Properties

Label 225.2.h.d.181.2
Level $225$
Weight $2$
Character 225.181
Analytic conductor $1.797$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,2,Mod(46,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.46"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3x^{10} - 2x^{9} + 34x^{8} - 22x^{7} + 236x^{6} - 179x^{5} + 877x^{4} - 409x^{3} + 96x^{2} - 11x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.2
Root \(0.199632 - 0.145041i\) of defining polynomial
Character \(\chi\) \(=\) 225.181
Dual form 225.2.h.d.46.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0762527 - 0.234682i) q^{2} +(1.56877 - 1.13978i) q^{4} +(2.09387 - 0.784664i) q^{5} -1.24676 q^{7} +(-0.786373 - 0.571334i) q^{8} +(-0.343810 - 0.431561i) q^{10} +(-0.794084 - 2.44394i) q^{11} +(-1.44659 + 4.45215i) q^{13} +(0.0950687 + 0.292592i) q^{14} +(1.12432 - 3.46029i) q^{16} +(4.72397 + 3.43216i) q^{17} +(-3.37244 - 2.45022i) q^{19} +(2.39047 - 3.61751i) q^{20} +(-0.512997 + 0.372714i) q^{22} +(-0.496117 - 1.52689i) q^{23} +(3.76860 - 3.28597i) q^{25} +1.15514 q^{26} +(-1.95588 + 1.42103i) q^{28} +(-2.60158 + 1.89016i) q^{29} +(7.43739 + 5.40358i) q^{31} -2.84182 q^{32} +(0.445250 - 1.37034i) q^{34} +(-2.61055 + 0.978287i) q^{35} +(-0.394857 + 1.21524i) q^{37} +(-0.317865 + 0.978287i) q^{38} +(-2.09487 - 0.579261i) q^{40} +(-2.68719 + 8.27031i) q^{41} -3.88086 q^{43} +(-4.03129 - 2.92891i) q^{44} +(-0.320503 + 0.232859i) q^{46} +(-2.59656 + 1.88651i) q^{47} -5.44559 q^{49} +(-1.05852 - 0.633858i) q^{50} +(2.80510 + 8.63320i) q^{52} +(-10.7877 + 7.83770i) q^{53} +(-3.58038 - 4.49421i) q^{55} +(0.980418 + 0.712315i) q^{56} +(0.641964 + 0.466414i) q^{58} +(1.97548 - 6.07990i) q^{59} +(1.18258 + 3.63961i) q^{61} +(0.701000 - 2.15746i) q^{62} +(-2.03194 - 6.25366i) q^{64} +(0.464465 + 10.4573i) q^{65} +(8.19034 + 5.95063i) q^{67} +11.3227 q^{68} +(0.428648 + 0.538052i) q^{70} +(11.2284 - 8.15794i) q^{71} +(-3.51704 - 10.8243i) q^{73} +0.315305 q^{74} -8.08332 q^{76} +(0.990032 + 3.04700i) q^{77} +(-9.29008 + 6.74964i) q^{79} +(-0.360991 - 8.12762i) q^{80} +2.14580 q^{82} +(-2.29137 - 1.66478i) q^{83} +(12.5845 + 3.47978i) q^{85} +(0.295926 + 0.910766i) q^{86} +(-0.771858 + 2.37554i) q^{88} +(0.426682 + 1.31319i) q^{89} +(1.80355 - 5.55075i) q^{91} +(-2.51861 - 1.82988i) q^{92} +(0.640724 + 0.465513i) q^{94} +(-8.98407 - 2.48422i) q^{95} +(-0.0246815 + 0.0179322i) q^{97} +(0.415241 + 1.27798i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 10 q^{4} + 6 q^{5} - 12 q^{7} - 9 q^{8} - 9 q^{10} + 4 q^{11} - 2 q^{13} - 6 q^{14} + 16 q^{16} + q^{17} + 7 q^{19} - 26 q^{20} + 13 q^{22} - 19 q^{23} + 4 q^{25} + 56 q^{26} + q^{28} + q^{29}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0762527 0.234682i −0.0539188 0.165945i 0.920471 0.390811i \(-0.127805\pi\)
−0.974390 + 0.224866i \(0.927805\pi\)
\(3\) 0 0
\(4\) 1.56877 1.13978i 0.784386 0.569890i
\(5\) 2.09387 0.784664i 0.936408 0.350913i
\(6\) 0 0
\(7\) −1.24676 −0.471231 −0.235615 0.971846i \(-0.575711\pi\)
−0.235615 + 0.971846i \(0.575711\pi\)
\(8\) −0.786373 0.571334i −0.278025 0.201997i
\(9\) 0 0
\(10\) −0.343810 0.431561i −0.108722 0.136472i
\(11\) −0.794084 2.44394i −0.239425 0.736876i −0.996503 0.0835513i \(-0.973374\pi\)
0.757078 0.653324i \(-0.226626\pi\)
\(12\) 0 0
\(13\) −1.44659 + 4.45215i −0.401212 + 1.23480i 0.522805 + 0.852452i \(0.324885\pi\)
−0.924017 + 0.382351i \(0.875115\pi\)
\(14\) 0.0950687 + 0.292592i 0.0254082 + 0.0781984i
\(15\) 0 0
\(16\) 1.12432 3.46029i 0.281079 0.865073i
\(17\) 4.72397 + 3.43216i 1.14573 + 0.832422i 0.987907 0.155046i \(-0.0495526\pi\)
0.157823 + 0.987467i \(0.449553\pi\)
\(18\) 0 0
\(19\) −3.37244 2.45022i −0.773692 0.562120i 0.129387 0.991594i \(-0.458699\pi\)
−0.903079 + 0.429474i \(0.858699\pi\)
\(20\) 2.39047 3.61751i 0.534524 0.808901i
\(21\) 0 0
\(22\) −0.512997 + 0.372714i −0.109371 + 0.0794629i
\(23\) −0.496117 1.52689i −0.103447 0.318379i 0.885915 0.463847i \(-0.153531\pi\)
−0.989363 + 0.145468i \(0.953531\pi\)
\(24\) 0 0
\(25\) 3.76860 3.28597i 0.753721 0.657195i
\(26\) 1.15514 0.226542
\(27\) 0 0
\(28\) −1.95588 + 1.42103i −0.369627 + 0.268550i
\(29\) −2.60158 + 1.89016i −0.483102 + 0.350994i −0.802525 0.596618i \(-0.796511\pi\)
0.319423 + 0.947612i \(0.396511\pi\)
\(30\) 0 0
\(31\) 7.43739 + 5.40358i 1.33579 + 0.970512i 0.999587 + 0.0287236i \(0.00914425\pi\)
0.336207 + 0.941788i \(0.390856\pi\)
\(32\) −2.84182 −0.502368
\(33\) 0 0
\(34\) 0.445250 1.37034i 0.0763598 0.235011i
\(35\) −2.61055 + 0.978287i −0.441264 + 0.165361i
\(36\) 0 0
\(37\) −0.394857 + 1.21524i −0.0649141 + 0.199785i −0.978253 0.207415i \(-0.933495\pi\)
0.913339 + 0.407200i \(0.133495\pi\)
\(38\) −0.317865 + 0.978287i −0.0515645 + 0.158699i
\(39\) 0 0
\(40\) −2.09487 0.579261i −0.331228 0.0915891i
\(41\) −2.68719 + 8.27031i −0.419668 + 1.29161i 0.488340 + 0.872654i \(0.337603\pi\)
−0.908008 + 0.418953i \(0.862397\pi\)
\(42\) 0 0
\(43\) −3.88086 −0.591825 −0.295913 0.955215i \(-0.595624\pi\)
−0.295913 + 0.955215i \(0.595624\pi\)
\(44\) −4.03129 2.92891i −0.607740 0.441549i
\(45\) 0 0
\(46\) −0.320503 + 0.232859i −0.0472556 + 0.0343332i
\(47\) −2.59656 + 1.88651i −0.378747 + 0.275176i −0.760829 0.648953i \(-0.775207\pi\)
0.382082 + 0.924129i \(0.375207\pi\)
\(48\) 0 0
\(49\) −5.44559 −0.777942
\(50\) −1.05852 0.633858i −0.149698 0.0896411i
\(51\) 0 0
\(52\) 2.80510 + 8.63320i 0.388997 + 1.19721i
\(53\) −10.7877 + 7.83770i −1.48180 + 1.07659i −0.504829 + 0.863219i \(0.668444\pi\)
−0.976971 + 0.213371i \(0.931556\pi\)
\(54\) 0 0
\(55\) −3.58038 4.49421i −0.482779 0.605999i
\(56\) 0.980418 + 0.712315i 0.131014 + 0.0951871i
\(57\) 0 0
\(58\) 0.641964 + 0.466414i 0.0842940 + 0.0612432i
\(59\) 1.97548 6.07990i 0.257186 0.791536i −0.736206 0.676758i \(-0.763384\pi\)
0.993391 0.114778i \(-0.0366157\pi\)
\(60\) 0 0
\(61\) 1.18258 + 3.63961i 0.151414 + 0.466005i 0.997780 0.0665973i \(-0.0212143\pi\)
−0.846366 + 0.532602i \(0.821214\pi\)
\(62\) 0.701000 2.15746i 0.0890271 0.273997i
\(63\) 0 0
\(64\) −2.03194 6.25366i −0.253992 0.781708i
\(65\) 0.464465 + 10.4573i 0.0576098 + 1.29707i
\(66\) 0 0
\(67\) 8.19034 + 5.95063i 1.00061 + 0.726985i 0.962219 0.272277i \(-0.0877768\pi\)
0.0383907 + 0.999263i \(0.487777\pi\)
\(68\) 11.3227 1.37308
\(69\) 0 0
\(70\) 0.428648 + 0.538052i 0.0512332 + 0.0643095i
\(71\) 11.2284 8.15794i 1.33257 0.968169i 0.332888 0.942966i \(-0.391977\pi\)
0.999682 0.0252028i \(-0.00802316\pi\)
\(72\) 0 0
\(73\) −3.51704 10.8243i −0.411638 1.26689i −0.915223 0.402947i \(-0.867986\pi\)
0.503585 0.863946i \(-0.332014\pi\)
\(74\) 0.315305 0.0366534
\(75\) 0 0
\(76\) −8.08332 −0.927220
\(77\) 0.990032 + 3.04700i 0.112825 + 0.347238i
\(78\) 0 0
\(79\) −9.29008 + 6.74964i −1.04522 + 0.759394i −0.971297 0.237871i \(-0.923551\pi\)
−0.0739188 + 0.997264i \(0.523551\pi\)
\(80\) −0.360991 8.12762i −0.0403601 0.908696i
\(81\) 0 0
\(82\) 2.14580 0.236964
\(83\) −2.29137 1.66478i −0.251511 0.182733i 0.454885 0.890550i \(-0.349680\pi\)
−0.706396 + 0.707817i \(0.749680\pi\)
\(84\) 0 0
\(85\) 12.5845 + 3.47978i 1.36498 + 0.377435i
\(86\) 0.295926 + 0.910766i 0.0319105 + 0.0982105i
\(87\) 0 0
\(88\) −0.771858 + 2.37554i −0.0822804 + 0.253233i
\(89\) 0.426682 + 1.31319i 0.0452282 + 0.139198i 0.971121 0.238589i \(-0.0766850\pi\)
−0.925892 + 0.377788i \(0.876685\pi\)
\(90\) 0 0
\(91\) 1.80355 5.55075i 0.189063 0.581877i
\(92\) −2.51861 1.82988i −0.262584 0.190778i
\(93\) 0 0
\(94\) 0.640724 + 0.465513i 0.0660857 + 0.0480140i
\(95\) −8.98407 2.48422i −0.921746 0.254876i
\(96\) 0 0
\(97\) −0.0246815 + 0.0179322i −0.00250603 + 0.00182074i −0.589038 0.808106i \(-0.700493\pi\)
0.586532 + 0.809926i \(0.300493\pi\)
\(98\) 0.415241 + 1.27798i 0.0419457 + 0.129096i
\(99\) 0 0
\(100\) 2.16680 9.45033i 0.216680 0.945033i
\(101\) 11.2308 1.11750 0.558751 0.829336i \(-0.311281\pi\)
0.558751 + 0.829336i \(0.311281\pi\)
\(102\) 0 0
\(103\) 0.583288 0.423783i 0.0574730 0.0417566i −0.558678 0.829385i \(-0.688691\pi\)
0.616151 + 0.787628i \(0.288691\pi\)
\(104\) 3.68122 2.67456i 0.360973 0.262262i
\(105\) 0 0
\(106\) 2.66195 + 1.93402i 0.258552 + 0.187849i
\(107\) −2.11668 −0.204627 −0.102313 0.994752i \(-0.532624\pi\)
−0.102313 + 0.994752i \(0.532624\pi\)
\(108\) 0 0
\(109\) 0.690602 2.12545i 0.0661477 0.203582i −0.912520 0.409033i \(-0.865866\pi\)
0.978667 + 0.205451i \(0.0658662\pi\)
\(110\) −0.781695 + 1.18295i −0.0745317 + 0.112790i
\(111\) 0 0
\(112\) −1.40175 + 4.31415i −0.132453 + 0.407649i
\(113\) 0.973217 2.99525i 0.0915526 0.281770i −0.894787 0.446493i \(-0.852673\pi\)
0.986340 + 0.164723i \(0.0526729\pi\)
\(114\) 0 0
\(115\) −2.23690 2.80783i −0.208592 0.261831i
\(116\) −1.92693 + 5.93047i −0.178911 + 0.550630i
\(117\) 0 0
\(118\) −1.57748 −0.145219
\(119\) −5.88965 4.27908i −0.539903 0.392262i
\(120\) 0 0
\(121\) 3.55691 2.58425i 0.323356 0.234932i
\(122\) 0.763975 0.555061i 0.0691671 0.0502528i
\(123\) 0 0
\(124\) 17.8265 1.60086
\(125\) 5.31259 9.83750i 0.475172 0.879893i
\(126\) 0 0
\(127\) −4.83929 14.8938i −0.429418 1.32161i −0.898700 0.438564i \(-0.855487\pi\)
0.469282 0.883048i \(-0.344513\pi\)
\(128\) −5.91084 + 4.29448i −0.522450 + 0.379582i
\(129\) 0 0
\(130\) 2.41872 0.906400i 0.212136 0.0794965i
\(131\) −12.1000 8.79116i −1.05718 0.768087i −0.0836161 0.996498i \(-0.526647\pi\)
−0.973565 + 0.228411i \(0.926647\pi\)
\(132\) 0 0
\(133\) 4.20463 + 3.05484i 0.364587 + 0.264888i
\(134\) 0.771969 2.37588i 0.0666879 0.205244i
\(135\) 0 0
\(136\) −1.75389 5.39792i −0.150395 0.462868i
\(137\) 3.24300 9.98092i 0.277068 0.852727i −0.711597 0.702588i \(-0.752028\pi\)
0.988665 0.150139i \(-0.0479723\pi\)
\(138\) 0 0
\(139\) 3.84749 + 11.8414i 0.326340 + 1.00437i 0.970832 + 0.239761i \(0.0770690\pi\)
−0.644492 + 0.764611i \(0.722931\pi\)
\(140\) −2.98033 + 4.51017i −0.251884 + 0.381179i
\(141\) 0 0
\(142\) −2.77072 2.01304i −0.232513 0.168931i
\(143\) 12.0295 1.00596
\(144\) 0 0
\(145\) −3.96424 + 5.99913i −0.329212 + 0.498200i
\(146\) −2.27209 + 1.65077i −0.188039 + 0.136619i
\(147\) 0 0
\(148\) 0.765671 + 2.35649i 0.0629378 + 0.193703i
\(149\) 17.0680 1.39826 0.699131 0.714994i \(-0.253570\pi\)
0.699131 + 0.714994i \(0.253570\pi\)
\(150\) 0 0
\(151\) −1.57516 −0.128185 −0.0640923 0.997944i \(-0.520415\pi\)
−0.0640923 + 0.997944i \(0.520415\pi\)
\(152\) 1.25210 + 3.85358i 0.101559 + 0.312567i
\(153\) 0 0
\(154\) 0.639584 0.464685i 0.0515391 0.0374454i
\(155\) 19.8129 + 5.47855i 1.59141 + 0.440048i
\(156\) 0 0
\(157\) −9.20058 −0.734286 −0.367143 0.930164i \(-0.619664\pi\)
−0.367143 + 0.930164i \(0.619664\pi\)
\(158\) 2.29241 + 1.66553i 0.182374 + 0.132503i
\(159\) 0 0
\(160\) −5.95041 + 2.22988i −0.470421 + 0.176287i
\(161\) 0.618538 + 1.90366i 0.0487476 + 0.150030i
\(162\) 0 0
\(163\) −1.41553 + 4.35656i −0.110873 + 0.341232i −0.991064 0.133388i \(-0.957414\pi\)
0.880191 + 0.474620i \(0.157414\pi\)
\(164\) 5.21075 + 16.0370i 0.406891 + 1.25228i
\(165\) 0 0
\(166\) −0.215970 + 0.664687i −0.0167625 + 0.0515897i
\(167\) 0.115310 + 0.0837776i 0.00892296 + 0.00648291i 0.592238 0.805763i \(-0.298245\pi\)
−0.583315 + 0.812246i \(0.698245\pi\)
\(168\) 0 0
\(169\) −7.21176 5.23965i −0.554751 0.403050i
\(170\) −0.142959 3.21869i −0.0109645 0.246862i
\(171\) 0 0
\(172\) −6.08819 + 4.42333i −0.464220 + 0.337275i
\(173\) −7.60885 23.4176i −0.578490 1.78041i −0.623974 0.781445i \(-0.714483\pi\)
0.0454831 0.998965i \(-0.485517\pi\)
\(174\) 0 0
\(175\) −4.69854 + 4.09682i −0.355176 + 0.309690i
\(176\) −9.34955 −0.704749
\(177\) 0 0
\(178\) 0.275647 0.200269i 0.0206606 0.0150108i
\(179\) −19.5420 + 14.1981i −1.46064 + 1.06122i −0.477446 + 0.878661i \(0.658437\pi\)
−0.983195 + 0.182557i \(0.941563\pi\)
\(180\) 0 0
\(181\) −1.59218 1.15679i −0.118346 0.0859834i 0.527038 0.849842i \(-0.323303\pi\)
−0.645384 + 0.763858i \(0.723303\pi\)
\(182\) −1.44019 −0.106754
\(183\) 0 0
\(184\) −0.482231 + 1.48415i −0.0355505 + 0.109413i
\(185\) 0.126779 + 2.85440i 0.00932098 + 0.209859i
\(186\) 0 0
\(187\) 4.63677 14.2705i 0.339074 1.04356i
\(188\) −1.92320 + 5.91901i −0.140264 + 0.431689i
\(189\) 0 0
\(190\) 0.102059 + 2.29783i 0.00740412 + 0.166702i
\(191\) 2.40061 7.38832i 0.173702 0.534600i −0.825870 0.563861i \(-0.809315\pi\)
0.999572 + 0.0292607i \(0.00931531\pi\)
\(192\) 0 0
\(193\) 14.3458 1.03264 0.516318 0.856397i \(-0.327302\pi\)
0.516318 + 0.856397i \(0.327302\pi\)
\(194\) 0.00609039 + 0.00442493i 0.000437265 + 0.000317691i
\(195\) 0 0
\(196\) −8.54290 + 6.20678i −0.610207 + 0.443341i
\(197\) 0.132307 0.0961264i 0.00942645 0.00684872i −0.583062 0.812428i \(-0.698146\pi\)
0.592489 + 0.805579i \(0.298146\pi\)
\(198\) 0 0
\(199\) 4.96974 0.352295 0.176148 0.984364i \(-0.443636\pi\)
0.176148 + 0.984364i \(0.443636\pi\)
\(200\) −4.84092 + 0.430872i −0.342304 + 0.0304673i
\(201\) 0 0
\(202\) −0.856375 2.63565i −0.0602543 0.185444i
\(203\) 3.24355 2.35658i 0.227652 0.165399i
\(204\) 0 0
\(205\) 0.862792 + 19.4255i 0.0602600 + 1.35674i
\(206\) −0.143931 0.104572i −0.0100282 0.00728590i
\(207\) 0 0
\(208\) 13.7793 + 10.0112i 0.955423 + 0.694155i
\(209\) −3.31020 + 10.1877i −0.228971 + 0.704701i
\(210\) 0 0
\(211\) 1.01784 + 3.13260i 0.0700713 + 0.215657i 0.979960 0.199196i \(-0.0638330\pi\)
−0.909888 + 0.414853i \(0.863833\pi\)
\(212\) −7.99015 + 24.5911i −0.548766 + 1.68893i
\(213\) 0 0
\(214\) 0.161402 + 0.496745i 0.0110332 + 0.0339568i
\(215\) −8.12602 + 3.04517i −0.554190 + 0.207679i
\(216\) 0 0
\(217\) −9.27263 6.73696i −0.629467 0.457335i
\(218\) −0.551465 −0.0373500
\(219\) 0 0
\(220\) −10.7392 2.96954i −0.724038 0.200207i
\(221\) −22.1141 + 16.0669i −1.48756 + 1.08077i
\(222\) 0 0
\(223\) −4.87419 15.0012i −0.326400 1.00456i −0.970805 0.239872i \(-0.922895\pi\)
0.644404 0.764685i \(-0.277105\pi\)
\(224\) 3.54307 0.236731
\(225\) 0 0
\(226\) −0.777142 −0.0516947
\(227\) −4.18427 12.8779i −0.277720 0.854734i −0.988487 0.151307i \(-0.951652\pi\)
0.710767 0.703428i \(-0.248348\pi\)
\(228\) 0 0
\(229\) 11.9596 8.68915i 0.790312 0.574195i −0.117744 0.993044i \(-0.537566\pi\)
0.908056 + 0.418849i \(0.137566\pi\)
\(230\) −0.488376 + 0.739064i −0.0322026 + 0.0487325i
\(231\) 0 0
\(232\) 3.12573 0.205214
\(233\) 0.419864 + 0.305049i 0.0275062 + 0.0199844i 0.601453 0.798908i \(-0.294589\pi\)
−0.573947 + 0.818892i \(0.694589\pi\)
\(234\) 0 0
\(235\) −3.95659 + 5.98754i −0.258099 + 0.390584i
\(236\) −3.83067 11.7896i −0.249356 0.767438i
\(237\) 0 0
\(238\) −0.555120 + 1.70848i −0.0359831 + 0.110745i
\(239\) −2.54331 7.82750i −0.164513 0.506319i 0.834487 0.551027i \(-0.185764\pi\)
−0.999000 + 0.0447086i \(0.985764\pi\)
\(240\) 0 0
\(241\) −0.395906 + 1.21847i −0.0255025 + 0.0784888i −0.962998 0.269509i \(-0.913138\pi\)
0.937495 + 0.347998i \(0.113138\pi\)
\(242\) −0.877700 0.637686i −0.0564207 0.0409920i
\(243\) 0 0
\(244\) 6.00356 + 4.36184i 0.384339 + 0.279238i
\(245\) −11.4024 + 4.27296i −0.728471 + 0.272990i
\(246\) 0 0
\(247\) 15.7873 11.4701i 1.00452 0.729828i
\(248\) −2.76132 8.49846i −0.175344 0.539653i
\(249\) 0 0
\(250\) −2.71378 0.496631i −0.171635 0.0314097i
\(251\) −4.63494 −0.292555 −0.146277 0.989244i \(-0.546729\pi\)
−0.146277 + 0.989244i \(0.546729\pi\)
\(252\) 0 0
\(253\) −3.33767 + 2.42496i −0.209837 + 0.152456i
\(254\) −3.12630 + 2.27139i −0.196161 + 0.142519i
\(255\) 0 0
\(256\) −9.18081 6.67025i −0.573801 0.416891i
\(257\) 18.3001 1.14153 0.570766 0.821113i \(-0.306647\pi\)
0.570766 + 0.821113i \(0.306647\pi\)
\(258\) 0 0
\(259\) 0.492291 1.51512i 0.0305895 0.0941448i
\(260\) 12.6477 + 15.8758i 0.784376 + 0.984573i
\(261\) 0 0
\(262\) −1.14047 + 3.51000i −0.0704583 + 0.216848i
\(263\) −5.15027 + 15.8509i −0.317579 + 0.977409i 0.657100 + 0.753803i \(0.271783\pi\)
−0.974680 + 0.223606i \(0.928217\pi\)
\(264\) 0 0
\(265\) −16.4380 + 24.8758i −1.00978 + 1.52811i
\(266\) 0.396301 1.21969i 0.0242988 0.0747839i
\(267\) 0 0
\(268\) 19.6312 1.19917
\(269\) 2.12942 + 1.54712i 0.129833 + 0.0943294i 0.650807 0.759244i \(-0.274431\pi\)
−0.520973 + 0.853573i \(0.674431\pi\)
\(270\) 0 0
\(271\) −3.69192 + 2.68233i −0.224268 + 0.162940i −0.694246 0.719738i \(-0.744262\pi\)
0.469978 + 0.882678i \(0.344262\pi\)
\(272\) 17.1875 12.4875i 1.04215 0.757164i
\(273\) 0 0
\(274\) −2.58963 −0.156445
\(275\) −11.0233 6.60090i −0.664731 0.398049i
\(276\) 0 0
\(277\) 0.389132 + 1.19762i 0.0233807 + 0.0719583i 0.962066 0.272817i \(-0.0879552\pi\)
−0.938685 + 0.344775i \(0.887955\pi\)
\(278\) 2.48557 1.80587i 0.149075 0.108309i
\(279\) 0 0
\(280\) 2.61180 + 0.722198i 0.156085 + 0.0431596i
\(281\) 10.8543 + 7.88611i 0.647513 + 0.470446i 0.862423 0.506188i \(-0.168946\pi\)
−0.214910 + 0.976634i \(0.568946\pi\)
\(282\) 0 0
\(283\) −19.4884 14.1591i −1.15846 0.841674i −0.168882 0.985636i \(-0.554016\pi\)
−0.989583 + 0.143962i \(0.954016\pi\)
\(284\) 8.31661 25.5959i 0.493500 1.51884i
\(285\) 0 0
\(286\) −0.917281 2.82310i −0.0542400 0.166934i
\(287\) 3.35028 10.3111i 0.197761 0.608644i
\(288\) 0 0
\(289\) 5.28283 + 16.2589i 0.310754 + 0.956404i
\(290\) 1.71017 + 0.472886i 0.100425 + 0.0277688i
\(291\) 0 0
\(292\) −17.8548 12.9723i −1.04487 0.759145i
\(293\) 32.1727 1.87955 0.939776 0.341792i \(-0.111034\pi\)
0.939776 + 0.341792i \(0.111034\pi\)
\(294\) 0 0
\(295\) −0.634279 14.2806i −0.0369292 0.831450i
\(296\) 1.00481 0.730041i 0.0584037 0.0424328i
\(297\) 0 0
\(298\) −1.30148 4.00554i −0.0753926 0.232035i
\(299\) 7.51561 0.434639
\(300\) 0 0
\(301\) 4.83849 0.278886
\(302\) 0.120110 + 0.369661i 0.00691156 + 0.0212716i
\(303\) 0 0
\(304\) −12.2702 + 8.91482i −0.703744 + 0.511300i
\(305\) 5.33205 + 6.69296i 0.305312 + 0.383237i
\(306\) 0 0
\(307\) 20.2962 1.15837 0.579183 0.815198i \(-0.303372\pi\)
0.579183 + 0.815198i \(0.303372\pi\)
\(308\) 5.02605 + 3.65164i 0.286386 + 0.208071i
\(309\) 0 0
\(310\) −0.225074 5.06749i −0.0127834 0.287814i
\(311\) 5.78554 + 17.8061i 0.328068 + 1.00969i 0.970037 + 0.242959i \(0.0781180\pi\)
−0.641969 + 0.766731i \(0.721882\pi\)
\(312\) 0 0
\(313\) 7.68955 23.6660i 0.434639 1.33768i −0.458817 0.888531i \(-0.651726\pi\)
0.893456 0.449151i \(-0.148274\pi\)
\(314\) 0.701569 + 2.15921i 0.0395919 + 0.121851i
\(315\) 0 0
\(316\) −6.88092 + 21.1773i −0.387082 + 1.19132i
\(317\) −20.3775 14.8052i −1.14452 0.831540i −0.156775 0.987634i \(-0.550110\pi\)
−0.987742 + 0.156094i \(0.950110\pi\)
\(318\) 0 0
\(319\) 6.68532 + 4.85717i 0.374306 + 0.271949i
\(320\) −9.16165 11.5000i −0.512152 0.642869i
\(321\) 0 0
\(322\) 0.399590 0.290319i 0.0222683 0.0161788i
\(323\) −7.52174 23.1496i −0.418521 1.28808i
\(324\) 0 0
\(325\) 9.17801 + 21.5318i 0.509104 + 1.19437i
\(326\) 1.13034 0.0626039
\(327\) 0 0
\(328\) 6.83824 4.96827i 0.377579 0.274327i
\(329\) 3.23728 2.35202i 0.178477 0.129671i
\(330\) 0 0
\(331\) −24.6097 17.8800i −1.35267 0.982773i −0.998874 0.0474508i \(-0.984890\pi\)
−0.353797 0.935322i \(-0.615110\pi\)
\(332\) −5.49212 −0.301419
\(333\) 0 0
\(334\) 0.0108684 0.0334494i 0.000594691 0.00183027i
\(335\) 21.8188 + 6.03319i 1.19209 + 0.329629i
\(336\) 0 0
\(337\) −1.41361 + 4.35066i −0.0770045 + 0.236995i −0.982148 0.188111i \(-0.939763\pi\)
0.905143 + 0.425107i \(0.139763\pi\)
\(338\) −0.679734 + 2.09200i −0.0369726 + 0.113790i
\(339\) 0 0
\(340\) 23.7084 8.88455i 1.28577 0.481832i
\(341\) 7.30011 22.4674i 0.395323 1.21668i
\(342\) 0 0
\(343\) 15.5167 0.837821
\(344\) 3.05180 + 2.21726i 0.164542 + 0.119547i
\(345\) 0 0
\(346\) −4.91550 + 3.57132i −0.264259 + 0.191995i
\(347\) −13.6038 + 9.88377i −0.730293 + 0.530589i −0.889656 0.456631i \(-0.849056\pi\)
0.159363 + 0.987220i \(0.449056\pi\)
\(348\) 0 0
\(349\) 0.373581 0.0199973 0.00999866 0.999950i \(-0.496817\pi\)
0.00999866 + 0.999950i \(0.496817\pi\)
\(350\) 1.31972 + 0.790268i 0.0705422 + 0.0422416i
\(351\) 0 0
\(352\) 2.25665 + 6.94524i 0.120280 + 0.370183i
\(353\) −19.3909 + 14.0883i −1.03208 + 0.749847i −0.968723 0.248144i \(-0.920179\pi\)
−0.0633526 + 0.997991i \(0.520179\pi\)
\(354\) 0 0
\(355\) 17.1097 25.8922i 0.908087 1.37422i
\(356\) 2.16612 + 1.57378i 0.114804 + 0.0834101i
\(357\) 0 0
\(358\) 4.82218 + 3.50352i 0.254860 + 0.185167i
\(359\) 1.46789 4.51771i 0.0774724 0.238435i −0.904819 0.425797i \(-0.859994\pi\)
0.982291 + 0.187362i \(0.0599937\pi\)
\(360\) 0 0
\(361\) −0.501540 1.54358i −0.0263969 0.0812412i
\(362\) −0.150069 + 0.461865i −0.00788744 + 0.0242751i
\(363\) 0 0
\(364\) −3.49728 10.7635i −0.183307 0.564162i
\(365\) −15.8577 19.9051i −0.830030 1.04188i
\(366\) 0 0
\(367\) 14.0526 + 10.2098i 0.733540 + 0.532948i 0.890681 0.454628i \(-0.150228\pi\)
−0.157141 + 0.987576i \(0.550228\pi\)
\(368\) −5.84128 −0.304498
\(369\) 0 0
\(370\) 0.660208 0.247408i 0.0343226 0.0128621i
\(371\) 13.4496 9.77172i 0.698270 0.507323i
\(372\) 0 0
\(373\) 0.651645 + 2.00556i 0.0337409 + 0.103844i 0.966509 0.256634i \(-0.0826136\pi\)
−0.932768 + 0.360478i \(0.882614\pi\)
\(374\) −3.70260 −0.191457
\(375\) 0 0
\(376\) 3.11969 0.160886
\(377\) −4.65185 14.3169i −0.239582 0.737359i
\(378\) 0 0
\(379\) −10.0391 + 7.29380i −0.515671 + 0.374657i −0.814971 0.579502i \(-0.803247\pi\)
0.299299 + 0.954159i \(0.403247\pi\)
\(380\) −16.9254 + 6.34269i −0.868256 + 0.325373i
\(381\) 0 0
\(382\) −1.91696 −0.0980801
\(383\) 26.9448 + 19.5766i 1.37682 + 1.00032i 0.997170 + 0.0751836i \(0.0239543\pi\)
0.379646 + 0.925132i \(0.376046\pi\)
\(384\) 0 0
\(385\) 4.46388 + 5.60320i 0.227500 + 0.285565i
\(386\) −1.09391 3.36671i −0.0556785 0.171361i
\(387\) 0 0
\(388\) −0.0182810 + 0.0562631i −0.000928076 + 0.00285633i
\(389\) 5.24639 + 16.1467i 0.266002 + 0.818671i 0.991461 + 0.130405i \(0.0416278\pi\)
−0.725459 + 0.688266i \(0.758372\pi\)
\(390\) 0 0
\(391\) 2.89690 8.91573i 0.146502 0.450888i
\(392\) 4.28227 + 3.11125i 0.216287 + 0.157142i
\(393\) 0 0
\(394\) −0.0326478 0.0237200i −0.00164477 0.00119500i
\(395\) −14.1560 + 21.4225i −0.712268 + 1.07788i
\(396\) 0 0
\(397\) 0.701070 0.509357i 0.0351857 0.0255639i −0.570053 0.821608i \(-0.693078\pi\)
0.605239 + 0.796044i \(0.293078\pi\)
\(398\) −0.378956 1.16631i −0.0189953 0.0584617i
\(399\) 0 0
\(400\) −7.13333 16.7350i −0.356666 0.836748i
\(401\) −9.68680 −0.483736 −0.241868 0.970309i \(-0.577760\pi\)
−0.241868 + 0.970309i \(0.577760\pi\)
\(402\) 0 0
\(403\) −34.8164 + 25.2956i −1.73433 + 1.26006i
\(404\) 17.6185 12.8006i 0.876553 0.636853i
\(405\) 0 0
\(406\) −0.800374 0.581506i −0.0397219 0.0288597i
\(407\) 3.28353 0.162759
\(408\) 0 0
\(409\) 0.469043 1.44357i 0.0231927 0.0713797i −0.938790 0.344489i \(-0.888052\pi\)
0.961983 + 0.273109i \(0.0880521\pi\)
\(410\) 4.49302 1.68373i 0.221895 0.0831535i
\(411\) 0 0
\(412\) 0.432026 1.32964i 0.0212844 0.0655066i
\(413\) −2.46295 + 7.58017i −0.121194 + 0.372996i
\(414\) 0 0
\(415\) −6.10413 1.68788i −0.299640 0.0828546i
\(416\) 4.11095 12.6522i 0.201556 0.620325i
\(417\) 0 0
\(418\) 2.64329 0.129287
\(419\) −24.7252 17.9639i −1.20790 0.877594i −0.212866 0.977081i \(-0.568280\pi\)
−0.995039 + 0.0994875i \(0.968280\pi\)
\(420\) 0 0
\(421\) 5.64016 4.09782i 0.274885 0.199715i −0.441799 0.897114i \(-0.645659\pi\)
0.716683 + 0.697399i \(0.245659\pi\)
\(422\) 0.657551 0.477739i 0.0320091 0.0232560i
\(423\) 0 0
\(424\) 12.9611 0.629445
\(425\) 29.0807 2.58837i 1.41062 0.125554i
\(426\) 0 0
\(427\) −1.47439 4.53772i −0.0713510 0.219596i
\(428\) −3.32058 + 2.41255i −0.160506 + 0.116615i
\(429\) 0 0
\(430\) 1.33428 + 1.67483i 0.0643446 + 0.0807673i
\(431\) 8.85650 + 6.43463i 0.426603 + 0.309945i 0.780289 0.625419i \(-0.215072\pi\)
−0.353686 + 0.935364i \(0.615072\pi\)
\(432\) 0 0
\(433\) −8.44561 6.13609i −0.405870 0.294882i 0.366058 0.930592i \(-0.380707\pi\)
−0.771928 + 0.635710i \(0.780707\pi\)
\(434\) −0.873978 + 2.68983i −0.0419523 + 0.129116i
\(435\) 0 0
\(436\) −1.33915 4.12149i −0.0641338 0.197384i
\(437\) −2.06810 + 6.36495i −0.0989305 + 0.304477i
\(438\) 0 0
\(439\) 4.76917 + 14.6780i 0.227620 + 0.700543i 0.998015 + 0.0629758i \(0.0200591\pi\)
−0.770395 + 0.637567i \(0.779941\pi\)
\(440\) 0.247825 + 5.57972i 0.0118146 + 0.266003i
\(441\) 0 0
\(442\) 5.45686 + 3.96464i 0.259556 + 0.188579i
\(443\) −18.9105 −0.898463 −0.449231 0.893415i \(-0.648302\pi\)
−0.449231 + 0.893415i \(0.648302\pi\)
\(444\) 0 0
\(445\) 1.92383 + 2.41486i 0.0911985 + 0.114475i
\(446\) −3.14884 + 2.28777i −0.149102 + 0.108329i
\(447\) 0 0
\(448\) 2.53334 + 7.79681i 0.119689 + 0.368365i
\(449\) 11.4152 0.538714 0.269357 0.963040i \(-0.413189\pi\)
0.269357 + 0.963040i \(0.413189\pi\)
\(450\) 0 0
\(451\) 22.3460 1.05223
\(452\) −1.88717 5.80813i −0.0887652 0.273191i
\(453\) 0 0
\(454\) −2.70314 + 1.96395i −0.126865 + 0.0921725i
\(455\) −0.579076 13.0377i −0.0271475 0.611219i
\(456\) 0 0
\(457\) −33.9739 −1.58923 −0.794616 0.607112i \(-0.792328\pi\)
−0.794616 + 0.607112i \(0.792328\pi\)
\(458\) −2.95114 2.14413i −0.137898 0.100188i
\(459\) 0 0
\(460\) −6.70950 1.85527i −0.312832 0.0865023i
\(461\) 7.62985 + 23.4823i 0.355358 + 1.09368i 0.955802 + 0.294012i \(0.0949905\pi\)
−0.600444 + 0.799667i \(0.705009\pi\)
\(462\) 0 0
\(463\) −4.21237 + 12.9643i −0.195765 + 0.602504i 0.804202 + 0.594357i \(0.202593\pi\)
−0.999967 + 0.00814689i \(0.997407\pi\)
\(464\) 3.61551 + 11.1274i 0.167846 + 0.516576i
\(465\) 0 0
\(466\) 0.0395737 0.121795i 0.00183321 0.00564205i
\(467\) 7.66232 + 5.56700i 0.354570 + 0.257610i 0.750784 0.660548i \(-0.229676\pi\)
−0.396214 + 0.918158i \(0.629676\pi\)
\(468\) 0 0
\(469\) −10.2114 7.41900i −0.471518 0.342578i
\(470\) 1.70687 + 0.471972i 0.0787319 + 0.0217705i
\(471\) 0 0
\(472\) −5.02712 + 3.65241i −0.231392 + 0.168116i
\(473\) 3.08173 + 9.48459i 0.141698 + 0.436102i
\(474\) 0 0
\(475\) −20.7608 + 1.84784i −0.952570 + 0.0847847i
\(476\) −14.1167 −0.647039
\(477\) 0 0
\(478\) −1.64304 + 1.19374i −0.0751508 + 0.0546002i
\(479\) −20.8149 + 15.1229i −0.951055 + 0.690982i −0.951056 0.309018i \(-0.900000\pi\)
1.08775e−6 1.00000i \(0.500000\pi\)
\(480\) 0 0
\(481\) −4.83925 3.51592i −0.220651 0.160312i
\(482\) 0.316142 0.0143999
\(483\) 0 0
\(484\) 2.63451 8.10820i 0.119751 0.368554i
\(485\) −0.0376093 + 0.0569145i −0.00170775 + 0.00258435i
\(486\) 0 0
\(487\) −8.77751 + 27.0144i −0.397747 + 1.22414i 0.529055 + 0.848588i \(0.322547\pi\)
−0.926802 + 0.375551i \(0.877453\pi\)
\(488\) 1.14948 3.53774i 0.0520346 0.160146i
\(489\) 0 0
\(490\) 1.87225 + 2.35010i 0.0845795 + 0.106167i
\(491\) 1.88593 5.80429i 0.0851107 0.261944i −0.899440 0.437045i \(-0.856025\pi\)
0.984551 + 0.175101i \(0.0560251\pi\)
\(492\) 0 0
\(493\) −18.7771 −0.845679
\(494\) −3.89566 2.83036i −0.175274 0.127344i
\(495\) 0 0
\(496\) 27.0600 19.6602i 1.21503 0.882770i
\(497\) −13.9992 + 10.1710i −0.627948 + 0.456231i
\(498\) 0 0
\(499\) −20.3163 −0.909481 −0.454740 0.890624i \(-0.650268\pi\)
−0.454740 + 0.890624i \(0.650268\pi\)
\(500\) −2.87834 21.4880i −0.128723 0.960972i
\(501\) 0 0
\(502\) 0.353426 + 1.08773i 0.0157742 + 0.0485480i
\(503\) 11.8332 8.59734i 0.527617 0.383336i −0.291848 0.956465i \(-0.594270\pi\)
0.819466 + 0.573128i \(0.194270\pi\)
\(504\) 0 0
\(505\) 23.5158 8.81237i 1.04644 0.392145i
\(506\) 0.823600 + 0.598380i 0.0366135 + 0.0266012i
\(507\) 0 0
\(508\) −24.5674 17.8493i −1.09000 0.791934i
\(509\) 1.33058 4.09510i 0.0589768 0.181512i −0.917228 0.398363i \(-0.869578\pi\)
0.976205 + 0.216851i \(0.0695785\pi\)
\(510\) 0 0
\(511\) 4.38490 + 13.4953i 0.193977 + 0.596999i
\(512\) −5.38081 + 16.5604i −0.237800 + 0.731874i
\(513\) 0 0
\(514\) −1.39543 4.29471i −0.0615500 0.189431i
\(515\) 0.888802 1.34503i 0.0391653 0.0592692i
\(516\) 0 0
\(517\) 6.67241 + 4.84779i 0.293452 + 0.213205i
\(518\) −0.393109 −0.0172722
\(519\) 0 0
\(520\) 5.60937 8.48871i 0.245987 0.372255i
\(521\) −32.0705 + 23.3006i −1.40503 + 1.02082i −0.411011 + 0.911630i \(0.634824\pi\)
−0.994021 + 0.109186i \(0.965176\pi\)
\(522\) 0 0
\(523\) 11.2134 + 34.5114i 0.490329 + 1.50908i 0.824111 + 0.566428i \(0.191675\pi\)
−0.333782 + 0.942650i \(0.608325\pi\)
\(524\) −29.0021 −1.26696
\(525\) 0 0
\(526\) 4.11264 0.179320
\(527\) 16.5880 + 51.0526i 0.722585 + 2.22389i
\(528\) 0 0
\(529\) 16.5221 12.0040i 0.718353 0.521914i
\(530\) 7.09135 + 1.96086i 0.308029 + 0.0851742i
\(531\) 0 0
\(532\) 10.0779 0.436934
\(533\) −32.9334 23.9275i −1.42650 1.03642i
\(534\) 0 0
\(535\) −4.43205 + 1.66088i −0.191614 + 0.0718061i
\(536\) −3.04087 9.35883i −0.131346 0.404240i
\(537\) 0 0
\(538\) 0.200706 0.617709i 0.00865304 0.0266313i
\(539\) 4.32426 + 13.3087i 0.186259 + 0.573246i
\(540\) 0 0
\(541\) −11.9294 + 36.7150i −0.512886 + 1.57850i 0.274211 + 0.961670i \(0.411583\pi\)
−0.787096 + 0.616830i \(0.788417\pi\)
\(542\) 0.911014 + 0.661890i 0.0391314 + 0.0284306i
\(543\) 0 0
\(544\) −13.4247 9.75359i −0.575578 0.418182i
\(545\) −0.221736 4.99232i −0.00949812 0.213848i
\(546\) 0 0
\(547\) −8.38303 + 6.09063i −0.358433 + 0.260416i −0.752398 0.658709i \(-0.771103\pi\)
0.393965 + 0.919125i \(0.371103\pi\)
\(548\) −6.28853 19.3541i −0.268633 0.826766i
\(549\) 0 0
\(550\) −0.708553 + 3.09031i −0.0302128 + 0.131771i
\(551\) 13.4050 0.571073
\(552\) 0 0
\(553\) 11.5825 8.41517i 0.492538 0.357850i
\(554\) 0.251388 0.182644i 0.0106805 0.00775981i
\(555\) 0 0
\(556\) 19.5324 + 14.1911i 0.828359 + 0.601838i
\(557\) −12.6830 −0.537398 −0.268699 0.963224i \(-0.586594\pi\)
−0.268699 + 0.963224i \(0.586594\pi\)
\(558\) 0 0
\(559\) 5.61401 17.2781i 0.237447 0.730788i
\(560\) 0.450069 + 10.1332i 0.0190189 + 0.428205i
\(561\) 0 0
\(562\) 1.02306 3.14864i 0.0431550 0.132817i
\(563\) −4.04480 + 12.4486i −0.170468 + 0.524646i −0.999398 0.0347068i \(-0.988950\pi\)
0.828930 + 0.559353i \(0.188950\pi\)
\(564\) 0 0
\(565\) −0.312477 7.03533i −0.0131460 0.295978i
\(566\) −1.83685 + 5.65324i −0.0772086 + 0.237624i
\(567\) 0 0
\(568\) −13.4906 −0.566055
\(569\) −2.09376 1.52120i −0.0877748 0.0637721i 0.543032 0.839712i \(-0.317276\pi\)
−0.630807 + 0.775940i \(0.717276\pi\)
\(570\) 0 0
\(571\) 8.55571 6.21609i 0.358045 0.260135i −0.394191 0.919029i \(-0.628975\pi\)
0.752236 + 0.658893i \(0.228975\pi\)
\(572\) 18.8715 13.7110i 0.789059 0.573285i
\(573\) 0 0
\(574\) −2.67529 −0.111665
\(575\) −6.88699 4.12402i −0.287207 0.171983i
\(576\) 0 0
\(577\) −0.00441597 0.0135910i −0.000183839 0.000565800i 0.950965 0.309300i \(-0.100095\pi\)
−0.951148 + 0.308734i \(0.900095\pi\)
\(578\) 3.41283 2.47957i 0.141955 0.103136i
\(579\) 0 0
\(580\) 0.618690 + 13.9296i 0.0256897 + 0.578397i
\(581\) 2.85679 + 2.07558i 0.118519 + 0.0861094i
\(582\) 0 0
\(583\) 27.7212 + 20.1406i 1.14809 + 0.834139i
\(584\) −3.41860 + 10.5214i −0.141463 + 0.435377i
\(585\) 0 0
\(586\) −2.45326 7.55035i −0.101343 0.311902i
\(587\) 6.99581 21.5309i 0.288748 0.888675i −0.696502 0.717555i \(-0.745261\pi\)
0.985250 0.171120i \(-0.0547387\pi\)
\(588\) 0 0
\(589\) −11.8422 36.4465i −0.487949 1.50175i
\(590\) −3.30304 + 1.23779i −0.135984 + 0.0509590i
\(591\) 0 0
\(592\) 3.76116 + 2.73264i 0.154583 + 0.112311i
\(593\) −12.7423 −0.523264 −0.261632 0.965168i \(-0.584261\pi\)
−0.261632 + 0.965168i \(0.584261\pi\)
\(594\) 0 0
\(595\) −15.6898 4.33845i −0.643219 0.177859i
\(596\) 26.7758 19.4537i 1.09678 0.796856i
\(597\) 0 0
\(598\) −0.573086 1.76378i −0.0234352 0.0721262i
\(599\) 6.83599 0.279311 0.139656 0.990200i \(-0.455400\pi\)
0.139656 + 0.990200i \(0.455400\pi\)
\(600\) 0 0
\(601\) 31.8422 1.29887 0.649435 0.760417i \(-0.275005\pi\)
0.649435 + 0.760417i \(0.275005\pi\)
\(602\) −0.368948 1.13551i −0.0150372 0.0462798i
\(603\) 0 0
\(604\) −2.47107 + 1.79534i −0.100546 + 0.0730511i
\(605\) 5.41995 8.20207i 0.220352 0.333462i
\(606\) 0 0
\(607\) 27.7763 1.12741 0.563703 0.825977i \(-0.309376\pi\)
0.563703 + 0.825977i \(0.309376\pi\)
\(608\) 9.58388 + 6.96310i 0.388678 + 0.282391i
\(609\) 0 0
\(610\) 1.16413 1.76169i 0.0471343 0.0713288i
\(611\) −4.64286 14.2893i −0.187830 0.578082i
\(612\) 0 0
\(613\) −1.11769 + 3.43991i −0.0451433 + 0.138937i −0.971088 0.238723i \(-0.923271\pi\)
0.925944 + 0.377660i \(0.123271\pi\)
\(614\) −1.54764 4.76315i −0.0624577 0.192225i
\(615\) 0 0
\(616\) 0.962321 2.96172i 0.0387730 0.119331i
\(617\) 36.1166 + 26.2402i 1.45400 + 1.05639i 0.984876 + 0.173259i \(0.0554297\pi\)
0.469122 + 0.883133i \(0.344570\pi\)
\(618\) 0 0
\(619\) −16.5917 12.0546i −0.666878 0.484515i 0.202101 0.979365i \(-0.435223\pi\)
−0.868979 + 0.494850i \(0.835223\pi\)
\(620\) 37.3264 13.9878i 1.49906 0.561763i
\(621\) 0 0
\(622\) 3.73760 2.71552i 0.149864 0.108883i
\(623\) −0.531970 1.63724i −0.0213129 0.0655945i
\(624\) 0 0
\(625\) 3.40475 24.7671i 0.136190 0.990683i
\(626\) −6.14033 −0.245417
\(627\) 0 0
\(628\) −14.4336 + 10.4866i −0.575964 + 0.418463i
\(629\) −6.03621 + 4.38556i −0.240679 + 0.174864i
\(630\) 0 0
\(631\) 30.5288 + 22.1805i 1.21533 + 0.882991i 0.995704 0.0925923i \(-0.0295153\pi\)
0.219629 + 0.975583i \(0.429515\pi\)
\(632\) 11.1618 0.443991
\(633\) 0 0
\(634\) −1.92066 + 5.91117i −0.0762790 + 0.234763i
\(635\) −21.8195 27.3885i −0.865881 1.08688i
\(636\) 0 0
\(637\) 7.87754 24.2446i 0.312119 0.960605i
\(638\) 0.630115 1.93929i 0.0249465 0.0767774i
\(639\) 0 0
\(640\) −9.00683 + 13.6301i −0.356026 + 0.538778i
\(641\) 2.83865 8.73646i 0.112120 0.345070i −0.879216 0.476424i \(-0.841933\pi\)
0.991335 + 0.131355i \(0.0419327\pi\)
\(642\) 0 0
\(643\) 3.42111 0.134915 0.0674577 0.997722i \(-0.478511\pi\)
0.0674577 + 0.997722i \(0.478511\pi\)
\(644\) 3.14010 + 2.28142i 0.123737 + 0.0899005i
\(645\) 0 0
\(646\) −4.85922 + 3.53043i −0.191184 + 0.138903i
\(647\) 2.64334 1.92050i 0.103920 0.0755027i −0.534611 0.845098i \(-0.679542\pi\)
0.638532 + 0.769595i \(0.279542\pi\)
\(648\) 0 0
\(649\) −16.4276 −0.644840
\(650\) 4.35328 3.79577i 0.170750 0.148882i
\(651\) 0 0
\(652\) 2.74487 + 8.44785i 0.107498 + 0.330843i
\(653\) 10.2229 7.42740i 0.400054 0.290656i −0.369509 0.929227i \(-0.620474\pi\)
0.769563 + 0.638571i \(0.220474\pi\)
\(654\) 0 0
\(655\) −32.2339 8.91313i −1.25948 0.348265i
\(656\) 25.5965 + 18.5969i 0.999374 + 0.726088i
\(657\) 0 0
\(658\) −0.798829 0.580383i −0.0311416 0.0226257i
\(659\) 2.82719 8.70118i 0.110131 0.338950i −0.880769 0.473546i \(-0.842974\pi\)
0.990901 + 0.134596i \(0.0429737\pi\)
\(660\) 0 0
\(661\) 1.97487 + 6.07804i 0.0768137 + 0.236408i 0.982089 0.188417i \(-0.0603356\pi\)
−0.905275 + 0.424825i \(0.860336\pi\)
\(662\) −2.31955 + 7.13884i −0.0901519 + 0.277459i
\(663\) 0 0
\(664\) 0.850729 + 2.61827i 0.0330147 + 0.101609i
\(665\) 11.2010 + 3.09722i 0.434355 + 0.120105i
\(666\) 0 0
\(667\) 4.17676 + 3.03459i 0.161725 + 0.117500i
\(668\) 0.276383 0.0106936
\(669\) 0 0
\(670\) −0.247861 5.58052i −0.00957569 0.215594i
\(671\) 7.95593 5.78032i 0.307135 0.223147i
\(672\) 0 0
\(673\) −10.4158 32.0566i −0.401500 1.23569i −0.923782 0.382918i \(-0.874919\pi\)
0.522282 0.852773i \(-0.325081\pi\)
\(674\) 1.12881 0.0434802
\(675\) 0 0
\(676\) −17.2857 −0.664833
\(677\) −2.84401 8.75295i −0.109304 0.336403i 0.881412 0.472347i \(-0.156593\pi\)
−0.990716 + 0.135944i \(0.956593\pi\)
\(678\) 0 0
\(679\) 0.0307719 0.0223571i 0.00118092 0.000857988i
\(680\) −7.90798 9.92634i −0.303257 0.380658i
\(681\) 0 0
\(682\) −5.82935 −0.223217
\(683\) 22.0227 + 16.0005i 0.842677 + 0.612241i 0.923117 0.384519i \(-0.125633\pi\)
−0.0804402 + 0.996759i \(0.525633\pi\)
\(684\) 0 0
\(685\) −1.04125 23.4434i −0.0397841 0.895728i
\(686\) −1.18319 3.64147i −0.0451743 0.139032i
\(687\) 0 0
\(688\) −4.36332 + 13.4289i −0.166350 + 0.511972i
\(689\) −19.2892 59.3662i −0.734862 2.26167i
\(690\) 0 0
\(691\) 9.21607 28.3642i 0.350596 1.07902i −0.607923 0.793996i \(-0.707997\pi\)
0.958519 0.285028i \(-0.0920028\pi\)
\(692\) −38.6275 28.0645i −1.46840 1.06685i
\(693\) 0 0
\(694\) 3.35687 + 2.43891i 0.127425 + 0.0925797i
\(695\) 17.3477 + 21.7753i 0.658034 + 0.825985i
\(696\) 0 0
\(697\) −41.0792 + 29.8458i −1.55599 + 1.13049i
\(698\) −0.0284865 0.0876726i −0.00107823 0.00331846i
\(699\) 0 0
\(700\) −2.70147 + 11.7823i −0.102106 + 0.445328i
\(701\) 19.1081 0.721704 0.360852 0.932623i \(-0.382486\pi\)
0.360852 + 0.932623i \(0.382486\pi\)
\(702\) 0 0
\(703\) 4.30925 3.13086i 0.162527 0.118082i
\(704\) −13.6700 + 9.93187i −0.515209 + 0.374322i
\(705\) 0 0
\(706\) 4.78489 + 3.47642i 0.180082 + 0.130837i
\(707\) −14.0020 −0.526601
\(708\) 0 0
\(709\) 4.48525 13.8042i 0.168447 0.518427i −0.830827 0.556531i \(-0.812132\pi\)
0.999274 + 0.0381042i \(0.0121319\pi\)
\(710\) −7.38109 2.04097i −0.277008 0.0765964i
\(711\) 0 0
\(712\) 0.414740 1.27644i 0.0155430 0.0478365i
\(713\) 4.56086 14.0369i 0.170806 0.525685i
\(714\) 0 0
\(715\) 25.1882 9.43911i 0.941986 0.353003i
\(716\) −14.4743 + 44.5473i −0.540930 + 1.66481i
\(717\) 0 0
\(718\) −1.17215 −0.0437444
\(719\) 28.1139 + 20.4260i 1.04847 + 0.761760i 0.971921 0.235306i \(-0.0756091\pi\)
0.0765512 + 0.997066i \(0.475609\pi\)
\(720\) 0 0
\(721\) −0.727219 + 0.528356i −0.0270831 + 0.0196770i
\(722\) −0.324007 + 0.235405i −0.0120583 + 0.00876086i
\(723\) 0 0
\(724\) −3.81626 −0.141830
\(725\) −3.59332 + 15.6720i −0.133452 + 0.582044i
\(726\) 0 0
\(727\) 13.1727 + 40.5415i 0.488550 + 1.50360i 0.826773 + 0.562536i \(0.190174\pi\)
−0.338223 + 0.941066i \(0.609826\pi\)
\(728\) −4.58959 + 3.33453i −0.170102 + 0.123586i
\(729\) 0 0
\(730\) −3.46217 + 5.23933i −0.128141 + 0.193916i
\(731\) −18.3330 13.3197i −0.678072 0.492648i
\(732\) 0 0
\(733\) −1.58754 1.15341i −0.0586370 0.0426023i 0.558081 0.829787i \(-0.311538\pi\)
−0.616718 + 0.787184i \(0.711538\pi\)
\(734\) 1.32451 4.07642i 0.0488885 0.150463i
\(735\) 0 0
\(736\) 1.40987 + 4.33915i 0.0519687 + 0.159943i
\(737\) 8.03917 24.7420i 0.296127 0.911384i
\(738\) 0 0
\(739\) 3.81947 + 11.7551i 0.140501 + 0.432419i 0.996405 0.0847164i \(-0.0269984\pi\)
−0.855904 + 0.517135i \(0.826998\pi\)
\(740\) 3.45227 + 4.33340i 0.126908 + 0.159299i
\(741\) 0 0
\(742\) −3.31881 2.41126i −0.121838 0.0885201i
\(743\) −8.63742 −0.316876 −0.158438 0.987369i \(-0.550646\pi\)
−0.158438 + 0.987369i \(0.550646\pi\)
\(744\) 0 0
\(745\) 35.7381 13.3926i 1.30934 0.490668i
\(746\) 0.420978 0.305858i 0.0154131 0.0111983i
\(747\) 0 0
\(748\) −8.99121 27.6721i −0.328751 1.01179i
\(749\) 2.63898 0.0964264
\(750\) 0 0
\(751\) −24.3654 −0.889105 −0.444552 0.895753i \(-0.646637\pi\)
−0.444552 + 0.895753i \(0.646637\pi\)
\(752\) 3.60852 + 11.1059i 0.131589 + 0.404990i
\(753\) 0 0
\(754\) −3.00520 + 2.18341i −0.109443 + 0.0795150i
\(755\) −3.29818 + 1.23597i −0.120033 + 0.0449816i
\(756\) 0 0
\(757\) −5.18352 −0.188398 −0.0941991 0.995553i \(-0.530029\pi\)
−0.0941991 + 0.995553i \(0.530029\pi\)
\(758\) 2.47723 + 1.79981i 0.0899769 + 0.0653720i
\(759\) 0 0
\(760\) 5.64551 + 7.08643i 0.204784 + 0.257052i
\(761\) −9.66099 29.7335i −0.350211 1.07784i −0.958735 0.284302i \(-0.908238\pi\)
0.608524 0.793535i \(-0.291762\pi\)
\(762\) 0 0
\(763\) −0.861014 + 2.64993i −0.0311708 + 0.0959339i
\(764\) −4.65505 14.3268i −0.168414 0.518324i
\(765\) 0 0
\(766\) 2.53964 7.81622i 0.0917611 0.282412i
\(767\) 24.2109 + 17.5903i 0.874205 + 0.635147i
\(768\) 0 0
\(769\) 35.7497 + 25.9737i 1.28917 + 0.936636i 0.999788 0.0205786i \(-0.00655083\pi\)
0.289380 + 0.957214i \(0.406551\pi\)
\(770\) 0.974585 1.47485i 0.0351216 0.0531499i
\(771\) 0 0
\(772\) 22.5054 16.3511i 0.809986 0.588489i
\(773\) 6.67110 + 20.5315i 0.239943 + 0.738468i 0.996427 + 0.0844563i \(0.0269153\pi\)
−0.756484 + 0.654012i \(0.773085\pi\)
\(774\) 0 0
\(775\) 45.7846 4.07512i 1.64463 0.146383i
\(776\) 0.0296542 0.00106452
\(777\) 0 0
\(778\) 3.38929 2.46246i 0.121512 0.0882835i
\(779\) 29.3265 21.3070i 1.05073 0.763401i
\(780\) 0 0
\(781\) −28.8538 20.9635i −1.03247 0.750135i
\(782\) −2.31325 −0.0827218
\(783\) 0 0
\(784\) −6.12257 + 18.8433i −0.218663 + 0.672977i
\(785\) −19.2648 + 7.21937i −0.687592 + 0.257670i
\(786\) 0 0
\(787\) 4.45638 13.7153i 0.158853 0.488899i −0.839678 0.543085i \(-0.817256\pi\)
0.998531 + 0.0541857i \(0.0172563\pi\)
\(788\) 0.0979961 0.301601i 0.00349097 0.0107441i
\(789\) 0 0
\(790\) 6.10690 + 1.68864i 0.217274 + 0.0600792i
\(791\) −1.21337 + 3.73436i −0.0431424 + 0.132779i
\(792\) 0 0
\(793\) −17.9148 −0.636173
\(794\) −0.172995 0.125688i −0.00613937 0.00446052i
\(795\) 0 0
\(796\) 7.79639 5.66441i 0.276336 0.200770i
\(797\) −31.9211 + 23.1921i −1.13070 + 0.821505i −0.985797 0.167941i \(-0.946288\pi\)
−0.144907 + 0.989445i \(0.546288\pi\)
\(798\) 0 0
\(799\) −18.7409 −0.663004
\(800\) −10.7097 + 9.33815i −0.378645 + 0.330153i
\(801\) 0 0
\(802\) 0.738645 + 2.27332i 0.0260825 + 0.0802736i
\(803\) −23.6612 + 17.1909i −0.834986 + 0.606653i
\(804\) 0 0
\(805\) 2.78888 + 3.50068i 0.0982950 + 0.123383i
\(806\) 8.59125 + 6.24191i 0.302614 + 0.219862i
\(807\) 0 0
\(808\) −8.83156 6.41650i −0.310693 0.225732i
\(809\) 1.84237 5.67024i 0.0647744 0.199355i −0.913431 0.406993i \(-0.866577\pi\)
0.978206 + 0.207638i \(0.0665775\pi\)
\(810\) 0 0
\(811\) −12.1062 37.2590i −0.425105 1.30834i −0.902893 0.429865i \(-0.858561\pi\)
0.477788 0.878475i \(-0.341439\pi\)
\(812\) 2.40241 7.39386i 0.0843081 0.259474i
\(813\) 0 0
\(814\) −0.250378 0.770586i −0.00877576 0.0270090i
\(815\) 0.454493 + 10.2328i 0.0159202 + 0.358439i
\(816\) 0 0
\(817\) 13.0880 + 9.50897i 0.457890 + 0.332677i
\(818\) −0.374544 −0.0130956
\(819\) 0 0
\(820\) 23.4944 + 29.4908i 0.820458 + 1.02986i
\(821\) 16.6923 12.1277i 0.582567 0.423260i −0.257082 0.966390i \(-0.582761\pi\)
0.839649 + 0.543130i \(0.182761\pi\)
\(822\) 0 0
\(823\) 12.0567 + 37.1066i 0.420269 + 1.29345i 0.907452 + 0.420155i \(0.138024\pi\)
−0.487183 + 0.873300i \(0.661976\pi\)
\(824\) −0.700803 −0.0244136
\(825\) 0 0
\(826\) 1.96673 0.0684314
\(827\) −6.05598 18.6384i −0.210587 0.648120i −0.999438 0.0335352i \(-0.989323\pi\)
0.788850 0.614585i \(-0.210677\pi\)
\(828\) 0 0
\(829\) 7.01831 5.09910i 0.243756 0.177099i −0.459199 0.888333i \(-0.651864\pi\)
0.702955 + 0.711234i \(0.251864\pi\)
\(830\) 0.0693427 + 1.56123i 0.00240692 + 0.0541912i
\(831\) 0 0
\(832\) 30.7816 1.06716
\(833\) −25.7248 18.6902i −0.891311 0.647575i
\(834\) 0 0
\(835\) 0.307182 + 0.0849400i 0.0106305 + 0.00293947i
\(836\) 6.41884 + 19.7551i 0.222000 + 0.683246i
\(837\) 0 0
\(838\) −2.33044 + 7.17235i −0.0805036 + 0.247765i
\(839\) 1.19256 + 3.67033i 0.0411718 + 0.126714i 0.969530 0.244974i \(-0.0787793\pi\)
−0.928358 + 0.371687i \(0.878779\pi\)
\(840\) 0 0
\(841\) −5.76596 + 17.7458i −0.198826 + 0.611925i
\(842\) −1.39176 1.01117i −0.0479632 0.0348473i
\(843\) 0 0
\(844\) 5.16724 + 3.75422i 0.177864 + 0.129226i
\(845\) −19.2119 5.31235i −0.660908 0.182750i
\(846\) 0 0
\(847\) −4.43461 + 3.22193i −0.152375 + 0.110707i
\(848\) 14.9920 + 46.1406i 0.514827 + 1.58447i
\(849\) 0 0
\(850\) −2.82493 6.62735i −0.0968943 0.227316i
\(851\) 2.05144 0.0703224
\(852\) 0 0
\(853\) 24.1004 17.5100i 0.825183 0.599531i −0.0930093 0.995665i \(-0.529649\pi\)
0.918192 + 0.396135i \(0.129649\pi\)
\(854\) −0.952493 + 0.692027i −0.0325936 + 0.0236807i
\(855\) 0 0
\(856\) 1.66450 + 1.20933i 0.0568913 + 0.0413340i
\(857\) −36.2041 −1.23671 −0.618354 0.785899i \(-0.712200\pi\)
−0.618354 + 0.785899i \(0.712200\pi\)
\(858\) 0 0
\(859\) −11.6355 + 35.8104i −0.396998 + 1.22184i 0.530396 + 0.847750i \(0.322043\pi\)
−0.927394 + 0.374086i \(0.877957\pi\)
\(860\) −9.27706 + 14.0391i −0.316345 + 0.478728i
\(861\) 0 0
\(862\) 0.834757 2.56912i 0.0284319 0.0875045i
\(863\) 0.772275 2.37682i 0.0262885 0.0809078i −0.937051 0.349191i \(-0.886456\pi\)
0.963340 + 0.268283i \(0.0864564\pi\)
\(864\) 0 0
\(865\) −34.3070 43.0632i −1.16647 1.46419i
\(866\) −0.796028 + 2.44992i −0.0270501 + 0.0832518i
\(867\) 0 0
\(868\) −22.2253 −0.754376
\(869\) 23.8728 + 17.3446i 0.809830 + 0.588376i
\(870\) 0 0
\(871\) −38.3411 + 27.8565i −1.29914 + 0.943881i
\(872\) −1.75741 + 1.27684i −0.0595136 + 0.0432391i
\(873\) 0 0
\(874\) 1.65143 0.0558606
\(875\) −6.62352 + 12.2650i −0.223916 + 0.414632i
\(876\) 0 0
\(877\) −10.0273 30.8609i −0.338599 1.04210i −0.964922 0.262537i \(-0.915441\pi\)
0.626323 0.779563i \(-0.284559\pi\)
\(878\) 3.08100 2.23847i 0.103979 0.0755449i
\(879\) 0 0
\(880\) −19.5768 + 7.33626i −0.659933 + 0.247305i
\(881\) −26.9099 19.5512i −0.906619 0.658697i 0.0335388 0.999437i \(-0.489322\pi\)
−0.940157 + 0.340740i \(0.889322\pi\)
\(882\) 0 0
\(883\) 8.87730 + 6.44974i 0.298745 + 0.217051i 0.727052 0.686582i \(-0.240890\pi\)
−0.428307 + 0.903633i \(0.640890\pi\)
\(884\) −16.3794 + 50.4105i −0.550897 + 1.69549i
\(885\) 0 0
\(886\) 1.44197 + 4.43794i 0.0484440 + 0.149095i
\(887\) 8.03604 24.7324i 0.269824 0.830432i −0.720719 0.693227i \(-0.756188\pi\)
0.990543 0.137205i \(-0.0438118\pi\)
\(888\) 0 0
\(889\) 6.03343 + 18.5690i 0.202355 + 0.622784i
\(890\) 0.420025 0.635628i 0.0140793 0.0213063i
\(891\) 0 0
\(892\) −24.7446 17.9780i −0.828511 0.601948i
\(893\) 13.3791 0.447715
\(894\) 0 0
\(895\) −29.7778 + 45.0630i −0.995362 + 1.50629i
\(896\) 7.36940 5.35418i 0.246194 0.178871i
\(897\) 0 0
\(898\) −0.870436 2.67893i −0.0290468 0.0893970i
\(899\) −29.5626 −0.985969
\(900\) 0 0
\(901\) −77.8608 −2.59392
\(902\) −1.70394 5.24420i −0.0567351 0.174613i
\(903\) 0 0
\(904\) −2.47660 + 1.79936i −0.0823705 + 0.0598457i
\(905\) −4.24152 1.17284i −0.140993 0.0389865i
\(906\) 0 0
\(907\) −55.0108 −1.82660 −0.913302 0.407283i \(-0.866476\pi\)
−0.913302 + 0.407283i \(0.866476\pi\)
\(908\) −21.2421 15.4333i −0.704944 0.512172i
\(909\) 0 0
\(910\) −3.01556 + 1.13006i −0.0999650 + 0.0374612i
\(911\) 3.74142 + 11.5149i 0.123959 + 0.381506i 0.993710 0.111985i \(-0.0357208\pi\)
−0.869751 + 0.493490i \(0.835721\pi\)
\(912\) 0 0
\(913\) −2.24908 + 6.92195i −0.0744336 + 0.229083i
\(914\) 2.59060 + 7.97306i 0.0856895 + 0.263725i
\(915\) 0 0
\(916\) 8.85816 27.2626i 0.292682 0.900782i
\(917\) 15.0858 + 10.9605i 0.498176 + 0.361946i
\(918\) 0 0
\(919\) −4.83138 3.51020i −0.159372 0.115791i 0.505241 0.862978i \(-0.331404\pi\)
−0.664613 + 0.747188i \(0.731404\pi\)
\(920\) 0.154833 + 3.48602i 0.00510468 + 0.114931i
\(921\) 0 0
\(922\) 4.92906 3.58117i 0.162330 0.117940i
\(923\) 20.0774 + 61.7918i 0.660855 + 2.03390i
\(924\) 0 0
\(925\) 2.50520 + 5.87726i 0.0823706 + 0.193243i
\(926\) 3.36370 0.110538
\(927\) 0 0
\(928\) 7.39324 5.37150i 0.242695 0.176328i
\(929\) 37.9232 27.5528i 1.24422 0.903979i 0.246348 0.969182i \(-0.420770\pi\)
0.997872 + 0.0652030i \(0.0207695\pi\)
\(930\) 0 0
\(931\) 18.3650 + 13.3429i 0.601887 + 0.437297i
\(932\) 1.00636 0.0329644
\(933\) 0 0
\(934\) 0.722201 2.22271i 0.0236311 0.0727291i
\(935\) −1.48876 33.5189i −0.0486875 1.09619i
\(936\) 0 0
\(937\) −6.00528 + 18.4823i −0.196184 + 0.603792i 0.803777 + 0.594931i \(0.202821\pi\)
−0.999961 + 0.00886093i \(0.997179\pi\)
\(938\) −0.962459 + 2.96214i −0.0314254 + 0.0967174i
\(939\) 0 0
\(940\) 0.617495 + 13.9027i 0.0201405 + 0.453457i
\(941\) −6.70867 + 20.6472i −0.218696 + 0.673078i 0.780174 + 0.625563i \(0.215130\pi\)
−0.998870 + 0.0475159i \(0.984870\pi\)
\(942\) 0 0
\(943\) 13.9610 0.454633
\(944\) −18.8172 13.6715i −0.612447 0.444969i
\(945\) 0 0
\(946\) 1.99087 1.44645i 0.0647287 0.0470282i
\(947\) −5.10943 + 3.71222i −0.166034 + 0.120631i −0.667699 0.744431i \(-0.732721\pi\)
0.501665 + 0.865062i \(0.332721\pi\)
\(948\) 0 0
\(949\) 53.2792 1.72952
\(950\) 2.01672 + 4.73127i 0.0654310 + 0.153503i
\(951\) 0 0
\(952\) 2.18668 + 6.72990i 0.0708707 + 0.218117i
\(953\) 17.6380 12.8147i 0.571350 0.415110i −0.264245 0.964455i \(-0.585123\pi\)
0.835595 + 0.549345i \(0.185123\pi\)
\(954\) 0 0
\(955\) −0.770779 17.3539i −0.0249418 0.561558i
\(956\) −12.9115 9.38076i −0.417588 0.303395i
\(957\) 0 0
\(958\) 5.13625 + 3.73171i 0.165945 + 0.120566i
\(959\) −4.04324 + 12.4438i −0.130563 + 0.401831i
\(960\) 0 0
\(961\) 16.5366 + 50.8943i 0.533437 + 1.64175i
\(962\) −0.456116 + 1.40378i −0.0147058 + 0.0452597i
\(963\) 0 0
\(964\) 0.767705 + 2.36275i 0.0247261 + 0.0760992i
\(965\) 30.0384 11.2567i 0.966969 0.362365i
\(966\) 0 0
\(967\) 5.67338 + 4.12195i 0.182444 + 0.132553i 0.675259 0.737581i \(-0.264032\pi\)
−0.492815 + 0.870134i \(0.664032\pi\)
\(968\) −4.27353 −0.137356
\(969\) 0 0
\(970\) 0.0162246 + 0.00448632i 0.000520940 + 0.000144047i
\(971\) 5.99504 4.35565i 0.192390 0.139779i −0.487420 0.873167i \(-0.662062\pi\)
0.679810 + 0.733388i \(0.262062\pi\)
\(972\) 0 0
\(973\) −4.79690 14.7633i −0.153781 0.473291i
\(974\) 7.00909 0.224586
\(975\) 0 0
\(976\) 13.9237 0.445688
\(977\) −12.1315 37.3370i −0.388122 1.19452i −0.934190 0.356776i \(-0.883876\pi\)
0.546068 0.837741i \(-0.316124\pi\)
\(978\) 0 0
\(979\) 2.87054 2.08557i 0.0917430 0.0666552i
\(980\) −13.0175 + 19.6995i −0.415829 + 0.629278i
\(981\) 0 0
\(982\) −1.50597 −0.0480573
\(983\) −14.8719 10.8051i −0.474341 0.344629i 0.324790 0.945786i \(-0.394706\pi\)
−0.799131 + 0.601158i \(0.794706\pi\)
\(984\) 0 0
\(985\) 0.201606 0.305093i 0.00642371 0.00972106i
\(986\) 1.43181 + 4.40665i 0.0455980 + 0.140336i
\(987\) 0 0
\(988\) 11.6932 35.9881i 0.372012 1.14493i
\(989\) 1.92536 + 5.92564i 0.0612228 + 0.188424i
\(990\) 0 0
\(991\) 16.2128 49.8980i 0.515018 1.58506i −0.268233 0.963354i \(-0.586440\pi\)
0.783250 0.621707i \(-0.213560\pi\)
\(992\) −21.1357 15.3560i −0.671060 0.487554i
\(993\) 0 0
\(994\) 3.45442 + 2.50978i 0.109567 + 0.0796054i
\(995\) 10.4060 3.89958i 0.329892 0.123625i
\(996\) 0 0
\(997\) 29.4256 21.3789i 0.931917 0.677077i −0.0145444 0.999894i \(-0.504630\pi\)
0.946461 + 0.322817i \(0.104630\pi\)
\(998\) 1.54917 + 4.76785i 0.0490381 + 0.150924i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.2.h.d.181.2 12
3.2 odd 2 75.2.g.c.31.2 12
15.2 even 4 375.2.i.d.349.3 24
15.8 even 4 375.2.i.d.349.4 24
15.14 odd 2 375.2.g.c.151.2 12
25.11 even 5 5625.2.a.p.1.3 6
25.14 even 10 5625.2.a.q.1.4 6
25.21 even 5 inner 225.2.h.d.46.2 12
75.2 even 20 1875.2.b.f.1249.8 12
75.11 odd 10 1875.2.a.j.1.4 6
75.14 odd 10 1875.2.a.k.1.3 6
75.23 even 20 1875.2.b.f.1249.5 12
75.29 odd 10 375.2.g.c.226.2 12
75.47 even 20 375.2.i.d.274.4 24
75.53 even 20 375.2.i.d.274.3 24
75.71 odd 10 75.2.g.c.46.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.g.c.31.2 12 3.2 odd 2
75.2.g.c.46.2 yes 12 75.71 odd 10
225.2.h.d.46.2 12 25.21 even 5 inner
225.2.h.d.181.2 12 1.1 even 1 trivial
375.2.g.c.151.2 12 15.14 odd 2
375.2.g.c.226.2 12 75.29 odd 10
375.2.i.d.274.3 24 75.53 even 20
375.2.i.d.274.4 24 75.47 even 20
375.2.i.d.349.3 24 15.2 even 4
375.2.i.d.349.4 24 15.8 even 4
1875.2.a.j.1.4 6 75.11 odd 10
1875.2.a.k.1.3 6 75.14 odd 10
1875.2.b.f.1249.5 12 75.23 even 20
1875.2.b.f.1249.8 12 75.2 even 20
5625.2.a.p.1.3 6 25.11 even 5
5625.2.a.q.1.4 6 25.14 even 10