Properties

 Label 225.2.q.a.106.20 Level $225$ Weight $2$ Character 225.106 Analytic conductor $1.797$ Analytic rank $0$ Dimension $224$ CM no Inner twists $4$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [225,2,Mod(16,225)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(225, base_ring=CyclotomicField(30))

chi = DirichletCharacter(H, H._module([20, 6]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("225.16");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$225 = 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 225.q (of order $$15$$, degree $$8$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.79663404548$$ Analytic rank: $$0$$ Dimension: $$224$$ Relative dimension: $$28$$ over $$\Q(\zeta_{15})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

 Embedding label 106.20 Character $$\chi$$ $$=$$ 225.106 Dual form 225.2.q.a.121.20

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(1.37843 + 0.292995i) q^{2} +(1.63456 - 0.572891i) q^{3} +(-0.0128554 - 0.00572357i) q^{4} +(1.56242 - 1.59963i) q^{5} +(2.42099 - 0.310774i) q^{6} +(-2.48652 + 4.30678i) q^{7} +(-2.29622 - 1.66830i) q^{8} +(2.34359 - 1.87285i) q^{9} +O(q^{10})$$ $$q+(1.37843 + 0.292995i) q^{2} +(1.63456 - 0.572891i) q^{3} +(-0.0128554 - 0.00572357i) q^{4} +(1.56242 - 1.59963i) q^{5} +(2.42099 - 0.310774i) q^{6} +(-2.48652 + 4.30678i) q^{7} +(-2.29622 - 1.66830i) q^{8} +(2.34359 - 1.87285i) q^{9} +(2.62239 - 1.74721i) q^{10} +(3.07362 + 0.653319i) q^{11} +(-0.0242919 - 0.00199082i) q^{12} +(-1.44657 + 0.307478i) q^{13} +(-4.68937 + 5.20807i) q^{14} +(1.63747 - 3.50980i) q^{15} +(-2.65756 - 2.95152i) q^{16} +(-2.39081 - 1.73703i) q^{17} +(3.77922 - 1.89494i) q^{18} +(-1.51211 - 1.09861i) q^{19} +(-0.0292411 + 0.0116212i) q^{20} +(-1.59706 + 8.46420i) q^{21} +(4.04537 + 1.80111i) q^{22} +(-4.45542 + 4.94825i) q^{23} +(-4.70908 - 1.41146i) q^{24} +(-0.117657 - 4.99862i) q^{25} -2.08409 q^{26} +(2.75781 - 4.40392i) q^{27} +(0.0566152 - 0.0411334i) q^{28} +(0.427253 + 4.06504i) q^{29} +(3.28549 - 4.35826i) q^{30} +(-0.681027 + 6.47954i) q^{31} +(0.0398007 + 0.0689368i) q^{32} +(5.39831 - 0.692961i) q^{33} +(-2.78664 - 3.09487i) q^{34} +(3.00427 + 10.7065i) q^{35} +(-0.0408471 + 0.0106625i) q^{36} +(1.50355 - 4.62746i) q^{37} +(-1.76246 - 1.95741i) q^{38} +(-2.18836 + 1.33132i) q^{39} +(-6.25636 + 1.06652i) q^{40} +(2.38999 - 0.508007i) q^{41} +(-4.68141 + 11.1994i) q^{42} +(-1.92193 + 3.32888i) q^{43} +(-0.0357732 - 0.0259908i) q^{44} +(0.665807 - 6.67508i) q^{45} +(-7.59132 + 5.51542i) q^{46} +(-0.175217 - 1.66708i) q^{47} +(-6.03484 - 3.30195i) q^{48} +(-8.86554 - 15.3556i) q^{49} +(1.30239 - 6.92474i) q^{50} +(-4.90306 - 1.46960i) q^{51} +(0.0203561 + 0.00432682i) q^{52} +(0.228304 - 0.165873i) q^{53} +(5.09178 - 5.26249i) q^{54} +(5.84738 - 3.89591i) q^{55} +(12.8946 - 5.74105i) q^{56} +(-3.10103 - 0.929477i) q^{57} +(-0.602097 + 5.72857i) q^{58} +(2.95891 - 0.628937i) q^{59} +(-0.0411388 + 0.0357476i) q^{60} +(7.58789 + 1.61286i) q^{61} +(-2.83723 + 8.73208i) q^{62} +(2.23857 + 14.7502i) q^{63} +(2.48928 + 7.66123i) q^{64} +(-1.76831 + 2.79440i) q^{65} +(7.64425 + 0.626479i) q^{66} +(1.19291 - 11.3498i) q^{67} +(0.0207927 + 0.0360141i) q^{68} +(-4.44786 + 10.6407i) q^{69} +(1.00422 + 15.6385i) q^{70} +(13.0547 - 9.48483i) q^{71} +(-8.50590 + 0.390666i) q^{72} +(-2.03962 - 6.27730i) q^{73} +(3.42837 - 5.93811i) q^{74} +(-3.05598 - 8.10315i) q^{75} +(0.0131507 + 0.0227777i) q^{76} +(-10.4563 + 11.6129i) q^{77} +(-3.40658 + 1.19396i) q^{78} +(-0.847007 - 8.05873i) q^{79} +(-8.87358 - 0.360405i) q^{80} +(1.98484 - 8.77841i) q^{81} +3.44328 q^{82} +(-8.79712 + 3.91673i) q^{83} +(0.0689762 - 0.0996694i) q^{84} +(-6.51407 + 1.11045i) q^{85} +(-3.62460 + 4.02553i) q^{86} +(3.02720 + 6.39979i) q^{87} +(-5.96780 - 6.62791i) q^{88} +(0.845142 + 2.60108i) q^{89} +(2.87354 - 9.00608i) q^{90} +(2.27269 - 6.99461i) q^{91} +(0.0855977 - 0.0381106i) q^{92} +(2.59889 + 10.9814i) q^{93} +(0.246921 - 2.34930i) q^{94} +(-4.11994 + 0.702323i) q^{95} +(0.104550 + 0.0898801i) q^{96} +(1.02725 + 9.77359i) q^{97} +(-7.72146 - 23.7642i) q^{98} +(8.42689 - 4.22533i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9}+O(q^{10})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 $$224 q - 3 q^{2} - 8 q^{3} + 23 q^{4} - 8 q^{5} - 10 q^{6} - 8 q^{7} - 20 q^{8} - 8 q^{9} - 20 q^{10} - 11 q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - 48 q^{15} + 23 q^{16} - 24 q^{17} - 12 q^{19} + q^{20} + 15 q^{21} - 11 q^{22} + q^{23} - 30 q^{24} - 16 q^{25} - 136 q^{26} + 7 q^{27} + 4 q^{28} - 15 q^{29} - 24 q^{30} + 3 q^{31} + 12 q^{32} - 5 q^{33} + q^{34} + 14 q^{35} + 38 q^{36} - 24 q^{37} + 55 q^{38} + 20 q^{39} + q^{40} - 19 q^{41} - 38 q^{42} - 8 q^{43} + 4 q^{44} - 38 q^{45} - 20 q^{46} - 10 q^{47} - 25 q^{48} - 72 q^{49} - 3 q^{50} - 26 q^{51} - 25 q^{52} - 12 q^{53} + 53 q^{54} - 20 q^{55} - 60 q^{56} + 38 q^{57} - 23 q^{58} - 30 q^{59} - 33 q^{60} - 3 q^{61} - 44 q^{62} + 46 q^{63} - 44 q^{64} + 51 q^{65} - 134 q^{66} - 12 q^{67} - 156 q^{68} + 4 q^{69} - 16 q^{70} + 42 q^{71} + 74 q^{72} - 12 q^{73} + 90 q^{74} + 67 q^{75} - 8 q^{76} + 31 q^{77} - 92 q^{78} - 15 q^{79} + 298 q^{80} - 104 q^{81} + 8 q^{82} + 59 q^{83} + 115 q^{84} - 11 q^{85} + 9 q^{86} - 59 q^{87} - 23 q^{88} + 106 q^{89} + 107 q^{90} + 30 q^{91} + 11 q^{92} + 32 q^{93} + 25 q^{94} + 7 q^{95} + 35 q^{96} - 21 q^{97} + 146 q^{98} - 20 q^{99}+O(q^{100})$$ 224 * q - 3 * q^2 - 8 * q^3 + 23 * q^4 - 8 * q^5 - 10 * q^6 - 8 * q^7 - 20 * q^8 - 8 * q^9 - 20 * q^10 - 11 * q^11 - 4 * q^12 - 3 * q^13 + q^14 - 48 * q^15 + 23 * q^16 - 24 * q^17 - 12 * q^19 + q^20 + 15 * q^21 - 11 * q^22 + q^23 - 30 * q^24 - 16 * q^25 - 136 * q^26 + 7 * q^27 + 4 * q^28 - 15 * q^29 - 24 * q^30 + 3 * q^31 + 12 * q^32 - 5 * q^33 + q^34 + 14 * q^35 + 38 * q^36 - 24 * q^37 + 55 * q^38 + 20 * q^39 + q^40 - 19 * q^41 - 38 * q^42 - 8 * q^43 + 4 * q^44 - 38 * q^45 - 20 * q^46 - 10 * q^47 - 25 * q^48 - 72 * q^49 - 3 * q^50 - 26 * q^51 - 25 * q^52 - 12 * q^53 + 53 * q^54 - 20 * q^55 - 60 * q^56 + 38 * q^57 - 23 * q^58 - 30 * q^59 - 33 * q^60 - 3 * q^61 - 44 * q^62 + 46 * q^63 - 44 * q^64 + 51 * q^65 - 134 * q^66 - 12 * q^67 - 156 * q^68 + 4 * q^69 - 16 * q^70 + 42 * q^71 + 74 * q^72 - 12 * q^73 + 90 * q^74 + 67 * q^75 - 8 * q^76 + 31 * q^77 - 92 * q^78 - 15 * q^79 + 298 * q^80 - 104 * q^81 + 8 * q^82 + 59 * q^83 + 115 * q^84 - 11 * q^85 + 9 * q^86 - 59 * q^87 - 23 * q^88 + 106 * q^89 + 107 * q^90 + 30 * q^91 + 11 * q^92 + 32 * q^93 + 25 * q^94 + 7 * q^95 + 35 * q^96 - 21 * q^97 + 146 * q^98 - 20 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/225\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{5}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.37843 + 0.292995i 0.974700 + 0.207179i 0.667618 0.744504i $$-0.267314\pi$$
0.307082 + 0.951683i $$0.400647\pi$$
$$3$$ 1.63456 0.572891i 0.943715 0.330759i
$$4$$ −0.0128554 0.00572357i −0.00642768 0.00286179i
$$5$$ 1.56242 1.59963i 0.698738 0.715378i
$$6$$ 2.42099 0.310774i 0.988366 0.126873i
$$7$$ −2.48652 + 4.30678i −0.939815 + 1.62781i −0.174002 + 0.984745i $$0.555670\pi$$
−0.765813 + 0.643063i $$0.777663\pi$$
$$8$$ −2.29622 1.66830i −0.811838 0.589835i
$$9$$ 2.34359 1.87285i 0.781197 0.624284i
$$10$$ 2.62239 1.74721i 0.829271 0.552515i
$$11$$ 3.07362 + 0.653319i 0.926732 + 0.196983i 0.646469 0.762940i $$-0.276245\pi$$
0.280263 + 0.959923i $$0.409578\pi$$
$$12$$ −0.0242919 0.00199082i −0.00701246 0.000574701i
$$13$$ −1.44657 + 0.307478i −0.401207 + 0.0852791i −0.404096 0.914717i $$-0.632414\pi$$
0.00288893 + 0.999996i $$0.499080\pi$$
$$14$$ −4.68937 + 5.20807i −1.25329 + 1.39192i
$$15$$ 1.63747 3.50980i 0.422792 0.906227i
$$16$$ −2.65756 2.95152i −0.664389 0.737879i
$$17$$ −2.39081 1.73703i −0.579857 0.421291i 0.258816 0.965927i $$-0.416668\pi$$
−0.838672 + 0.544636i $$0.816668\pi$$
$$18$$ 3.77922 1.89494i 0.890772 0.446643i
$$19$$ −1.51211 1.09861i −0.346902 0.252039i 0.400666 0.916224i $$-0.368779\pi$$
−0.747568 + 0.664185i $$0.768779\pi$$
$$20$$ −0.0292411 + 0.0116212i −0.00653852 + 0.00259858i
$$21$$ −1.59706 + 8.46420i −0.348506 + 1.84704i
$$22$$ 4.04537 + 1.80111i 0.862476 + 0.383999i
$$23$$ −4.45542 + 4.94825i −0.929020 + 1.03178i 0.0703930 + 0.997519i $$0.477575\pi$$
−0.999413 + 0.0342618i $$0.989092\pi$$
$$24$$ −4.70908 1.41146i −0.961237 0.288114i
$$25$$ −0.117657 4.99862i −0.0235313 0.999723i
$$26$$ −2.08409 −0.408725
$$27$$ 2.75781 4.40392i 0.530740 0.847535i
$$28$$ 0.0566152 0.0411334i 0.0106993 0.00777347i
$$29$$ 0.427253 + 4.06504i 0.0793388 + 0.754859i 0.959789 + 0.280721i $$0.0905735\pi$$
−0.880451 + 0.474138i $$0.842760\pi$$
$$30$$ 3.28549 4.35826i 0.599847 0.795706i
$$31$$ −0.681027 + 6.47954i −0.122316 + 1.16376i 0.745371 + 0.666649i $$0.232272\pi$$
−0.867687 + 0.497110i $$0.834394\pi$$
$$32$$ 0.0398007 + 0.0689368i 0.00703584 + 0.0121864i
$$33$$ 5.39831 0.692961i 0.939725 0.120629i
$$34$$ −2.78664 3.09487i −0.477904 0.530766i
$$35$$ 3.00427 + 10.7065i 0.507814 + 1.80973i
$$36$$ −0.0408471 + 0.0106625i −0.00680785 + 0.00177708i
$$37$$ 1.50355 4.62746i 0.247182 0.760749i −0.748088 0.663600i $$-0.769028\pi$$
0.995270 0.0971489i $$-0.0309723\pi$$
$$38$$ −1.76246 1.95741i −0.285908 0.317533i
$$39$$ −2.18836 + 1.33132i −0.350418 + 0.213182i
$$40$$ −6.25636 + 1.06652i −0.989217 + 0.168631i
$$41$$ 2.38999 0.508007i 0.373253 0.0793374i −0.0174658 0.999847i $$-0.505560\pi$$
0.390719 + 0.920510i $$0.372226\pi$$
$$42$$ −4.68141 + 11.1994i −0.722357 + 1.72811i
$$43$$ −1.92193 + 3.32888i −0.293091 + 0.507649i −0.974539 0.224218i $$-0.928017\pi$$
0.681448 + 0.731867i $$0.261351\pi$$
$$44$$ −0.0357732 0.0259908i −0.00539301 0.00391825i
$$45$$ 0.665807 6.67508i 0.0992527 0.995062i
$$46$$ −7.59132 + 5.51542i −1.11928 + 0.813204i
$$47$$ −0.175217 1.66708i −0.0255581 0.243169i −0.999841 0.0178399i $$-0.994321\pi$$
0.974283 0.225329i $$-0.0723456\pi$$
$$48$$ −6.03484 3.30195i −0.871055 0.476595i
$$49$$ −8.86554 15.3556i −1.26651 2.19365i
$$50$$ 1.30239 6.92474i 0.184186 0.979306i
$$51$$ −4.90306 1.46960i −0.686565 0.205786i
$$52$$ 0.0203561 + 0.00432682i 0.00282288 + 0.000600021i
$$53$$ 0.228304 0.165873i 0.0313600 0.0227844i −0.571995 0.820257i $$-0.693830\pi$$
0.603355 + 0.797473i $$0.293830\pi$$
$$54$$ 5.09178 5.26249i 0.692904 0.716134i
$$55$$ 5.84738 3.89591i 0.788460 0.525324i
$$56$$ 12.8946 5.74105i 1.72312 0.767181i
$$57$$ −3.10103 0.929477i −0.410741 0.123112i
$$58$$ −0.602097 + 5.72857i −0.0790592 + 0.752198i
$$59$$ 2.95891 0.628937i 0.385218 0.0818806i −0.0112321 0.999937i $$-0.503575\pi$$
0.396450 + 0.918056i $$0.370242\pi$$
$$60$$ −0.0411388 + 0.0357476i −0.00531100 + 0.00461499i
$$61$$ 7.58789 + 1.61286i 0.971530 + 0.206505i 0.666226 0.745750i $$-0.267909\pi$$
0.305304 + 0.952255i $$0.401242\pi$$
$$62$$ −2.83723 + 8.73208i −0.360328 + 1.10898i
$$63$$ 2.23857 + 14.7502i 0.282034 + 1.85835i
$$64$$ 2.48928 + 7.66123i 0.311161 + 0.957654i
$$65$$ −1.76831 + 2.79440i −0.219332 + 0.346602i
$$66$$ 7.64425 + 0.626479i 0.940943 + 0.0771142i
$$67$$ 1.19291 11.3498i 0.145738 1.38660i −0.640158 0.768243i $$-0.721131\pi$$
0.785896 0.618358i $$-0.212202\pi$$
$$68$$ 0.0207927 + 0.0360141i 0.00252149 + 0.00436735i
$$69$$ −4.44786 + 10.6407i −0.535460 + 1.28099i
$$70$$ 1.00422 + 15.6385i 0.120027 + 1.86916i
$$71$$ 13.0547 9.48483i 1.54931 1.12564i 0.605175 0.796092i $$-0.293103\pi$$
0.944138 0.329550i $$-0.106897\pi$$
$$72$$ −8.50590 + 0.390666i −1.00243 + 0.0460404i
$$73$$ −2.03962 6.27730i −0.238719 0.734703i −0.996606 0.0823167i $$-0.973768\pi$$
0.757887 0.652386i $$-0.226232\pi$$
$$74$$ 3.42837 5.93811i 0.398540 0.690291i
$$75$$ −3.05598 8.10315i −0.352874 0.935671i
$$76$$ 0.0131507 + 0.0227777i 0.00150849 + 0.00261278i
$$77$$ −10.4563 + 11.6129i −1.19161 + 1.32341i
$$78$$ −3.40658 + 1.19396i −0.385720 + 0.135189i
$$79$$ −0.847007 8.05873i −0.0952957 0.906678i −0.932836 0.360302i $$-0.882674\pi$$
0.837540 0.546376i $$-0.183993\pi$$
$$80$$ −8.87358 0.360405i −0.992097 0.0402944i
$$81$$ 1.98484 8.77841i 0.220538 0.975378i
$$82$$ 3.44328 0.380247
$$83$$ −8.79712 + 3.91673i −0.965609 + 0.429917i −0.828098 0.560583i $$-0.810577\pi$$
−0.137511 + 0.990500i $$0.543910\pi$$
$$84$$ 0.0689762 0.0996694i 0.00752592 0.0108748i
$$85$$ −6.51407 + 1.11045i −0.706550 + 0.120445i
$$86$$ −3.62460 + 4.02553i −0.390851 + 0.434084i
$$87$$ 3.02720 + 6.39979i 0.324549 + 0.686130i
$$88$$ −5.96780 6.62791i −0.636169 0.706537i
$$89$$ 0.845142 + 2.60108i 0.0895849 + 0.275714i 0.985805 0.167896i $$-0.0536974\pi$$
−0.896220 + 0.443610i $$0.853697\pi$$
$$90$$ 2.87354 9.00608i 0.302898 0.949325i
$$91$$ 2.27269 6.99461i 0.238242 0.733234i
$$92$$ 0.0855977 0.0381106i 0.00892418 0.00397330i
$$93$$ 2.59889 + 10.9814i 0.269492 + 1.13871i
$$94$$ 0.246921 2.34930i 0.0254680 0.242312i
$$95$$ −4.11994 + 0.702323i −0.422697 + 0.0720569i
$$96$$ 0.104550 + 0.0898801i 0.0106706 + 0.00917335i
$$97$$ 1.02725 + 9.77359i 0.104301 + 0.992358i 0.914056 + 0.405589i $$0.132934\pi$$
−0.809755 + 0.586769i $$0.800400\pi$$
$$98$$ −7.72146 23.7642i −0.779985 2.40055i
$$99$$ 8.42689 4.22533i 0.846934 0.424662i
$$100$$ −0.0270974 + 0.0649324i −0.00270974 + 0.00649324i
$$101$$ −3.76987 + 6.52961i −0.375116 + 0.649720i −0.990344 0.138629i $$-0.955731\pi$$
0.615228 + 0.788349i $$0.289064\pi$$
$$102$$ −6.32795 3.46232i −0.626561 0.342821i
$$103$$ 0.282302 + 0.125689i 0.0278161 + 0.0123845i 0.420598 0.907247i $$-0.361820\pi$$
−0.392781 + 0.919632i $$0.628487\pi$$
$$104$$ 3.83462 + 1.70728i 0.376016 + 0.167413i
$$105$$ 11.0443 + 15.7794i 1.07782 + 1.53991i
$$106$$ 0.363303 0.161753i 0.0352871 0.0157108i
$$107$$ 10.6092 1.02563 0.512814 0.858500i $$-0.328603\pi$$
0.512814 + 0.858500i $$0.328603\pi$$
$$108$$ −0.0606587 + 0.0408294i −0.00583689 + 0.00392881i
$$109$$ 2.72546 8.38810i 0.261052 0.803434i −0.731525 0.681814i $$-0.761191\pi$$
0.992577 0.121620i $$-0.0388088\pi$$
$$110$$ 9.20171 3.65700i 0.877349 0.348682i
$$111$$ −0.193379 8.42524i −0.0183547 0.799688i
$$112$$ 19.3196 4.10651i 1.82553 0.388028i
$$113$$ 8.58747 1.82532i 0.807841 0.171712i 0.214564 0.976710i $$-0.431167\pi$$
0.593277 + 0.804998i $$0.297834\pi$$
$$114$$ −4.00223 2.18981i −0.374843 0.205094i
$$115$$ 0.954121 + 14.8583i 0.0889723 + 1.38554i
$$116$$ 0.0177741 0.0547029i 0.00165028 0.00507904i
$$117$$ −2.81431 + 3.42982i −0.260183 + 0.317087i
$$118$$ 4.26294 0.392436
$$119$$ 13.4258 5.97754i 1.23074 0.547960i
$$120$$ −9.61541 + 5.32750i −0.877763 + 0.486332i
$$121$$ −1.02866 0.457990i −0.0935148 0.0416355i
$$122$$ 9.98685 + 4.44643i 0.904167 + 0.402561i
$$123$$ 3.61555 2.19957i 0.326003 0.198329i
$$124$$ 0.0458410 0.0793989i 0.00411664 0.00713023i
$$125$$ −8.17978 7.62175i −0.731622 0.681710i
$$126$$ −1.23601 + 20.9881i −0.110113 + 1.86977i
$$127$$ 2.46680 + 7.59204i 0.218894 + 0.673685i 0.998854 + 0.0478565i $$0.0152390\pi$$
−0.779961 + 0.625829i $$0.784761\pi$$
$$128$$ 1.16997 + 11.1315i 0.103412 + 0.983897i
$$129$$ −1.23443 + 6.54232i −0.108685 + 0.576019i
$$130$$ −3.25624 + 3.33379i −0.285591 + 0.292393i
$$131$$ −1.14556 + 10.8993i −0.100088 + 0.952277i 0.823091 + 0.567909i $$0.192247\pi$$
−0.923180 + 0.384368i $$0.874419\pi$$
$$132$$ −0.0733634 0.0219894i −0.00638547 0.00191393i
$$133$$ 8.49137 3.78060i 0.736295 0.327820i
$$134$$ 4.96980 15.2955i 0.429325 1.32133i
$$135$$ −2.73579 11.2923i −0.235459 0.971884i
$$136$$ 2.59195 + 7.97720i 0.222258 + 0.684039i
$$137$$ −4.60452 5.11383i −0.393390 0.436904i 0.513617 0.858020i $$-0.328305\pi$$
−0.907007 + 0.421115i $$0.861639\pi$$
$$138$$ −9.24876 + 13.3643i −0.787307 + 1.13764i
$$139$$ 5.05979 5.61946i 0.429166 0.476637i −0.489313 0.872109i $$-0.662752\pi$$
0.918478 + 0.395472i $$0.129419\pi$$
$$140$$ 0.0226587 0.154831i 0.00191501 0.0130856i
$$141$$ −1.24146 2.62457i −0.104550 0.221028i
$$142$$ 20.7741 9.24924i 1.74333 0.776179i
$$143$$ −4.64710 −0.388610
$$144$$ −11.7560 1.93994i −0.979666 0.161661i
$$145$$ 7.17012 + 5.66787i 0.595446 + 0.470691i
$$146$$ −0.972262 9.25045i −0.0804649 0.765573i
$$147$$ −23.2884 20.0207i −1.92079 1.65128i
$$148$$ −0.0458143 + 0.0508819i −0.00376591 + 0.00418247i
$$149$$ 7.49125 + 12.9752i 0.613707 + 1.06297i 0.990610 + 0.136719i $$0.0436558\pi$$
−0.376903 + 0.926253i $$0.623011\pi$$
$$150$$ −1.83828 12.0650i −0.150095 0.985107i
$$151$$ 2.80456 4.85765i 0.228232 0.395310i −0.729052 0.684458i $$-0.760039\pi$$
0.957284 + 0.289149i $$0.0933722\pi$$
$$152$$ 1.63932 + 5.04532i 0.132967 + 0.409230i
$$153$$ −8.85628 + 0.406758i −0.715987 + 0.0328845i
$$154$$ −17.8159 + 12.9440i −1.43564 + 1.04306i
$$155$$ 9.30084 + 11.2132i 0.747061 + 0.900665i
$$156$$ 0.0357521 0.00458936i 0.00286246 0.000367443i
$$157$$ 7.68556 + 13.3118i 0.613374 + 1.06240i 0.990667 + 0.136302i $$0.0435216\pi$$
−0.377293 + 0.926094i $$0.623145\pi$$
$$158$$ 1.19363 11.3566i 0.0949599 0.903483i
$$159$$ 0.278151 0.401923i 0.0220588 0.0318746i
$$160$$ 0.172459 + 0.0440421i 0.0136341 + 0.00348183i
$$161$$ −10.2325 31.4924i −0.806434 2.48195i
$$162$$ 5.30801 11.5189i 0.417036 0.905011i
$$163$$ −6.69457 + 20.6038i −0.524359 + 1.61381i 0.241221 + 0.970470i $$0.422452\pi$$
−0.765580 + 0.643341i $$0.777548\pi$$
$$164$$ −0.0336317 0.00714865i −0.00262620 0.000558215i
$$165$$ 7.32597 9.71802i 0.570326 0.756547i
$$166$$ −13.2738 + 2.82144i −1.03025 + 0.218986i
$$167$$ 1.72511 16.4133i 0.133493 1.27010i −0.698620 0.715493i $$-0.746202\pi$$
0.832113 0.554607i $$-0.187131\pi$$
$$168$$ 17.7881 16.7713i 1.37238 1.29394i
$$169$$ −9.87806 + 4.39800i −0.759851 + 0.338307i
$$170$$ −9.30457 0.377909i −0.713628 0.0289843i
$$171$$ −5.60131 + 0.257262i −0.428343 + 0.0196733i
$$172$$ 0.0437602 0.0317936i 0.00333668 0.00242424i
$$173$$ −11.8161 2.51159i −0.898360 0.190952i −0.264487 0.964389i $$-0.585203\pi$$
−0.633873 + 0.773437i $$0.718536\pi$$
$$174$$ 2.29768 + 9.70865i 0.174187 + 0.736011i
$$175$$ 21.8205 + 11.9224i 1.64947 + 0.901251i
$$176$$ −6.24005 10.8081i −0.470362 0.814690i
$$177$$ 4.47622 2.72317i 0.336453 0.204686i
$$178$$ 0.402869 + 3.83304i 0.0301963 + 0.287299i
$$179$$ −10.7597 + 7.81740i −0.804220 + 0.584300i −0.912149 0.409859i $$-0.865578\pi$$
0.107929 + 0.994159i $$0.465578\pi$$
$$180$$ −0.0467645 + 0.0819997i −0.00348562 + 0.00611190i
$$181$$ −16.9365 12.3051i −1.25888 0.914629i −0.260176 0.965561i $$-0.583781\pi$$
−0.998702 + 0.0509324i $$0.983781\pi$$
$$182$$ 5.18214 8.97573i 0.384126 0.665325i
$$183$$ 13.3269 1.71072i 0.985151 0.126460i
$$184$$ 18.4858 3.92929i 1.36279 0.289671i
$$185$$ −5.05305 9.63518i −0.371507 0.708393i
$$186$$ 0.364909 + 15.8986i 0.0267564 + 1.16574i
$$187$$ −6.21362 6.90092i −0.454385 0.504646i
$$188$$ −0.00728918 + 0.0224338i −0.000531618 + 0.00163615i
$$189$$ 12.1094 + 22.8277i 0.880826 + 1.66047i
$$190$$ −5.88484 0.239016i −0.426931 0.0173400i
$$191$$ −3.24560 3.60461i −0.234844 0.260820i 0.614191 0.789157i $$-0.289482\pi$$
−0.849035 + 0.528337i $$0.822816\pi$$
$$192$$ 8.45794 + 11.0967i 0.610399 + 0.800833i
$$193$$ 1.77174 + 3.06874i 0.127533 + 0.220893i 0.922720 0.385471i $$-0.125961\pi$$
−0.795187 + 0.606364i $$0.792628\pi$$
$$194$$ −1.44762 + 13.7732i −0.103933 + 0.988860i
$$195$$ −1.28952 + 5.58067i −0.0923447 + 0.399640i
$$196$$ 0.0260810 + 0.248144i 0.00186293 + 0.0177246i
$$197$$ −17.3425 + 12.6000i −1.23560 + 0.897715i −0.997297 0.0734759i $$-0.976591\pi$$
−0.238302 + 0.971191i $$0.576591\pi$$
$$198$$ 12.8539 3.35531i 0.913488 0.238451i
$$199$$ 18.9405 1.34265 0.671327 0.741162i $$-0.265725\pi$$
0.671327 + 0.741162i $$0.265725\pi$$
$$200$$ −8.06905 + 11.6742i −0.570568 + 0.825493i
$$201$$ −4.55232 19.2354i −0.321096 1.35676i
$$202$$ −7.10967 + 7.89608i −0.500234 + 0.555566i
$$203$$ −18.5696 8.26771i −1.30333 0.580279i
$$204$$ 0.0546191 + 0.0469553i 0.00382410 + 0.00328753i
$$205$$ 2.92155 4.61683i 0.204050 0.322453i
$$206$$ 0.352309 + 0.255967i 0.0245465 + 0.0178341i
$$207$$ −1.17435 + 19.9410i −0.0816229 + 1.38600i
$$208$$ 4.75188 + 3.45244i 0.329483 + 0.239384i
$$209$$ −3.92991 4.36461i −0.271838 0.301907i
$$210$$ 10.6006 + 24.9868i 0.731512 + 1.72425i
$$211$$ −15.1945 + 16.8753i −1.04604 + 1.16174i −0.0594945 + 0.998229i $$0.518949\pi$$
−0.986541 + 0.163512i $$0.947718\pi$$
$$212$$ −0.00388432 0.000825637i −0.000266776 5.67050e-5i
$$213$$ 15.9050 22.9825i 1.08979 1.57473i
$$214$$ 14.6241 + 3.10844i 0.999680 + 0.212489i
$$215$$ 2.32212 + 8.27551i 0.158367 + 0.564385i
$$216$$ −13.6796 + 5.51152i −0.930780 + 0.375012i
$$217$$ −26.2125 19.0445i −1.77942 1.29283i
$$218$$ 6.21454 10.7639i 0.420902 0.729023i
$$219$$ −6.93010 9.09217i −0.468293 0.614392i
$$220$$ −0.0974686 + 0.0166154i −0.00657133 + 0.00112021i
$$221$$ 3.99258 + 1.77761i 0.268570 + 0.119575i
$$222$$ 2.20200 11.6703i 0.147788 0.783259i
$$223$$ −21.0904 4.48289i −1.41231 0.300197i −0.562290 0.826940i $$-0.690080\pi$$
−0.850024 + 0.526743i $$0.823413\pi$$
$$224$$ −0.395861 −0.0264496
$$225$$ −9.63741 11.4944i −0.642494 0.766291i
$$226$$ 12.3721 0.822978
$$227$$ 2.12348 + 0.451359i 0.140940 + 0.0299578i 0.277842 0.960627i $$-0.410381\pi$$
−0.136901 + 0.990585i $$0.543714\pi$$
$$228$$ 0.0345449 + 0.0296977i 0.00228779 + 0.00196678i
$$229$$ −17.6347 7.85147i −1.16533 0.518840i −0.269400 0.963028i $$-0.586825\pi$$
−0.895933 + 0.444189i $$0.853492\pi$$
$$230$$ −3.03822 + 20.7608i −0.200334 + 1.36892i
$$231$$ −10.4386 + 24.9724i −0.686808 + 1.64306i
$$232$$ 5.80065 10.0470i 0.380832 0.659620i
$$233$$ 21.4951 + 15.6171i 1.40819 + 1.02311i 0.993583 + 0.113108i $$0.0360805\pi$$
0.414606 + 0.910001i $$0.363920\pi$$
$$234$$ −4.88427 + 3.90320i −0.319294 + 0.255160i
$$235$$ −2.94048 2.32440i −0.191816 0.151627i
$$236$$ −0.0416377 0.00885036i −0.00271038 0.000576109i
$$237$$ −6.00126 12.6873i −0.389824 0.824126i
$$238$$ 20.2579 4.30596i 1.31313 0.279114i
$$239$$ −4.94130 + 5.48787i −0.319626 + 0.354981i −0.881451 0.472275i $$-0.843433\pi$$
0.561825 + 0.827256i $$0.310099\pi$$
$$240$$ −14.7109 + 4.49449i −0.949584 + 0.290118i
$$241$$ −9.43354 10.4770i −0.607668 0.674883i 0.358282 0.933613i $$-0.383363\pi$$
−0.965950 + 0.258730i $$0.916696\pi$$
$$242$$ −1.28376 0.932703i −0.0825229 0.0599564i
$$243$$ −1.78472 15.4860i −0.114490 0.993424i
$$244$$ −0.0883137 0.0641637i −0.00565371 0.00410766i
$$245$$ −38.4150 9.81031i −2.45425 0.626757i
$$246$$ 5.62826 1.97263i 0.358845 0.125770i
$$247$$ 2.52518 + 1.12428i 0.160673 + 0.0715363i
$$248$$ 12.3736 13.7423i 0.785727 0.872638i
$$249$$ −12.1356 + 11.4419i −0.769061 + 0.725103i
$$250$$ −9.04216 12.9027i −0.571876 0.816040i
$$251$$ 23.6990 1.49587 0.747934 0.663773i $$-0.231046\pi$$
0.747934 + 0.663773i $$0.231046\pi$$
$$252$$ 0.0556462 0.202432i 0.00350538 0.0127520i
$$253$$ −16.9271 + 12.2982i −1.06420 + 0.773184i
$$254$$ 1.17590 + 11.1879i 0.0737822 + 0.701991i
$$255$$ −10.0115 + 5.54695i −0.626943 + 0.347363i
$$256$$ 0.0353003 0.335860i 0.00220627 0.0209912i
$$257$$ −3.54893 6.14694i −0.221376 0.383435i 0.733850 0.679312i $$-0.237722\pi$$
−0.955226 + 0.295877i $$0.904388\pi$$
$$258$$ −3.61845 + 8.65648i −0.225275 + 0.538929i
$$259$$ 16.1908 + 17.9817i 1.00605 + 1.11733i
$$260$$ 0.0387261 0.0258019i 0.00240169 0.00160017i
$$261$$ 8.61452 + 8.72661i 0.533226 + 0.540163i
$$262$$ −4.77253 + 14.6883i −0.294848 + 0.907449i
$$263$$ 9.89329 + 10.9876i 0.610047 + 0.677525i 0.966464 0.256801i $$-0.0826686\pi$$
−0.356418 + 0.934327i $$0.616002\pi$$
$$264$$ −13.5518 7.41484i −0.834056 0.456352i
$$265$$ 0.0913727 0.624367i 0.00561298 0.0383546i
$$266$$ 12.8125 2.72338i 0.785584 0.166981i
$$267$$ 2.87157 + 3.76746i 0.175737 + 0.230565i
$$268$$ −0.0802969 + 0.139078i −0.00490491 + 0.00849556i
$$269$$ 5.30527 + 3.85450i 0.323468 + 0.235013i 0.737654 0.675179i $$-0.235934\pi$$
−0.414186 + 0.910192i $$0.635934\pi$$
$$270$$ −0.462525 16.3672i −0.0281484 0.996078i
$$271$$ −4.15808 + 3.02102i −0.252585 + 0.183514i −0.706872 0.707342i $$-0.749894\pi$$
0.454286 + 0.890856i $$0.349894\pi$$
$$272$$ 1.22686 + 11.6728i 0.0743891 + 0.707765i
$$273$$ −0.292301 12.7351i −0.0176908 0.770765i
$$274$$ −4.84870 8.39819i −0.292920 0.507353i
$$275$$ 2.90406 15.4407i 0.175121 0.931111i
$$276$$ 0.118082 0.111332i 0.00710768 0.00670141i
$$277$$ 5.58097 + 1.18627i 0.335328 + 0.0712762i 0.372499 0.928033i $$-0.378501\pi$$
−0.0371705 + 0.999309i $$0.511834\pi$$
$$278$$ 8.62106 6.26357i 0.517057 0.375664i
$$279$$ 10.5392 + 16.4609i 0.630964 + 0.985486i
$$280$$ 10.9633 29.5966i 0.655182 1.76874i
$$281$$ 4.74099 2.11083i 0.282824 0.125921i −0.260422 0.965495i $$-0.583862\pi$$
0.543246 + 0.839574i $$0.317195\pi$$
$$282$$ −0.942284 3.98154i −0.0561122 0.237097i
$$283$$ −0.634300 + 6.03496i −0.0377052 + 0.358741i 0.959360 + 0.282185i $$0.0910592\pi$$
−0.997065 + 0.0765564i $$0.975607\pi$$
$$284$$ −0.222111 + 0.0472110i −0.0131798 + 0.00280146i
$$285$$ −6.33194 + 3.50827i −0.375072 + 0.207812i
$$286$$ −6.40572 1.36158i −0.378778 0.0805118i
$$287$$ −3.75487 + 11.5563i −0.221643 + 0.682147i
$$288$$ 0.222385 + 0.0870189i 0.0131042 + 0.00512764i
$$289$$ −2.55457 7.86216i −0.150269 0.462480i
$$290$$ 8.22288 + 9.91360i 0.482864 + 0.582146i
$$291$$ 7.27830 + 15.3870i 0.426661 + 0.902005i
$$292$$ −0.00970857 + 0.0923709i −0.000568151 + 0.00540560i
$$293$$ −2.94596 5.10256i −0.172105 0.298094i 0.767051 0.641587i $$-0.221723\pi$$
−0.939156 + 0.343492i $$0.888390\pi$$
$$294$$ −26.2355 34.4205i −1.53009 2.00745i
$$295$$ 3.61701 5.71584i 0.210591 0.332789i
$$296$$ −11.1725 + 8.11730i −0.649388 + 0.471808i
$$297$$ 11.3536 11.7343i 0.658804 0.680891i
$$298$$ 6.52452 + 20.0804i 0.377955 + 1.16323i
$$299$$ 4.92361 8.52794i 0.284740 0.493184i
$$300$$ −0.00709325 + 0.121660i −0.000409529 + 0.00702404i
$$301$$ −9.55782 16.5546i −0.550904 0.954193i
$$302$$ 5.28917 5.87422i 0.304358 0.338024i
$$303$$ −2.42134 + 12.8328i −0.139102 + 0.737224i
$$304$$ 0.775948 + 7.38265i 0.0445036 + 0.423424i
$$305$$ 14.4355 9.61788i 0.826574 0.550718i
$$306$$ −12.3270 2.03416i −0.704686 0.116285i
$$307$$ −31.9044 −1.82088 −0.910439 0.413643i $$-0.864256\pi$$
−0.910439 + 0.413643i $$0.864256\pi$$
$$308$$ 0.200887 0.0894407i 0.0114466 0.00509636i
$$309$$ 0.533447 + 0.0437182i 0.0303467 + 0.00248704i
$$310$$ 9.53518 + 18.1817i 0.541562 + 1.03265i
$$311$$ −10.7404 + 11.9285i −0.609035 + 0.676402i −0.966246 0.257622i $$-0.917061\pi$$
0.357211 + 0.934024i $$0.383728\pi$$
$$312$$ 7.24602 + 0.593842i 0.410225 + 0.0336197i
$$313$$ −2.98176 3.31158i −0.168539 0.187181i 0.652958 0.757394i $$-0.273528\pi$$
−0.821497 + 0.570212i $$0.806861\pi$$
$$314$$ 6.69375 + 20.6012i 0.377750 + 1.16260i
$$315$$ 27.0925 + 19.4652i 1.52649 + 1.09674i
$$316$$ −0.0352362 + 0.108446i −0.00198219 + 0.00610055i
$$317$$ 13.3281 5.93403i 0.748578 0.333288i 0.00325753 0.999995i $$-0.498963\pi$$
0.745321 + 0.666706i $$0.232296\pi$$
$$318$$ 0.501174 0.472528i 0.0281045 0.0264980i
$$319$$ −1.34255 + 12.7735i −0.0751685 + 0.715180i
$$320$$ 16.1445 + 7.98815i 0.902504 + 0.446551i
$$321$$ 17.3414 6.07791i 0.967901 0.339236i
$$322$$ −4.87771 46.4083i −0.271824 2.58623i
$$323$$ 1.70685 + 5.25315i 0.0949718 + 0.292293i
$$324$$ −0.0757597 + 0.101489i −0.00420887 + 0.00563828i
$$325$$ 1.70716 + 7.19468i 0.0946965 + 0.399089i
$$326$$ −15.2648 + 26.4395i −0.845440 + 1.46435i
$$327$$ −0.350534 15.2723i −0.0193846 0.844558i
$$328$$ −6.33546 2.82073i −0.349817 0.155749i
$$329$$ 7.61542 + 3.39060i 0.419852 + 0.186930i
$$330$$ 12.9457 11.2492i 0.712638 0.619247i
$$331$$ 21.5518 9.59549i 1.18459 0.527416i 0.282632 0.959228i $$-0.408793\pi$$
0.901963 + 0.431813i $$0.142126\pi$$
$$332$$ 0.135508 0.00743696
$$333$$ −5.14283 13.6608i −0.281826 0.748607i
$$334$$ 7.18697 22.1192i 0.393253 1.21031i
$$335$$ −16.2917 19.6415i −0.890112 1.07313i
$$336$$ 29.2265 17.7804i 1.59444 0.969998i
$$337$$ 8.15060 1.73246i 0.443991 0.0943733i 0.0195094 0.999810i $$-0.493790\pi$$
0.424482 + 0.905436i $$0.360456\pi$$
$$338$$ −14.9049 + 3.16813i −0.810717 + 0.172323i
$$339$$ 12.9910 7.90329i 0.705577 0.429248i
$$340$$ 0.0900964 + 0.0230085i 0.00488616 + 0.00124781i
$$341$$ −6.32643 + 19.4707i −0.342595 + 1.05440i
$$342$$ −7.79642 1.28654i −0.421582 0.0695681i
$$343$$ 53.3661 2.88150
$$344$$ 9.96677 4.43749i 0.537372 0.239253i
$$345$$ 10.0718 + 23.7402i 0.542246 + 1.27813i
$$346$$ −15.5518 6.92411i −0.836071 0.372243i
$$347$$ 13.7816 + 6.13595i 0.739833 + 0.329395i 0.741816 0.670603i $$-0.233965\pi$$
−0.00198319 + 0.999998i $$0.500631\pi$$
$$348$$ −0.00228600 0.0995979i −0.000122543 0.00533901i
$$349$$ −3.03867 + 5.26314i −0.162656 + 0.281729i −0.935821 0.352477i $$-0.885340\pi$$
0.773164 + 0.634206i $$0.218673\pi$$
$$350$$ 26.5849 + 22.8276i 1.42102 + 1.22019i
$$351$$ −2.63526 + 7.21855i −0.140660 + 0.385298i
$$352$$ 0.0772947 + 0.237888i 0.00411982 + 0.0126795i
$$353$$ 2.43564 + 23.1735i 0.129636 + 1.23340i 0.845044 + 0.534697i $$0.179574\pi$$
−0.715408 + 0.698707i $$0.753759\pi$$
$$354$$ 6.96805 2.44220i 0.370348 0.129802i
$$355$$ 5.22481 35.7021i 0.277304 1.89487i
$$356$$ 0.00402287 0.0382750i 0.000213212 0.00202857i
$$357$$ 18.5208 17.4622i 0.980224 0.924196i
$$358$$ −17.1220 + 7.62322i −0.904928 + 0.402900i
$$359$$ 1.23779 3.80952i 0.0653279 0.201059i −0.913065 0.407815i $$-0.866291\pi$$
0.978392 + 0.206756i $$0.0662908\pi$$
$$360$$ −12.6649 + 14.2167i −0.667499 + 0.749287i
$$361$$ −4.79179 14.7476i −0.252200 0.776191i
$$362$$ −19.7405 21.9240i −1.03754 1.15230i
$$363$$ −1.94379 0.159302i −0.102023 0.00836119i
$$364$$ −0.0692504 + 0.0769103i −0.00362970 + 0.00403120i
$$365$$ −13.2281 6.54517i −0.692392 0.342590i
$$366$$ 18.8715 + 1.54660i 0.986427 + 0.0808418i
$$367$$ −20.9787 + 9.34033i −1.09508 + 0.487561i −0.873125 0.487496i $$-0.837910\pi$$
−0.221955 + 0.975057i $$0.571244\pi$$
$$368$$ 26.4454 1.37856
$$369$$ 4.64973 5.66665i 0.242055 0.294994i
$$370$$ −4.14223 14.7620i −0.215344 0.767439i
$$371$$ 0.146694 + 1.39570i 0.00761598 + 0.0724612i
$$372$$ 0.0294430 0.156044i 0.00152655 0.00809052i
$$373$$ 13.6711 15.1833i 0.707864 0.786163i −0.276743 0.960944i $$-0.589255\pi$$
0.984607 + 0.174781i $$0.0559217\pi$$
$$374$$ −6.54313 11.3330i −0.338337 0.586017i
$$375$$ −17.7368 7.77211i −0.915925 0.401350i
$$376$$ −2.37886 + 4.12031i −0.122680 + 0.212489i
$$377$$ −1.86796 5.74900i −0.0962050 0.296088i
$$378$$ 10.0035 + 35.0144i 0.514527 + 1.80095i
$$379$$ 2.11954 1.53993i 0.108873 0.0791011i −0.532016 0.846734i $$-0.678566\pi$$
0.640890 + 0.767633i $$0.278566\pi$$
$$380$$ 0.0569831 + 0.0145521i 0.00292317 + 0.000746509i
$$381$$ 8.38156 + 10.9965i 0.429400 + 0.563366i
$$382$$ −3.41772 5.91966i −0.174866 0.302876i
$$383$$ 1.15470 10.9862i 0.0590023 0.561369i −0.924590 0.380964i $$-0.875592\pi$$
0.983592 0.180405i $$-0.0577410\pi$$
$$384$$ 8.28954 + 17.5249i 0.423024 + 0.894314i
$$385$$ 2.23920 + 34.8706i 0.114120 + 1.77717i
$$386$$ 1.54310 + 4.74917i 0.0785417 + 0.241727i
$$387$$ 1.73028 + 11.4010i 0.0879553 + 0.579547i
$$388$$ 0.0427342 0.131522i 0.00216950 0.00667704i
$$389$$ 12.2582 + 2.60556i 0.621515 + 0.132107i 0.507897 0.861418i $$-0.330423\pi$$
0.113617 + 0.993525i $$0.463756\pi$$
$$390$$ −3.41263 + 7.31476i −0.172805 + 0.370397i
$$391$$ 19.2473 4.09114i 0.973378 0.206898i
$$392$$ −5.26050 + 50.0503i −0.265695 + 2.52792i
$$393$$ 4.37162 + 18.4719i 0.220519 + 0.931784i
$$394$$ −27.5972 + 12.2871i −1.39033 + 0.619013i
$$395$$ −14.2144 11.2363i −0.715204 0.565358i
$$396$$ −0.132515 + 0.00608624i −0.00665911 + 0.000305845i
$$397$$ 25.5180 18.5399i 1.28071 0.930493i 0.281140 0.959667i $$-0.409288\pi$$
0.999574 + 0.0291737i $$0.00928761\pi$$
$$398$$ 26.1082 + 5.54946i 1.30868 + 0.278170i
$$399$$ 11.7138 11.0443i 0.586424 0.552905i
$$400$$ −14.4408 + 13.6314i −0.722041 + 0.681569i
$$401$$ 4.83754 + 8.37886i 0.241575 + 0.418420i 0.961163 0.275981i $$-0.0890026\pi$$
−0.719588 + 0.694401i $$0.755669\pi$$
$$402$$ −0.639189 27.8486i −0.0318798 1.38896i
$$403$$ −1.00716 9.58252i −0.0501704 0.477339i
$$404$$ 0.0858357 0.0623633i 0.00427049 0.00310269i
$$405$$ −10.9411 16.8906i −0.543666 0.839302i
$$406$$ −23.1745 16.8373i −1.15013 0.835621i
$$407$$ 7.64456 13.2408i 0.378927 0.656320i
$$408$$ 8.80677 + 11.5543i 0.436000 + 0.572025i
$$409$$ −10.5677 + 2.24623i −0.522539 + 0.111069i −0.461627 0.887074i $$-0.652734\pi$$
−0.0609119 + 0.998143i $$0.519401\pi$$
$$410$$ 5.37987 5.50799i 0.265693 0.272020i
$$411$$ −10.4560 5.72100i −0.515759 0.282196i
$$412$$ −0.00290970 0.00323155i −0.000143351 0.000159207i
$$413$$ −4.64870 + 14.3072i −0.228748 + 0.704013i
$$414$$ −7.46139 + 27.1433i −0.366707 + 1.33402i
$$415$$ −7.47951 + 20.1918i −0.367154 + 0.991175i
$$416$$ −0.0787712 0.0874842i −0.00386207 0.00428927i
$$417$$ 5.05120 12.0841i 0.247358 0.591760i
$$418$$ −4.13832 7.16778i −0.202412 0.350588i
$$419$$ 4.02027 38.2503i 0.196403 1.86865i −0.242551 0.970139i $$-0.577984\pi$$
0.438954 0.898510i $$-0.355349\pi$$
$$420$$ −0.0516644 0.266063i −0.00252097 0.0129825i
$$421$$ 0.651732 + 6.20082i 0.0317635 + 0.302209i 0.998857 + 0.0477898i $$0.0152178\pi$$
−0.967094 + 0.254420i $$0.918116\pi$$
$$422$$ −25.8891 + 18.8095i −1.26026 + 0.915632i
$$423$$ −3.53283 3.57880i −0.171772 0.174007i
$$424$$ −0.800965 −0.0388983
$$425$$ −8.40143 + 12.1551i −0.407529 + 0.589610i
$$426$$ 28.6578 27.0198i 1.38848 1.30911i
$$427$$ −25.8136 + 28.6689i −1.24921 + 1.38739i
$$428$$ −0.136385 0.0607224i −0.00659241 0.00293513i
$$429$$ −7.59598 + 2.66228i −0.366737 + 0.128536i
$$430$$ 0.776202 + 12.0876i 0.0374318 + 0.582916i
$$431$$ −5.18988 3.77067i −0.249988 0.181627i 0.455734 0.890116i $$-0.349377\pi$$
−0.705721 + 0.708489i $$0.749377\pi$$
$$432$$ −20.3273 + 3.56395i −0.977996 + 0.171471i
$$433$$ −12.6872 9.21781i −0.609709 0.442980i 0.239603 0.970871i $$-0.422983\pi$$
−0.849312 + 0.527891i $$0.822983\pi$$
$$434$$ −30.5523 33.9318i −1.46656 1.62878i
$$435$$ 14.9671 + 5.15679i 0.717617 + 0.247249i
$$436$$ −0.0830466 + 0.0922326i −0.00397721 + 0.00441714i
$$437$$ 12.1733 2.58752i 0.582328 0.123778i
$$438$$ −6.88872 14.5634i −0.329156 0.695868i
$$439$$ −15.2390 3.23916i −0.727320 0.154597i −0.170652 0.985331i $$-0.554587\pi$$
−0.556668 + 0.830735i $$0.687921\pi$$
$$440$$ −19.9265 0.809322i −0.949957 0.0385829i
$$441$$ −49.5359 19.3833i −2.35885 0.923016i
$$442$$ 4.98267 + 3.62012i 0.237002 + 0.172192i
$$443$$ −0.149149 + 0.258333i −0.00708627 + 0.0122738i −0.869547 0.493851i $$-0.835589\pi$$
0.862461 + 0.506124i $$0.168922\pi$$
$$444$$ −0.0457365 + 0.109416i −0.00217056 + 0.00519266i
$$445$$ 5.48125 + 2.71207i 0.259836 + 0.128565i
$$446$$ −27.7582 12.3588i −1.31439 0.585204i
$$447$$ 19.6783 + 16.9172i 0.930752 + 0.800154i
$$448$$ −39.1848 8.32900i −1.85131 0.393508i
$$449$$ −0.00271457 −0.000128108 −6.40542e−5 1.00000i $$-0.500020\pi$$
−6.40542e−5 1.00000i $$0.500020\pi$$
$$450$$ −9.91675 18.6679i −0.467480 0.880015i
$$451$$ 7.67781 0.361534
$$452$$ −0.120842 0.0256858i −0.00568394 0.00120816i
$$453$$ 1.80133 9.54684i 0.0846340 0.448550i
$$454$$ 2.79483 + 1.24434i 0.131168 + 0.0583997i
$$455$$ −7.63791 14.5640i −0.358071 0.682772i
$$456$$ 5.57000 + 7.30774i 0.260839 + 0.342216i
$$457$$ 1.96454 3.40268i 0.0918972 0.159171i −0.816412 0.577470i $$-0.804040\pi$$
0.908309 + 0.418299i $$0.137374\pi$$
$$458$$ −22.0078 15.9896i −1.02836 0.747146i
$$459$$ −14.2431 + 5.73855i −0.664812 + 0.267853i
$$460$$ 0.0727771 0.196470i 0.00339325 0.00916045i
$$461$$ −7.58196 1.61160i −0.353127 0.0750595i 0.0279328 0.999610i $$-0.491108\pi$$
−0.381060 + 0.924550i $$0.624441\pi$$
$$462$$ −21.7057 + 31.3643i −1.00984 + 1.45920i
$$463$$ −25.2334 + 5.36353i −1.17270 + 0.249264i −0.752764 0.658291i $$-0.771280\pi$$
−0.419933 + 0.907555i $$0.637946\pi$$
$$464$$ 10.8626 12.0641i 0.504283 0.560063i
$$465$$ 21.6267 + 13.0003i 1.00292 + 0.602874i
$$466$$ 25.0538 + 27.8251i 1.16060 + 1.28897i
$$467$$ 15.4805 + 11.2472i 0.716350 + 0.520459i 0.885216 0.465180i $$-0.154011\pi$$
−0.168866 + 0.985639i $$0.554011\pi$$
$$468$$ 0.0558098 0.0279836i 0.00257981 0.00129354i
$$469$$ 45.9149 + 33.3591i 2.12015 + 1.54038i
$$470$$ −3.37222 4.06559i −0.155549 0.187532i
$$471$$ 20.1887 + 17.3560i 0.930248 + 0.799720i
$$472$$ −7.84359 3.49219i −0.361030 0.160741i
$$473$$ −8.08211 + 8.97609i −0.371616 + 0.412721i
$$474$$ −4.55504 19.2469i −0.209220 0.884039i
$$475$$ −5.31363 + 7.68772i −0.243806 + 0.352737i
$$476$$ −0.206806 −0.00947893
$$477$$ 0.224397 0.816319i 0.0102744 0.0373767i
$$478$$ −8.41917 + 6.11689i −0.385084 + 0.279780i
$$479$$ 1.14191 + 10.8645i 0.0521750 + 0.496412i 0.989139 + 0.146985i $$0.0469570\pi$$
−0.936964 + 0.349427i $$0.886376\pi$$
$$480$$ 0.307127 0.0268108i 0.0140184 0.00122374i
$$481$$ −0.752153 + 7.15626i −0.0342952 + 0.326297i
$$482$$ −9.93380 17.2059i −0.452472 0.783705i
$$483$$ −34.7674 45.6142i −1.58197 2.07552i
$$484$$ 0.0106025 + 0.0117753i 0.000481931 + 0.000535239i
$$485$$ 17.2392 + 13.6273i 0.782790 + 0.618783i
$$486$$ 2.07719 21.8693i 0.0942234 0.992011i
$$487$$ −8.95137 + 27.5495i −0.405625 + 1.24839i 0.514746 + 0.857343i $$0.327886\pi$$
−0.920372 + 0.391044i $$0.872114\pi$$
$$488$$ −14.7328 16.3624i −0.666921 0.740691i
$$489$$ 0.861019 + 37.5134i 0.0389366 + 1.69641i
$$490$$ −50.0782 24.7783i −2.26230 1.11937i
$$491$$ 23.9463 5.08995i 1.08068 0.229706i 0.367032 0.930208i $$-0.380374\pi$$
0.713650 + 0.700502i $$0.247041\pi$$
$$492$$ −0.0590686 + 0.00758241i −0.00266302 + 0.000341841i
$$493$$ 6.03959 10.4609i 0.272010 0.471134i
$$494$$ 3.15138 + 2.28961i 0.141787 + 0.103015i
$$495$$ 6.40740 20.0817i 0.287991 0.902605i
$$496$$ 20.9343 15.2097i 0.939980 0.682935i
$$497$$ 8.38817 + 79.8081i 0.376261 + 3.57988i
$$498$$ −20.0805 + 12.2163i −0.899831 + 0.547425i
$$499$$ 12.7554 + 22.0929i 0.571008 + 0.989016i 0.996463 + 0.0840358i $$0.0267810\pi$$
−0.425454 + 0.904980i $$0.639886\pi$$
$$500$$ 0.0615304 + 0.144798i 0.00275172 + 0.00647556i
$$501$$ −6.58324 27.8169i −0.294117 1.24277i
$$502$$ 32.6675 + 6.94370i 1.45802 + 0.309912i
$$503$$ −8.07131 + 5.86415i −0.359882 + 0.261470i −0.753003 0.658017i $$-0.771395\pi$$
0.393121 + 0.919487i $$0.371395\pi$$
$$504$$ 19.4676 37.6044i 0.867154 1.67503i
$$505$$ 4.55484 + 16.2324i 0.202688 + 0.722334i
$$506$$ −26.9362 + 11.9928i −1.19746 + 0.533144i
$$507$$ −13.6267 + 12.8479i −0.605185 + 0.570593i
$$508$$ 0.0117420 0.111717i 0.000520966 0.00495666i
$$509$$ −24.2676 + 5.15824i −1.07564 + 0.228635i −0.711484 0.702702i $$-0.751977\pi$$
−0.364158 + 0.931337i $$0.618643\pi$$
$$510$$ −15.4254 + 4.71279i −0.683048 + 0.208686i
$$511$$ 32.1065 + 6.82444i 1.42031 + 0.301896i
$$512$$ 7.06462 21.7427i 0.312215 0.960899i
$$513$$ −9.00831 + 3.62945i −0.397727 + 0.160244i
$$514$$ −3.09095 9.51297i −0.136336 0.419599i
$$515$$ 0.642132 0.255200i 0.0282957 0.0112455i
$$516$$ 0.0533145 0.0770385i 0.00234704 0.00339143i
$$517$$ 0.550583 5.23845i 0.0242146 0.230387i
$$518$$ 17.0494 + 29.5304i 0.749108 + 1.29749i
$$519$$ −20.7530 + 2.66398i −0.910955 + 0.116936i
$$520$$ 8.72234 3.46649i 0.382500 0.152016i
$$521$$ 1.27373 0.925421i 0.0558033 0.0405434i −0.559534 0.828807i $$-0.689020\pi$$
0.615337 + 0.788264i $$0.289020\pi$$
$$522$$ 9.31770 + 14.5531i 0.407825 + 0.636971i
$$523$$ −1.55314 4.78007i −0.0679141 0.209018i 0.911340 0.411655i $$-0.135049\pi$$
−0.979254 + 0.202637i $$0.935049\pi$$
$$524$$ 0.0771096 0.133558i 0.00336855 0.00583450i
$$525$$ 42.4972 + 6.98720i 1.85473 + 0.304947i
$$526$$ 10.4179 + 18.0444i 0.454244 + 0.786773i
$$527$$ 12.8833 14.3084i 0.561207 0.623283i
$$528$$ −16.3916 14.0916i −0.713353 0.613259i
$$529$$ −2.23021 21.2191i −0.0969659 0.922569i
$$530$$ 0.308888 0.833878i 0.0134172 0.0362213i
$$531$$ 5.75658 7.01558i 0.249814 0.304450i
$$532$$ −0.130798 −0.00567082
$$533$$ −3.30109 + 1.46974i −0.142986 + 0.0636614i
$$534$$ 2.85443 + 6.03455i 0.123523 + 0.261140i
$$535$$ 16.5761 16.9708i 0.716645 0.733712i
$$536$$ −21.6742 + 24.0716i −0.936181 + 1.03973i
$$537$$ −13.1089 + 18.9422i −0.565692 + 0.817415i
$$538$$ 6.18362 + 6.86760i 0.266595 + 0.296083i
$$539$$ −17.2173 52.9893i −0.741600 2.28241i
$$540$$ −0.0294626 + 0.160825i −0.00126787 + 0.00692079i
$$541$$ −5.34859 + 16.4613i −0.229954 + 0.707725i 0.767797 + 0.640693i $$0.221353\pi$$
−0.997751 + 0.0670319i $$0.978647\pi$$
$$542$$ −6.61679 + 2.94598i −0.284215 + 0.126541i
$$543$$ −34.7332 10.4107i −1.49054 0.446764i
$$544$$ 0.0245891 0.233950i 0.00105425 0.0100305i
$$545$$ −9.15956 17.4655i −0.392352 0.748140i
$$546$$ 3.32842 17.6402i 0.142443 0.754930i
$$547$$ −1.44601 13.7578i −0.0618268 0.588243i −0.980948 0.194269i $$-0.937767\pi$$
0.919121 0.393974i $$-0.128900\pi$$
$$548$$ 0.0299233 + 0.0920944i 0.00127826 + 0.00393408i
$$549$$ 20.8036 10.4311i 0.887874 0.445190i
$$550$$ 8.52712 20.4332i 0.363597 0.871273i
$$551$$ 3.81985 6.61617i 0.162731 0.281858i
$$552$$ 27.9652 17.0130i 1.19028 0.724123i
$$553$$ 36.8132 + 16.3903i 1.56546 + 0.696987i
$$554$$ 7.34543 + 3.27040i 0.312078 + 0.138946i
$$555$$ −13.7794 12.8545i −0.584904 0.545642i
$$556$$ −0.0972088 + 0.0432801i −0.00412257 + 0.00183549i
$$557$$ 18.9380 0.802431 0.401215 0.915984i $$-0.368588\pi$$
0.401215 + 0.915984i $$0.368588\pi$$
$$558$$ 9.70461 + 25.7781i 0.410829 + 1.09128i
$$559$$ 1.75665 5.40641i 0.0742984 0.228667i
$$560$$ 23.6165 37.3204i 0.997979 1.57707i
$$561$$ −14.1100 7.72027i −0.595726 0.325950i
$$562$$ 7.15361 1.52055i 0.301757 0.0641404i
$$563$$ 12.2407 2.60183i 0.515882 0.109654i 0.0573888 0.998352i $$-0.481723\pi$$
0.458494 + 0.888698i $$0.348389\pi$$
$$564$$ 0.000937494 0.0408453i 3.94756e−5 0.00171990i
$$565$$ 10.4974 16.5887i 0.441630 0.697893i
$$566$$ −2.64256 + 8.13296i −0.111075 + 0.341854i
$$567$$ 32.8713 + 30.3759i 1.38046 + 1.27567i
$$568$$ −45.8002 −1.92173
$$569$$ 2.72817 1.21466i 0.114371 0.0509213i −0.348753 0.937215i $$-0.613395\pi$$
0.463124 + 0.886293i $$0.346728\pi$$
$$570$$ −9.75607 + 2.98069i −0.408637 + 0.124847i
$$571$$ −11.1866 4.98059i −0.468144 0.208431i 0.159087 0.987265i $$-0.449145\pi$$
−0.627231 + 0.778834i $$0.715812\pi$$
$$572$$ 0.0597401 + 0.0265980i 0.00249786 + 0.00111212i
$$573$$ −7.37019 4.03258i −0.307894 0.168463i
$$574$$ −8.56178 + 14.8294i −0.357362 + 0.618969i
$$575$$ 25.2586 + 21.6888i 1.05336 + 0.904484i
$$576$$ 20.1822 + 13.2927i 0.840926 + 0.553864i
$$577$$ 9.05957 + 27.8825i 0.377155 + 1.16076i 0.942013 + 0.335575i $$0.108931\pi$$
−0.564859 + 0.825188i $$0.691069\pi$$
$$578$$ −1.21773 11.5860i −0.0506510 0.481912i
$$579$$ 4.65408 + 4.00104i 0.193417 + 0.166278i
$$580$$ −0.0597340 0.113901i −0.00248032 0.00472949i
$$581$$ 5.00572 47.6262i 0.207672 1.97587i
$$582$$ 5.52433 + 23.3425i 0.228991 + 0.967579i
$$583$$ 0.810090 0.360675i 0.0335505 0.0149376i
$$584$$ −5.78903 + 17.8168i −0.239552 + 0.737265i
$$585$$ 1.08930 + 9.86070i 0.0450372 + 0.407690i
$$586$$ −2.56579 7.89669i −0.105992 0.326209i
$$587$$ −22.0289 24.4656i −0.909230 1.00980i −0.999903 0.0139220i $$-0.995568\pi$$
0.0906726 0.995881i $$-0.471098\pi$$
$$588$$ 0.184790 + 0.390665i 0.00762063 + 0.0161108i
$$589$$ 8.14829 9.04960i 0.335745 0.372882i
$$590$$ 6.66053 6.81915i 0.274210 0.280740i
$$591$$ −21.1289 + 30.5309i −0.869126 + 1.25587i
$$592$$ −17.6538 + 7.85997i −0.725566 + 0.323043i
$$593$$ 4.25001 0.174527 0.0872635 0.996185i $$-0.472188\pi$$
0.0872635 + 0.996185i $$0.472188\pi$$
$$594$$ 19.0883 12.8484i 0.783203 0.527174i
$$595$$ 11.4149 30.8158i 0.467965 1.26332i
$$596$$ −0.0220380 0.209678i −0.000902713 0.00858874i
$$597$$ 30.9594 10.8508i 1.26708 0.444094i
$$598$$ 9.28552 10.3126i 0.379713 0.421714i
$$599$$ 5.93409 + 10.2782i 0.242460 + 0.419954i 0.961415 0.275104i $$-0.0887122\pi$$
−0.718954 + 0.695058i $$0.755379\pi$$
$$600$$ −6.50130 + 23.7050i −0.265415 + 0.967751i
$$601$$ −1.60271 + 2.77598i −0.0653759 + 0.113234i −0.896861 0.442313i $$-0.854158\pi$$
0.831485 + 0.555548i $$0.187491\pi$$
$$602$$ −8.32440 25.6199i −0.339277 1.04419i
$$603$$ −18.4608 28.8335i −0.751784 1.17419i
$$604$$ −0.0638567 + 0.0463946i −0.00259829 + 0.00188777i
$$605$$ −2.33982 + 0.929908i −0.0951274 + 0.0378061i
$$606$$ −7.09760 + 16.9797i −0.288320 + 0.689753i
$$607$$ 20.6184 + 35.7121i 0.836876 + 1.44951i 0.892494 + 0.451059i $$0.148954\pi$$
−0.0556185 + 0.998452i $$0.517713\pi$$
$$608$$ 0.0155518 0.147966i 0.000630710 0.00600080i
$$609$$ −35.0896 2.87574i −1.42190 0.116531i
$$610$$ 22.7164 9.02809i 0.919759 0.365537i
$$611$$ 0.766055 + 2.35768i 0.0309913 + 0.0953813i
$$612$$ 0.116179 + 0.0454605i 0.00469624 + 0.00183763i
$$613$$ 1.02258 3.14717i 0.0413015 0.127113i −0.928280 0.371883i $$-0.878712\pi$$
0.969581 + 0.244770i $$0.0787123\pi$$
$$614$$ −43.9781 9.34783i −1.77481 0.377248i
$$615$$ 2.13052 9.22022i 0.0859107 0.371795i
$$616$$ 43.3839 9.22154i 1.74799 0.371547i
$$617$$ 2.80281 26.6670i 0.112837 1.07357i −0.780800 0.624781i $$-0.785188\pi$$
0.893637 0.448790i $$-0.148145\pi$$
$$618$$ 0.722512 + 0.216560i 0.0290637 + 0.00871132i
$$619$$ −28.6686 + 12.7641i −1.15229 + 0.513032i −0.891793 0.452444i $$-0.850552\pi$$
−0.260495 + 0.965475i $$0.583886\pi$$
$$620$$ −0.0553861 0.197384i −0.00222436 0.00792711i
$$621$$ 9.50449 + 33.2676i 0.381402 + 1.33498i
$$622$$ −18.3000 + 13.2957i −0.733763 + 0.533110i
$$623$$ −13.3037 2.82780i −0.533003 0.113293i
$$624$$ 9.74511 + 2.92092i 0.390117 + 0.116930i
$$625$$ −24.9723 + 1.17624i −0.998893 + 0.0470496i
$$626$$ −3.13988 5.43843i −0.125495 0.217363i
$$627$$ −8.92414 4.88282i −0.356396 0.195001i
$$628$$ −0.0226097 0.215116i −0.000902223 0.00858408i
$$629$$ −11.6327 + 8.45166i −0.463827 + 0.336990i
$$630$$ 31.6421 + 34.7695i 1.26065 + 1.38525i
$$631$$ 0.499112 + 0.362626i 0.0198693 + 0.0144359i 0.597676 0.801738i $$-0.296091\pi$$
−0.577806 + 0.816174i $$0.696091\pi$$
$$632$$ −11.4995 + 19.9177i −0.457426 + 0.792285i
$$633$$ −15.1688 + 36.2885i −0.602904 + 1.44234i
$$634$$ 20.1105 4.27462i 0.798690 0.169767i
$$635$$ 15.9987 + 7.91602i 0.634889 + 0.314138i
$$636$$ −0.00587616 + 0.00357485i −0.000233005 + 0.000141752i
$$637$$ 17.5462 + 19.4870i 0.695204 + 0.772102i
$$638$$ −5.59320 + 17.2141i −0.221437 + 0.681513i
$$639$$ 12.8313 46.6782i 0.507599 1.84656i
$$640$$ 19.6343 + 15.5206i 0.776116 + 0.613507i
$$641$$ 5.70725 + 6.33855i 0.225423 + 0.250358i 0.845238 0.534391i $$-0.179459\pi$$
−0.619815 + 0.784748i $$0.712792\pi$$
$$642$$ 25.6847 3.29705i 1.01370 0.130124i
$$643$$ −9.71503 16.8269i −0.383124 0.663589i 0.608383 0.793643i $$-0.291818\pi$$
−0.991507 + 0.130054i $$0.958485\pi$$
$$644$$ −0.0487066 + 0.463413i −0.00191931 + 0.0182610i
$$645$$ 8.53661 + 12.1965i 0.336129 + 0.480237i
$$646$$ 0.813635 + 7.74122i 0.0320120 + 0.304574i
$$647$$ 23.3550 16.9684i 0.918180 0.667097i −0.0248902 0.999690i $$-0.507924\pi$$
0.943070 + 0.332593i $$0.107924\pi$$
$$648$$ −19.2027 + 16.8459i −0.754353 + 0.661768i
$$649$$ 9.50548 0.373123
$$650$$ 0.245207 + 10.4176i 0.00961782 + 0.408611i
$$651$$ −53.7565 16.1125i −2.10688 0.631500i
$$652$$ 0.203988 0.226552i 0.00798879 0.00887245i
$$653$$ 12.0328 + 5.35734i 0.470879 + 0.209649i 0.628436 0.777861i $$-0.283695\pi$$
−0.157557 + 0.987510i $$0.550362\pi$$
$$654$$ 3.99151 21.1545i 0.156081 0.827207i
$$655$$ 15.6450 + 18.8618i 0.611303 + 0.736993i
$$656$$ −7.85092 5.70403i −0.306527 0.222705i
$$657$$ −16.5365 10.8915i −0.645150 0.424919i
$$658$$ 9.50393 + 6.90501i 0.370502 + 0.269185i
$$659$$ 1.16065 + 1.28904i 0.0452126 + 0.0502137i 0.765327 0.643642i $$-0.222577\pi$$
−0.720114 + 0.693855i $$0.755911\pi$$
$$660$$ −0.149800 + 0.0829979i −0.00583095 + 0.00323069i
$$661$$ 3.99118 4.43266i 0.155239 0.172410i −0.660508 0.750819i $$-0.729659\pi$$
0.815747 + 0.578408i $$0.196326\pi$$
$$662$$ 32.5192 6.91217i 1.26389 0.268649i
$$663$$ 7.54449 + 0.618303i 0.293004 + 0.0240129i
$$664$$ 26.7345 + 5.68259i 1.03750 + 0.220527i
$$665$$ 7.21955 19.4900i 0.279962 0.755789i
$$666$$ −3.08651 20.3373i −0.119600 0.788056i
$$667$$ −22.0184 15.9973i −0.852556 0.619418i
$$668$$ −0.116120 + 0.201125i −0.00449280 + 0.00778176i
$$669$$ −37.0417 + 4.75491i −1.43212 + 0.183835i
$$670$$ −16.7022 31.8479i −0.645263 1.23039i
$$671$$ 22.2686 + 9.91462i 0.859670 + 0.382750i
$$672$$ −0.647059 + 0.226785i −0.0249609 + 0.00874842i
$$673$$ 36.5259 + 7.76382i 1.40797 + 0.299273i 0.848332 0.529464i $$-0.177607\pi$$
0.559638 + 0.828737i $$0.310940\pi$$
$$674$$ 11.7427 0.452311
$$675$$ −22.3380 13.2671i −0.859789 0.510650i
$$676$$ 0.152158 0.00585224
$$677$$ −18.1401 3.85579i −0.697180 0.148190i −0.154329 0.988019i $$-0.549322\pi$$
−0.542851 + 0.839829i $$0.682655\pi$$
$$678$$ 20.2229 7.08785i 0.776657 0.272207i
$$679$$ −44.6469 19.8781i −1.71339 0.762851i
$$680$$ 16.8103 + 8.31761i 0.644647 + 0.318966i
$$681$$ 3.72954 0.478747i 0.142916 0.0183456i
$$682$$ −14.4254 + 24.9855i −0.552377 + 0.956745i
$$683$$ 23.3543 + 16.9679i 0.893628 + 0.649259i 0.936821 0.349808i $$-0.113753\pi$$
−0.0431936 + 0.999067i $$0.513753\pi$$
$$684$$ 0.0734793 + 0.0287523i 0.00280955 + 0.00109937i
$$685$$ −15.3745 0.624441i −0.587429 0.0238587i
$$686$$ 73.5617 + 15.6360i 2.80860 + 0.596986i
$$687$$ −33.3230 2.73096i −1.27135 0.104193i
$$688$$ 14.9329 3.17408i 0.569311 0.121011i
$$689$$ −0.279256 + 0.310146i −0.0106388 + 0.0118156i
$$690$$ 6.92749 + 35.6753i 0.263725 + 1.35814i
$$691$$ −22.4462 24.9290i −0.853894 0.948345i 0.145263 0.989393i $$-0.453597\pi$$
−0.999157 + 0.0410478i $$0.986930\pi$$
$$692$$ 0.137525 + 0.0999175i 0.00522790 + 0.00379829i
$$693$$ −2.75605 + 46.7991i −0.104694 + 1.77775i
$$694$$ 17.1992 + 12.4959i 0.652872 + 0.474339i
$$695$$ −1.08355 16.8738i −0.0411012 0.640060i
$$696$$ 3.72568 19.7456i 0.141222 0.748457i
$$697$$ −6.59642 2.93692i −0.249857 0.111244i
$$698$$ −5.73069 + 6.36457i −0.216910 + 0.240903i
$$699$$ 44.0819 + 13.2128i 1.66733 + 0.499753i
$$700$$ −0.212271 0.278158i −0.00802309 0.0105134i
$$701$$ −29.9242 −1.13022 −0.565110 0.825015i $$-0.691166\pi$$
−0.565110 + 0.825015i $$0.691166\pi$$
$$702$$ −5.74753 + 9.17818i −0.216927 + 0.346408i
$$703$$ −7.35732 + 5.34540i −0.277486 + 0.201606i
$$704$$ 2.64590 + 25.1740i 0.0997210 + 0.948782i
$$705$$ −6.13803 2.11481i −0.231172 0.0796483i
$$706$$ −3.43237 + 32.6569i −0.129179 + 1.22906i
$$707$$ −18.7477 32.4720i −0.705080 1.22123i
$$708$$ −0.0731296 + 0.00938738i −0.00274838 + 0.000352799i
$$709$$ −14.3766 15.9668i −0.539923 0.599645i 0.410017 0.912078i $$-0.365523\pi$$
−0.949940 + 0.312433i $$0.898856\pi$$
$$710$$ 17.6626 47.6822i 0.662866 1.78948i
$$711$$ −17.0779 17.3001i −0.640470 0.648803i
$$712$$ 2.39876 7.38262i 0.0898973 0.276675i
$$713$$ −29.0281 32.2390i −1.08711 1.20736i
$$714$$ 30.6460 18.6439i 1.14690 0.697732i
$$715$$ −7.26074 + 7.43366i −0.271536 + 0.278003i
$$716$$ 0.183064 0.0389114i 0.00684140 0.00145419i
$$717$$ −4.93291 + 11.8011i −0.184223 + 0.440720i
$$718$$ 2.82238 4.88851i 0.105330 0.182437i
$$719$$ 1.84892 + 1.34332i 0.0689531 + 0.0500973i 0.621728 0.783233i $$-0.286431\pi$$
−0.552775 + 0.833331i $$0.686431\pi$$
$$720$$ −21.4710 + 15.7743i −0.800178 + 0.587872i
$$721$$ −1.24326 + 0.903284i −0.0463016 + 0.0336401i
$$722$$ −2.28419 21.7326i −0.0850087 0.808804i
$$723$$ −21.4219 11.7209i −0.796689 0.435906i
$$724$$ 0.147295 + 0.255123i 0.00547419 + 0.00948158i
$$725$$ 20.2693 2.61395i 0.752783 0.0970797i
$$726$$ −2.63272 0.789109i −0.0977092 0.0292866i
$$727$$ −45.5201 9.67560i −1.68825 0.358848i −0.739080 0.673618i $$-0.764739\pi$$
−0.949168 + 0.314770i $$0.898073\pi$$
$$728$$ −16.8877 + 12.2697i −0.625901 + 0.454744i
$$729$$ −11.7890 24.2903i −0.436630 0.899641i
$$730$$ −16.3164 12.8979i −0.603898 0.477372i
$$731$$ 10.3773 4.62028i 0.383819 0.170887i
$$732$$ −0.181113 0.0542854i −0.00669413 0.00200645i
$$733$$ 3.61620 34.4059i 0.133568 1.27081i −0.698288 0.715817i $$-0.746054\pi$$
0.831855 0.554993i $$-0.187279\pi$$
$$734$$ −31.6545 + 6.72837i −1.16839 + 0.248348i
$$735$$ −68.4120 + 5.97207i −2.52342 + 0.220283i
$$736$$ −0.518446 0.110199i −0.0191102 0.00406199i
$$737$$ 11.0816 34.1057i 0.408197 1.25630i
$$738$$ 8.06965 6.44876i 0.297048 0.237382i
$$739$$ 2.02765 + 6.24048i 0.0745885 + 0.229560i 0.981399 0.191978i $$-0.0614904\pi$$
−0.906811 + 0.421538i $$0.861490\pi$$
$$740$$ 0.00981105 + 0.152785i 0.000360661 + 0.00561650i
$$741$$ 4.77165 + 0.391057i 0.175291 + 0.0143658i
$$742$$ −0.206726 + 1.96686i −0.00758914 + 0.0722058i
$$743$$ −3.23803 5.60843i −0.118792 0.205753i 0.800497 0.599336i $$-0.204569\pi$$
−0.919289 + 0.393583i $$0.871235\pi$$
$$744$$ 12.3526 29.5514i 0.452870 1.08341i
$$745$$ 32.4601 + 8.28956i 1.18925 + 0.303706i
$$746$$ 23.2934 16.9236i 0.852832 0.619619i
$$747$$ −13.2814 + 25.6549i −0.485941 + 0.938665i
$$748$$ 0.0403803 + 0.124278i 0.00147645 + 0.00454405i
$$749$$ −26.3799 + 45.6914i −0.963901 + 1.66953i
$$750$$ −22.1718 15.9101i −0.809601 0.580956i
$$751$$ 24.7422 + 42.8547i 0.902855 + 1.56379i 0.823771 + 0.566923i $$0.191866\pi$$
0.0790844 + 0.996868i $$0.474800\pi$$
$$752$$ −4.45477 + 4.94752i −0.162449 + 0.180417i
$$753$$ 38.7375 13.5769i 1.41167 0.494771i
$$754$$ −0.890435 8.47192i −0.0324277 0.308529i
$$755$$ −3.38854 12.0760i −0.123321 0.439490i
$$756$$ −0.0250141 0.362767i −0.000909756 0.0131937i
$$757$$ 6.28412 0.228400 0.114200 0.993458i $$-0.463569\pi$$
0.114200 + 0.993458i $$0.463569\pi$$
$$758$$ 3.37284 1.50168i 0.122507 0.0545436i
$$759$$ −20.6228 + 29.7996i −0.748561 + 1.08166i
$$760$$ 10.6320 + 5.26062i 0.385663 + 0.190823i
$$761$$ −5.24853 + 5.82909i −0.190259 + 0.211304i −0.830726 0.556682i $$-0.812074\pi$$
0.640467 + 0.767986i $$0.278741\pi$$
$$762$$ 8.33152 + 17.6137i 0.301819 + 0.638076i
$$763$$ 29.3488 + 32.5951i 1.06250 + 1.18002i
$$764$$ 0.0210921 + 0.0649149i 0.000763087 + 0.00234854i
$$765$$ −13.1866 + 14.8023i −0.476763 + 0.535179i
$$766$$ 4.81058 14.8054i 0.173813