Newspace parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.h (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.79663404548\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{5})\) |
Coefficient field: | 16.0.1130304400000000000000.3 |
Defining polynomial: |
\( x^{16} - 5x^{14} + 5x^{12} - 10x^{10} + 205x^{8} - 700x^{6} + 1250x^{4} - 1250x^{2} + 625 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 5^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 5x^{14} + 5x^{12} - 10x^{10} + 205x^{8} - 700x^{6} + 1250x^{4} - 1250x^{2} + 625 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 9094 \nu^{15} + 529550 \nu^{13} - 1775155 \nu^{11} - 1261485 \nu^{9} - 4566370 \nu^{7} + 105496925 \nu^{5} - 206804175 \nu^{3} + 136237250 \nu ) / 54753875 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 18559 \nu^{14} + 486170 \nu^{12} - 1233230 \nu^{10} - 2183265 \nu^{8} - 1879805 \nu^{6} + 88524275 \nu^{4} - 87914875 \nu^{2} + 104474000 ) / 54753875 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 85587 \nu^{15} - 683920 \nu^{13} + 729395 \nu^{11} + 734880 \nu^{9} + 21524610 \nu^{7} - 103007550 \nu^{5} + 105654425 \nu^{3} - 113406125 \nu ) / 54753875 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 191309 \nu^{15} - 327040 \nu^{13} - 1605420 \nu^{11} - 1814665 \nu^{9} + 36243345 \nu^{7} - 11269000 \nu^{5} - 84275075 \nu^{3} + 103147500 \nu ) / 54753875 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 216278 \nu^{15} - 1248275 \nu^{13} + 1298755 \nu^{11} - 360830 \nu^{9} + 45929540 \nu^{7} - 186657050 \nu^{5} + 255540700 \nu^{3} - 120294875 \nu ) / 54753875 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 226756 \nu^{14} - 812710 \nu^{12} - 301695 \nu^{10} - 1956335 \nu^{8} + 45336155 \nu^{6} - 87919850 \nu^{4} + 95202125 \nu^{2} - 85476750 ) / 54753875 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 237426 \nu^{14} + 787630 \nu^{12} + 357520 \nu^{10} + 1796010 \nu^{8} - 44976455 \nu^{6} + 87194950 \nu^{4} - 94337250 \nu^{2} - 3771750 ) / 54753875 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 26057 \nu^{14} - 128005 \nu^{12} + 108960 \nu^{10} - 210920 \nu^{8} + 5037260 \nu^{6} - 17331500 \nu^{4} + 30950625 \nu^{2} - 22852125 ) / 4977625 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 323013 \nu^{15} + 1471550 \nu^{13} - 371875 \nu^{11} + 1061130 \nu^{9} - 66501065 \nu^{7} + 190202500 \nu^{5} - 199991675 \nu^{3} + \cdots + 54880500 \nu ) / 54753875 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 330256 \nu^{15} + 1021010 \nu^{13} + 321835 \nu^{11} + 4065110 \nu^{9} - 59745955 \nu^{7} + 115300575 \nu^{5} - 188253675 \nu^{3} + \cdots + 81913375 \nu ) / 54753875 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 389298 \nu^{14} - 1338325 \nu^{12} - 665635 \nu^{10} - 3682905 \nu^{8} + 76510440 \nu^{6} - 149141900 \nu^{4} + 161761375 \nu^{2} - 87855125 ) / 54753875 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 443034 \nu^{15} + 2060985 \nu^{13} - 997060 \nu^{11} + 2317165 \nu^{9} - 91265695 \nu^{7} + 274576900 \nu^{5} - 350742825 \nu^{3} + \cdots + 260525500 \nu ) / 54753875 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 40791 \nu^{14} - 196825 \nu^{12} + 194030 \nu^{10} - 383635 \nu^{8} + 8130605 \nu^{6} - 27808800 \nu^{4} + 49697625 \nu^{2} - 36685125 ) / 4977625 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 597957 \nu^{15} - 2324530 \nu^{13} + 218325 \nu^{11} - 5390820 \nu^{9} + 116417835 \nu^{7} - 286289900 \nu^{5} + 406932950 \nu^{3} + \cdots - 244363125 \nu ) / 54753875 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 607697 \nu^{14} - 2843530 \nu^{12} + 1509785 \nu^{10} - 3468945 \nu^{8} + 126219210 \nu^{6} - 378889375 \nu^{4} + 538425125 \nu^{2} + \cdots - 393095875 ) / 54753875 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{14} + \beta_{12} + 2\beta_{10} - \beta_{9} + 3\beta_{5} - \beta_{4} - 3\beta_{3} + 2\beta_1 ) / 5 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{15} - \beta_{13} + \beta_{8} + \beta_{7} - \beta_{6} + \beta_{2} + 1 \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{14} + \beta_{12} + 2\beta_{10} - \beta_{5} + \beta_{4} - \beta_{3} - 2\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{13} - 5\beta_{11} + 2\beta_{8} + \beta_{7} + 9\beta_{6} + \beta_{2} + 6 \)
|
\(\nu^{5}\) | \(=\) |
\( -3\beta_{12} + 2\beta_{10} - 5\beta_{9} - 5\beta_{5} - 4\beta_{4} - 5\beta_{3} + \beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 8\beta_{15} - 6\beta_{11} - 8\beta_{8} + 11\beta_{7} + 10\beta_{6} + 6\beta_{2} + 16 \)
|
\(\nu^{7}\) | \(=\) |
\( 13\beta_{14} - 21\beta_{12} + 40\beta_{10} + 14\beta_{9} + 19\beta_{5} + 3\beta_{4} - 46\beta_{3} + 10\beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( 36\beta_{15} - 29\beta_{13} - 44\beta_{11} + 11\beta_{8} - 37\beta_{7} - 18\beta_{6} + 22\beta_{2} - 48 \)
|
\(\nu^{9}\) | \(=\) |
\( -6\beta_{14} - 16\beta_{12} + 3\beta_{10} - 39\beta_{9} - 118\beta_{5} + 56\beta_{4} - 17\beta_{3} - 127\beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( -85\beta_{15} + 140\beta_{13} - 210\beta_{11} - 140\beta_{8} - 165\beta_{7} + 320\beta_{6} - 55\beta_{2} + 35 \)
|
\(\nu^{11}\) | \(=\) |
\( -260\beta_{14} - 340\beta_{12} - 85\beta_{10} - 60\beta_{9} + 80\beta_{5} - 175\beta_{4} - 285\beta_{3} + 225\beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( 200\beta_{15} + 200\beta_{13} + 185\beta_{11} - 520\beta_{8} - 385\beta_{7} - 1005\beta_{6} + 120\beta_{2} - 1005 \)
|
\(\nu^{13}\) | \(=\) |
\( - 115 \beta_{14} - 415 \beta_{12} + 225 \beta_{10} + 835 \beta_{9} + 530 \beta_{5} + 820 \beta_{4} - 550 \beta_{3} - 495 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( -1105\beta_{15} + 685\beta_{13} - 735\beta_{11} - 4150\beta_{7} - 1180\beta_{6} - 685\beta_{2} - 4885 \)
|
\(\nu^{15}\) | \(=\) |
\( - 4125 \beta_{14} + 420 \beta_{12} - 7095 \beta_{10} - 2285 \beta_{9} - 4200 \beta_{5} + 495 \beta_{4} + 4810 \beta_{3} - 3095 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(1\) | \(-\beta_{11}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
46.1 |
|
−0.670386 | + | 2.06324i | 0 | −2.18949 | − | 1.59076i | 1.69588 | + | 1.45739i | 0 | −3.32440 | 1.23973 | − | 0.900718i | 0 | −4.14384 | + | 2.52199i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.2 | −0.167451 | + | 0.515362i | 0 | 1.38048 | + | 1.00297i | 1.16252 | − | 1.91012i | 0 | 1.08833 | −1.62484 | + | 1.18052i | 0 | 0.789737 | + | 0.918969i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.3 | 0.167451 | − | 0.515362i | 0 | 1.38048 | + | 1.00297i | −1.16252 | + | 1.91012i | 0 | 1.08833 | 1.62484 | − | 1.18052i | 0 | 0.789737 | + | 0.918969i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.4 | 0.670386 | − | 2.06324i | 0 | −2.18949 | − | 1.59076i | −1.69588 | − | 1.45739i | 0 | −3.32440 | −1.23973 | + | 0.900718i | 0 | −4.14384 | + | 2.52199i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
91.1 | −1.64259 | − | 1.19341i | 0 | 0.655837 | + | 2.01846i | −2.23130 | − | 0.145994i | 0 | −0.504300 | 0.0767537 | − | 0.236224i | 0 | 3.49087 | + | 2.90266i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
91.2 | −0.757918 | − | 0.550660i | 0 | −0.346820 | − | 1.06740i | 1.42964 | + | 1.71934i | 0 | 2.74037 | −0.903913 | + | 2.78196i | 0 | −0.136773 | − | 2.09036i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
91.3 | 0.757918 | + | 0.550660i | 0 | −0.346820 | − | 1.06740i | −1.42964 | − | 1.71934i | 0 | 2.74037 | 0.903913 | − | 2.78196i | 0 | −0.136773 | − | 2.09036i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
91.4 | 1.64259 | + | 1.19341i | 0 | 0.655837 | + | 2.01846i | 2.23130 | + | 0.145994i | 0 | −0.504300 | −0.0767537 | + | 0.236224i | 0 | 3.49087 | + | 2.90266i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
136.1 | −1.64259 | + | 1.19341i | 0 | 0.655837 | − | 2.01846i | −2.23130 | + | 0.145994i | 0 | −0.504300 | 0.0767537 | + | 0.236224i | 0 | 3.49087 | − | 2.90266i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
136.2 | −0.757918 | + | 0.550660i | 0 | −0.346820 | + | 1.06740i | 1.42964 | − | 1.71934i | 0 | 2.74037 | −0.903913 | − | 2.78196i | 0 | −0.136773 | + | 2.09036i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
136.3 | 0.757918 | − | 0.550660i | 0 | −0.346820 | + | 1.06740i | −1.42964 | + | 1.71934i | 0 | 2.74037 | 0.903913 | + | 2.78196i | 0 | −0.136773 | + | 2.09036i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
136.4 | 1.64259 | − | 1.19341i | 0 | 0.655837 | − | 2.01846i | 2.23130 | − | 0.145994i | 0 | −0.504300 | −0.0767537 | − | 0.236224i | 0 | 3.49087 | − | 2.90266i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
181.1 | −0.670386 | − | 2.06324i | 0 | −2.18949 | + | 1.59076i | 1.69588 | − | 1.45739i | 0 | −3.32440 | 1.23973 | + | 0.900718i | 0 | −4.14384 | − | 2.52199i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
181.2 | −0.167451 | − | 0.515362i | 0 | 1.38048 | − | 1.00297i | 1.16252 | + | 1.91012i | 0 | 1.08833 | −1.62484 | − | 1.18052i | 0 | 0.789737 | − | 0.918969i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
181.3 | 0.167451 | + | 0.515362i | 0 | 1.38048 | − | 1.00297i | −1.16252 | − | 1.91012i | 0 | 1.08833 | 1.62484 | + | 1.18052i | 0 | 0.789737 | − | 0.918969i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
181.4 | 0.670386 | + | 2.06324i | 0 | −2.18949 | + | 1.59076i | −1.69588 | + | 1.45739i | 0 | −3.32440 | −1.23973 | − | 0.900718i | 0 | −4.14384 | − | 2.52199i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
75.j | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 225.2.h.e | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 225.2.h.e | ✓ | 16 |
25.d | even | 5 | 1 | inner | 225.2.h.e | ✓ | 16 |
25.d | even | 5 | 1 | 5625.2.a.w | 8 | ||
25.e | even | 10 | 1 | 5625.2.a.v | 8 | ||
75.h | odd | 10 | 1 | 5625.2.a.v | 8 | ||
75.j | odd | 10 | 1 | inner | 225.2.h.e | ✓ | 16 |
75.j | odd | 10 | 1 | 5625.2.a.w | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
225.2.h.e | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
225.2.h.e | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
225.2.h.e | ✓ | 16 | 25.d | even | 5 | 1 | inner |
225.2.h.e | ✓ | 16 | 75.j | odd | 10 | 1 | inner |
5625.2.a.v | 8 | 25.e | even | 10 | 1 | ||
5625.2.a.v | 8 | 75.h | odd | 10 | 1 | ||
5625.2.a.w | 8 | 25.d | even | 5 | 1 | ||
5625.2.a.w | 8 | 75.j | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} + 5T_{2}^{14} + 20T_{2}^{12} + 75T_{2}^{10} + 385T_{2}^{8} + 25T_{2}^{6} + 250T_{2}^{4} + 125T_{2}^{2} + 25 \)
acting on \(S_{2}^{\mathrm{new}}(225, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} + 5 T^{14} + 20 T^{12} + 75 T^{10} + \cdots + 25 \)
$3$
\( T^{16} \)
$5$
\( T^{16} - 5 T^{14} + 50 T^{12} + \cdots + 390625 \)
$7$
\( (T^{4} - 10 T^{2} + 5 T + 5)^{4} \)
$11$
\( T^{16} + 30 T^{14} + 475 T^{12} + \cdots + 15625 \)
$13$
\( (T^{8} - 5 T^{6} - 5 T^{5} + 310 T^{4} + \cdots + 2025)^{2} \)
$17$
\( T^{16} + 15 T^{14} + 445 T^{12} + \cdots + 17682025 \)
$19$
\( (T^{8} - 7 T^{7} + 53 T^{6} - 349 T^{5} + \cdots + 11881)^{2} \)
$23$
\( T^{16} + 75 T^{14} + \cdots + 20393268025 \)
$29$
\( T^{16} + 155 T^{14} + 11150 T^{12} + \cdots + 15625 \)
$31$
\( (T^{8} - 9 T^{7} + 82 T^{6} - 647 T^{5} + \cdots + 641601)^{2} \)
$37$
\( (T^{8} - 5 T^{7} + 155 T^{6} - 415 T^{5} + \cdots + 9025)^{2} \)
$41$
\( T^{16} + 60 T^{14} + \cdots + 16041026265625 \)
$43$
\( (T^{4} + 20 T^{3} + 115 T^{2} + 150 T - 45)^{4} \)
$47$
\( T^{16} - 25 T^{14} + \cdots + 144120025 \)
$53$
\( T^{16} + \cdots + 104248286142025 \)
$59$
\( T^{16} + 460 T^{14} + \cdots + 39\!\cdots\!25 \)
$61$
\( (T^{8} - 16 T^{7} + 137 T^{6} + \cdots + 101761)^{2} \)
$67$
\( (T^{8} + 20 T^{7} + 395 T^{6} + \cdots + 40896025)^{2} \)
$71$
\( T^{16} + 425 T^{14} + \cdots + 67\!\cdots\!25 \)
$73$
\( (T^{8} - 30 T^{7} + 715 T^{6} + \cdots + 117614025)^{2} \)
$79$
\( (T^{8} - 18 T^{7} + 353 T^{6} + \cdots + 28185481)^{2} \)
$83$
\( T^{16} + 180 T^{14} + 12225 T^{12} + \cdots + 3258025 \)
$89$
\( T^{16} + 450 T^{14} + \cdots + 1272666015625 \)
$97$
\( (T^{8} - 20 T^{7} + 485 T^{6} + \cdots + 86397025)^{2} \)
show more
show less