Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [225,2,Mod(16,225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(225, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([20, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("225.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.q (of order \(15\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.79663404548\) |
Analytic rank: | \(0\) |
Dimension: | \(224\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −2.53861 | + | 1.13026i | 1.12291 | − | 1.31874i | 3.82877 | − | 4.25228i | 1.17441 | + | 1.90283i | −1.36012 | + | 4.61694i | −0.665971 | + | 1.15350i | −3.19614 | + | 9.83670i | −0.478132 | − | 2.96165i | −5.13206 | − | 3.50315i |
16.2 | −2.43895 | + | 1.08589i | −1.70795 | − | 0.287957i | 3.43105 | − | 3.81057i | 0.156246 | − | 2.23060i | 4.47828 | − | 1.15233i | 0.0677783 | − | 0.117395i | −2.58030 | + | 7.94134i | 2.83416 | + | 0.983632i | 2.04111 | + | 5.60999i |
16.3 | −2.13701 | + | 0.951457i | −0.620400 | + | 1.61713i | 2.32327 | − | 2.58025i | −1.69271 | + | 1.46108i | −0.212829 | − | 4.04610i | −0.915602 | + | 1.58587i | −1.06411 | + | 3.27499i | −2.23021 | − | 2.00653i | 2.22718 | − | 4.73287i |
16.4 | −2.06085 | + | 0.917550i | 1.65499 | + | 0.510883i | 2.06695 | − | 2.29558i | −2.23029 | − | 0.160691i | −3.87945 | + | 0.465685i | 2.12428 | − | 3.67936i | −0.759150 | + | 2.33642i | 2.47800 | + | 1.69101i | 4.74373 | − | 1.71524i |
16.5 | −1.92765 | + | 0.858246i | 1.36960 | + | 1.06028i | 1.64099 | − | 1.82251i | 0.896552 | − | 2.04846i | −3.55009 | − | 0.868397i | −2.48928 | + | 4.31156i | −0.295005 | + | 0.907932i | 0.751612 | + | 2.90432i | 0.0298427 | + | 4.71818i |
16.6 | −1.76509 | + | 0.785867i | −1.27173 | − | 1.17589i | 1.15968 | − | 1.28795i | −0.197349 | + | 2.22734i | 3.16880 | + | 1.07614i | 1.35187 | − | 2.34151i | 0.159347 | − | 0.490420i | 0.234573 | + | 2.99082i | −1.40206 | − | 4.08654i |
16.7 | −1.43805 | + | 0.640262i | −0.230952 | − | 1.71658i | 0.319797 | − | 0.355170i | 2.05887 | − | 0.872377i | 1.43118 | + | 2.32067i | −0.385688 | + | 0.668032i | 0.740392 | − | 2.27869i | −2.89332 | + | 0.792896i | −2.40222 | + | 2.57274i |
16.8 | −1.27611 | + | 0.568159i | −0.563301 | + | 1.63789i | −0.0326201 | + | 0.0362283i | 0.323231 | − | 2.21258i | −0.211752 | − | 2.41017i | 2.19012 | − | 3.79340i | 0.884357 | − | 2.72177i | −2.36538 | − | 1.84525i | 0.844622 | + | 3.00714i |
16.9 | −1.23977 | + | 0.551980i | 1.19364 | − | 1.25508i | −0.105919 | + | 0.117635i | −2.19872 | + | 0.406964i | −0.787056 | + | 2.21487i | −1.81169 | + | 3.13794i | 0.905114 | − | 2.78565i | −0.150451 | − | 2.99623i | 2.50127 | − | 1.71819i |
16.10 | −1.16983 | + | 0.520841i | 1.71766 | − | 0.222825i | −0.241041 | + | 0.267703i | 2.12080 | + | 0.708681i | −1.89331 | + | 1.15529i | 1.38994 | − | 2.40744i | 0.933960 | − | 2.87443i | 2.90070 | − | 0.765476i | −2.85007 | + | 0.275562i |
16.11 | −0.973390 | + | 0.433381i | −1.71069 | − | 0.271186i | −0.578592 | + | 0.642592i | −2.03848 | − | 0.919011i | 1.78270 | − | 0.477410i | −0.798426 | + | 1.38291i | 0.943229 | − | 2.90296i | 2.85292 | + | 0.927831i | 2.38252 | + | 0.0111154i |
16.12 | −0.808045 | + | 0.359765i | 0.558868 | + | 1.63941i | −0.814755 | + | 0.904878i | 1.09577 | + | 1.94918i | −1.04139 | − | 1.12366i | −0.458035 | + | 0.793340i | 0.879476 | − | 2.70675i | −2.37533 | + | 1.83243i | −1.58668 | − | 1.18080i |
16.13 | −0.217479 | + | 0.0968278i | −1.50542 | + | 0.856567i | −1.30034 | + | 1.44417i | 1.93124 | − | 1.12708i | 0.244458 | − | 0.332052i | −1.58050 | + | 2.73751i | 0.290090 | − | 0.892804i | 1.53259 | − | 2.57899i | −0.310871 | + | 0.432114i |
16.14 | −0.0861137 | + | 0.0383403i | 1.36636 | − | 1.06445i | −1.33232 | + | 1.47969i | −0.0996266 | − | 2.23385i | −0.0768514 | + | 0.144050i | 0.322971 | − | 0.559402i | 0.116257 | − | 0.357802i | 0.733899 | − | 2.90885i | 0.0942256 | + | 0.188545i |
16.15 | 0.254613 | − | 0.113361i | −0.427801 | − | 1.67839i | −1.28628 | + | 1.42856i | 0.148962 | + | 2.23110i | −0.299187 | − | 0.378844i | −1.97470 | + | 3.42027i | −0.337813 | + | 1.03968i | −2.63397 | + | 1.43603i | 0.290848 | + | 0.551181i |
16.16 | 0.309584 | − | 0.137836i | 1.59476 | + | 0.675825i | −1.26142 | + | 1.40095i | −1.79806 | + | 1.32928i | 0.586865 | − | 0.0105903i | 0.0614798 | − | 0.106486i | −0.406855 | + | 1.25217i | 2.08652 | + | 2.15556i | −0.373429 | + | 0.659360i |
16.17 | 0.322402 | − | 0.143543i | −0.648399 | − | 1.60611i | −1.25492 | + | 1.39373i | −1.80765 | − | 1.31620i | −0.439590 | − | 0.424739i | 1.84787 | − | 3.20061i | −0.422642 | + | 1.30076i | −2.15916 | + | 2.08280i | −0.771722 | − | 0.164872i |
16.18 | 0.520318 | − | 0.231661i | −1.62589 | − | 0.597061i | −1.12120 | + | 1.24522i | 2.21056 | + | 0.336764i | −0.984295 | + | 0.0659928i | 1.58872 | − | 2.75174i | −0.646919 | + | 1.99101i | 2.28704 | + | 1.94151i | 1.22821 | − | 0.336876i |
16.19 | 0.825259 | − | 0.367429i | −0.453689 | + | 1.67158i | −0.792213 | + | 0.879842i | −1.78097 | − | 1.35209i | 0.239774 | + | 1.54618i | −1.53265 | + | 2.65463i | −0.888808 | + | 2.73547i | −2.58833 | − | 1.51675i | −1.96656 | − | 0.461443i |
16.20 | 1.00759 | − | 0.448609i | 1.00870 | + | 1.40802i | −0.524267 | + | 0.582258i | 1.72966 | − | 1.41714i | 1.64801 | + | 0.966199i | 0.860383 | − | 1.49023i | −0.948701 | + | 2.91980i | −0.965042 | + | 2.84054i | 1.10705 | − | 2.20384i |
See next 80 embeddings (of 224 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
25.d | even | 5 | 1 | inner |
225.q | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 225.2.q.a | ✓ | 224 |
3.b | odd | 2 | 1 | 675.2.r.a | 224 | ||
9.c | even | 3 | 1 | inner | 225.2.q.a | ✓ | 224 |
9.d | odd | 6 | 1 | 675.2.r.a | 224 | ||
25.d | even | 5 | 1 | inner | 225.2.q.a | ✓ | 224 |
75.j | odd | 10 | 1 | 675.2.r.a | 224 | ||
225.q | even | 15 | 1 | inner | 225.2.q.a | ✓ | 224 |
225.t | odd | 30 | 1 | 675.2.r.a | 224 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
225.2.q.a | ✓ | 224 | 1.a | even | 1 | 1 | trivial |
225.2.q.a | ✓ | 224 | 9.c | even | 3 | 1 | inner |
225.2.q.a | ✓ | 224 | 25.d | even | 5 | 1 | inner |
225.2.q.a | ✓ | 224 | 225.q | even | 15 | 1 | inner |
675.2.r.a | 224 | 3.b | odd | 2 | 1 | ||
675.2.r.a | 224 | 9.d | odd | 6 | 1 | ||
675.2.r.a | 224 | 75.j | odd | 10 | 1 | ||
675.2.r.a | 224 | 225.t | odd | 30 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(225, [\chi])\).