 0.500159i
$$302$$ −0.419311 + 0.465692i −0.0241286 + 0.0267976i
$$303$$ 0.0482540 + 13.5916i 0.00277212 + 0.780814i
$$304$$ 1.35250 + 12.8682i 0.0775711 + 0.738039i
$$305$$ 6.85469 30.8586i 0.392498 1.76696i
$$306$$ 30.8762 6.79244i 1.76508 0.388298i
$$307$$ −0.293679 −0.0167612 −0.00838058 0.999965i $$-0.502668\pi$$
−0.00838058 + 0.999965i $$0.502668\pi$$
$$308$$ −4.84540 + 2.15731i −0.276092 + 0.122924i
$$309$$ 21.4957 2.33648i 1.22285 0.132918i
$$310$$ 9.08073 + 3.04258i 0.515751 + 0.172807i
$$311$$ −13.4709 + 14.9609i −0.763863 + 0.848356i −0.992126 0.125244i $$-0.960029\pi$$
0.228263 + 0.973600i $$0.426695\pi$$
$$312$$ 12.5497 1.36409i 0.710487 0.0772264i
$$313$$ 4.38459 + 4.86958i 0.247831 + 0.275245i 0.854206 0.519934i $$-0.174044\pi$$
−0.606375 + 0.795179i $$0.707377\pi$$
$$314$$ 7.33097 + 22.5624i 0.413710 + 1.27327i
$$315$$ −25.1176 + 14.4333i −1.41522 + 0.813226i
$$316$$ −0.374100 + 1.15136i −0.0210448 + 0.0647692i
$$317$$ −22.0238 + 9.80565i −1.23698 + 0.550740i −0.917834 0.396965i $$-0.870064\pi$$
−0.319148 + 0.947705i $$0.603397\pi$$
$$318$$ −8.04045 + 11.1498i −0.450886 + 0.625247i
$$319$$ −0.215899 + 2.05415i −0.0120880 + 0.115010i
$$320$$ 4.88888 1.53922i 0.273296 0.0860448i
$$321$$ −9.26379 + 5.39239i −0.517054 + 0.300974i
$$322$$ 2.91084 + 27.6948i 0.162215 + 1.54337i
$$323$$ −4.71974 14.5259i −0.262613 0.808241i
$$324$$ −1.44864 12.1241i −0.0804801 0.673560i
$$325$$ −30.3558 + 5.87430i −1.68384 + 0.325847i
$$326$$ 1.03921 1.79996i 0.0575563 0.0996904i
$$327$$ 6.34783 + 29.3514i 0.351036 + 1.62314i
$$328$$ −6.51222 2.89943i −0.359577 0.160094i
$$329$$ 22.0143 + 9.80138i 1.21369 + 0.540368i
$$330$$ −0.635717 6.39218i −0.0349951 0.351878i
$$331$$ 15.5985 6.94489i 0.857370 0.381726i 0.0695107 0.997581i $$-0.477856\pi$$
0.787859 + 0.615856i $$0.211190\pi$$
$$332$$ 1.41307 0.0775525
$$333$$ 4.61450 + 5.05231i 0.252873 + 0.276865i
$$334$$ 0.627995 1.93277i 0.0343624 0.105756i
$$335$$ −16.9257 1.93559i −0.924749 0.105752i
$$336$$ −26.9989 + 24.4841i −1.47291 + 1.33572i
$$337$$ −25.0244 + 5.31909i −1.36316 + 0.289749i −0.830708 0.556709i $$-0.812064\pi$$
−0.532455 + 0.846458i $$0.678731\pi$$
$$338$$ 45.2311 9.61418i 2.46025 0.522942i
$$339$$ 7.69376 6.97711i 0.417868 0.378945i
$$340$$ −15.1907 + 8.58613i −0.823832 + 0.465648i
$$341$$ 0.653958 2.01268i 0.0354138 0.108992i
$$342$$ −14.2542 + 3.13576i −0.770777 + 0.169563i
$$343$$ 20.0776 1.08409
$$344$$ 2.49821 1.11227i 0.134694 0.0599698i
$$345$$ −13.3175 2.90867i −0.716991 0.156598i
$$346$$ 8.23155 + 3.66492i 0.442531 + 0.197027i
$$347$$ 24.1346 + 10.7454i 1.29562 + 0.576845i 0.934595 0.355713i $$-0.115762\pi$$
0.361020 + 0.932558i $$0.382429\pi$$
$$348$$ −1.13331 5.24025i −0.0607518 0.280907i
$$349$$ 6.45615 11.1824i 0.345590 0.598579i −0.639871 0.768482i $$-0.721012\pi$$
0.985461 + 0.169903i $$0.0543455\pi$$
$$350$$ 27.0040 28.9099i 1.44343 1.54530i
$$351$$ 7.01497 + 31.3568i 0.374431 + 1.67370i
$$352$$ −1.83803 5.65689i −0.0979675 0.301513i
$$353$$ −0.111211 1.05811i −0.00591918 0.0563173i 0.991164 0.132645i $$-0.0423471\pi$$
−0.997083 + 0.0763279i $$0.975680\pi$$
$$354$$ −36.0507 + 20.9849i −1.91607 + 1.11533i
$$355$$ −6.75423 9.47743i −0.358477 0.503010i
$$356$$ −0.846981 + 8.05849i −0.0448899 + 0.427099i
$$357$$ 25.1645 34.8959i 1.33185 1.84689i
$$358$$ −3.33581 + 1.48520i −0.176303 + 0.0784952i
$$359$$ −1.89849 + 5.84296i −0.100199 + 0.308380i −0.988574 0.150739i $$-0.951835\pi$$
0.888375 + 0.459119i $$0.151835\pi$$
$$360$$ −3.20103 7.22934i −0.168709 0.381020i
$$361$$ −3.69243 11.3641i −0.194339 0.598112i
$$362$$ 10.6606 + 11.8398i 0.560310 + 0.622287i
$$363$$ 17.5298 1.90541i 0.920078 0.100008i
$$364$$ −24.2427 + 26.9242i −1.27066 + 1.41121i
$$365$$ −0.179898 + 0.0566391i −0.00941628 + 0.00296462i
$$366$$ 44.5981 4.84759i 2.33118 0.253388i
$$367$$ −12.7762 + 5.68834i −0.666913 + 0.296929i −0.712129 0.702048i $$-0.752269\pi$$
0.0452161 + 0.998977i $$0.485602\pi$$
$$368$$ −17.1503 −0.894022
$$369$$ 5.48437 17.2961i 0.285505 0.900399i
$$370$$ −8.04909 4.74580i −0.418452 0.246722i
$$371$$ 1.95542 + 18.6046i 0.101520 + 0.965901i
$$372$$ 0.0195025 + 5.49321i 0.00101116 + 0.284809i
$$373$$ 0.999691 1.11027i 0.0517620 0.0574876i −0.716708 0.697374i $$-0.754352\pi$$
0.768470 + 0.639886i $$0.221018\pi$$
$$374$$ 4.77001 + 8.26191i 0.246652 + 0.427213i
$$375$$ 9.27924 + 16.9969i 0.479178 + 0.877718i
$$376$$ −3.28838 + 5.69564i −0.169585 + 0.293730i
$$377$$ 4.35984 + 13.4182i 0.224543 + 0.691072i
$$378$$ −30.8434 27.1824i −1.58642 1.39811i
$$379$$ −0.536836 + 0.390034i −0.0275754 + 0.0200347i −0.601488 0.798882i $$-0.705425\pi$$
0.573912 + 0.818917i $$0.305425\pi$$
$$380$$ 7.01286 3.96383i 0.359752 0.203340i
$$381$$ 16.1377 + 14.4271i 0.826762 + 0.739122i
$$382$$ −20.6131 35.7030i −1.05466 1.82672i
$$383$$ −2.20143 + 20.9452i −0.112488 + 1.07025i 0.782038 + 0.623231i $$0.214180\pi$$
−0.894525 + 0.447017i $$0.852486\pi$$
$$384$$ −9.14712 12.4964i −0.466787 0.637704i
$$385$$ −6.44265 5.90854i −0.328348 0.301127i
$$386$$ −6.22657 19.1634i −0.316924 0.975391i
$$387$$ 3.52305 + 6.00326i 0.179087 + 0.305163i
$$388$$ −0.687442 + 2.11573i −0.0348996 + 0.107410i
$$389$$ 15.8778 + 3.37493i 0.805037 + 0.171116i 0.592010 0.805930i $$-0.298334\pi$$
0.213027 + 0.977046i $$0.431668\pi$$
$$390$$ −21.7266 38.1225i −1.10017 1.93041i
$$391$$ 19.8021 4.20906i 1.00143 0.212861i
$$392$$ −1.43516 + 13.6546i −0.0724865 + 0.689663i
$$393$$ −3.68785 8.20453i −0.186027 0.413864i
$$394$$ −9.91269 + 4.41342i −0.499394 + 0.222345i
$$395$$ −1.98618 + 0.190412i −0.0999357 + 0.00958065i
$$396$$ 3.35532 1.52252i 0.168611 0.0765097i
$$397$$ −13.0288 + 9.46597i −0.653896 + 0.475083i −0.864596 0.502467i $$-0.832426\pi$$
0.210700 + 0.977551i $$0.432426\pi$$
$$398$$ 15.3022 + 3.25258i 0.767028 + 0.163037i
$$399$$ −11.6173 + 16.1098i −0.581594 + 0.806501i
$$400$$ 15.9688 + 18.4009i 0.798438 + 0.920047i
$$401$$ −9.75500 16.8962i −0.487142 0.843754i 0.512749 0.858539i $$-0.328627\pi$$
−0.999891 + 0.0147845i $$0.995294\pi$$
$$402$$ −5.11057 23.6305i −0.254892 1.17858i
$$403$$ −1.51103 14.3765i −0.0752697 0.716143i
$$404$$ 8.61298 6.25770i 0.428512 0.311332i
$$405$$ 17.3773 10.1503i 0.863486 0.504373i
$$406$$ −14.6042 10.6106i −0.724794 0.526594i
$$407$$ −1.03239 + 1.78816i −0.0511739 + 0.0886358i
$$408$$ 8.75377 + 7.82583i 0.433376 + 0.387436i
$$409$$ −16.6742 + 3.54421i −0.824486 + 0.175250i −0.600788 0.799409i $$-0.705146\pi$$
−0.223698 + 0.974658i $$0.571813\pi$$
$$410$$ −0.226562 + 24.7773i −0.0111891 + 1.22366i
$$411$$ −16.7311 5.37066i −0.825283 0.264915i
$$412$$ −11.3328 12.5864i −0.558328 0.620086i
$$413$$ −17.5417 + 53.9879i −0.863172 + 2.65657i
$$414$$ −2.15869 19.2244i −0.106094 0.944829i
$$415$$ 0.927787 + 2.13620i 0.0455433 + 0.104862i
$$416$$ −27.1865 30.1936i −1.33293 1.48036i
$$417$$ 1.21035 5.79535i 0.0592711 0.283799i
$$418$$ −2.20210 3.81415i −0.107708 0.186556i
$$419$$ 3.25123 30.9334i 0.158833 1.51120i −0.567226 0.823562i $$-0.691983\pi$$
0.726059 0.687633i $$-0.241350\pi$$
$$420$$ 20.6777 + 9.34522i 1.00897 + 0.456000i
$$421$$ 2.73836 + 26.0537i 0.133459 + 1.26978i 0.832228 + 0.554433i $$0.187065\pi$$
−0.698769 + 0.715347i $$0.746268\pi$$
$$422$$ 39.7717 28.8959i 1.93606 1.40663i
$$423$$ −15.3410 6.70016i −0.745907 0.325773i
$$424$$ −5.10556 −0.247948
$$425$$ −22.9538 17.3270i −1.11342 0.840481i
$$426$$ 9.66042 13.3962i 0.468049 0.649048i
$$427$$ 40.8499 45.3684i 1.97687 2.19553i
$$428$$ 7.67019 + 3.41499i 0.370753 + 0.165070i
$$429$$ −8.37985 + 4.87786i −0.404583 + 0.235505i
$$430$$ −7.00545 6.42469i −0.337833 0.309826i
$$431$$ 25.1191 + 18.2501i 1.20995 + 0.879078i 0.995226 0.0975980i $$-0.0311159\pi$$
0.214721 + 0.976676i $$0.431116\pi$$
$$432$$ 18.6346 17.1416i 0.896559 0.824724i
$$433$$ 21.1261 + 15.3490i 1.01526 + 0.737628i 0.965305 0.261124i $$-0.0840931\pi$$
0.0499521 + 0.998752i $$0.484093\pi$$
$$434$$ 12.3760 + 13.7450i 0.594068 + 0.659780i
$$435$$ 7.17779 5.15388i 0.344149 0.247109i
$$436$$ 15.7395 17.4804i 0.753784 0.837161i
$$437$$ −9.14171 + 1.94313i −0.437308 + 0.0929526i
$$438$$ −0.158094 0.215980i −0.00755400 0.0103199i
$$439$$ −8.52536 1.81212i −0.406893 0.0864878i −8.17896e−5 1.00000i $$-0.500026\pi$$
−0.406811 + 0.913512i $$0.633359\pi$$
$$440$$ 1.78753 1.58015i 0.0852172 0.0753305i
$$441$$ −34.9468 + 0.248146i −1.66413 + 0.0118165i
$$442$$ 52.7203 + 38.3036i 2.50765 + 1.82191i
$$443$$ −9.84019 + 17.0437i −0.467521 + 0.809771i −0.999311 0.0371056i $$-0.988186\pi$$
0.531790 + 0.846876i $$0.321520\pi$$
$$444$$ 1.09572 5.24646i 0.0520004 0.248986i
$$445$$ −12.7384 + 4.01058i −0.603860 + 0.190120i
$$446$$ −24.7963 11.0400i −1.17414 0.522761i
$$447$$ 21.0815 + 12.0718i 0.997120 + 0.570977i
$$448$$ 9.68239 + 2.05805i 0.457450 + 0.0972340i
$$449$$ −4.17634 −0.197094 −0.0985469 0.995132i $$-0.531419\pi$$
−0.0985469 + 0.995132i $$0.531419\pi$$
$$450$$ −18.6163 + 20.2161i −0.877582 + 0.952996i
$$451$$ 5.47538 0.257826
$$452$$ −7.95769 1.69146i −0.374298 0.0795595i
$$453$$ −0.00210325 0.592416i −9.88193e−5 0.0278341i
$$454$$ 20.7383 + 9.23327i 0.973295 + 0.433339i
$$455$$ −56.6195 18.9709i −2.65436 0.889369i
$$456$$ −4.04122 3.61283i −0.189247 0.169186i
$$457$$ 7.74545 13.4155i 0.362317 0.627551i −0.626025 0.779803i $$-0.715319\pi$$
0.988342 + 0.152252i $$0.0486525\pi$$
$$458$$ 23.4447 + 17.0335i 1.09550 + 0.795925i
$$459$$ −17.3090 + 24.3653i −0.807914 + 1.13728i
$$460$$ 4.25353 + 9.79361i 0.198322 + 0.456629i
$$461$$ −2.23166 0.474353i −0.103939 0.0220928i 0.155649 0.987812i $$-0.450253\pi$$
−0.259587 + 0.965720i $$0.583587\pi$$
$$462$$ 5.00570 11.3513i 0.232886 0.528109i
$$463$$ 14.6799 3.12031i 0.682233 0.145013i 0.146257 0.989247i $$-0.453277\pi$$
0.535975 + 0.844234i $$0.319944\pi$$
$$464$$ 7.43908 8.26193i 0.345351 0.383551i
$$465$$ −8.29149 + 3.63618i −0.384509 + 0.168624i
$$466$$ −15.8885 17.6460i −0.736020 0.817434i
$$467$$ −4.68683 3.40518i −0.216881 0.157573i 0.474041 0.880503i $$-0.342795\pi$$
−0.690921 + 0.722930i $$0.742795\pi$$
$$468$$ 16.7079 18.8231i 0.772323 0.870098i
$$469$$ −26.6177 19.3389i −1.22909 0.892987i
$$470$$ 22.7124 + 2.59735i 1.04765 + 0.119807i
$$471$$ −19.4626 11.1448i −0.896788 0.513524i
$$472$$ −14.1533 6.30146i −0.651459 0.290048i
$$473$$ −1.40548 + 1.56094i −0.0646241 + 0.0717723i
$$474$$ −1.16091 2.58273i −0.0533223 0.118629i
$$475$$ 10.5967 + 7.99908i 0.486212 + 0.367023i
$$476$$ −33.6996 −1.54462
$$477$$ −1.45014 12.9144i −0.0663975 0.591311i
$$478$$ −7.22820 + 5.25160i −0.330610 + 0.240202i
$$479$$ −2.08812 19.8671i −0.0954087 0.907753i −0.932617 0.360868i $$-0.882480\pi$$
0.837208 0.546884i $$-0.184186\pi$$
$$480$$ −12.8465 + 21.9660i −0.586358 + 1.00261i
$$481$$ −1.47428 + 14.0269i −0.0672215 + 0.639570i
$$482$$ −2.35623 4.08110i −0.107323 0.185889i
$$483$$ −19.6266 17.5461i −0.893040 0.798374i
$$484$$ −9.24194 10.2642i −0.420088 0.466555i
$$485$$ −3.64979 + 0.349898i −0.165728 + 0.0158881i
$$486$$ 21.5602 + 18.7307i 0.977989 + 0.849641i
$$487$$ 9.06469 27.8982i 0.410760 1.26419i −0.505228 0.862986i $$-0.668592\pi$$
0.915988 0.401205i $$-0.131408\pi$$
$$488$$ 11.1488 + 12.3820i 0.504683 + 0.560508i
$$489$$ 0.415342 + 1.92048i 0.0187824 + 0.0868471i
$$490$$ 45.5214 14.3320i 2.05645 0.647452i
$$491$$ 7.85649 1.66995i 0.354558 0.0753637i −0.0271892 0.999630i $$-0.508656\pi$$
0.381748 + 0.924267i $$0.375322\pi$$
$$492$$ −13.5014 + 4.43992i −0.608689 + 0.200167i
$$493$$ −6.56164 + 11.3651i −0.295521 + 0.511858i
$$494$$ −24.3386 17.6830i −1.09505 0.795597i
$$495$$ 4.50467 + 4.07272i 0.202470 + 0.183055i
$$496$$ −9.21545 + 6.69541i −0.413786 + 0.300633i
$$497$$ −2.34939 22.3530i −0.105385 1.00267i
$$498$$ −2.44837 + 2.22032i −0.109714 + 0.0994947i
$$499$$ 14.0871 + 24.3995i 0.630623 + 1.09227i 0.987425 + 0.158091i $$0.0505339\pi$$
−0.356801 + 0.934180i $$0.616133\pi$$
$$500$$ 6.54729 13.6826i 0.292804 0.611904i
$$501$$ 0.787659 + 1.75234i 0.0351900 + 0.0782888i
$$502$$ 22.3663 + 4.75410i 0.998256 + 0.212186i
$$503$$ −4.88620 + 3.55003i −0.217865 + 0.158288i −0.691365 0.722506i $$-0.742990\pi$$
0.473500 + 0.880794i $$0.342990\pi$$
$$504$$ 1.48821 15.1966i 0.0662903 0.676912i
$$505$$ 15.1151 + 8.91194i 0.672611 + 0.396576i
$$506$$ 5.33295 2.37438i 0.237078 0.105554i
$$507$$ −25.5697 + 35.4577i −1.13559 + 1.57473i
$$508$$ 1.77233 16.8626i 0.0786344 0.748157i
$$509$$ 39.2174 8.33591i 1.73828 0.369483i 0.773757 0.633482i $$-0.218375\pi$$
0.964523 + 0.263999i $$0.0850416\pi$$
$$510$$ 12.8292 38.7455i 0.568087 1.71568i
$$511$$ −0.356286 0.0757310i −0.0157612 0.00335014i
$$512$$ −6.34397 + 19.5247i −0.280367 + 0.862880i
$$513$$ 7.99077 11.2484i 0.352801 0.496627i
$$514$$ −6.92539 21.3142i −0.305466 0.940128i
$$515$$ 11.5865 25.3961i 0.510561 1.11909i
$$516$$ 2.19993 4.98871i 0.0968465 0.219616i
$$517$$ 0.528034 5.02391i 0.0232229 0.220951i
$$518$$ −9.02295 15.6282i −0.396446 0.686664i
$$519$$ −8.09204 + 2.66106i −0.355201 + 0.116808i
$$520$$ 6.76445 14.8268i 0.296641 0.650200i
$$521$$ −23.0314 + 16.7333i −1.00902 + 0.733098i −0.964004 0.265888i $$-0.914335\pi$$
−0.0450190 + 0.998986i $$0.514335\pi$$
$$522$$ 10.1975 + 7.29883i 0.446331 + 0.319461i
$$523$$ 9.53164 + 29.3354i 0.416790 + 1.28275i 0.910640 + 0.413200i $$0.135589\pi$$
−0.493851 + 0.869547i $$0.664411\pi$$
$$524$$ −3.52296 + 6.10194i −0.153901 + 0.266564i
$$525$$ −0.551133 + 37.3950i −0.0240534 + 1.63205i
$$526$$ −10.0997 17.4932i −0.440368 0.762740i
$$527$$ 8.99712 9.99232i 0.391921 0.435272i
$$528$$ 6.63036 + 3.79672i 0.288549 + 0.165231i
$$529$$ 1.10928 + 10.5541i 0.0482295 + 0.458874i
$$530$$ 7.06967 + 16.2777i 0.307087 + 0.707057i
$$531$$ 11.9194 37.5904i 0.517260 1.63128i
$$532$$ 15.5576 0.674506
$$533$$ 34.1677 15.2124i 1.47997 0.658924i
$$534$$ −11.1945 15.2934i −0.484433 0.661812i
$$535$$ −0.126529 + 13.8375i −0.00547034 + 0.598248i
$$536$$ 6.00844 6.67305i 0.259525 0.288232i
$$537$$ 1.39286 3.15856i 0.0601065 0.136302i
$$538$$ 7.74708 + 8.60400i 0.334000 + 0.370945i
$$539$$ −3.25885 10.0297i −0.140368 0.432010i
$$540$$ −14.4103 6.38986i −0.620120 0.274976i
$$541$$ −3.48166 + 10.7154i −0.149688 + 0.460693i −0.997584 0.0694700i $$-0.977869\pi$$
0.847896 + 0.530163i $$0.177869\pi$$
$$542$$ −10.1371 + 4.51334i −0.435427 + 0.193865i
$$543$$ −14.9847 1.52119i −0.643057 0.0652806i
$$544$$ 3.95031 37.5847i 0.169368 1.61143i
$$545$$ 36.7600 + 12.3168i 1.57462 + 0.527592i
$$546$$ −0.300860 84.7422i −0.0128756 3.62663i
$$547$$ 2.80461 + 26.6841i 0.119917 + 1.14093i 0.874601 + 0.484843i $$0.161123\pi$$
−0.754685 + 0.656088i $$0.772210\pi$$
$$548$$ 4.25330 + 13.0903i 0.181692 + 0.559190i
$$549$$ −28.1535 + 31.7177i −1.20156 + 1.35368i
$$550$$ −7.51306 3.51103i −0.320358 0.149711i
$$551$$ 3.02921 5.24675i 0.129049 0.223519i
$$552$$ 5.32238 4.82662i 0.226535 0.205434i
$$553$$ −3.52032 1.56735i −0.149699 0.0666503i
$$554$$ −49.9301 22.2303i −2.12133 0.944476i
$$555$$ 8.65069 1.78825i 0.367201 0.0759069i
$$556$$ −4.23647 + 1.88620i −0.179666 + 0.0799926i
$$557$$ −35.4517 −1.50214 −0.751069 0.660224i $$-0.770461\pi$$
−0.751069 + 0.660224i $$0.770461\pi$$
$$558$$ −8.66508 9.48720i −0.366822 0.401625i
$$559$$ −4.43371 + 13.6456i −0.187526 + 0.577145i
$$560$$ 9.36171 + 46.1127i 0.395604 + 1.94862i
$$561$$ −8.58733 2.75653i −0.362557 0.116381i
$$562$$ −39.9583 + 8.49340i −1.68554 + 0.358273i
$$563$$ −38.3903 + 8.16010i −1.61796 + 0.343907i −0.925851 0.377889i $$-0.876650\pi$$
−0.692106 + 0.721796i $$0.743317\pi$$
$$564$$ 2.77178 + 12.8163i 0.116713 + 0.539663i
$$565$$ −2.66776 13.1405i −0.112234 0.552826i
$$566$$ −14.3644 + 44.2092i −0.603782 + 1.85825i
$$567$$ 38.8624 0.551926i 1.63207 0.0231787i
$$568$$ 6.13421 0.257386
$$569$$ −37.5297 + 16.7093i −1.57333 + 0.700490i −0.993456 0.114219i $$-0.963563\pi$$
−0.579870 + 0.814709i $$0.696897\pi$$
$$570$$ −5.92266 + 17.8870i −0.248073 + 0.749205i
$$571$$ 42.4372 + 18.8943i 1.77594 + 0.790700i 0.983537 + 0.180704i $$0.0578377\pi$$
0.792404 + 0.609996i $$0.208829\pi$$
$$572$$ 6.93831 + 3.08913i 0.290105 + 0.129163i
$$573$$ 37.1093 + 11.9120i 1.55026 + 0.497633i
$$574$$ −23.9270 + 41.4427i −0.998692 + 1.72979i
$$575$$ −12.0126 + 12.8604i −0.500961 + 0.536318i
$$576$$ −6.73623 1.38191i −0.280676 0.0575797i
$$577$$ 0.870205 + 2.67822i 0.0362271 + 0.111496i 0.967535 0.252738i $$-0.0813310\pi$$
−0.931308 + 0.364233i $$0.881331\pi$$
$$578$$ 3.08025 + 29.3066i 0.128122 + 1.21900i
$$579$$ 16.5306 + 9.46583i 0.686987 + 0.393387i
$$580$$ −6.56294 2.19897i −0.272511 0.0913074i
$$581$$ −0.470160 + 4.47327i −0.0195055 + 0.185583i
$$582$$ −2.13327 4.74599i −0.0884269 0.196727i
$$583$$ 3.58252 1.59504i 0.148373 0.0660599i
$$584$$ 0.0307195 0.0945450i 0.00127118 0.00391230i
$$585$$ 39.4256 + 12.8993i 1.63005 + 0.533319i
$$586$$ 9.42381 + 29.0035i 0.389294 + 1.19812i
$$587$$ −5.00969 5.56382i −0.206772 0.229644i 0.630835 0.775917i $$-0.282713\pi$$
−0.837607 + 0.546274i $$0.816046\pi$$
$$588$$ 16.1687 + 22.0890i 0.666787 + 0.910935i
$$589$$ −4.15356 + 4.61300i −0.171145 + 0.190075i
$$590$$ −0.492397 + 53.8496i −0.0202717 + 2.21695i
$$591$$ 4.13904 9.38597i 0.170257 0.386087i
$$592$$ 10.1531 4.52043i 0.417288 0.185789i
$$593$$ 14.1652 0.581694 0.290847 0.956770i $$-0.406063\pi$$
0.290847 + 0.956770i $$0.406063\pi$$
$$594$$ −3.42133 + 7.91011i −0.140379 + 0.324556i
$$595$$ −22.1262 50.9450i −0.907088 2.08854i
$$596$$ −1.98904 18.9244i −0.0814741 0.775174i
$$597$$ −12.7817 + 7.44016i −0.523121 + 0.304506i
$$598$$ 26.6820 29.6334i 1.09111 1.21180i
$$599$$ 17.7180 + 30.6885i 0.723939 + 1.25390i 0.959409 + 0.282018i $$0.0910037\pi$$
−0.235470 + 0.971882i $$0.575663\pi$$
$$600$$ −10.1343 1.21640i −0.413730 0.0496593i
$$601$$ 0.756431 1.31018i 0.0308555 0.0534433i −0.850185 0.526484i $$-0.823510\pi$$
0.881041 + 0.473040i $$0.156844\pi$$
$$602$$ −5.67282 17.4592i −0.231207 0.711582i
$$603$$ 18.5860 + 13.3029i 0.756879 + 0.541736i
$$604$$ −0.375414 + 0.272755i −0.0152754 + 0.0110982i
$$605$$ 9.44880 20.7106i 0.384148 0.842006i
$$606$$ −5.09084 + 24.3757i −0.206801 + 0.990196i
$$607$$ −6.39122 11.0699i −0.259412 0.449314i 0.706673 0.707540i $$-0.250195\pi$$
−0.966084 + 0.258226i $$0.916862\pi$$
$$608$$ −1.82368 + 17.3511i −0.0739599 + 0.703682i
$$609$$ 16.9658 1.84410i 0.687488 0.0747266i
$$610$$ 24.0389 52.6904i 0.973308 2.13337i
$$611$$ −10.6630 32.8174i −0.431380 1.32765i
$$612$$ 23.4102 0.166228i 0.946299 0.00671937i
$$613$$ 9.49601 29.2257i 0.383540 1.18042i −0.553994 0.832521i $$-0.686897\pi$$
0.937534 0.347894i $$-0.113103\pi$$
$$614$$ −0.526301 0.111869i −0.0212398 0.00451465i
$$615$$ −15.5766 17.4954i −0.628111 0.705484i
$$616$$ 4.50700 0.957992i 0.181592 0.0385986i
$$617$$ 3.17919 30.2480i 0.127989 1.21774i −0.722360 0.691518i $$-0.756942\pi$$
0.850349 0.526219i $$-0.176391\pi$$
$$618$$ 39.4124 + 4.00099i 1.58540 + 0.160944i
$$619$$ 26.2309 11.6787i 1.05431 0.469408i 0.194966 0.980810i $$-0.437540\pi$$
0.859341 + 0.511402i $$0.170874\pi$$
$$620$$ 6.10895 + 3.60188i 0.245341 + 0.144655i
$$621$$ 13.7206 + 12.0920i 0.550588 + 0.485234i
$$622$$ −29.8400 + 21.6800i −1.19648 + 0.869290i
$$623$$ −25.2284 5.36246i −1.01075 0.214842i
$$624$$ 51.9235 + 5.27107i 2.07861 + 0.211012i
$$625$$ 24.9833 + 0.914164i 0.999331 + 0.0365666i
$$626$$ 6.00266 + 10.3969i 0.239915 + 0.415545i
$$627$$ 3.96438 + 1.27256i 0.158322 + 0.0508213i
$$628$$ 1.83629 + 17.4712i 0.0732760 + 0.697175i
$$629$$ −10.6135 + 7.71116i −0.423188 + 0.307464i
$$630$$ −50.5111 + 16.2980i −2.01241 + 0.649329i
$$631$$ 13.4714 + 9.78757i 0.536289 + 0.389637i 0.822705 0.568468i $$-0.192464\pi$$
−0.286416 + 0.958105i $$0.592464\pi$$
$$632$$ 0.525847 0.910793i 0.0209171 0.0362294i
$$633$$ −9.50128 + 45.4936i −0.377642 + 1.80821i
$$634$$ −43.2040 + 9.18329i −1.71585 + 0.364715i
$$635$$ 26.6555 8.39223i 1.05779 0.333035i
$$636$$ −7.54050 + 6.83813i −0.299000 + 0.271149i
$$637$$ −48.2018 53.5335i −1.90982 2.12108i
$$638$$ −1.16938 + 3.59898i −0.0462962 + 0.142485i
$$639$$ 1.74232 + 15.5164i 0.0689250 + 0.613819i
$$640$$ −19.9017 + 1.90794i −0.786682 + 0.0754178i
$$641$$ −5.09849 5.66245i −0.201378 0.223653i 0.633994 0.773338i $$-0.281414\pi$$
−0.835372 + 0.549685i $$0.814748\pi$$
$$642$$ −18.6557 + 6.13490i −0.736280 + 0.242125i
$$643$$ −2.09689 3.63192i −0.0826933 0.143229i 0.821713 0.569902i $$-0.193019\pi$$
−0.904406 + 0.426673i $$0.859686\pi$$
$$644$$ −2.15549 + 20.5081i −0.0849383 + 0.808134i
$$645$$ 8.98605 + 0.0502631i 0.353825 + 0.00197911i
$$646$$ −2.92501 27.8296i −0.115083 1.09494i
$$647$$ 40.9094 29.7224i 1.60831 1.16851i 0.739821 0.672804i $$-0.234910\pi$$
0.868492 0.495703i $$-0.165090\pi$$
$$648$$ −0.958861 + 10.5640i −0.0376676 + 0.414994i
$$649$$ 11.8999 0.467112
$$650$$ −56.6381 1.03588i −2.22153 0.0406304i
$$651$$ −17.3960 1.76597i −0.681801 0.0692138i
$$652$$ 1.02984 1.14376i 0.0403317 0.0447929i
$$653$$ −34.6669 15.4347i −1.35662 0.604007i −0.405862 0.913935i $$-0.633028\pi$$
−0.950760 + 0.309928i $$0.899695\pi$$
$$654$$ 0.195332 + 55.0185i 0.00763808 + 2.15139i
$$655$$ −11.5376 1.31942i −0.450812 0.0515540i
$$656$$ −23.8431 17.3231i −0.930918 0.676352i
$$657$$ 0.247876 + 0.0508507i 0.00967055 + 0.00198388i
$$658$$ 35.7181 + 25.9507i 1.39244 + 1.01166i
$$659$$ −9.01502 10.0122i −0.351175 0.390020i 0.541514 0.840692i $$-0.317851\pi$$
−0.892690 + 0.450672i $$0.851185\pi$$
$$660$$ 0.523673 4.72788i 0.0203840 0.184032i
$$661$$ −31.1547 + 34.6008i −1.21178 + 1.34582i −0.290516 + 0.956870i $$0.593827\pi$$
−0.921261 + 0.388945i $$0.872840\pi$$
$$662$$ 30.5994 6.50410i 1.18928 0.252789i
$$663$$ −61.2455 + 6.65709i −2.37858 + 0.258540i
$$664$$ −1.20075 0.255228i −0.0465982 0.00990475i
$$665$$ 10.2147 + 23.5190i 0.396109 + 0.912027i
$$666$$ 6.34508 + 10.8120i 0.245867 + 0.418955i
$$667$$ 6.49662 + 4.72007i 0.251550 + 0.182762i
$$668$$ 0.752440 1.30327i 0.0291128 0.0504248i
$$669$$ 24.3761 8.01606i 0.942434 0.309919i
$$670$$ −29.5951 9.91611i −1.14336 0.383093i
$$671$$ −11.6913 5.20532i −0.451339 0.200949i
$$672$$ −42.4732 + 24.7234i −1.63844 + 0.953725i
$$673$$ −6.73710 1.43201i −0.259696 0.0552001i 0.0762236 0.997091i $$-0.475714\pi$$
−0.335920 + 0.941891i $$0.609047\pi$$
$$674$$ −46.8721 −1.80545
$$675$$ 0.198401 25.9800i 0.00763644 0.999971i
$$676$$ 34.2422 1.31701
$$677$$ 35.2854 + 7.50014i 1.35613 + 0.288254i 0.827913 0.560857i $$-0.189528\pi$$
0.528215 + 0.849111i $$0.322862\pi$$
$$678$$ 16.4457 9.57292i 0.631592 0.367646i
$$679$$ −6.46889 2.88014i −0.248253 0.110529i
$$680$$ 14.4590 4.55229i 0.554478 0.174572i
$$681$$ −20.3868 + 6.70418i −0.781223 + 0.256905i
$$682$$ 1.93862 3.35780i 0.0742338 0.128577i
$$683$$ −27.9970 20.3410i −1.07127 0.778326i −0.0951333 0.995465i $$-0.530328\pi$$
−0.976141 + 0.217138i $$0.930328\pi$$
$$684$$ −10.8074 + 0.0767399i −0.413232 + 0.00293422i
$$685$$ −16.9965 + 15.0246i −0.649404 + 0.574062i
$$686$$ 35.9810 + 7.64800i 1.37376 + 0.292002i
$$687$$ −27.2358 + 2.96040i −1.03911 + 0.112946i
$$688$$ 11.0588 2.35063i 0.421614 0.0896169i
$$689$$ 17.9242 19.9069i 0.682859 0.758391i
$$690$$ −22.7583 10.2855i −0.866392 0.391564i
$$691$$ −32.7654 36.3897i −1.24645 1.38433i −0.893733 0.448600i $$-0.851923\pi$$
−0.352722 0.935728i $$-0.614744\pi$$
$$692$$ 5.39806 + 3.92192i 0.205203 + 0.149089i
$$693$$ 3.70336 + 11.1283i 0.140679 + 0.422728i
$$694$$ 39.1584 + 28.4502i 1.48643 + 1.07996i
$$695$$ −5.63300 5.16601i −0.213672 0.195958i
$$696$$ 0.0165357 + 4.65757i 0.000626785 + 0.176545i
$$697$$ 31.7812 + 14.1499i 1.20380 + 0.535965i
$$698$$ 15.8296 17.5806i 0.599161 0.665435i
$$699$$ 22.3331 + 2.26717i 0.844717 + 0.0857523i
$$700$$ 24.0106 16.7826i 0.907516 0.634322i
$$701$$ 6.00618 0.226850 0.113425 0.993547i $$-0.463818\pi$$
0.113425 + 0.993547i $$0.463818\pi$$
$$702$$ 0.627001 + 58.8665i 0.0236646 + 2.22177i
$$703$$ 4.89977 3.55989i 0.184798 0.134264i
$$704$$ −0.216903 2.06370i −0.00817485 0.0777785i
$$705$$ −17.5550 + 12.6050i −0.661160 + 0.474734i
$$706$$ 0.203754 1.93859i 0.00766837 0.0729597i
$$707$$ 16.9438 + 29.3476i 0.637239 + 1.10373i
$$708$$ −29.3432 + 9.64948i −1.10278 + 0.362650i
$$709$$ −25.5758 28.4048i −0.960518 1.06676i −0.997722 0.0674557i $$-0.978512\pi$$
0.0372042 0.999308i $$-0.488155\pi$$
$$710$$ −8.49405 19.5573i −0.318776 0.733972i
$$711$$ 2.45320 + 1.07143i 0.0920020 + 0.0401816i
$$712$$ 2.17523 6.69467i 0.0815202 0.250893i
$$713$$ −5.50543 6.11439i −0.206180 0.228986i
$$714$$ 58.3898 52.9510i 2.18518 1.98164i
$$715$$ −0.114456 + 12.5172i −0.00428041 + 0.468115i
$$716$$ −2.64487 + 0.562184i −0.0988433 + 0.0210098i
$$717$$ 1.72678 8.26811i 0.0644879 0.308778i
$$718$$ −5.62798 + 9.74795i −0.210035 + 0.363790i
$$719$$ −18.5111 13.4491i −0.690348 0.501567i 0.186426 0.982469i $$-0.440309\pi$$
−0.876775 + 0.480901i $$0.840309\pi$$
$$720$$ −6.73077 31.9870i −0.250841 1.19209i
$$721$$ 43.6145 31.6878i 1.62429 1.18011i
$$722$$ −2.28834 21.7721i −0.0851633 0.810275i
$$723$$ 4.24185 + 1.36163i 0.157756 + 0.0506396i
$$724$$ 5.89888 + 10.2172i 0.219230 + 0.379718i
$$725$$ −0.984779 11.3652i −0.0365738 0.422095i
$$726$$ 32.1409 + 3.26282i 1.19286 + 0.121095i
$$727$$ −17.7884 3.78104i −0.659734 0.140231i −0.134135 0.990963i $$-0.542826\pi$$
−0.525599 + 0.850732i $$0.676159\pi$$
$$728$$ 25.4631 18.5000i 0.943725 0.685657i
$$729$$ −26.9939 + 0.575102i −0.999773 + 0.0213001i
$$730$$ −0.343969 + 0.0329756i −0.0127309 + 0.00122048i
$$731$$ −12.1918 + 5.42816i −0.450932 + 0.200768i
$$732$$ 33.0498 + 3.35508i 1.22156 + 0.124007i
$$733$$ 3.36294 31.9963i 0.124213 1.18181i −0.737834 0.674982i $$-0.764151\pi$$
0.862048 0.506827i $$-0.169182\pi$$
$$734$$ −25.0630 + 5.32730i −0.925092 + 0.196634i
$$735$$ −22.7768 + 38.9459i −0.840137 + 1.43654i
$$736$$ −22.6198 4.80798i −0.833776 0.177224i
$$737$$ −2.13132 + 6.55953i −0.0785082 + 0.241623i
$$738$$ 16.4170 28.9071i 0.604317 1.06409i
$$739$$ −9.10517 28.0228i −0.334939 1.03084i −0.966752 0.255716i $$-0.917689\pi$$
0.631813 0.775121i $$-0.282311\pi$$
$$740$$ −5.09948 4.67673i −0.187461 0.171920i
$$741$$ 28.2743 3.07328i 1.03868 0.112900i
$$742$$ −3.58258 + 34.0860i −0.131521 + 1.25134i
$$743$$ 3.85790 + 6.68207i 0.141533 + 0.245142i 0.928074 0.372396i $$-0.121464\pi$$
−0.786541 + 0.617538i $$0.788130\pi$$
$$744$$ 0.975603 4.67134i 0.0357674 0.171260i
$$745$$ 27.3028 15.4322i 1.00030 0.565391i
$$746$$ 2.21447 1.60890i 0.0810773 0.0589061i
$$747$$ 0.304542 3.10978i 0.0111426 0.113781i
$$748$$ 2.18303 + 6.71868i 0.0798196 + 0.245659i
$$749$$ −13.3626 + 23.1448i −0.488260 + 0.845691i
$$750$$ 10.1548 + 33.9948i 0.370800 + 1.24131i
$$751$$ −26.7485 46.3297i −0.976066 1.69060i −0.676372 0.736560i $$-0.736449\pi$$
−0.299694 0.954035i $$-0.596885\pi$$
$$752$$ −18.1941 + 20.2065i −0.663469 + 0.736857i
$$753$$ −18.6823 + 10.8749i −0.680821 + 0.396302i
$$754$$ 2.70196 + 25.7074i 0.0983995 + 0.936209i
$$755$$ −0.658821 0.388445i −0.0239770 0.0141370i
$$756$$ −18.1556 24.4375i −0.660314 0.888782i
$$757$$ −10.3719 −0.376971 −0.188486 0.982076i $$-0.560358\pi$$
−0.188486 + 0.982076i $$0.560358\pi$$
$$758$$ −1.11063 + 0.494485i −0.0403400 + 0.0179605i
$$759$$ −2.22677 + 5.04957i −0.0808265 + 0.183288i
$$760$$ −6.67508 + 2.10158i −0.242131 + 0.0762325i
$$761$$ 15.2839 16.9745i 0.554043 0.615327i −0.399446 0.916757i $$-0.630797\pi$$
0.953488 + 0.301430i $$0.0974640\pi$$
$$762$$ 23.4248 + 32.0019i 0.848590 + 1.15931i
$$763$$ 50.0998 + 55.6414i 1.81373 + 2.01436i
$$764$$ −9.43375 29.0341i −0.341301 1.05042i
$$765$$ 15.6218 + 35.2809i 0.564807 + 1.27558i
$$766$$ −11.9236 + 36.6972i −0.430818 + 1.32592i